WorldWideScience

Sample records for bee venoms

  1. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    2014-01-01

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  2. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  3. Pharmacological evaluation of bee venom and melittin

    OpenAIRE

    Camila G. Dantas; Tássia L.G.M. Nunes; Tâmara L.G.M. Nunes; Ailma O. da Paixão; Francisco P. Reis; Waldecy de L. Júnior; Juliana C. Cardoso; Kátia P. Gramacho; Gomes, Margarete Z

    2014-01-01

    The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field), catalepsy, anxiety (elevated plus-maze), depression (forced swimming test) and apomorphine-induced stereot...

  4. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    OpenAIRE

    Seung-Bae Lee

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by ...

  5. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  6. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  7. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  8. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    Directory of Open Access Journals (Sweden)

    Kim Chaeweon

    2013-12-01

    Full Text Available Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300 or sexual difference (P = 0.163. Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference.

  9. Study on Bee venom and Pain

    OpenAIRE

    Hyoung-Seok Yun; Young-Suk Kim; Jae-Dong Lee

    2000-01-01

    In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were...

  10. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  11. Antineoplastic Effects of Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohammad Nabiuni

    2013-08-01

    Full Text Available Background: Bee venom (BV, like many other complementary medicines, has been used for thousands of years for the treatment of a range of diseases. More recently, BV is also being considered as an effective composition for the treatment of cancer. Cancer is a major worldwide problem. It is obvious that the identification of compounds that can activate apoptosis could be effective on the treatment of cancer. BV is a very complicated mixture of active peptides, enzymes, and biologically active amines. The two main components of BV are melittin and phospholipase A2 (PLA2. Of these two components, melittin, the major active ingredient of BV, has been identified to induce apoptosis and to possess anti-tumor effects. We tried to review antineoplastic effects of BV in this study. Materials and Methods: The related articles were derived from different data bases such as PubMed, Elsevier Science, and Google Scholar using keywords including bee venom, cancer, and apoptosis.Results: According to the results of this study, BV can induce apoptosis and inhibit tumor cell growth and metastasis. Results of in vivo experiments show that the anti-tumor effect of the BV is highly dependent on the manner of injection as well as the distance between the area of injection and the tumor cells.Conclusion: The results obtained from the reported studies revealed that BV has anti-cancer effects and can be used as an effective chemotherapeutic agent against tumors in the future.

  12. Component Analysis of Bee Venom from lune to September

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : The aim of this study was to observe variation of Bee Venom content from the collection period. Methods : Content analysis of Bee Venom was rendered using HPLC method by standard melittin Results : Analyzing melittin content using HPLC, 478.97mg/g at june , 493.89mg/g at july, 468.18mg/g at August and 482.15mg/g was containing in Bee Venom at september. So the change of melittin contents was no significance from June to September. Conclusion : Above these results, we concluded carefully that collecting time was not important factor for the quality control of Bee Venom, restricted the period from June to September.

  13. Immune thrombocytopenia after bee venom therapy: a case report

    OpenAIRE

    Abdulsalam, Mohammad Adel; Ebrahim, Bader Esmael; Abdulsalam, Ahmad Jasem

    2016-01-01

    Background Immune thrombocytopenia (ITP) is a hematological disorder with an isolated decrease in number of circulating platelets. Bee venom therapy (BVT) is a form of alternative medicine. It is still being practiced in the Middle East and other parts of Asia. In BVT, acupuncture points are used to inject diluted bee venom into the body. The pharmacological basis behind BVT is not fully understood. However, it has been used to treat various medical conditions such as arthritis and low back p...

  14. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohsen Momenzadeh

    2014-01-01

    Full Text Available Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal of this study was isolation of melittin from honey bee venom and evaluation of its antibacterial activity against the agents of bacterial peritonitis. Materials and methods: Honey bee venom prepared using electrical stimulation and the quality of venom confirmed by SDS-PAGE. Melittin isolated from the venom using a linear gradient of acetonitrile and C18 column by Reverse Phase-High Performance Chromatography (RP-HPLC. Minimal Inhibition and Bactericidal concentration for melittin examined on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Results: Honey bee venom composed of twenty distinct fraction in which melittin was the major one. Melittin inhibited Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa growth at 0.39, 6.25, and 12.5 µg and was bactericide at 1.56, 25, and >50 µg respectively. Conclusion: Melittin specifically invade the corresponding bacteria and induce significant inhibitory and bactericidal activity against the main agents of bacterial peritonitis. Complementary studies in animal model would be overcome bacterial drug resistance issue specifically in bacterial peritonitis.

  15. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases inc...

  16. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  17. Spinal processing of bee venom-induced pain and hyperalgesia

    Institute of Scientific and Technical Information of China (English)

    Jun CHEN

    2008-01-01

    Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord, which contributes to the development and maintenance of various pain-related behaviors. The unique behavioral 'pheno-types' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammatory pain and might be appropriate to the study of phenotype-based mechanisms of pain and hyperalgesia. In this review, the spinal processing of the bee venom-induced different 'phenotypes' of pain and hyperalgesia will be described. The accumulative electrophysiological, pharmacological, and behavioral data strongly suggest that different 'phenotypes' of pain and hyperalgesia are mediated by different spinal signaling pathways. Unraveling the phenotype-based mechanisms of pain might be useful in development of novel therapeutic drugs against complex clinic pathological pain.

  18. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles

    Directory of Open Access Journals (Sweden)

    Min-Ho Park

    2015-08-01

    Full Text Available It is known that allergic people was potentially vulnerable to bee venom (BV, which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide (PLGA has been broadly studied as a carrier for drug delivery systems (DDS of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs. The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  19. Comparison of Treatment Effects and Allergic responses to stiff neck between Sweet Bee Venom and Bee Venom Pharmacopuncture (A pilot study, Double blind, Randomized Controlled Clinical Trail

    Directory of Open Access Journals (Sweden)

    Kyoung-hee Lee

    2008-12-01

    Full Text Available Objective : The purpose of this study is to investigate the difference of treatment effects and allergic responses to stiff neck between Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture. Methods : Forty one patients who felt stiff neck were randomly divided into two groups, a Bee Venom Pharmacopuncture group(group Ⅰ and a Sweet Bee Venom Pharmacopuncture group(group Ⅱ. Evaluations of the treatment effects were made before and after a treatment using Visual Analog Scale(VAS, Neck Disability Index(NDI, Clinical Evaluation Grade(CEG. The comparison of allergic responses was measured with VAS. The obtained data were analyzed and compared with SPSS. Results : The group Ⅰ and group Ⅱ showed significant improvement(p<0.05 according to the VAS, NDI, CEG. And the differences between the two groups were insignificant according to VAS, NDI, CEG. But allergic responses such as localized edema, localized itching were significantly lower in group Ⅱ than group Ⅰ. Conclusions : It seems that there are no big different treatment effects between the two groups. Sweet Bee Venom Pharmacopuncture appears to be more effective measurement against allergic reactions than the Bee Venom Pharmacopuncture. Further studies are needed for the comparison of Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture.

  20. Mechanisms of immunotherapy to wasp and bee venom.

    Science.gov (United States)

    Ozdemir, C; Kucuksezer, U C; Akdis, M; Akdis, C A

    2011-09-01

    Hymenoptera venoms are important allergens that can elicit both local and systemic allergic reactions, including life-threatening anaphylaxis. Venom immunotherapy (VIT) remains the most effective treatment, reducing the risk of systemic reactions in individuals with Hymenoptera venom allergy. VIT can restore normal immunity against venom allergens and provide patients with a lifetime of tolerance to venoms. During VIT, peripheral tolerance is induced by the generation of allergen-specific regulatory T (Treg) cells, which suppress proliferative and cytokine responses against the venom allergens. Treg cells are characterized by IL-10 secretion that directly or indirectly influence effector cells of allergic inflammation, such as mast cells, basophils and eosinophils. Treg cells also have influence on B cells, suppressing IgE production and inducing the production of blocking type IgG4 antibodies against venom allergens. An accumulating body of evidence suggests that Treg cells may affect allergen sensitization and methods for enhancing this cell population may eventually improve the efficacy of VIT. In this article, immune mechanisms enrolled in bee and wasp VIT are reviewed. PMID:21729181

  1. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. 2. LD50 of ICR mice with Sweet Bee Venom was more than 20mg/kg in subcutaneous injection and intravenous injection, between 15mg/kg and 20mg/kg in muscular injection. 3. LD50 of ICR mice with Bee Venom was between 6 and 9mg/kg in subcutaneous injection and intravenous injection, and more than 9mg/kg in muscular injection. Conclusion : Above results indicate that Sweet Bee Venom was more safe than Bee Venom and the process of removing enzymes was well rendered in Sweet Bee Venom.

  2. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    Directory of Open Access Journals (Sweden)

    Jeong Sun-Hee

    2000-07-01

    Full Text Available Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of the mice which were derived pain by injecting acetic acid into the abdomen, after stimulating Bee Venom aqua-acupuncture on Chungwan(CV12 and non acupuncture point on the backside were measured. Results:1. It showed that the writhing reflex were appeared on the groups which injected acetic acid only, and saline-acetic acid group(sample I, but not on the group bee venom-saline group(sample II. 2. The change of writhing reflex by Chungwan(CV12 Bee Venom aqua-acupuncture showed significant decrease in the order of Chungwan(CV12 Bee Venom aqua-acupuncture group III(2.5×10-3g/kg, II(2.5×10-4g/kg, and I(2.5×10-5g/kg, compared with control group. There were significant decrease of number of writhing reflex in 5~10, 10~15 and 15~20 minutes intervals of Chung wan(CV12 Bee Venom aqua-acupuncture group I, and in 0~5, 5~10, 10~15 and 15~20 minutes intervals of II and III, compared with control group. 3. The change of writhing reflex by non acupuncture point Bee Venom aqua-acupuncture showed significant decrease in the 0~5 and 5~10 minutes intervals and the total number of writhing reflex in 2.5×10-4g/kg group, compared with control group 4. The effects of writhing reflex of Chungwan(CV12 Bee Venom aqua-acupuncture group showed significant decrease, compared with non acupuncture point Bee Venom aqua-acupuncture group. Conclusion:This study shows that the Bee Venom aqua-acupuncture on Chungwan(CV12 decreases the numbers of writhing reflex. As the

  3. Biodistribution studies of bee venom and spider toxin using radiotracers

    Directory of Open Access Journals (Sweden)

    C. M. Yonamine

    2005-03-01

    Full Text Available The use of radiotracers allows the understanding of the bioavailability process, biodistribution, and kinetics of any molecule labelled with an isotope, which does not alter the molecule's biological properties. In this work, technetium-99m and iodine-125 were chosen as radiotracers for biodistribution studies in mice using bee (Apis mellifera venom and a toxin (PnTX2-6 from the Brazilian "armed" spider (Phoneutria nigriventer venom. Incorporated radioactivity was measured in the blood, brain, heart, lung, liver, kidney, adrenal gland, spleen, stomach, testicle, intestine, muscle, and thyroid gland. Results provided the blood kinetic parameter, and different organs distribution rates.

  4. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    OpenAIRE

    Mohsen Momenzadeh; Delavar Shahbazzadeh1; Mohammad Dakhili; Mohammad Reza Zolfaghari; Kamran Pooshang Bagheri

    2014-01-01

    Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal...

  5. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    Science.gov (United States)

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter. PMID:27040904

  6. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  7. Report on the changes of LD50 of Bee venom Herbal Acupuncture

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-02-01

    Full Text Available Objectives : This experiment was conducted to reevaluate LD50 of Korean bee venom acupuncture as many changes have occurred over the years. Methods : ICR mice were used as the experiment animals and bee venom acupuncture was manufactured under the protocols of Korean Institute of herbal Acupuncture. Based on the previous reports, experiment was divided into pre and main sections. Results : 1. Presumed LD50 value is at 5.25mg/kg. 2. Deaths of experiment animals occurred within 48 hours. 3. Reduced toxicity of the bee venom acupuncture is likely to be the results of more refined manufacturing process and production. Conclusion : Comparing with the values of the previous results, toxicity of the bee venom acupuncture showed significant changes and more accurate findings on LD50 value must be accomplished to lead further studies on the bee venom acupuncture.

  8. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm.

    OpenAIRE

    Gmachl, M; Kreil, G

    1993-01-01

    The venom of honeybees, Apis mellifera, contains several biologically active peptides and two enzymes, one of which is a hyaluronidase. By using degenerate oligonucleotides derived from the amino-terminal sequence of this hyaluronidase reported by others, clones encoding the precursor for this enzyme could be isolated from a cDNA library prepared from venom glands of worker bees. The deduced amino acid sequence showed that bee venom hyaluronidase is a polypeptide composed of 349 amino acids c...

  9. Mastoparan, a wasp venom, and melittin, a bee venom, enhance phagocytosis in mouse peritoneal macrophages

    OpenAIRE

    一ノ瀬, 充行; 廣田, 秋彦

    1998-01-01

    To characterize the direct effects of wasp and bee venom peptides on mouse peritoneal macrophages, the effects of mastoparan and melittin on phagocytosis were examined. Mastoparan induced an enhancement of phagocytosis in a dose-dependnt manner up to 2x10^M. Melittin enhanced phagocytosis at lower concentrations, but the dose-response curve was bell-shaped. Even in Ca^-and Mg^-free solutions containing EGTA, which reduced extracellular Ca^, and BAPTA, which reduced intracellular free Ca^, pha...

  10. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    Directory of Open Access Journals (Sweden)

    Ellen L. Danneels

    2015-10-01

    Full Text Available Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS. Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  11. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-11-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  12. Melittin, the Major Pain-Producing Substance of Bee Venom.

    Science.gov (United States)

    Chen, Jun; Guan, Su-Min; Sun, Wei; Fu, Han

    2016-06-01

    Melittin is a basic 26-amino-acid polypeptide that constitutes 40-60% of dry honeybee (Apis mellifera) venom. Although much is known about its strong surface activity on lipid membranes, less is known about its pain-producing effects in the nervous system. In this review, we provide lines of accumulating evidence to support the hypothesis that melittin is the major pain-producing substance of bee venom. At the psychophysical and behavioral levels, subcutaneous injection of melittin causes tonic pain sensation and pain-related behaviors in both humans and animals. At the cellular level, melittin activates primary nociceptor cells through direct and indirect effects. On one hand, melittin can selectively open thermal nociceptor transient receptor potential vanilloid receptor channels via phospholipase A2-lipoxygenase/cyclooxygenase metabolites, leading to depolarization of primary nociceptor cells. On the other hand, algogens and inflammatory/pro-inflammatory mediators released from the tissue matrix by melittin's pore-forming effects can activate primary nociceptor cells through both ligand-gated receptor channels and the G-protein-coupled receptor-mediated opening of transient receptor potential canonical channels. Moreover, subcutaneous melittin up-regulates Nav1.8 and Nav1.9 subunits, resulting in the enhancement of tetrodotoxin-resistant Na(+) currents and the generation of long-term action potential firing. These nociceptive responses in the periphery finally activate and sensitize the spinal dorsal horn pain-signaling neurons, resulting in spontaneous nociceptive paw flinches and pain hypersensitivity to thermal and mechanical stimuli. Taken together, it is concluded that melittin is the major pain-producing substance of bee venom, by which peripheral persistent pain and hyperalgesia (or allodynia), primary nociceptive neuronal sensitization, and CNS synaptic plasticity (or metaplasticity) can be readily induced and the molecular and cellular mechanisms

  13. Risk associated with bee venom therapy: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jeong Hwan Park

    Full Text Available The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threating severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy.We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported.A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57-39.74 in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20 in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies.Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner's education and qualifications regarding the use of bee venom therapy should be ensured.

  14. A Clinical Study of Bee Venom Acupuncture Therapy on External Epicondylitis

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Kim

    2006-06-01

    Full Text Available Objective : This study was to evaluate the effectiveness of Bee Venom acupuncture therapy on external epicondylitis. Methods : We divided chronic arthritis of ankle patient into 2 groups; one group combined bee venom acupuncture therapy and acupuncture therapy, another group was only acupuncture therapy. To estimate the effectiveness of treatment that applied for two groups, we used visual analog scale(VAS. We compared the VAS score of two groups statistically. Results : 1. As a result of evaluation by using visual analog scale(VAS, treatment score at final was marked more higher than score before treatment on each groups. 2. treatment at final, acupuncture and bee venom acupuncture therapy group had significant result on visual analog scale(VAS compared with acupuncture therapy group. Conclusion : Bee Venom acupuncture therapy can be used with acupuncture therapy for highly effective treatment for external epicondylitis.

  15. Clinical Report on the Treatment of 70 Molluscum Contagiosum Cases using Sweet Bee venom Pharmacopunture

    Directory of Open Access Journals (Sweden)

    Sa Han Park

    2008-06-01

    Full Text Available Objectives : This study obserbed the efficiency of Sweet Bee Venom pharmacopuncture on the treatment of 70 Molluscum Contagiosum cases. Methods : 70 patients admitted for Molluscum at Love Blossoming Oriental medicine clinic from February 2007 to October 2007 were administered with Sweet Bee Venom Pharmacopuncture and measured an analyzed changes in symptoms. Results : 1. Regardless of age or duration of Molluscum Contagiosum, all 70 patients showed improvement. 2. Recurrence of Molluscum Contagiosum was not noticeable when treated with Sweet Bee Venom Pharmacopuncture, and the duration of treatment was significantly shorter than treation with conventional allopathic ointment. Conclusion : Based on above findings, we can deduce Sweet Bee Venom Pharmacopuncture has superior anti-viral effects on th pox virus of Molluscum Contagiosum.

  16. The Comparison of Effective between Acupuncture and Bee Venom Acupuncture on the Treatment of Acute Lumbar Herniation of Intervertebral Disc

    Directory of Open Access Journals (Sweden)

    Chang So-Young

    2006-06-01

    Full Text Available Objective : Herniation of Intervertebral Disc(HIVD is the most common disease causing low back pain. Acupuncture and Bee Venom Acupuncture has been used for treatment of HIVD. This study is to investigate the effective of Bee Venom Acupuncture for HIVD. Methods : We researched 18 patients who were diagnosed by CT and MRI as having HIVD, and treated them Acupuncture only or Acupuncture and Bee Venom Acupuncture. We compared the VAS and ROM angle of two groups. Results & Conclusions : 1. In admission date, no significant improvement between Acupuncture group and Bee Venom Acupuncture group 2. In variation of flexion and extension, Bee Venom Acupuncture group shows statistically significant improvement 3. In VAS, Bee Venom Acupuncture group shows statistically significant improvement for 1 week and discharge day

  17. An Overview of Bee Venom Acupuncture in the Treatment of Arthritis

    OpenAIRE

    Jae-Dong Lee; Hi-Joon Park; Younbyoung Chae; Sabina Lim

    2005-01-01

    Bee venom acupuncture (BVA), as a kind of herbal acupuncture, exerts not only pharmacological actions from the bioactive compounds isolated from bee venom but also a mechanical function from acupuncture stimulation. BVA is growing in popularity, especially in Korea, and is used primarily for pain relief in many kinds of diseases. We aimed to summarize and evaluate the available evidence of BVA for rheumatoid arthritis and osteoarthritis. Computerized literature searches for experimental st...

  18. Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice

    OpenAIRE

    Sur, Bongjun; Lee, Bombi; Yeom, Mijung; Hong, Ju-Hee; Kwon, Sunoh; Kim, Seung-Tae; Lee, Hyang Sook; Park, Hi-Joon; Lee, Hyejung; Hahm, Dae-Hyun

    2016-01-01

    Background Bee venom acupuncture (BVA), a novel type of acupuncture therapy in which purified bee venom is injected into the specific acupuncture point on the diseased part of the body, is used primarily for relieving pain and other musculoskeletal symptoms. In the present study, therapeutic potential of BVA to improve atopic dermatitis, a representative allergic dysfunction, was evaluated in the mouse model of trimellitic anhydride (TMA)-induced skin impairment. Methods Mice were treated wit...

  19. Systemic Immediate Hypersensitive Reactions after Treatment with Sweet Bee Venom: A Case Report

    OpenAIRE

    NaYoung Jo; JeongDu Roh

    2015-01-01

    Objectives: A previous study showed that bee venom (BV) could cause anaphylaxis or other hypersensitivity reactions. Although hypersensitivity reactions due to sweet bee venom (SBV) have been reported, SBV has been reported to be associated with significantly reduced sensitization compared to BV. Although no systemic immediate hypersensitive response accompanied by abnormal vital signs has been reported with respect to SBV, we report a systemic immediate hypersensitive response that we experi...

  20. Activities of Venom Proteins and Peptides with Possible Therapeutic Applications from Bees and WASPS.

    Science.gov (United States)

    Ye, Xiujuan; Guan, Suzhen; Liu, Jiwen; Ng, Charlene C W; Chan, Gabriel H H; Sze, Stephen C W; Zhang, Kalin Y; Naude, Ryno; Rolka, Krzysztof; Wong, Jack Ho; Ng, Tzi Bun

    2016-01-01

    The variety of proteins and peptides isolated from honey bee venom and wasp venom includes melittin, adiapin, apamine, bradykinin, cardiopep, mast cell degranulating peptide, mastoparan, phospholipase A2 and secapin. Some of the activities they demonstrate may find therapeutic applications. PMID:27323949

  1. The Clinical Study on a Case of Transverse Myelitis With Bee Venom and Hominis Placenta Herbal Acupuncture

    OpenAIRE

    Park Min-ho; Lim Sung-taek; Choi Seok-woo

    2005-01-01

    Objective : This study was performed to evaluate the treatment of acupuncture therapy including Bee Venom and Hominis Placenta herbal acupuncture on the patient with Transverse myelitis. Methods : We treated the patient with Transverse myelitis by Bee Venom herbal acupuncture at beginning, since then we treated him adding to Hominis Placenta herbal acupuncture. Conclusions : The patient was effectively reduced symptoms with Bee Venom herbal acupuncture, since then he get more effective ...

  2. The Use of Chicken Igy in a Double Antibody Sandwich Elisa for the Quantification of Melittin in Bee Venom and Bee Venom Melittin Content in Cosmetics

    OpenAIRE

    Suh Lindsey Y. K.; Kartoon Tayabaa; Gujral Naiyana; Yoon Youngmee; Suh Joo Won; Sunwoo Hoon

    2015-01-01

    Two enzyme-linked immunosorbent assay (ELISA) - based detection systems: indirect competitive ELISA and biotinylated double antibody sandwich ELISA (DAS-ELISA) were developed to determine the melittin concentration in honeybee (Apis mellifera) venom and the melittin concentration in cosmetics which contain bee venom. The indirect competitive ELISA employed chicken anti-melittin IgY. The biotinylated DAS-ELISA employed anti-melittin monoclonal antibody (MAb) and biotinylated anti-melittin IgY....

  3. Effect of Bee Venom Pharmacopuncture Therapy on the severe pain back of the ear in patient diagnosed with Bell's palsy

    Directory of Open Access Journals (Sweden)

    Oh Hyun-Jun

    2009-09-01

    Full Text Available Objective : This study was to report Bell's palsy patients with severe pain back of the ear treated by Bee Venom Pharmacopuncture therapy. Methods : The patients was treated by Bee Venom Pharmacopuncture therapy to relieve the severe pain back of the ear. Visual Analog Scale(VAS was used as an outcome measurement. Results : After Bee Venom Pharmacopuncture therapy, VAS were decreased at all case. Conclusion : Bee Venom Pharmacopuncture therapy can be available for relieving severe pain back of the ear even inducing insomnia.

  4. The Clinical Study on a Case of Transverse Myelitis With Bee Venom and Hominis Placenta Herbal Acupuncture

    Directory of Open Access Journals (Sweden)

    Park Min-ho

    2005-06-01

    Full Text Available Objective : This study was performed to evaluate the treatment of acupuncture therapy including Bee Venom and Hominis Placenta herbal acupuncture on the patient with Transverse myelitis. Methods : We treated the patient with Transverse myelitis by Bee Venom herbal acupuncture at beginning, since then we treated him adding to Hominis Placenta herbal acupuncture. Conclusions : The patient was effectively reduced symptoms with Bee Venom herbal acupuncture, since then he get more effective improvement of symptoms by adding Hominis Placenta herbal acupuncture. Therefore we are able to expect Bee venom and Hominis Placenta herbal acupuncture will be more effective than simply acupuncture on the patient with Transverse myelitis.

  5. The Effects of Bee Venom on PLA2 and Calcium Concentration in Raw 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jong-Il Yun

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide, sodium nitroprusside and hydrogen peroxide induced expression phospholipase A2 and calcium concentration in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase A2 was determined by western blotting with corresponding antibodies, and the generation of intracellular calcium concentration was investigated by delta scan system in RAW 264.7 cells. Results : 1. Compared with control, expressions of lipopolysaccharide-induced phospholipase A2 were decreased significantly by 1 ㎍/㎕ of bee venom and decreased by 0.5, 5 ㎍/㎕ of bee venom. 2. Compared with control, expressions of sodium nitroprusside-induced phospholipase A2 were decreased significantly by 5 ㎍/㎕ of bee venom but increased by 0.5, 5 ㎍/㎕ of bee venom. 3. Compared with control, expressions of hydrogen peroxide-induced phospholipase A2 were decreased significaltly by 1 ㎍/㎕ of bee venom and decreased by 0.5 ㎍/㎕ of bee venom but increased by 5 ㎍/㎕ of bee venom. 4. Compared with control, lipopolysaccharide, sodium nitroprusside and hydrogen peroxide- induced intracellular calcium concentrations were decreased by 0.5, 1, 5 ㎍/㎕ of bee venom and by indomethacin

  6. Bee Venom for the Treatment of Parkinson Disease – A Randomized Controlled Clinical Trial

    Science.gov (United States)

    Hartmann, Andreas; Müllner, Julia; Meier, Niklaus; Hesekamp, Helke; van Meerbeeck, Priscilla; Habert, Marie-Odile; Kas, Aurélie; Tanguy, Marie-Laure; Mazmanian, Merry; Oya, Hervé; Abuaf, Nissen; Gaouar, Hafida; Salhi, Sabrina; Charbonnier-Beaupel, Fanny; Fievet, Marie-Hélène; Galanaud, Damien; Arguillere, Sophie; Roze, Emmanuel; Degos, Bertrand; Grabli, David; Lacomblez, Lucette; Hubsch, Cécile; Vidailhet, Marie; Bonnet, Anne-Marie

    2016-01-01

    In the present study, we examined the potential symptomatic and/or disease-modifying effects of monthly bee venom injections compared to placebo in moderatly affected Parkinson disease patients. We conducted a prospective, randomized double-blind study in 40 Parkinson disease patients at Hoehn & Yahr stages 1.5 to 3 who were either assigned to monthly bee venom injections or equivalent volumes of saline (treatment/placebo group: n = 20/20). The primary objective of this study was to assess a potential symptomatic effect of s.c. bee venom injections (100 μg) compared to placebo 11 months after initiation of therapy on United Parkinson’s Disease Rating Scale (UPDRS) III scores in the « off » condition pre-and post-injection at a 60 minute interval. Secondary objectives included the evolution of UPDRS III scores over the study period and [123I]-FP-CIT scans to evaluate disease progression. Finally, safety was assessed by monitoring specific IgE against bee venom and skin tests when necessary. After an 11 month period of monthly administration, bee venom did not significantly decrease UPDRS III scores in the « off » condition. Also, UPDRS III scores over the study course, and nuclear imaging, did not differ significantly between treatment groups. Four patients were excluded during the trial due to positive skin tests but no systemic allergic reaction was recorded. After an initial increase, specific IgE against bee venom decreased in all patients completing the trial. This study did not evidence any clear symptomatic or disease-modifying effects of monthly bee venom injections over an 11 month period compared to placebo using a standard bee venom allergy desensitization protocol in Parkinson disease patients. However, bee venom administration appeared safe in non-allergic subjects. Thus, we suggest that higher administration frequency and possibly higher individual doses of bee venom may reveal its potency in treating Parkinson disease. Trial Registration

  7. Effect of Iranian Honey bee (Apis Mellifera Venom on Blood Glucose and Insulin in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Seyyedeh Mahbubeh Mousavi

    2012-12-01

    Full Text Available Background: Diabetes is an important disease. This disease is a metabolic disorder characterized by hyperglycemia resulting from perturbation in insulin secretion, insulin action or both. Honey bee venom contains a wide range of polypeptide agents. The principle components of bee venom are mellitin and phospholipase A2. These components increase insulin secretion from the β-cells of pancreas. This study was conducted to show the hypoglycemic effect of honey bee venom on alloxan induced diabetic male rats.Methods: Eighteen adult male rats weighting 200±20 g were placed into 3 randomly groups: control, alloxan monohy­drate-induced diabetic rat and treated group that received honey bee venom daily before their nutrition for four months. Forty eight hours after the last injection, blood was collected from their heart, serum was dissented and blood glucose, insulin, triglyceride and total cholesterol were determined.Results: Glucose serum, triglyceride and total cholesterol level in treated group in comparison with diabetic group was significantly decreased (P< 0.01. On the other hand, using bee venom causes increase in insulin serum in com­parison with diabetic group (P< 0.05.Conclusion: Honeybee venom (apitoxin can be used as therapeutic option to lower blood glucose and lipids in dia­betic rats.

  8. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.

    Science.gov (United States)

    Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E

    2016-03-15

    Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. PMID:26829652

  9. Molecular Biological Study of Anti-cancer Effects of Bee Venom Aqua-acupuncture

    Directory of Open Access Journals (Sweden)

    Park Chan-Yol

    2000-07-01

    Full Text Available To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability and apoptosis were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, and activity of caspase-3 protease activity assay. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [3H]thymidine release assay, and flow cytometric analysis of sub G1 fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and Bcl-XL were down-regulated whereas Bax was up-regulated by bee venom treatment.

  10. Clinical Studies of Sweet Bee Venom to the Effect of Abdominal Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Chung San, Lim

    2008-06-01

    Full Text Available Objective : Sweet bee venom is made by removing allergen from the bee venom through gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis. The aim of this study was to verify allergy inhibitory action in Sweet Bee Venom(SBV and New Sweet Bee Venom(NSBV removed enzymes and compounds of low molecular weight. Methods : 84 healthy adult men and women were selected through a survey whom had never received the bee venom therapy in the past. The concentration of Normal Saline, SBV and NSBV pharmacopuncture was equally at 0.1mg/mL and the experiment was conducted as the double blind test. Results : Participants of the study was comprised of 63 men and 21 women with the average age of 28.3 years. According to results of pain sense, SBV group showed significant higher score compared with NS group and NSBV group using VAS in treating time. And SBV and NSBV group showed significant higher score compared with NS group after 30 minutes. Other allergic responses were insignificant between the groups. Conclusions : As a result of removed allergen and compounds of low molecular weight, NSBV significantly inhibits pain sense in treating time compared with SBV. This indicates wider and easier application of NSBV for the useful application in clinical treatment. Further comparative studies should be conducted to yield more objective verification.

  11. Clinical Studies of Sweet Bee Venom to The Effect of Abdominal Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Lim, Chung-San

    2008-06-01

    Full Text Available Objective The purpose of this study was to investigate the effects of Sweet Bee Venom to the abdominal fat accumulation clinically. Methods The 20 healthy women volunteers who showed the notice of this study by the home page of Sangji University were treated with Sweet Bee Venom(SBV during twenty times. To investigate the effects of Sweet Bee Venom of the abdominal fat accumulation, abdominal CT, LFT, Thermography, BMI, Inbody 3.0 etc. were performed during clinical trials. And statistical analysis was carried out the data of 10 volunteers who performed all the schedule of this study. Results Following results were obtained from the clinical studies Sweet Bee Venom showed the effect of decreased the body weight, thickness of abdominal skin and fat layer, BMI, and increased abdominal heat, but they are not showed statistical significant. Conclusions These results suggest that treatment Sweet Bee Venom on the abdomen was effective to decrease fat tissue but for the treatment of obesity was performed with right diet program and exercise.

  12. Experimental Studies of quantitative evaluation using HPLC and safety of Bee Venom Acupuncture

    Directory of Open Access Journals (Sweden)

    Seong Bong Jang

    2006-02-01

    Full Text Available Objectives : This study was conducted to carry out quantitative evaluation and safety of Bee Venom Acupuncture. Methods : Content analysis was done using HPLC, measurement of , and histological observations were made on the skin and muscles. Results : 1. According to HPLC analysis, each BVA-1 contained approximately , and BVA-2 contained approximately . But the volume of coating was so minute, slight difference exists between each needle. 2. LD50 of mouse with BVA-1 was 16 counts and this is equivalent to 640 needles/kg, making Bee Venom Acupuncture safe treatment apparatus. 3. Regardless of the number of needles, there was no sign of blood stasis or inflammation detected on the skin and muscle tissues. Conclusion : Above results indicate that the Bee Venom Acupuncture can complement shortcomings of syringe usage as a part of Oriental medicine treatment, but extensive researches should be done for further verification.

  13. The Clinical Study on Bee Venom Acupuncture Treatment on Osteoarthritis of Knee Joint

    Directory of Open Access Journals (Sweden)

    Lim Jeong a

    2005-06-01

    Full Text Available Objective : This study is performed for the purpose of examining into the efficacy of the Bee Venom Acupuncture Treatment for Osteoarthritis of Knee Joint Methods : We investitigated 25 cases of patients with Osteoarthritis of Knee Joint from 1st June 2005 to 13th July 2005. The 25 patients were taken Bee Venom Acupuncture over three times irregularly. Treatment efficiency was monitored through VAS (Visual Analog Scale and improvement degree of the grade of clinical symptoms Conclusion : We brought to the conclusion that the Bee Venom Acupuncture has possibility to be efficient to cure the Osteoarthritis of Knee Joint patients. So we suggest the possibility to use this new remedy for the Osteoarthritis of Knee Joint

  14. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major compone...

  15. In Vitro Assessment of Bee Venom Effects on Matrix Metalloproteinase Activity and Interferon Production

    Directory of Open Access Journals (Sweden)

    Mohsen Hamedani

    2005-03-01

    Full Text Available Controversial immunomodulatory properties of bee venom (BV have provided an appropriate field for more investigation. The aim of present research was to verify the effects of honeybee venom on matrix metalloproteinase activity and interferon production as well as cell proliferation in monocyte and fibroblast cell lines.The monocyte and fibroblast cell lines (K562, HT-1080, WEHI-164 were used in order to assess proliferative response, interferon-1 production and matrix metalloproteinase-2 (MMP-2 activity. Australian BV (ABV and Iranian BV (IBV preparations at concentrations of 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1µg/ml were added to each overnight cultured cell. In time course study, cells were treated with each ABV and IBV. In all cases supernatants were collected 24 hours after treatment. A sample of the each medium was used for zymography and interferons assay. Non-treated cells were used as controls.The production of IFN- and IFN- in supernatant of cell culture was assessed using enzyme linked immunoassay procedure. MMP-2 activity, as an inflammatory index, was evaluated using zymoanalysis method.The results of this study showed that, there were no significant difference between two sources of honey bee venoms when they were added to an identical cell line, whereas, the responses of various cell lines against bee venom were different. The increasing amounts of bee venom to human monocyte cell line (K562 revealed a significant increase in proliferative response. Our findings showed that the bee venom had no influence on IFN- production in cell culture media, whereas, adding the BV to K562 cell line could significantly increase the production level of IFN- only on day 8 post-treatment. In addition the effect of bee venom on MMP-2 activity in both cell culture media, WEHI-164 and K562 was similar. The stimulatory effect of bee venom on MMP-2 activity occurred at low doses. In contrast, its inhibitory effect was seen at high

  16. Effect of bee venom or proplis on molecular and parasitological aspects of Schistosoma mansoni infected mice.

    Science.gov (United States)

    Mohamed, Azza H; Hassab El-Nabi, Sobhy E; Bayomi, Asmaa E; Abdelaal, Ahmed A

    2016-06-01

    The present study was performed to elucidate the efficacy of Apis mellifera L bee venom (BV) or proplis (200 mg/kg orally for three consecutive days) on Schistosoma mansoni infected mice. The results recorded reduction in the total worm burden, numbers of immature eggs and the ova count in hepatic tissue in BV (sting or injection) or proplis treated groups as compared to the infected group. Histological examination illustrated a significant increase (P ≤ 0.05) in the diameter of hepatic granuloma in BV treated groups (272.78 and 266.9, respectively) and a significant decrease in proplis treated mice (229.35) compared with the infected group (260.67). Electrophoretic pattern of RNA showed a decrease in mean of maximal optical density in liver and intestine of S. mansoni infected mice treated with bee venom (sting or injection) as compared with infected group. Flow cytometry analyses of RNA or apoptotic percentage of worms recovered from BV sting (19 and 49 % respectively); BV injected (20.5 and 51.17 %, respectively) and proplis (35 and 23.93 %, respectively) groups were compared with S. mansoni infected group (37.87 and 39.21 %, respectively). It can be concluded that administration of bee venom or proplis are effective in case of S. mansoni infection. Although bee venom cause increase of granuloma diameter and this might be due to venom concentration and further studies are required to avoid such harmful effect. PMID:27413311

  17. Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals.

    Science.gov (United States)

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2016-01-01

    The role of CD1a-reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a-reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom-responsive CD1a-reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a-transfected K562 cells in the presence of wasp or bee venom. T-cell response was evaluated based on IFNγ, GM-CSF, and IL-13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN-γ, GM-CSF, and IL-13 producing CD1a-reactive T cells responsive to venom and venom-derived phospholipase than healthy individuals. Venom-responsive CD1a-reactive T cells were cross-responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a-reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein-specific T cell and antibody responses. Here, we show that lipid antigens and CD1a-reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  18. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  19. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.

    Science.gov (United States)

    Hou, Chunsheng; Guo, Liqiong; Lin, Junfang; You, Linfeng; Wu, Wuhua

    2014-12-01

    Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed. PMID:25189650

  20. Case Report of Pes Anserine Bursitis patient treated with Bee Venom Acua-Acupuncture Therapy by Using DITI

    OpenAIRE

    Moon Ja-Young; Kim Kang; Lim Jin-Kang; Wang Wu-Hao; Jang Hyoung-Seok

    2004-01-01

    Objective : The purpose of this study is to report the effect of Bee Venom Acua-Acupuncture Therapy to the patient of Pes Anserine Bursitis by using DITI. Patient & Methods : The patient was 60-year-old woman who complained severe knee pain. She was treated by bee venom acuaacupuncture therapy. To estimate the efficacy of tratment, we used DITI, visual analog scale, knee joint check(ROM). Results : In this case, we treated patient of Pes Anserine Bursitis for 28 days. bee venom acua-a...

  1. Case Report of Pes Anserine Bursitis patient treated with Bee Venom Acua-Acupuncture Therapy by Using DITI

    Directory of Open Access Journals (Sweden)

    Moon Ja-Young

    2004-02-01

    Full Text Available Objective : The purpose of this study is to report the effect of Bee Venom Acua-Acupuncture Therapy to the patient of Pes Anserine Bursitis by using DITI. Patient & Methods : The patient was 60-year-old woman who complained severe knee pain. She was treated by bee venom acuaacupuncture therapy. To estimate the efficacy of tratment, we used DITI, visual analog scale, knee joint check(ROM. Results : In this case, we treated patient of Pes Anserine Bursitis for 28 days. bee venom acua-acupuncture therapy efficiently relieved patient's pain and improved ROM. DITI and Visual analog scale also showed significantly valuable changes.

  2. An LCMS method for the assay of melittin in cosmetic formulations containing bee venom.

    Science.gov (United States)

    Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark; Parkinson, John; Clements, Carol J; Young, Louise; Park, Jin Kyu; Jeon, Jong Woon; Watson, David G

    2015-05-01

    There is a growing interest in the potential of bee venom in cosmetics as a rejuvenating agent. Products currently on the market do not specify exactly their content of bee venom (BV). Therefore, we developed a method for the detection and quantification of melittin, as a marker of bee venom content, in selected commercial creams which contained BV according to their marketing claims, in order to gauge the relative quality of such formulations. A quantitative method was achieved following a rigorous extraction procedure involving sonication, liquid-liquid extraction and solid phase extraction since carryover of excipients was found to cause a rapid deterioration in the chromatographic performance. The method employed a standard additions approach using, as spiking standard, purified melittin isolated from bee venom and standardised by quantitative NMR. The aqueous extracts of the spiked creams were analysed by reversed phase LCMS on an LTQ Orbitrap mass spectrometer. The purity of the melittin spiking standard was determined to be 96.0%. The lowest measured mean melittin content in the creams was 3.19 ppm (±1.58 ppm 95% CI) while the highest was 37.21 ppm (±2.01 ppm 95% CI). The method showed adequate linearity (R (2) ≥ 0.98) and a recovery of 87.7-102.2% from a spiked blank cream. An assay precision of melittin content of the commercial products assayed were nearly tenfold. PMID:25749793

  3. A Clinical Report of Localized Itching After Treatment with Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Choi Seok-woo

    2010-09-01

    Full Text Available Objectives : This study is to report the percentage of localized itching which occurred, when we injected to patients with Sweet Bee Venom(Sweet BV. Methods : We investigated 374 patients who had injected with Sweet BV in our clinic from February 15. 2009 to April 30, 2010. We checked the number and percentage of patients who occured localized itching on injection area. Then we analyzed those according to times in treatment, the body parts of injection and treatment dosage. Results and Conclusion : Localized itching was lower by 1.60% in the first treatment with Sweet BV. However localized itching was 12.83% in the whole course of treatment, which showed a similar incidence of 13% in Bee Venom. Therefore it can be interpreted that Sweet BV may help suppress the immune responses such as itching in the initial treatment, but the occurrence of local immune responses of Sweet BV may be similar to that of Bee Venom in continued treatment. We suppose that we should be careful of the occurrence of local immune responses as Bee Venom at least until the fourth treatment in clinical application with Sweet BV, although localized itching did not occur in the first treatment. Also we should be careful of treatment with Sweet BV in body parts, such as wrist, hand, chest and abdominal, because the percentage of localized itching was relatively high in those parts.

  4. 466 Bee venom Immunotherapy with Standardized Extract, Two Case Comunication and Clinical Progress

    Science.gov (United States)

    Cardona, Aristoteles Alvarez; Nieto, Leticia Hernandez; Melendez, Alvaro Pedroza

    2012-01-01

    Background Bee venom immunotherapy is a safe and effective treatment, indicated in patients with previous history of severe systemic reactions to bee venom, demonstrating succesful desensitization in more than 90% of cases with standardized extract. Currently in Mexico there is no standardized extract commercially available for treatment, despite of having high activity of beekeeping and occupational exposure with at least 17,478 registered stings per year and an annually honey production of nearly 70 tons. Methods We present the clinical progress of 2 patients with history of severe systemic reactions to bee venom and occupational exposure, both with demonstrated sensitization by specific IgE and who underwent specific immunotherapy with standardized extract (Alk-US) reaching a maintenance weekly dose of 100 mcg (PLA2) for the last 4 years. Results Both patients sufered of accidental stings after reached the maintenance dose presenting mild local reactions to stings. Both patients had very different clinical course presenting a wide variety of adverse reactions during desensitization protocol; from mild local to generalized reactions all generally well tolerated allowed to reach the maintenance dose with succesful desensitization proved by accidental exposure without severe systemic reactions. Conclusions Bee venom specific immunotherapy with standardized extract is a well tolerated and efective treatment preventing the development of life threathening reactions in sensitized patients. It is important to promote the use and availability of standardized extract in developing countries with poor safety measures and high occupational exposure.

  5. Isolation and purification of BVⅠ-2H from bee venom and analysis of its biological action

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The medical use of bee venom for rheumatoid arthritis ( RA ) has a very long tradition. In this study, isolation and purification of polypeptides from bee venom were carried out on sephadex chromatography, heparin sepharose CL-6B chromatography and HPLC. Several fractions were extracted, and their effects on activation of splenocyte and THP-1 cell were studied. The inhibitory fraction was selected for further studies. Finally, BVⅠ-2H that the HPLC elution profiles was a single peak was isolated by C8 column. ESI- MS detection results showed that BVⅠ-2H was a fraction of bee venom, and the molecular weight of the major component was 644.8. BVⅠ-2H could inhibit ConA-induced splenocyte proliferation, IL-1 production and interfere with splenocyte cycle in mice. Moreover, BVⅠ-2H could inhibit PMA-induced TNFα production in THP-1 cells, which was due to its inhibitory effects on TNFα mRNA expression and protein phosphorylation of IκBα. Our studies indicated that BVⅠ-2H was one of the anti-inflammatory components of bee venom.

  6. The Use of Chicken Igy in a Double Antibody Sandwich Elisa for the Quantification of Melittin in Bee Venom and Bee Venom Melittin Content in Cosmetics

    Directory of Open Access Journals (Sweden)

    Suh Lindsey Y. K.

    2015-06-01

    Full Text Available Two enzyme-linked immunosorbent assay (ELISA - based detection systems: indirect competitive ELISA and biotinylated double antibody sandwich ELISA (DAS-ELISA were developed to determine the melittin concentration in honeybee (Apis mellifera venom and the melittin concentration in cosmetics which contain bee venom. The indirect competitive ELISA employed chicken anti-melittin IgY. The biotinylated DAS-ELISA employed anti-melittin monoclonal antibody (MAb and biotinylated anti-melittin IgY. To produce anti-melittin IgY; Sigma melittin was emulsified with Freund‘s incomplete adjuvant and immunised to Leghorn laying chickens intramuscularly at four different sites (50 μg/mL, 0.25 mL per site of the breast muscles. After 5 to 8 weeks of the immunisation, anti-melittin IgY was extracted and analysed by ELISA. The anti-melittin IgY antibody produced was highly specific to melittin and did not cross-react with other bee venom proteins, as examined by ELISA and a western-blot assay. Indirect competitive ELISA demonstrated a higher range of melittin detection (2.5 to 80 μg/mL. Double antibody sandwich ELISA using MAb as the capture antibody and biotinylated polyclonal IgY as the detection antibody, provided a lower range of detection (2.5 - 40 ng/mL, which has a 1000 times higher sensitivity than that of indirect competitive ELISA. Therefore, indirect competitive ELISA is a useful tool to measure the concentration of melittin in bee venom as a raw material. Biotinylated DAS-ELISA, on the other hand, is more suitable for nanoscale quantification of melittin in commercial products.

  7. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    OpenAIRE

    Young Chon Choi; Ki Rok, Kwon; Suk Ho, Choi

    2006-01-01

    Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration...

  8. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (GM1), di-sialoganglioside (GD1a) and tri-sialoganglioside (GT1b). In contrast, honeybee venom-derived phospholipase A2 induced the net degranulation directly without cytotoxicity, which was not inhibited by GM1, GD1a and GT1b. For analysis of distribution of Gαq and Gαi protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gαq and Gαi at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A2-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A2-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  9. Honey Bee Venom (Apis mellifera Contains Anticoagulation Factors and Increases the Blood-clotting Time

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2015-12-01

    Full Text Available Objectives: Bee venom (BV is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50, and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Blood samples were obtained from 10 rabbits, and the prothrombin time (PT and the partial thromboplastin time (PTT tests were conducted. The approximate lethal dose (LD values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa, respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2 and melittin, and that can increase the blood clotting times in vitro.

  10. The electrical response of bilayers to the bee venom toxin melittin: Evidence for transient bilayer permeabilization

    OpenAIRE

    Wiedman, Gregory; Herman, Katherine; Searson, Peter; Wimley, William C.; Hristova, Kalina

    2013-01-01

    Melittin is a 26-residue bee venom peptide that folds into amphipathic α-helix and causes membrane permeabilization via a mechanism that is still disputed. While an equilibrium transmembrane pore model has been a central part of the mechanistic dialogue for decades, there is growing evidence that a transmembrane pore is not required for melittin’s activity. In part, the controversy is due to limited experimental tools to probe the bilayer’s response to melittin. Electrochemical impedance spec...

  11. Combined Effects of Bee Venom Acupuncture and Morphine on Oxaliplatin-Induced Neuropathic Pain in Mice

    OpenAIRE

    Woojin Kim; Min Joon Kim; Donghyun Go; Byung-Il Min; Heung Sik Na; Sun Kwang Kim

    2016-01-01

    Oxaliplatin, a chemotherapeutic drug for colorectal cancer, induces severe peripheral neuropathy. Bee venom acupuncture (BVA) has been used to attenuate pain, and its effect is known to be mediated by spinal noradrenergic and serotonergic receptors. Morphine is a well-known opioid used to treat different types of pain. Here, we investigated whether treatment with a combination of these two agents has an additive effect on oxaliplatin-induced neuropathic pain in mice. To assess cold and mechan...

  12. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta SMITH VENOM, ENDEMIC TO SULAWESI

    Directory of Open Access Journals (Sweden)

    Mokosuli Yermia Semuel

    2015-11-01

    Full Text Available Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion method. The results showed that the venom of the honey bee Apis nigrocincta Smith has five bands of molecules with a molecular weight i.e. 33.54kDa; 21 kDa and 15.43 kDa. The peptide detected were hyaluronidase, fosfolipase A, mellitin, lysofosfolipase or antigen 5. Antibacterial activity was higher than the control ampisilin and antibiotic streptomycin.

  13. Comparative study of Acupuncture, Bee Venom Acupuncture and Bee Venom Herbal Acupuncture on the treatment of Post-stroke Hemiplegic Shoulder Pain

    Directory of Open Access Journals (Sweden)

    Jae Yong Eom

    2006-02-01

    Full Text Available Objective : This experiment was conducted to evaluate the effectiveness of Acupuncture, Bee Venom Acupuncture (BVA and Bee Venom Herbal Acupuncture (BVHA on post-stroke hemiplegic shoulder pain. Methods : 30 patients were randomly allocated into Acupuncture group, BVA group and BVHA group and was monitored weekly for 4 weeks; initial(T0, 1 week(T1, 2 weeks(T2, 3 weeks(T3 and 4 weeks(T4. Results : Visual analogue scale of shoulder pain showed significant decrease in BVA and BVHA groups compared to the Acupuncture group at T4 evaluation. Painless passive ROM of shoulder external rotation and Fugl-Meyer Motor Assessment of Upper Limb motor function showed significant increase in all groups. Modified Ashworth scale of the spasticity of upper limb showed no differences between the three groups. Conclusion : BVA & BVHA appears to be an effective in treating post-stroke hemiplegic shoulder pain. Further clinical studies must be done to obtain more concrete findings.

  14. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya [College of Pharmacy and Medical Research Center, Chungbuk National University, 48, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763 (Korea, Republic of); An, Byeong Jun; Song, Ho Sueb [College of Oriental Medicine, Kyungwon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii 461-701 (Korea, Republic of); Han, Sang Bae [College of Pharmacy and Medical Research Center, Chungbuk National University, 48, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763 (Korea, Republic of); Kim, Jang Heub [Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 137-040 (Korea, Republic of); Song, Min Jong, E-mail: bitsugar@catholic.ac.kr [Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 137-040 (Korea, Republic of); Hong, Jin Tae, E-mail: jinthong@chungbuk.ac.kr [College of Pharmacy and Medical Research Center, Chungbuk National University, 48, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763 (Korea, Republic of)

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.

  15. Radioprotection of Wistar Rat Lymphocytes Against Microwave Radiation Mediated by Bee Venom

    International Nuclear Information System (INIS)

    Microwave radiation is a type of non-ionising electromagnetic radiation present in the environment, and is a potential threat to human health. Cytogenetic studies of microwave radiation conducted in vitro and in vivo, yielded contradictory and often intriguing experimental results. Some reports suggest that exposure of human cells to radiofrequency radiation does not result in increased cytogenetic damage. On the other hand, there is a range of studies showing that radiofrequency radiation can indeed induce genetic alteration after exposure to electric field. Bee venom is used in traditional medicine to treat variety of conditions, such as arthritis, rheumatism, back pain and skin disease. In recent years it has been reported that bee venom possesses antimutagenic, proinflammatory, anti-inflammatory, antinociceptive, and anticancer effects. In addition to the wide range of the bee venom's activities, it also possesses a radioprotective capacity that was noted against X-ray and gamma radiation in various test systems. The aim of the present study was assessment of the radioprotective effect of bee venom against 915 MHz microwave radiation-induced DNA damage in the Wistar rat's lymphocytes in vitro. The possible genotoxic effect of bee venom alone was also assessed on non-irradiated lymphocytes. The alkaline comet assay was used as a sensitive tool in The assessment of DNA damage was performed using the alkaline comet assay and the Fpg-modified comet assay that is more specific technique in detection of DNA strand breaks and oxidative stress. Whole blood was collected from adult male Wistar rats (11 weeks old, approximate body weight 350 g)by cardiac puncture under sterile conditions in heparinized vacutainer tubes. After collection, blood was divided into 1 ml aliquots and placed into 24-well culture plates according to the exposure conditions. Bee venom was added to lymphocyte cultures in final concentration of 1 μg/ml, 4 h prior to irradiation and immediately

  16. Isolation of melittin from bee venom and evaluation of its effect on proliferation of gastric cancer cells

    OpenAIRE

    Mahmoodzadeh A; Morady A; Zarrinnahad H; Pooshang Bagheri K; Ghasemi-Dehkordi P; Mahdavi M; Shahbazzadeh D; Shahmorady H

    2013-01-01

    Background: Gastric cancer (GC) is one of the most common cancers worldwide and in Iran. Conventional therapies are surgery and chemotherapy. Current studies are evaluating natural compounds in inhibiting growth of cancer cell. In this study isolated peptide melittin with 26 amino acids from bee venom and its impact on the viability and proliferation of gastric cancer cells was investigated. Methods: At first melittin was purified from honeybee venom using a reversed-phase high performance li...

  17. Skin Sensitization Study of Bee Venom (Apis mellifera L.) in Guinea Pigs

    OpenAIRE

    Han, Sang Mi; Lee, Gwang Gill; Park, Kyun Kyu

    2012-01-01

    Bee venom (Apis mellifera L., BV) has been used as a cosmetic ingredient for antiaging, anti-inflammatory and antibacterial functions. The aim of this study was to access the skin sensitization of BV, a Buehler test was conducted fifty healthy male Hartley guinea pigs with three groups; Group G1 (BVsensitization group, 20 animals), group G2 (the positive control-sensitization group, 20 animals), and group G3 (the ethyl alcohol-sensitization group, 10 animals). The exposure on the left flank f...

  18. The Effects of Bee Venom on iNOS, TNF-α and NF-kB in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Goon-Joong Kim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expression inducilble nitric oxide synthetase(iNOS, tumor necrosis factor-α(TNF-α and nuclear factor kappa B(NF-kB in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of expression iNOS and TNF-α were determined by western blotting with corresponding antibodies. The expressions of expression NF-kB was assayed by EMSA method. Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom on LPS-induced expression of iNOS, the 5 ㎍/㎖ of bee venom on SNP-induced expression of iNOS and the 1 ㎍/㎖ of bee venom on H2O2-induced expression of iNOS compared with control were inhibited significantly. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and H2O2-induced expression of TNF-α compared with control, respectively. The 0.5 ㎍/㎖ of bee venom increased significantly SNP-induced expression of TNF-α compared with control. 3. The 5 ㎍/㎖ of bee venom on LPS-induced expression of NF-kB, the 0.5 ㎍/㎖ of bee venom on SNP-induced expression of NF-kB and the 0.5, 5 ㎍/㎖ of bee venom on H2O2-induced expression of NF-kB were inhibited significantly compared with control, respectively.

  19. Effects of Sweet Bee Venom on the respiratory system in Rats

    Directory of Open Access Journals (Sweden)

    Jong Young Lee

    2011-09-01

    Full Text Available Objectives: This study was performed to analyse the effects of Sweet Bee Venom(SBV-purified melittin supported by G&V Co., the major component of honey bee venom on the respiratory system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice(GLP. Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, SBV was administered in thigh muscle of rats in 0.175, 0.35 and 0.7 mg/kg dosage. And checked the effects of SBV on the respiratory system using the whole body plethysmography. And respiratory rate, tidal volume and minute volume of rats were checked after administered SBV (melittin. Results: 1. In the measurement of respiratory rate, there were not observed any significant differences compared with control group. 2. In the measurement of tidal volume, there was not observed any significant differences compared with control group. 3. In the measurement of minute volume, 0.35 dosage group showed significant differences compared with control group. But we estimated that this result was caused by individual differences. Conclusions: Above findings suggest that SBV seems to be safe treatment in the respiratory system of rats. And further studies on the subject should be conducted to yield more concrete evidences.

  20. Experimental study of antigenicity test of Sweet Bee Venom in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Byung Jun Cho

    2011-12-01

    Full Text Available Objectives: This study was performed to examine the antigenic potential of pure melittin (Sweet Bee Venom - SBV extracted from the bee venom by utilizing protein isolation method of gel filtration. Methods: All experiments were conducted at Biotoxtech (Chungwon, Korea, authorized a non-clinical studies institution, under the regulations of Good Laboratory Practice (GLP. Antigenic potential of SBV was examined by active systemic anaphylaxis (ASA and passive cutaneous anaphylaxis (PCA in guinea pigs. SBV was subcutaneously administered at 0.07 and 0.28㎎/㎏and also as a suspension with adjuvant (Freund's complete adjuvant: FCA. Ovalbumin (OVA as a suspension with adjuvant was used to induce positive control response (5㎎/㎖- FCA. Results: 1. In the ASA test, experimental groups showed some symptoms of anaphylaxis like piloerection, hyperpnea and staggering gait. 2. In the PCA test, low dosage group did not show any antibody responses, whereas high dosage group showed positive responses. 3. In the weight measurement and clinical observation, experimental groups didn't show any significant changes compared with control group. 4. In the autopsy of body, the abnormalities of lung were detected in the corpse. This means that the cause of death may induced anaphylactic shock. Conclusions: Above findings suggested that SBV had antigenic potential in guinea pig. Further studies on the subject should be conducted to yield more concrete evidences.

  1. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal.

    Science.gov (United States)

    Sobral, Filipa; Sampaio, Andreia; Falcão, Soraia; Queiroz, Maria João R P; Calhelha, Ricardo C; Vilas-Boas, Miguel; Ferreira, Isabel C F R

    2016-08-01

    Bee venom (BV) or apitoxin is a complex mixture of substances with reported biological activity. In the present work, five bee venom samples obtained from Apis mellifera iberiensis from the Northeast Portugal (two different apiaries) were chemically characterized and evaluated for their antioxidant, anti-inflammatory and cytotoxic properties. The LC/DAD/ESI-MS(n) analysis of the samples showed that melittin was the most abundant compound, followed by phospholipase A2 and apamin. All the samples revealed antioxidant and anti-inflammatory activity but without a direct relation with any of the individual chemical components identified. The results highlight that there are specific concentrations (present in BV5) in which these compounds are more active. The BV samples showed similar cytotoxicity for all the tested tumour cell lines (MCF-7, NCI-H460, HeLa and HepG2), being MCF-7 and HeLa the most susceptible ones. Nevertheless, the studied samples seem to be suitable to treat breast, hepatocellular and cervical carcinoma because at the active concentrations, the samples were not toxic for non-tumour cells (PLP2). Regarding the non-small cell lung carcinoma, BV should be used under the toxic concentration for non-tumour cells. Overall, the present study corroborates the enormous bioactive potential of BV being the first report on samples from Portugal. PMID:27288930

  2. Bee Venom Pharmacopuncture: An Effective Treatment for Complex Regional Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Jong-Min Kim

    2014-12-01

    Full Text Available Objectives: Treating complex regional pain syndrome (CRPS is difficult because it still does not have a recommended therapy. A 29-year-old man was diagnosed with CRPS after surgery on his 4th and 5th left toes 7 years ago. Though he had undergone diverse pain treatment, the symptoms persisted, so he visited Dunsan Korean Medicine Hospital of Daejeon University. This case report presents results on the effect of bee venom pharmacopuncture in treating patient with CRPS. Methods: Bee venom pharmacopuncture (BVP, 0.15 to 0.4 mL dosage, was administered at GB43. The treatment was applied each week for a total 14 times. The symptoms were evaluated using a numeric rating scale (NRS and the dosage of pain medicine. Results: On the first visit, he was taking an anticonvulsant, a trycyclic antidepressant, and an analgesic. On the NRS the worst pain in the toes received a score of 8. He also complained of severe pain and hypersensitivity when the 4th and the 5th toes were touched just slightly. Other complaint included dyspepsia, rash, and depression. After treatment, on the NRS, the score for toe pain was 0, and he no longer needed to take pain medication. During the 4-months follow-up period, he has remained without pain; neither have additional symptoms appeared nor adverse events occurred. Conclusion: BVP may have potential benefits for treating patients with CRPS.

  3. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    Directory of Open Access Journals (Sweden)

    Juliana Silva

    2015-08-01

    Full Text Available Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

  4. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan

    Directory of Open Access Journals (Sweden)

    Miguel Moreno

    2015-04-01

    Full Text Available While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine.

  5. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan.

    Science.gov (United States)

    Moreno, Miguel; Giralt, Ernest

    2015-04-01

    While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine. PMID:25835385

  6. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    OpenAIRE

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; PARK, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investig...

  7. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Nicolas Maurice

    Full Text Available Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD. Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure in pharmacological (neuroleptic treatment and lesional (unilateral intranigral 6-hydroxydopamine injection PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.

  8. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin‐induced asthma model through the induction of regulatory T cells

    OpenAIRE

    Park, Soojin; Baek, Hyunjung; Jung, Kyung‐Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun‐Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-01-01

    Abstract Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA‐in...

  9. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    Science.gov (United States)

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. PMID:27208884

  10. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell*

    OpenAIRE

    Shen, Li-rong; Ding, Mei-hui; Li-wen ZHANG; Zhang, Wei-Guang; Liu, Liang; Li, Duo

    2010-01-01

    Bee venom phospholipase A2 (BvPLA2) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA2 (AccPLA2) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis...

  11. Study of single dose test of Sweet Bee Venom in rats

    Directory of Open Access Journals (Sweden)

    Young Jin Kim

    2009-12-01

    Full Text Available Objectives: This study was performed to analyse single dose toxicity of pure melittin(Sweet Bee Venom-Sweet BV extracted from the bee venom by utilizing protein isolation method of gel filtration. Methods: All experiments were conducted at Biotoxtech, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Six weeks old female Sprague-Dawley rats were chosen for the pilot study and determined 30㎎/㎏ which is 4285 times higher than the clinical application dosage as the high dosage, followed by 15 and 7.5㎎/㎏ as mid and lose dosage, respectively. Equal amount of excipient to the Sweet BV experiment groups was administered as the control group. Results: 1. No mortality was witnessed in all of the experiment groups. 2. Hyperemia and movement disorder were observed around the area of administration in all groups, and higher occurrence in the higher dosage groups. Hyperemia and movement disorder diminished with elapsed time. 3. For the weight measurement, male groups showed larger reduction in weight in accordance with higher dosage. Female groups didn't s how significant changes. 4. To verify abnormalities of organs and tissues, cerebellum, cerebrum, liver, lung, kidney, and spinal nerves were removed and conducted histological observation with H-E staining. No abnormalities were detected in any of organs and tissues. 5. One female rat in the 30㎎/㎏ group had amputated toe near the administered area and histopathological finding was hemorrhage with inflammation. This is presumed as a secondary infection after the administration of Sweet BV. Conclusion: Above findings suggest Sweet BV is relatively s safe treatment medium. Further studies on the subject should be conducted to yield more concrete evidences.

  12. Study of single dose toxic test of Sweet Bee Venom in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Hye-Chul, Yoon

    2010-12-01

    Full Text Available Objectives : This study was performed to analyse single dose toxicity of Sweet Bee Venom(Sweet BV extracted from the bee venom in Beagle dogs. Methods : All experiments were conducted under the regulations of Good Laboratory Practice (GLP at Biotoxtech Company, a non-clinical study authorized institution. Male and female Beagle dogs of 5-6 months old were chosen for the pilot study of single dose toxicity of Sweet BV which was administered at the level of 9.0 ㎎/㎏ body weight which is 1300 times higher than the clinical application dosage as the high dosage, followed by 3.0 and 1.0 ㎎/㎏ as midium and low dosage, respectively. Equal amount of excipient(normal saline to the Sweet BV experiment groups was administered as the control group. Results : 1. No mortality was witnessed in all of the experiment groups. 2. Hyperemia and movement disorder were observed around the area of administration in all the experiment groups, and higher occurrence in the higher dosage treatment. 3. For weight measurement, Neither male nor female groups showed significant changes. 4. To verify abnormalities of organs and tissues, thigh muscle which treated with Sweet BV, brain, liver, lung, kidney, and spinal cords were removed and histologocal observation using H-E staining was conducted. In the histologocal observation of thigh muscle, cell infiltration, inflammation, degeneration, necrosis of muscle fiber, and fibrosis were found in both thigh tissue. And the changes depend on the dose of Sweet BV. But the other organs did not showed in any abnormality. 5. The maximum dose of Sweet BV in Beagle dogs were over 9 ㎎/㎏ in this study. Conclusions : The above findings of this study suggest that Sweet BV is a relatively safe treatment medium. Further studies on the toxicity of Sweet BV should be conducted to yield more concrete evidences.

  13. Experimental studies of validation and stability of Sweet Bee Venom using HPLC

    Directory of Open Access Journals (Sweden)

    Kye Sung, Kang

    2009-12-01

    Full Text Available Objectives : This study was conducted to confirm validation and stability of concentration analysis method of pure melittin (Sweet Bee Venom-Sweet BV extracted from the bee venom by utilizing protein isolation method of gel filtration. Methods : All experiments were conducted at Biotoxtech, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Standard solutions of melittin (SIGMA, USA and test substances were dispensed and were analyzed with HPLC for Sweet BV to secure the validation of analysis. Results : 1. Measurement of system suitability of Sweet BV satisfied criterion of below 3%. 2. Confirming Linearity of Sweet BV in 10-200㎍/㎖ solution yielded correlation coefficient (r of 0.995 and accuracy of 85-115% which satisfy criterion. 3. Measurement of Specificity of Sweet BV didn't yield any substance affecting the peak of test substances, but detected at 21.22min verified as the test substance. 4. Confirming Intra-day of Sweet BV, accuracy and precision of 0.1, 100㎍/㎖ were 105.70, 95.81 and 0.66, 0.73, respectively, satisfying both criteria of accuracy (85-115% and precision (within 10%. 5. To measure Stability in autosampler, all samples used in Intra-day reproducibility sat in the autosampler for five hours and were re-analyzed. Both variability and precision satisfied the criteria. 6. Homogeneity of Sweet BV (0.1, 100㎍/㎖ at upper, middle, and lower layers all satisfied the accuracy and precision criteria. 7. Stability of Sweet BV (0.1, 100㎍/㎖ at room temperature for four hours and refrigerated for 7 days all satisfied the criterion. 8. For the measurement of Quality control, QC samples measured on the first and eighth day all satisfied accuracy and precision criteria. Conclusion : Above experiment data satisfies validation and stability of concentration analysis method of Sweet BV.

  14. Intravenous Single Dose Toxicity of Sweet Bee Venom in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Lee

    2015-09-01

    Full Text Available Objectives: Anaphylactic shock can be fatal to people who become hypersensitive when bee venom pharmacopuncture (BVP is used. Thus, sweet bee venom (SBV was developed to reduce these allergic responses. SBV is almost pure melittin, and SBV has been reported to have fewer allergic responses than BVP. BVP has been administered only into acupoints or intramuscularly, but we thought that intravenous injection might be possible if SBV were shown to be a safe medium. The aim of this study is to evaluate the intravenous injection toxicity of SBV through a single-dose test in Sprague-Dawley (SD rats. Methods: Male and female 6-week-old SD rats were injected intravenously with SBV (high dosage: 1.0 mL/animal; medium dosage: 0.5 mL/animal; low dosage: 0.1 mL/animal. Normal saline was injected into the control group in a similar method. We conducted clinical observations, body weight measurements, and hematology, biochemistry, and histological observations. Results: No death was observed in any of the experimental groups. Hyperemia was observed in the high and the medium dosage groups on the injection day, but from next day, no general symptoms were observed in any of the experimental groups. No significant changes due to intravenous SBV injection were observed in the weights, in the hematology, biochemistry, and histological observations, and in the local tolerance tests. Conclusion: The results of this study confirm that the lethal dose of SBV is over 1.0 mL/animal in SD rats and that the intravenous injection of SBV is safe in SD rats.

  15. Sweet Bee Venom Pharmacopuncture May be Effective for Treating Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Pavel Lee

    2014-09-01

    Full Text Available Sexual dysfunction (SD is a health problem which occurs during any phase of the sexual response cycle that keeps the individual or couple from experiencing satisfaction from the sexual activity. SD covers a wide variety of symptoms like in men, erectile dysfunction and premature or delayed ejaculation, in women, spasms of the vagina and pain with sexual intercourse, in both sexes, sexual desire and response. And pharmacopuncture, i.e. injection of subclinical doses of drugs, mostly herb medicine, in acupoints, has been adopted with successful results. This case report showed the effect of bee venom on SD. A 51-year-old male patient with SD, who had a past history of taking Western medication to treat his SD and who had previously undergone surgery on his lower back due to a herniated disc, received treatments using pharmacopuncture of sweet bee venom (SBV at Gwanwon (CV4, Hoeeum (CV1, Sinsu (BL23, and Gihaesu (BL24 for 20 days. Objectively, the patient showed improvement on most items on the International Index for Erectile Dysfunction (IIEF like 28 to 29 out of perfect score 30 for erectile function, 10 to 10 out of perfect score 10 for orgasmic function, 6 to 8 out of perfect score 10 for sexual desire, 10 to 13 out of perfect score 15 for satisfaction with intercourse, and 6 to 8 out of perfect score 10 for overall satisfaction; subjectively, his words, the tone of his voice and the look of confidence in his eyes all indicated improvement. Among the variety of effects of SBV pharmacopuncture, urogenital problems such as SD may be health problems that pharmacopuncture can treat effectively.

  16. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    Science.gov (United States)

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  17. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  18. Isolation of melittin from bee venom and evaluation of its effect on proliferation of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Mahmoodzadeh A

    2013-03-01

    Full Text Available Background: Gastric cancer (GC is one of the most common cancers worldwide and in Iran. Conventional therapies are surgery and chemotherapy. Current studies are evaluating natural compounds in inhibiting growth of cancer cell. In this study isolated peptide melittin with 26 amino acids from bee venom and its impact on the viability and proliferation of gastric cancer cells was investigated. Methods: At first melittin was purified from honeybee venom using a reversed-phase high performance liquid chromatography (RP- HPLC and C18 column. In order to investigate whether melittin, a 26 amino acids peptide which is the main components of honeybee venom, inhibits proliferation of human gastric adenocarcinoma cell line (AGS cells, MTT ((3-(4, 5-dimethylthiazol-2-yl-2, 5- diphenyltetrazolium bromide assay was performed. Hemolytic assay carried out in order to confirm the biologic activity of the isolated melittin. AGS cells were plated in a 96-well plate and treated with serially diluted concentrations of melittin for 6 and 12 hours. The mortality of the cells was measured via MTT assay at 540 nm.Results: The obtained chromatogram from RP-HPLC showed that melittin comprises 50% of the studied bee venom. SDS-PAGE analysis of melittin fraction confirmed purity of isolated melittin. Hemolytic activity assay indicates that isolated melittin shows a strong hemolytic activity (HD50=0.5. MTT assay showed that melittin strongly inhibits proliferation of gastric cancer cells at concentrations more than 2µg/ml. This inhibitory effect is dependent to melittin concentration and incubation time.Conclusion: This study provides evidence that melittin inhibits proliferation of the gastric cancer cells. Results showed that isolated melittin from honey bee venom have cytotoxic effect on AGS cell line with a trend of increasing cytotoxicity with increasing concentration and incubation time.

  19. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers : a spin-label electron spin resonance study

    OpenAIRE

    Kleinschmidt, Jörg H.; Mahaney, James E.; Thomas, David D.; Marsh, Derek

    1997-01-01

    Electron spin resonance (ESR) spectroscopy was used to study the penetration and interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) and ditetradecylphosphatidylglycerol (DTPG) bilayer membranes. Melittin is a surface-active, amphipathic peptide and serves as a useful model for a variety of membrane interactions, including those of presequences and signal peptides, as well as the charged subdomain of the cardiac regulatory protein phospholamban. Derivatives of phospha...

  20. Preventive Effects of Bee Venom Derived Phospholipase A2 on Oxaliplatin-Induced Neuropathic Pain in Mice

    OpenAIRE

    Dongxing Li; Woojin Kim; Dasom Shin; Yongjae Jung; Hyunsu Bae; Sun Kwang Kim

    2016-01-01

    Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A2 (bvPLA2) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were...

  1. Effect of pretreatment with venom of Apis mellifera bees on the yield of gamma-ray induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes when the cultures were treated with 0.00015 μl venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges. (author)

  2. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    Science.gov (United States)

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  3. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach

    OpenAIRE

    Danneels, Ellen L.; Matthias Van Vaerenbergh; Griet Debyser; Bart Devreese; Dirk C de Graaf

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal change...

  4. Study of four week repeated dose toxic test of Sweet Bee Venom in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Jae-Seuk Park

    2010-12-01

    Full Text Available Objectives: This study was performed to analyse four week repeated dose toxicity of Sweet Bee Venom(Sweet BV extracted from the bee venom in Beagle dogs. Methods: All experiments were conducted under the regulations of Good Laboratory Practice (GLP at Biotoxtech Company, a non-clinical study authorized institution. Male and female Beagle dogs of 5-6 months old were chosen for the pilot study of four week repeated dose toxicity of Sweet BV which was administered at the level of 0.56㎎/㎏ body weight which is eighty times higher than the clinical application dosage as the high dosage, followed by 0.28 and 0.14㎎/㎏ as midium and low dosage, respectively. Equal amount of excipient(normal saline to the Sweet BV experiment groups was administered as the control group every day for four weeks. Results: 1. No mortality was witnessed in all of the experiment groups. 2. All experiment groups were appealed pain sense in the treating time compared to the control group, and hyperemia and movement disorder were observed around the area of administration in all experiment groups, and higher occurrence in the higher dosage treatment. 3. For weight measurement, Neither male nor female groups showed significant changes. 4. In the urine analysis, CBC and biochemistry didn't show any significant changes in the experiment groups compared with control group. 5. For weight measurement of organs, experiment groups didn't show any significant changes compared with control group. 6. To verify abnormalities of organs and tissues, thigh muscle which treated with Sweet BV, cerebrum, liver, lung, kidney, and spinal cords were removed and conducted histologocal observation with H-E staining. In the histologocal observation of thigh muscle, cell infiltration, inflammatory, degeneration, necrosis of muscle fiber, and fibrosis were found in both thigh tissue. And the changes were depend on the dose of Sweet BV. But another organs were not detected in any abnormalities. 7

  5. Systemic Immediate Hypersensitive Reactions after Treatment with Sweet Bee Venom: A Case Report

    Directory of Open Access Journals (Sweden)

    NaYoung Jo

    2015-12-01

    Full Text Available Objectives: A previous study showed that bee venom (BV could cause anaphylaxis or other hypersensitivity reactions. Although hypersensitivity reactions due to sweet bee venom (SBV have been reported, SBV has been reported to be associated with significantly reduced sensitization compared to BV. Although no systemic immediate hypersensitive response accompanied by abnormal vital signs has been reported with respect to SBV, we report a systemic immediate hypersensitive response that we experienced while trying to use SBV clinically. Methods: The patient had undergone BV treatment several times at other Oriental medicine clinics and had experienced no adverse reactions. She came to acupuncture & moxibustion department at Semyung university hospital of Oriental medicine (Je-cheon, Korea complaining of facial hypoesthesia and was treated using SBV injections, her first SBV treatment. SBV, 0.05 cc, was injected at each of 8 acupoints, for a total of 0.40 cc: Jichang (ST4, Daeyeong (ST5, Hyeopgeo (ST6, Hagwan (ST7, Yepung (TE17, Imun (TE21, Cheonghoe (GB2, and Gwallyeo (SI18. Results: The patient showed systemic immediate hypersensitive reactions. The main symptoms were abdominal pain, nausea and perspiration, but common symptoms associated with hypersensitivity, such as edema, were mild. Abdominal pain was the most long-lasting symptom and was accompanied by nausea. Her body temperature decreased due to sweating. Her diastolic blood pressure could not be measured on three occasions. She remained alert, though the symptoms persisted. The following treatments were conducted in sequence; intramuscular epinephrine, 1 mg/mL, injection, intramuscular dexamethasone, 5 mg/mL, injection, intramuscular buscopan, 20 mg/mL, injection, oxygen (O2 inhalation therapy, 1 L/minutes, via a nasal prong, and intravascular injection of normal saline, 1 L. After 12 hours of treatment, the symptoms had completely disappeared. Conclusion: This case shows that the use of SBV

  6. A Case Report of Intra-articular Bee Venom Pharmacopuncture combining with oriental medical treatment for Acute Traumatic Partial Tear of Meniscus.

    Directory of Open Access Journals (Sweden)

    Lee Jae-Hoon

    2010-12-01

    Full Text Available This case was report of intra-articular bee venom pharmacopuncture injection on the patient with Acute Traumatic Partial tear of meniscus. We used intra-articular bee venom pharmacopuncture injection to Acute Traumatic Partial tear of meniscus diagnosed by symptoms and MR imaging. Be under treatment if necessary we prescribed herbal medication and physiotherapy. The state of patient was measured by Visual Analog Scale(VAS and Walking time and Western Ontario and McMaster Universities(WOMAC Index score. After several times of treatments, noticeable reduction of pain was measured and increased time of walking on floor and decreased WOMAC score. This results suggest that intra-articular bee venom pharmacopuncture injection are effective to treatments of Acute Traumatic Partial tear of meniscus.

  7. Combined Effects of Bee Venom Acupuncture and Morphine on Oxaliplatin-Induced Neuropathic Pain in Mice

    Directory of Open Access Journals (Sweden)

    Woojin Kim

    2016-01-01

    Full Text Available Oxaliplatin, a chemotherapeutic drug for colorectal cancer, induces severe peripheral neuropathy. Bee venom acupuncture (BVA has been used to attenuate pain, and its effect is known to be mediated by spinal noradrenergic and serotonergic receptors. Morphine is a well-known opioid used to treat different types of pain. Here, we investigated whether treatment with a combination of these two agents has an additive effect on oxaliplatin-induced neuropathic pain in mice. To assess cold and mechanical allodynia, acetone and von Frey filament tests were used, respectively. Significant allodynia signs were observed three days after an oxaliplatin injection (6 mg/kg, i.p.. BVA (0.25, 1, and 2.5 mg/kg, s.c., ST36 or morphine (0.5, 2, and 5 mg/kg, i.p. alone showed dose-dependent anti-allodynic effects. The combination of BVA and morphine at intermediate doses showed a greater and longer effect than either BVA or morphine alone at the highest dose. Intrathecal pretreatment with the opioidergic (naloxone, 20 μg or 5-HT3 (MDL-72222, 15 μg receptor antagonist, but not with α2-adrenergic (idazoxan, 10 μg receptor antagonist, blocked this additive effect. Therefore, we suggest that the combination effect of BVA and morphine is mediated by spinal opioidergic and 5-HT3 receptors and this combination has a robust and enduring analgesic action against oxaliplatin-induced neuropathic pain.

  8. Preventive Effects of Bee Venom Derived Phospholipase A₂ on Oxaliplatin-Induced Neuropathic Pain in Mice.

    Science.gov (United States)

    Li, Dongxing; Kim, Woojin; Shin, Dasom; Jung, Yongjae; Bae, Hyunsu; Kim, Sun Kwang

    2016-01-01

    Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A₂ (bvPLA₂) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were observed at three days after an injection of oxaliplatin (6 mg/kg, i.p.) and then decreased gradually to a normal level on days 7-9. The oxaliplatin injection also induced infiltration of macrophages and upregulated levels of the pro-inflammatory cytokine interleukin (IL)-1β in the lumbar dorsal root ganglia (DRG). Daily treatment with bvPLA₂ (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA₂ were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA₂ may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs. PMID:26797636

  9. Melittin and hyaluronidase compound derived from bee venom for the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nazaninalsadat Seyed Khoei

    2009-05-01

    Full Text Available "nMultiple sclerosis (MS is a chronic inflammatory disease of the central nervous system. Among the numerous proposed etiologies, Borrelia burgdorferi (a causative agent of Lyme disease has been associated with MS. Although the current MS therapies decrease the quantity and severity of the attacks, most patients experience various neurologic symptoms obliging them to have recourse to one or more complementary and alternative medicines along with the conventional medical interventions. "nAmong these, bee venom (BV therapy is increasingly used for the treatment of MS; nonetheless no animal or human studies have so far revealed an improvement in the symptoms of MS upon such therapy. Herein, the authors discuss the plausible factors giving rise to the inefficacy of BV in amelioration of MS symptoms, despite its highly anti-inflammatory properties. "nWe hypothesize that BV compound purified of phospholipase A2 that highly contains melittin and hyaluronidase may alleviate the symptoms of MS, directly through anti-inflammatory effects and degradation of hyaluronan accumulated in inflammatory demyelinating lesions, and indirectly by inhibitory effects on Borrelia burgdorferi. Thus, upon this hypothesis, we suggest that the melittin and hyaluronidase be injected into specific trigger points in the patients diagnosed with MS in randomized clinical trials to assess the efficacy of the proposed modality.

  10. Effects of Bee Venom Acupuncture on the Rehabilitation and Quality of Life in Rheumatoid Arthritis Patients

    Directory of Open Access Journals (Sweden)

    Lee Sang-Hoon

    2002-12-01

    Full Text Available Objective: To evaluate the effects of bee venom acupuncture(BVA on the rehabilitation and quality of life in rheumatoid arthritis(RA patients Methods: Patients with RA were treated with the BVA therapy twice a week for 3 months. Tender joint counts, swollen joint counts, morning stiffness, Erythrocyte Sedimentation Rate(ESR, C-reactive protein(CRP, patient global assessment, physician global assessment, Korean health assessment questionnaire(KHAQ were estimated and analyzed before and after BVA therapy. Results: Tender joint counts, swollen joint counts, morning stiffness showed significant decrease after BVA therapy. But, as acute inflammatory reactants, ESR showed no significant difference and CRP showed significant increase after BVA therapy. Patient global assessment, physician global assessment, and KHAQ index showed significant improvement after BVA therapy. Conclusions: BVA therapy can improve rehabilitation and health-related quality of life in RA patients as well as clinical symptoms and signs. Further study is required in more population with large scale including acute inflammatory reaction of BVA therapy.

  11. Combined Cytogenotoxic Effects of Bee Venom and Bleomycin on Rat Lymphocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Yasmina M. Abd-Elhakim

    2014-01-01

    Full Text Available This study was carried out to determine the cytotoxic and genotoxic effects of bee venom (BV and/or the chemotherapeutic agent bleomycin (BLM on healthy isolated rat lymphocytes utilizing morphometric and molecular techniques. Using the Ficoll-Histopaque density gradient centrifugation technique, lymphocytes were isolated, divided into groups, and subjected to BV and/or BLM at incubation medium concentrations of 10 or 20 μg/mL respectively for 24 and 72 hrs. An MTT assay and fluorescent microscopy examinations were used to assess the cytotoxic effects. To determine the predominant type of BV and/or BLM-induced cell death, LDH release assay was employed beside quantitative expression analyses of the apoptosis-related genes (Caspase-3 and Bcl-2. The genotoxic effects of the tested compounds were evaluated via DNA fragmentation assay. The results of these assays demonstrated that BV potentiates BLM-induced cytotoxicity through increased LDH release and diminished cell viability. Nevertheless, BV significantly inhibited the BLM-induced DNA damage. The results verify that BV significantly attenuates the genotoxic effects of BLM on noncancerous isolated rat lymphocytes but does not diminish BLM cytotoxicity.

  12. Effects of Bee Venom Acupuncture on Surgically Induced Endometriosis in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Lee

    2006-02-01

    Full Text Available Purpose : Bee Venom Acupuncture(BVA is known to affect inflammation and immune system. This study examined the macroscopic, hormonal and immunological effects of BVA on rats with surgically induced endometriosis. Method : Endometrial tissue was implanted in the serosal wall of the small intestine in rats. The rats were divided randomly into an experimental and control group. The experimental group was treated with BVA injection on kwanwon(CV4 three times per week, and the control group was given an oral dose of normal saline every day. 6 weeks later, the size of the ectopic uterine tissue was estimated, and the serum progesterone, estradiol and cytokine(TNF-α, IL-2, IL-4, IL-6, IL-10 concentrations were analyzed. Result : The size of the ectopic uterine implants in the experimental group was much smaller than that in the control group. The estradiol, IL-2 concentrations were significantly lower and the IL-6, IL-10 concentrations were significantly higher in the serum of the experimental group than in the control group. there was no significant difference in the concentration of the other cytokine. Conclusion : These results suggest that BVA is an effective treatment for endometriosis.

  13. Combined Effects of Bee Venom Acupuncture and Morphine on Oxaliplatin-Induced Neuropathic Pain in Mice.

    Science.gov (United States)

    Kim, Woojin; Kim, Min Joon; Go, Donghyun; Min, Byung-Il; Na, Heung Sik; Kim, Sun Kwang

    2016-02-01

    Oxaliplatin, a chemotherapeutic drug for colorectal cancer, induces severe peripheral neuropathy. Bee venom acupuncture (BVA) has been used to attenuate pain, and its effect is known to be mediated by spinal noradrenergic and serotonergic receptors. Morphine is a well-known opioid used to treat different types of pain. Here, we investigated whether treatment with a combination of these two agents has an additive effect on oxaliplatin-induced neuropathic pain in mice. To assess cold and mechanical allodynia, acetone and von Frey filament tests were used, respectively. Significant allodynia signs were observed three days after an oxaliplatin injection (6 mg/kg, i.p.). BVA (0.25, 1, and 2.5 mg/kg, s.c., ST36) or morphine (0.5, 2, and 5 mg/kg, i.p.) alone showed dose-dependent anti-allodynic effects. The combination of BVA and morphine at intermediate doses showed a greater and longer effect than either BVA or morphine alone at the highest dose. Intrathecal pretreatment with the opioidergic (naloxone, 20 μg) or 5-HT3 (MDL-72222, 15 μg) receptor antagonist, but not with α2 adrenergic (idazoxan, 10 μg) receptor antagonist, blocked this additive effect. Therefore, we suggest that the combination effect of BVA and morphine is mediated by spinal opioidergic and 5-HT3 receptors and this combination has a robust and enduring analgesic action against oxaliplatin-induced neuropathic pain. PMID:26805884

  14. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  15. Anti-Fibrotic Effect of Natural Toxin Bee Venom on Animal Model of Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Hyun Jin An

    2015-05-01

    Full Text Available Progressive renal fibrosis is the final common pathway for all kidney diseases leading to chronic renal failure. Bee venom (BV has been widely used as a traditional medicine for various diseases. However, the precise mechanism of BV in ameliorating the renal fibrosis is not fully understood. To investigate the therapeutic effects of BV against unilateral ureteral obstruction (UUO-induced renal fibrosis, BV was given intraperitoneally after ureteral ligation. At seven days after UUO surgery, the kidney tissues were collected for protein analysis and histologic examination. Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, BV treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of TNF-α and IL-1β were significantly reduced in BV treated mice compared with UUO mice. In addition, treatment with BV significantly inhibited TGF-β1 and fibronectin expression in UUO mice. Moreover, the expression of α-SMA was markedly withdrawn after treatment with BV. These findings suggest that BV attenuates renal fibrosis and reduces inflammatory responses by suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, BV may be a useful therapeutic agent for the prevention of fibrosis that characterizes progression of chronic kidney disease.

  16. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major component, melittin, are potential means of reducing excessive immune responses and provide new alternatives for the control of inflammatory diseases. Recent experimental studies show that the biological functions of melittin could be applied for therapeutic use in vitro and in vivo. Reports verifying the therapeutic effects of melittin are accumulating in the literature, but the cellular mechanism(s) of the anti-inflammatory effects of melittin are not fully elucidated. In the present study, we review the current knowledge on the therapeutic effects of melittin and its detailed mechanisms of action against several inflammatory diseases including skin inflammation, neuroinflammation, atherosclerosis, arthritis and liver inflammation, its adverse effects as well as future prospects regarding the use of melittin. PMID:27187328

  17. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects

    Directory of Open Access Journals (Sweden)

    Gihyun Lee

    2016-05-01

    Full Text Available Inflammation is a pervasive phenomenon triggered by the innate and adaptive immune systems to maintain homeostasis. The phenomenon normally leads to recovery from infection and healing, but when not properly phased, inflammation may cause immune disorders. Bee venom is a toxin that bees use for their protection from enemies. However, for centuries it has been used in the Orient as an anti-inflammatory medicine for the treatment of chronic inflammatory diseases. Bee venom and its major component, melittin, are potential means of reducing excessive immune responses and provide new alternatives for the control of inflammatory diseases. Recent experimental studies show that the biological functions of melittin could be applied for therapeutic use in vitro and in vivo. Reports verifying the therapeutic effects of melittin are accumulating in the literature, but the cellular mechanism(s of the anti-inflammatory effects of melittin are not fully elucidated. In the present study, we review the current knowledge on the therapeutic effects of melittin and its detailed mechanisms of action against several inflammatory diseases including skin inflammation, neuroinflammation, atherosclerosis, arthritis and liver inflammation, its adverse effects as well as future prospects regarding the use of melittin.

  18. Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS

    OpenAIRE

    Jonans Tusiimire; Jennifer Wallace; Nicola Woods; Dufton, Mark J.; Parkinson, John A.; Grainne Abbott; Clements, Carol J.; Louise Young; Jin Kyu Park; Jong Woon Jeon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractio...

  19. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    OpenAIRE

    Dasom Shin; Gihyun Lee; Sung-Hwa Sohn; Soojin Park; Kyung-Hwa Jung; Ji Min Lee; Jieun Yang; Jaeho Cho; Hyunsu Bae

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focall...

  20. Comparison of the Effects between Sweet Bee Venom Pharmacopuncture and Scolopendrid Pharmacopuncture on Carpal Tunnel Syndrome (Randomized, Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Ji-young Ku

    2010-12-01

    Full Text Available Objectives : The purpose of this study is to compare the effects of Sweet Bee Venom Pharmacopuncture and Scolopendrid Pharmacopuncture on Carpal Tunnel Syndrome. Methods : From February to September 2010, the number of patients with Carpal Tunnel Syndrome who volunteered for this clinical study was 16 and 7 out of 16 patients complained both hands. Total 23 cases of hands were randomly divided by 2 groups. We injected Sweet Bee Venom Pharmacopuncture on PC7(Daereung twice a week for 4weeks for experimental group(n=11, and Scolopendrid Pharmacopuncture with the same methods for control group(n=12. One case was dropped out due to itchiness of allergic response in the experimental group. Improvement of the symptoms was evaluated by Visual Analogue Scale, Pain Rating Scale, Tinel’s sign, Phalen’s sign and Nerve Conduction Velocity. Nerve Conduction Velocity was checked at baseline and the end of the trial and others were checked at baseline, after 2 and 4 weeks. Results : Both groups showed significant improvement in Visual Analogue Scale, Pain Rating Scale, but no significant difference between two groups. Only the control group showed significant reduction of the‘ poitive response’in the Tinel’s sign and Phalen’s sign. However, no groups improved in Nerve Conduction Velocity. Conclusions : These results showed that Sweet Bee Venom Pharmacopuncture and Scolopendrid Pharmacopuncture could decrease the symptoms of Carpal Tunnel Syndrome. Further studies will be required to examine more cases for the long period and use more various concentration and amount pharmacopuncture for the effect on Carpal Tunnel Syndrome.

  1. Clinical investigation compared with the effects of the bee-venom Acupuncture on knee joint with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Wang Wu-Hao

    2001-12-01

    Full Text Available Objective: This study is designed to find out the effects of the Bee-Venom Acupuncture on knee joint with osteoarthritis. Methods: We are investigated that outpatients suffer from knee joint pain deciphered at the division of Acupuncture in Jaseng oriental medicine hospital from the 13, July 1999 to unti111, November 2000. We make an estimated of the score from both before or after its treatment about 70 cases of diagnostic patient with the osteoarthritis of knee joints by biochemical method and X-RAY analysis, we observed in the progress of symptoms. Results: These results found that sex distinction with a disease caused much more female than male at the ratio of I to 5.36 in the proportion of males to females, jobs is mainly ranked with a housewife and approximately 82.9% of cases before our hospital have ever treated at the other clinics or hospitals. On the hand, the distribution interval of a case history is mainly followed by disease in below 6 month, interval of the period-treatment is mainly gone within 3 month and frequency of treatment is examined into II to 15 times, more than 16 times and below 10 times, respectively. We are estimated with the score of functional barrier from both before or after its treatment against osteoarthritis' patients and produced in the usefulness from the totally point of fields except the aid-device after its treatment In summary, these results demonstrated that Bee Venom, Acupuncture enhanced more than 82.9% to the improvement of treatment and p<0.05 considered to be statistically significant. Conclusion: These results suggest that Bee-venom Acupuncture may be playa role in the significant usefulness and have need of actively application for the clinical trials against osteoarthritis' patients.

  2. Significant Traumatic Intracranial Hemorrhage in the Setting of Massive Bee Venom-Induced Coagulopathy: A Case Report.

    Science.gov (United States)

    Stack, Kelsey; Pryor, Lindsey

    2016-09-01

    Bees and wasps of the Hymenoptera order are encountered on a daily basis throughout the world. Some encounters prove harmless, while others can have significant morbidity and mortality. Hymenoptera venom is thought to contain an enzyme that can cleave phospholipids and cause significant coagulation abnormalities. This toxin and others can lead to reactions ranging from local inflammation to anaphylaxis. We report a single case of a previously healthy man who presented to the emergency department with altered mental status and anaphylaxis after a massive honeybee envenomation that caused a fall from standing resulting in significant head injury. He was found to have significant coagulopathy and subdural bleeding that progressed to near brain herniation requiring emergent decompression. Trauma can easily occur to individuals escaping swarms of hymenoptera. Closer attention must be paid to potential bleeding sources in these patients and in patients with massive bee envenomation. PMID:27427329

  3. Effects of bee venom treatment on growth performance of young pigs.

    Science.gov (United States)

    Han, Sang Mi; Lee, Kwang Gill; Yeo, Joo Hong; Hwang, Sung Jin; Jang, Chul Ho; Chenoweth, Peter J; Pak, Sok Cheon

    2009-01-01

    This study examined the effect of whole bee venom (BV) as a potential stimulant of the piglet immune system, on growth performance, blood parameters, plasma protein and immune globulin content of serum. Piglets (n = 97) received combinations of 0.5, 1.0, 1.5, 2.0 and 2.5 mg/kg of parenterally administered BV on 4 occasions between birth and Day 30. In the apipuncture group (n = 31), piglets were acupunctured with the worker honeybee. Two acupoints, GV-1 (Jiao-chao) and GV-20 (Bai-hui), were selected for apipuncture. All piglets (n = 128) in the treatment groups were treated 4 times throughout the study period of 60 days. The control piglets received no treatments. Blood was taken via jugular venipuncture on Day 30 after birth. Body weight and survivability were measured, and changes in hematological values were analyzed. Both the BV injection group and apipuncture group increased body weight and survivability by 26.6% and 21.8%, and 7.9% and 6.7% respectively compared to the controls. The numbers of leukocytes, erythrocytes, lymphocytes and monocytes were not influenced by treatments. However, a potential clinical benefit of high dose therapy was seen in increased populations of leukocytes, lymphocytes and monocytes compared with either the apipuncture or control groups. Other blood parameters such as total protein and albumin were not affected by treatment. However, IgG levels were generally higher in treated groups than in the controls. These findings indicate that BV might be useful to stimulate immuno-competence in pig production, possibly via the primary bioactive components of melittin, phospholipase A(2) and apamin. The administration of BV, either via injection or acupuncture, did not make any differences in growth performance of young pigs. These results would be useful for further purification and characterization of immune boosting agents from BV. PMID:19507270

  4. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin.

    Science.gov (United States)

    Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Osmak, Maja; Garaj-Vrhovac, Vera

    2016-08-01

    Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment. PMID:25916941

  5. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  6. Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution

    Directory of Open Access Journals (Sweden)

    Lee Sang-min

    2009-03-01

    Full Text Available 1. Objectives: To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods: Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA, right after and after 30 minuets, had been applied to 20 subjects. 3. Results: 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion: From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

  7. Correlation between the Constitution of Sasang and Sexual Difference in the Hypersensitive Reaction of Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Lee Kwangho

    2012-09-01

    Full Text Available Objectives: The aim of this study is to investigate the correlation between the constitution of Sasang and the bee venom hypersensitive reaction, as well as the hypersensitive reaction occurrence ratio between males and females, for patients treated with sweet bee venom (SBV and who had undergone an examination of the constitution of the Sasang. Methods: All 81 patients enrolled in the study were treated with SBV and underwent an examination of the constitution of Sasang from January 2010 to July 2012. We divided them into two groups for the hypersensitive reaction and no response and compared the distributions of the Sasang-constitution types for the two groups as well as the hypersensitive reaction occurrence ratio between males and females. Results: No significant differences were found between the hypersensitive-reaction group and the no-response group (p = 0.390, but the hypersensitive-reaction occurrence ratio was statistically higher in females than in males (p = 0.001. Conclusions: Hypersensitive reactions do not seem to be related to the Sasang-constitution types, but the possibility of hypersensitive reactions among females seems to be higher than it is among males.

  8. Bee Pollen

    Science.gov (United States)

    ... bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an appetite stimulant; to improve stamina and athletic performance; and for premature aging, premenstrual syndrome (PMS), hay fever (allergic ... Bee pollen is also used for gastrointestinal (GI) problems ...

  9. Effects of Sweet Bee Venom on cardiovascular system in the conscious telemetered Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Lim Chung-San

    2010-09-01

    Full Text Available Objectives:This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV on cardiovascular system in the conscious telemetered Beagle Dogs. Methods:All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Male Beagle dogs of 13-19 months old were chosen for the pilot study and surgical implantation was performed for conscious telemetered Beagle dogs. And after confirming condition of Beagle dogs was stable, Sweet BV was administered 4 times(first: 0.0 ㎎/㎏, 2nd: 0.01 ㎎/㎏, 3rd: 0.1 ㎎/㎏, and forth: 0.5 ㎎/㎏, one time/week in thigh muscle of Beagle dogs. And blood pressure, heart rate, electrocardiography and clinical responses were measured. Equal amount of normal saline to the Sweet BV experiment groups was administered to the control group. 1. In the analysis of body weight and taking amount, Beagle dogs did not show significant changes. 2. In the clinical observation, responses of pain and edema were showed depend on dosage of Sweet BV. 3. In the analysis of blood pressure, treatment with Sweet BV did not show significant changes in the dosage of 0.01 ㎎/㎏, but in the dosage of 0.1 ㎎/㎏ and 0.5 ㎎/㎏, treatment with Sweet BV increased blood pressure significantly. 4. In the analysis of heart rate, treatment of Sweet BV did not show significant changes in all dosage and period. 5. In the analysis of electrocardiography, treatment of Sweet BV was not showed significant changes in all dosage and period. Conclusion:Above findings suggest that Sweet BV is relatively safe treatment in the cardiovascular system. But in the using of over dosage, Sweet BV may the cause of increasing blood pressure. Further studies on the subject should be conducted to yield more concrete evidences.

  10. Bee venom acupuncture for the treatment of chronic low back pain: study protocol for a randomized, double-blinded, sham-controlled trial

    Directory of Open Access Journals (Sweden)

    Seo Byung-Kwan

    2013-01-01

    Full Text Available Abstract Background Chronic non-specific low back pain is the most common medical problem for which patients seek complementary and alternative medical treatment, including bee venom acupuncture. However, the effectiveness and safety of such treatments have not been fully established by randomized clinical trials. The aim of this study is to determine whether bee venom acupuncture is effective for improving pain intensity, functional status and quality of life of patients with chronic non-specific low back pain. Methods/design This study is a randomized, double-blinded, sham-controlled clinical trial with two parallel arms. Fifty-four patients between 18 and 65 years of age with non-radicular chronic low back pain experiencing low back pain lasting for at least the previous three months and ≥4 points on a 10-cm visual analog scale for bothersomeness at the time of screening will be included in the study. Participants will be randomly allocated into the real or sham bee venom acupuncture groups and treated by the same protocol to minimize non-specific and placebo effects. Patients, assessors, acupuncturists and researchers who prepare the real or sham bee venom acupuncture experiments will be blinded to group allocation. All procedures, including the bee venom acupuncture increment protocol administered into predefined acupoints, are designed by a process of consensus with experts and previous researchers according to the Standards for Reporting Interventions in Clinical Trials of Acupuncture. Bothersomeness measured using a visual analogue scale will be the primary outcome. Back pain-related dysfunction, pain, quality of life, depressive symptoms and adverse experiences will be measured using the visual analogue scale for pain intensity, the Oswestry Disability Index, the EuroQol 5-Dimension, and the Beck’s Depression Inventory. These measures will be recorded at baseline and 1, 2, 3, 4, 8 and 12 weeks. Discussion The results from this study

  11. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Science.gov (United States)

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725

  12. Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery-

    Directory of Open Access Journals (Sweden)

    Joong Chul An

    2011-09-01

    Full Text Available Objectives: This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV-pure melittin, the major component of honey bee venom on the central nervous system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, Sweet BV was administered in thigh muscle of rats. And checked the effects of Sweet BV on the central nervous system using the functional observational battery (FOB, which is a neuro-toxicity screening assay composed of 30 descriptive, scalar, binary, and continuous endpoints. And home cage observations, home cage removal and handling, open field activity, sensorimotor reflex test/physiological measurements were conducted. Results: 1. In the home cage observation, there was not observed any abnormal signs in rats. 2. In the observation of open field activity, the reduction of number of unit areas crossed and rearing count was observed caused by Sweet BV treatment. 3. In the observation of handling reactivity, there was not observed any abnormal signs in rats. 4. In the observation of sensorimotor reflex tests/physiological measurements, there was not observed any neurotoxic signs in rats. 5. In the measurement of rectal temperature, treatment of Sweet BV did not showed great influences in the body temperature of rats. Conclusions: Above findings suggest that Sweet BV is relatively safe treatment in the central nervous system. But in the using of over dose, Sweet BV may the cause of local pain and disturbance of movement. Further studies on the subject should be conducted to yield more concrete evidences.

  13. A Case of The Reduction of Symptoms, But No Change on The CT Scanning in HNP by Oriental Medical Treatment Added Mori cortex-Bee Venom Acupuncture

    Directory of Open Access Journals (Sweden)

    Lee, Byung-Hoon

    2001-06-01

    Full Text Available By process of treatment for a case which diagnosed as HNP of left posterolateral aspect of L4/5 disc and treated from the 10th, May 2001 to the 23rd, Jun 2001, the results are as follows. Method & Results : This patient was medicated Hwallaktang-gami, taken acupuncture, phototherapy, TENS, electric acupuncture, exercises, Mori Cortex-bee venom acupuncture. As a result, the patient's clinical symptom were improved but a computed tomagraphy confirmed L4/5 and L5/S1 HNP was not changed as seen on repeated CT scanning. Conclusion : These results suggest that among conservative therapies the oriental medical treatments including Mori Cortex-bee venom acupuncture improve clinical symptom effectively. But in this case, the structure of herniated disc was not changed.

  14. Isolation of Melittin from Iranian Honey Bee Venom and Investigation of Its Effect on Proliferation of Cervical Cancer- HeLa Cell Line

    OpenAIRE

    K Pooshang Bagheri; A Mahmoodzadeh; H Zarinnahad; M. Mahdavi; Shahbazzadeh, D.; A Moradi

    2013-01-01

    Introduction: Cervical cancer is the second prevalent cancer in developing countries and the sixth prevalent cancer in USA. Since conventional treatment methods are associated with detrimental side effects, searching for new drugs using natural ingredients is very important. Previous studies have shown that melittin (main component of honey bee venom) has anticancer properties along with the effect on cell membrane and activation of apoptosis. In this study, inhibitory effects of melittin on ...

  15. Inhibitory effects of microinjection of morphine into thalamic nucleus submedius on ipsilateral paw bee venom-induced inflammatory pain in the rat

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To examine whether microinjection of morphine into the rat thalamic nucleus submedius (Sm) could depress the bee venom (BV)-induced nociceptive behaviours. Methods In inflammatory pain model induced by BV subcutaneous injection into rat unilateral hind paw,the inhibitory effects of morphine microinjection into thalamic nucleus submedius (Sm) on the spontaneous nociceptive behavior,heat hyperalgesia and tactile allodynia,and the influence of naloxone on the morphine effects were observed in the rat...

  16. 蜂毒的主要成分及药理作用的研究进展%Advances in main compositions and pharmacological effects of bee venom

    Institute of Scientific and Technical Information of China (English)

    张冰清; 刘晓波

    2016-01-01

    Bee venom is a kind of active compounds secreted by the gland,which have many active ingredients like anti-inflammatory,anti -tumor,analgesic,anti -hypertensive and so on.In recent years,many scientists had been made im-portant progress in research of the active ingredient analysis,genetic structure,pharmacological action mechanism and mo-lecular biology of bee venom.The purpose of this article was to summarize main active ingredients of bee venom and the main pharmacological actions and provide theoretical basis for the clinical used.%蜂毒是由蜜蜂毒腺分泌的活性物质,其中很多活性成分具有抗炎、抗肿瘤、镇痛、降压的作用。近年来,国内外很多科学家对蜂毒的活性成分及其基因结构、药理作用机制、分子生物学等方面进行了研究,并且取得了重要的研究进展。本文总结了蜂毒的主要活性成分以及主要的药理作用,为蜂毒的临床应用提供理论基础。

  17. Study of four weeks repeated-dose toxic test of Sweet Bee Venom in rats Original Articles

    Directory of Open Access Journals (Sweden)

    Kwon Hae-Yon

    2011-03-01

    Full Text Available Objectives: This study was performed to analyse four weeks repeated -dose toxicity of Sweet Bee Venom (SBV-pure melittin, the major component of honey bee venom in rats. Methods: All experiments were conducted under the regulations of Good Laboratory Practice (GLPat Biotoxtech Company, a non-clinical study authorized institution. Male and female rats of 5 weeks old were chosen for the pilot study of four weeks repeated-dose toxicity and was injected at the level of 0.56 mg/kg body weight (eighty times higher than the clinical application dosage as the high dosage, followed by 0.28 and 0.14 mg/kg as midium and low dosage, respectively. Equal amount of normal saline was injected as the control group every day for four weeks. Results: 1. No mortality was witnessed in all of the experiment groups. 2. All experiment groups appealed pain sense in the treating time compared to the control group, and side effects such as hyperemia and movement disorder were observed around the area of injection in all experiment groups, and the higher dosage in treatment, the higher occurrence in side effects. 3. Concerning weight measurement, neither male nor female groups showed significant changes compared to the control group. 4. Concerning to the CBC and biochemistry, all experiment groups didn't show any significant changes compared to the control group. 5. Concerning weight measurement of organs, experiment groups didn't show any significant changes compared to the control group. 6. To verify abnormalities of organs and tissues, those such as cerebellum, cerebrum, liver, lung, kidney,and spinal cords were removed and we conducted histologocal observation with H-E staining.Concerning the histologocal observation of liver tissues, some fatty changes were observed around portal vein in 0.56 mg/kg experiment group. But another organs were not detected in any abnormalities. 7. The proper high dosage of SBV for the thirteen weeks repeated test in rats may be 0.28 mg

  18. Study of a 13-weeks, Repeated, Intramuscular Dose, Toxicity Test of Sweet Bee Venom in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Hyunmin Kang

    2014-06-01

    Full Text Available Objectives:This study was performed to analyze a 13-week repeated dose toxicity test of Sweet Bee Venom (SBV extracted from bee venom and administered in Sprague-Dawley (SD rats. Methods:Male and female 5-week-old SD rats were treated once daily with SBV (high-dosage group: 0.28 mg/kg; medium-dosage group: 0.14 mg/kg; or low-dosage group: 0.07 mg/kg for 13 weeks. Normal saline was administered to the control group in a similar manner (0.2 mL/kg. We conducted clinical observations, body weight measurements, ophthalmic examinations, urinalyses, hematology and biochemistry tests, and histological observations using hematoxylin and eosin (H&E staining to identify any abnormalities caused by the SBV treatment. Results:During this study, no mortality was observed in any of the experimental groups. Hyperemia and a movement disorder were observed around the area of in all groups that received SBV treatment, with a higher occurrence in rats treated with a higher dosage. Male rats receiving in the high-dosage group showed a significant decrease in weight during the treatment period. Compared to the control group, no significant changes in the ophthalmic parameters, the urine analyses, the complete blood cell count (CBC, and the biochemistry in the groups treated with SBV. Compared to the control group, some changes in organ weights were observed in the medium-and the high-dosage groups, but the low-dosage group showed no significant changes. Histological examination of thigh muscle indicated cell infiltration, inflammation, degeneration, and necrosis of muscle fiber, as well as fibrosis, in both the medium- and the high-dosage groups. Fatty liver change was observed in the periportal area of rats receiving medium and high dosages of SBV. No other organ abnormalities were observed. Conclusion:Our findings suggest that the No Observed Adverse Effect Level (NOAEL of SBV is approximately 0.07 mg/kg in male and female SD rats.

  19. Clinical features and treatment of ocular trauma caused by bee venom%蜂毒性眼外伤的临床特征与治疗

    Institute of Scientific and Technical Information of China (English)

    张红; 王雨生

    2014-01-01

    Objective To investigate the pathogenesis,clinical features and treatment methods of ocular trauma caused by bee venom.Methods Data of 49 eyes of 43 patients with ocular trauma caused by bee venom were retrospectively analyzed.The clinical features,complications,treatment of ocular trauma caused by different species of bee and visual acuity after treatment were analyzed.Results The severity of injury was related to the location of bee sting.The stings on or around the eyelid were mild,but the corneal or conjunctival stings were severe with long treatment time and poor visual prognosis.The main type of bee was honey bee,followed by the wasps,hornets and other bee species; The honey bee sting was mild,the sting by wasp and hornet was relatively severe,and the sting by other bees was mild or severe.Conclusion The severity and prognosis of ocular trauma are closely related to wasp species and stings location ; Timely and correct treatments are essential for vision improvement.%目的 探讨蜂毒性眼外伤的发病机制、临床特征和治疗方法.方法 回顾2007年6月至2013年10月诊治的蜂毒性眼外伤43例(49眼).分析不同蜂种所致眼外伤的临床特点、并发症、治疗方法及治疗后视力.结果 患者受伤的严重程度与毒蜂蜇伤的部位有关,眼睑及周围组织蜇伤病情较轻,而角膜、结膜蜇伤则病情较重,治疗时间较长,视力结果较差.毒蜂种类以蜜蜂最为多见,其次是虎头蜂、黄蜂及其他蜂种;其中蜜蜂蜇伤病情较轻,虎头蜂和黄蜂相对较重,其他蜂种蜇伤有轻有重.结论 该类眼外伤的严重程度及预后与毒蜂种类和蜇伤部位密切相关;受伤后及时就诊和正确治疗对视力改善及预后至关重要.

  20. Activation of Spinal α2-Adrenoceptors Using Diluted Bee Venom Stimulation Reduces Cold Allodynia in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Suk-Yun Kang

    2012-01-01

    Full Text Available Cold allodynia is an important distinctive feature of neuropathic pain. The present study examined whether single or repetitive treatment of diluted bee venom (DBV reduced cold allodynia in sciatic nerve chronic constriction injury (CCI rats and whether these effects were mediated by spinal adrenergic receptors. Single injection of DBV (0.25 or 2.5 mg/kg was performed into Zusanli acupoint 2 weeks post CCI, and repetitive DBV (0.25 mg/kg was injected for 2 weeks beginning on day 15 after CCI surgery. Single treatment of DBV at a low dose (0.25 mg/kg did not produce any anticold allodynic effect, while a high dose of DBV (2.5 mg/kg significantly reduced cold allodynia. Moreover, this effect of high-dose DBV was completely blocked by intrathecal pretreatment of idazoxan (α2-adrenoceptor antagonist, but not prazosin (α1-adrenoceptor antagonist or propranolol (nonselective β-adrenoceptor antagonist. In addition, coadministration of low-dose DBV (0.25 mg/kg and intrathecal clonidine (α2-adrenoceptor agonist synergically reduced cold allodynia. On the other hand, repetitive treatments of low-dose DBV showing no motor deficit remarkably suppressed cold allodynia from 7 days after DBV treatment. This effect was also reversed by intrathecal idazoxan injection. These findings demonstrated that single or repetitive stimulation of DBV could alleviate CCI-induced cold allodynia via activation of spinal α2-adrenoceptor.

  1. Distinct contributions of reactive oxygen species in amygdala to bee venom-induced spontaneous pain-related behaviors.

    Science.gov (United States)

    Lu, Yun-Fei; Neugebauer, Volker; Chen, Jun; Li, Zhen

    2016-04-21

    Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, play essential roles in physiological plasticity and are also involved in the pathogenesis of persistent pain. Roles of peripheral and spinal ROS in pain have been well established, but much less is known about ROS in the amygdala, a brain region that plays an important role in pain modulation. The present study explored the contribution of ROS in the amygdala to bee venom (BV)-induced pain behaviors. Our data show that the amygdala is activated following subcutaneous BV injection into the left hindpaw, which is reflected in the increased number of c-Fos positive cells in the central and basolateral amygdala nuclei in the right hemisphere. Stereotaxic administration of a ROS scavenger (tempol, 10mM), NADPH oxidase inhibitor (baicalein, 5mM) or lipoxygenase inhibitor (apocynin, 10mM) into the right amygdala attenuated the BV-induced spontaneous licking and lifting behaviors, but had no effect on BV-induced paw flinch reflexes. Our study provides further evidence for the involvement of the amygdala in nociceptive processing and pain behaviors, and that ROS in amygdala may be a potential target for treatment strategies to inhibit pain. PMID:26971700

  2. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice.

    Science.gov (United States)

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  3. Protective Effects of Intratracheally-Administered Bee Venom Phospholipase A2 on Ovalbumin-Induced Allergic Asthma in Mice

    Science.gov (United States)

    Jung, Kyung-Hwa; Baek, Hyunjung; Shin, Dasom; Lee, Gihyun; Park, Sangwon; Lee, Sujin; Choi, Dabin; Kim, Woojin; Bae, Hyunsu

    2016-01-01

    Asthma is a common chronic disease characterized by bronchial inflammation, reversible airway obstruction, and airway hyperresponsiveness (AHR). Current therapeutic options for the management of asthma include inhaled corticosteroids and β2 agonists, which elicit harmful side effects. In the present study, we examined the capacity of phospholipase A2 (PLA2), one of the major components of bee venom (BV), to reduce airway inflammation and improve lung function in an experimental model of asthma. Allergic asthma was induced in female BALB/c mice by intraperitoneal administration of ovalbumin (OVA) on days 0 and 14, followed by intratracheal challenge with 1% OVA six times between days 22 and 30. The infiltration of immune cells, such as Th2 cytokines in the lungs, and the lung histology, were assessed in the OVA-challenged mice in the presence and absence of an intratracheal administration of bvPLA2. We showed that the intratracheal administration of bvPLA2 markedly suppressed the OVA-induced allergic airway inflammation by reducing AHR, overall area of inflammation, and goblet cell hyperplasia. Furthermore, the suppression was associated with a significant decrease in the production of Th2 cytokines, such as IL-4, IL-5, and IL-13, and a reduction in the number of total cells, including eosinophils, macrophages, and neutrophils in the airway. PMID:27669297

  4. Nationwide Survey of Patient Knowledge and Attitudes towards Human Experimentation Using Stem Cells or Bee Venom Acupuncture for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    2014-10-01

    Full Text Available ObjectiveStem cell treatment is a well-recognized experimental treatment among patients with Parkinson’s disease (PD, for which there are high expectations of a positive impact. Acupuncture with bee venom is one of the most popular complementary and alternative treatments for PD. Patient knowledge and attitudes towards these experimental treatments are unknown. MethodsUsing a 12-item questionnaire, a nationwide survey was conducted of 963 PD patients and 267 caregivers in 44 Korean Movement Disorders Society member hospitals from April 2013 to June 2013. The survey was performed by trained interviewers using conventional methods. ResultsRegarding questions on experimental treatments using stem cells or bee venom acupuncture, 5.1–17.7% of PD patients answered questions on safety, efficacy, and evidence-based practice incorrectly; however, more than half responded that they did not know the correct answer. Although safety and efficacy have not been established, 55.5% of PD patients responded that they were willing to receive stem cell treatment. With regard to participating in experimental treatments, there was a strong correlation between stem cell treatment and bee venom acupuncture (p < 0.0001, odds ratio = 5.226, 95% confidence interval 3.919–6.969. Younger age, higher education, and a longer duration of PD were all associated with a correct understanding of experimental treatments. ConclusionsOur data suggest that relatively few PD patients correctly understand the safety and efficacy of experimental treatments and that PD patients are greatly interested in new treatments. We hope that our data will be used to educate or to plan educational programs for PD patients and caregivers.

  5. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  6. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease

    OpenAIRE

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Yoon, Moon Sik; Yu, A. Ram; Kim, Jin Su; Hwang, Deok-Sang; Shim, Insop; Bae, Hyunsu

    2016-01-01

    Background Alzheimer’s disease (AD) is a severe neuroinflammatory disease. CD4+Foxp3+ regulatory T cells (Tregs) modulate various inflammatory diseases via suppressing Th cell activation. There are increasing evidences that Tregs have beneficial roles in neurodegenerative diseases. Previously, we found the population of Treg cells was significantly increased by bee venom phospholipase A2 (bvPLA2) treatment in vivo and in vitro. Methods To examine the effects of bvPLA2 on AD, bvPLA2 was admini...

  7. The Research Progress of Venom Immunotherapy for Bee Stings%蜂蜇伤蜂毒免疫治疗的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵燕(综述); 张帆; 曹灵红(审校)

    2016-01-01

    Bee sting symptoms are different according to the injury level,which even include multiple organ dysfunction syndrome or death in serious cases.Symptomatic treatments are mainly adopted in China:the mild ones may only need traditional Chinese medicine ,but the serious ones combined with multiple organ dysfunction syndrome,need to be treated in the intensive care unit.The venom immunotherapy following bee stings can reduce the early anaphylactic reaction,obtain active immunization of bee stings,prevent more seri-ous or even fatal allergic reactions,and reduce the death caused by severe allergic reactions in clinical prac-tice.However, the venom immunotherapy,which is prevalent overseas,is not generalized in China.It has been widely used in the treatment of bee stings and plays an important role in reducing the serious complica-tions,as many clinical practices have proved ,the venom immunotherapy is worthy of being promoted in pre-venting and treating bee sting injuries in China .%蜂蜇伤后根据其损伤的程度出现不同的症状,有的甚至出现多器官功能障碍综合征而死亡。目前国内关于蜂蜇伤的治疗主要是对症处理,轻症者用蛇药等中药解毒对症处理,重症蜂蜇伤并发多器官功能衰竭,常见的处理方式即是重症监护病房综合治疗。而蜂蜇伤的蜂毒免疫治疗,可以减轻早期的过敏反应,获得对蜂毒的主动免疫,防止更为严重的甚至致死性的过敏反应,在临床上可以减少因严重过敏反应引起的死亡。目前在国内尚未开展,而在国外运用较多,已广泛应用于蜂蛰伤的治疗,对于减轻蜂蛰伤后严重并发症有重要作用,众多临床实践证明,蜂毒免疫治疗在我国防治蜂蜇伤方面具有极大的推广价值。

  8. Effectiveness of bee venom acupuncture in alleviating post-stroke shoulder pain:a systematic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Sung Min Lim; Sook-Hyun Lee

    2015-01-01

    BACKGROUND:Shoulder pain is a common complication of stroke. Bee venom acupuncture (BVA) is increasingly used in the treatment of post-stroke shoulder pain. OBJECTIVE: To summarize and evaluate evidence on the effectiveness of BVA in relieving shoulder pain after stroke. SEARCH STRATEGY: Nine databases, namely MEDLINE, EMBASE, the Cochrane Library, the China National Knowledge Infrastructure (CNKI), the Japan Science and Technology Information Aggregator, Electronic (J-STAGE), and four Korean medical databases, namely, the National Assembly Library, the Research Information Service System, the National Discovery for Science Leaders, and OASIS, were searched from their inception through August 2014 without language restrictions. INCLUSION CRITERIA: Randomized controled trials (RCTs) were included if BVA was used at acupoints as the sole treatment, or as an adjunct to other treatments, for shoulder pain after stroke. DATA EXTRACTION AND ANALYSIS:Two review authors independently selected trials for inclusion, assessed methodological quality and extracted data. RESULTS: A total of 138 potentialy relevant articles were identiifed, 4 of which were RCTs that met our inclusion criteria. The quality of studies included was generaly low, and a preponderance of positive results was demonstrated. Al four trials reported favorable effects of BVA on shoulder pain after stroke. Two RCTs assessing the effects of BVA on post-stroke shoulder pain, as opposed to saline injections, were included in the meta-analysis. Pain was signiifcantly lower for BVA than for saline injections (standardized mean difference on 10-cm visual analog scale: 1.46 cm, 95% CI = 0.30–2.62,P = 0.02, n = 86) CONCLUSION: This review provided evidence suggesting that BVA is effective in relieving shoulder pain after stroke. However, further studies are needed to conifrm the role of BVA in aleviating post-stroke shoulder pain. Future studies should be conducted with large samples and rigorous study designs.

  9. The antinociceptive and anti-inflammatory effect of water-soluble fraction of bee venom on rheumatoid arthritis in rats

    Directory of Open Access Journals (Sweden)

    Jang-Hern Lee

    2001-02-01

    Full Text Available We recently demonstrated that bee venom (BV injection into acupoint (i.e. Zusanli produced more potent anti-inflammatory and antinociciptive effect in Freunds adjuvant induced rheumatoid arthritis (RA model as compared with that of non-acupoint injection(i.e back. However, the precise components underlying BV-induced antinociceptive and/or anti-inflammatory effects have not been fully understood. Therefore, we further investigated the anti-arthritic effect of BV after extracting the whole BV according to solubility (water soluble: BVA, ethylacetate soluble: BVE. Subcutaneous BVA treatment (0.9 mg/kg/day into Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling caused by Freunds adjuvant injection. In addition, the increase of serum interleukin-6 by RA induction was normalized by the BVA treatment as similar with that of non-arthritic animals. On the other hand, BVA therapy significantly reduced arthritis induced nociceptive behaviors (i.e., nociceptive score for mechanical hyperalgesia and thermal hyperalgesia. Furthermore, BVA treatment significantly suppressed adjuvant induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. However, BVE treatment (0.05 mg/kg/day has not any anti-inflammatory and anti-nociceptive effect on RA. Based on the present results, we demonstrated that BVA might be a effective fraction in whole BV for long-term treatment of RA-induced pain and inflammation. However, it is clear necessary that further fraction study about BVA was required for elucidating an effective component of BVA.

  10. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments. PMID:27144583

  11. Structural identification by mass spectrometry of a novel antimicrobial peptide from the venom of the solitary bee Osmia rufa (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Stöcklin, Reto; Favreau, Philippe; Thai, Robert; Pflugfelder, Jochen; Bulet, Philippe; Mebs, Dietrich

    2010-01-01

    The venom from the solitary bee Osmia rufa (Hymenoptera: Megachilidae) was analyzed using mass spectrometry (MS)-based techniques. Sensitive proteomic methods such as on-line LC-ESI-MS and nanoESI-MS analyses revealed more than 50 different compounds with molecular masses ranging from 400 to 4000Da. The major component has a monoisotopic molecular mass of 1924.20Da and its amino acid sequence was elucidated by de novo sequencing using tandem mass spectrometry and Edman degradation. This 17-residue cysteine-free peptide, named osmin, shows some similarities with the mast cell degranulation (MCD) peptide family. Free acid and C-terminally amidated osmins were chemically synthesized and tested for antimicrobial and haemolytic activities. The synthetic C-amidated peptide (native osmin) was found to be about three times more haemolytic than its free acid counterpart, but both peptides are much less lytic than melittin from social bee venom. Preliminary antimicrobial and antifungal tests indicate that both peptides are able to inhibit bacterial and fungal growth at micromolar concentrations. PMID:19109988

  12. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses.

    Science.gov (United States)

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Lee, Gihyun; Min, Hyun Jung; Chung, Won-Seok; Kim, Jong-In; Jee, Youngheun; Chae, Younbyoung; Kim, Sung-Hoon; Lee, Sung Joong; Cho, Ik-Hyun

    2016-04-01

    The protective and therapeutic mechanism of bee venom acupuncture (BVA) in neurodegenerative disorders is not clear. We investigated whether treatment with BVA (0.25 and 0.8 mg/kg) at the Zusanli (ST36) acupoints, located lateral from the anterior border of the tibia, has a beneficial effect in a myelin basic protein (MBP)(68-82)-induced acute experimental autoimmune encephalomyelitis (EAE) rat model. Pretreatment (every 3 days from 1 h before immunization) with BVA was more effective than posttreatment (daily after immunization) with BVA with respect to clinical signs (neurological impairment and loss of body weight) of acute EAE rats. Treatment with BVA at the ST36 acupoint in normal rats did not induce the clinical signs. Pretreatment with BVA suppressed demyelination, glial activation, expression of cytokines [interferon (IFN)-γ, IL-17, IL-17A, tumor necrosis factor-alpha (TNF-α), and IL-1β], chemokines [RANTES, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein (MIP)-1α], and inducible nitric oxide synthase (iNOS), and activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB (p65 and phospho-IκBα) signaling pathways in the spinal cord of acute EAE rats. Pretreatment with BVA decreased the number of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells, but increased the number of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of acute EAE rats. Treatment with BVA at six placebo acupoints (SP9, GB39, and four non-acupoints) did not have a positive effect in acute EAE rats. Interestingly, onset and posttreatment with BVA at the ST36 acupoint markedly attenuated neurological impairment in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE mice compared to treatment with BVA at six placebo acupoints. Our findings strongly suggest that treatment with BVA with ST36 acupoint could delay or attenuate the development and progression of EAE by upregulating regulatory T cells and

  13. A case report of monitoring PSA level changes in two prostate cancer patients treated with Mountain Ginseng Pharmacopuncture and Sweet Bee Venom along with western anticancer therapy

    Directory of Open Access Journals (Sweden)

    Yeonhee Lee

    2011-12-01

    Full Text Available Objectives: The purpose of this report is to find out how Mountain Ginseng Pharmacopuncture(MGP and Sweet Bee Venom(SBV treatments are effective on prostate cancer patients by monitoring Prostate specific antigen(PSA values. Methods: We treated two prostate cancer patients with MGP and SBV from October 2008 to April 2011. One patient had localized prostate cancer, the other was in the terminal stage of prostate cancer with lung and bone metastasis and both had been receiving western anticancer therapy. We had monitored the changes of PSA value. Results: In case 1, MGP and SBV treatments seemed to be helpful in preventing the recurrence of localized prostate cancer. In case 2, PSA value was decreased by MGP treatment. Conclusions: It is conceivable that MGP and SBV are effective treatments for patients with prostate cancer.

  14. Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS.

    Science.gov (United States)

    Tusiimire, Jonans; Wallace, Jennifer; Woods, Nicola; Dufton, Mark J; Parkinson, John A; Abbott, Grainne; Clements, Carol J; Young, Louise; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A; Watson, David G

    2016-01-01

    The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample. PMID:27104574

  15. Effect of Bumble Bee Venom in the Treatment of Polycystic Ovary Syndrome, the Relationship Between Tissue Factor Affecting the Level of TNFα in the Wistar Rat Model

    Directory of Open Access Journals (Sweden)

    M Nabiuni

    2013-04-01

    Full Text Available Abstract Background & aim: Polycystic ovary syndrome (PCOS is an endocrine failure leading to anovulation. TNFα is an effective factor in the regulation of normal functioning of the ovaries. High levels of TNFα causes PCOS is further. In this study, the effects of bumble bee venom (HBV on TNFα and other symptoms of ovarian PCOS were studied. Methods: In this experimental study, 60 female Wistar rats were divided into three groups: control, sham and experimental groups. The experimental group was injected with estradiol valerate-induced PCOS direction. Induced rats (PCOS were divided into two groups and treated with HBV. The treatment Group received 0.2mg of HBV for 10 consecutive days. Serum and ovarian tissue was collected from each of the four groups to compare the histological and changes in blood sugar levels. Results: A significant increase in ovarian PCOS weight was observed in the control group , whereas in the treated group with HBV rate fell (15.5 mg Glucose levels in PCOS was 256.5, the control group138, and the treatment group 158. Thickness of the theca layer of antral follicles in the treated group compared with PCOS showed a significant decrease (110 μm and 150 μm respectively. Immunohistochemical results showed increased TNFα factor in PCOS group than in the control group, whereas these levels in samples treated with HBV Reduced. Conclusion: The results of this study revealed that the beneficial effects of HBV in PCOS may be due to the inhibitory effect on factor TNFα. Key words: Polycystic ovary syndrome, Bumble bee venom, Tumor necrosis factor, Immunohistochemistry

  16. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.

    Science.gov (United States)

    Park, Soojin; Baek, Hyunjung; Jung, Kyung-Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun-Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-12-01

    Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA-induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA-challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206-dependence of bvPLA2-treated suppression of airway inflammation was evaluated in OVA-challenged CD206(-/-) mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA-challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2-treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg-depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2-mediated immune tolerance in OVA-induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2-treated OVA-induced mice but not in bvPLA2-treated OVA-induced CD206(-/-) mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA-induced asthma model. PMID:26734460

  17. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    Science.gov (United States)

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL. PMID:26998557

  18. Progress in physiological actions of bee venom and it's components-noeieeption or antinociception%蜂毒及其组成成分的生理作用机制及进展一致痛或镇痛

    Institute of Scientific and Technical Information of China (English)

    柳涛; 藤田亚美; 熊本荣一

    2009-01-01

    @@ 蜂疗(apitherapy或bee therapy)的确切起源不明,但可以追溯到数千年前的古埃及,希腊和中国,在印度的吠陀经,圣经和古兰经中均有蜂产品包括蜂蜜、花粉、蜂胶、蜂王浆和蜂毒(bee venom,BV)应用的记载.在这些记载中,主要记录的是蜂产品的营养成分而不是蜂毒.

  19. Effect of Apis mellifera bee venom and gamma radiation on bone marrow cells of wistar rats treated in vivo

    International Nuclear Information System (INIS)

    To determine whether the venom of Apis mellifera can exert a radioprotective effect, by reducing the frequency of chromosomal aberrations induced by radiation, five different experiments were performed on bone marrow cells of Wistar rats. Animals weighing about 100 g were injected intraperitoneally with different venom concentrations (1.0 or 0.5 μ1) 1 or 24 h before, or 30 min after being submitted to three or four Gy of gamma radiation, and sacrificed 24 h after the last treatment. (author)

  20. Isolation of Melittin from Iranian Honey Bee Venom and Investigation of Its Effect on Proliferation of Cervical Cancer- HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    K Pooshang Bagheri

    2013-06-01

    Full Text Available Introduction: Cervical cancer is the second prevalent cancer in developing countries and the sixth prevalent cancer in USA. Since conventional treatment methods are associated with detrimental side effects, searching for new drugs using natural ingredients is very important. Previous studies have shown that melittin (main component of honey bee venom has anticancer properties along with the effect on cell membrane and activation of apoptosis. In this study, inhibitory effects of melittin on the viability and proliferation of cervical cancer cell line (HeLa was investigated. Methods: Melittin was purified from honeybee venom using reversed-phase HPLC method. Then, biological activity of melittin was examined by hemolytic activity analysis on the red blood cells. In order to investigate whether melittin inhibits proliferation of HeLa cell, MTT assay was performed. HeLa cells were plated in a 96-well plate and treated with serially diluted concentrations of melittin for 12 and 24 hours. The viability of the cells was measured via MTT assay at 540nm. Results: Melittin showed a strong hemolytic activity (HD50=0.5 µg/ml which can be reduced by FBS(HD50=2 µg/ml. Results of MTT assay indicated that melittin shows cytotoxic effect on cervical cancer cells with IC50 = 1.2 ug/ml at 12h incubation period. Conclusion: In this study, biological activity of melittin and inhibitory effect of FBS on hemolysis were determined via hemolytic activity analysis. MTT assay indicated that melittin induced cytotoxic effects in a dose dependent manner on cervical cancer cells and it also revealed dependence on incubation time as well.

  1. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Directory of Open Access Journals (Sweden)

    Claudia Husseneder

    Full Text Available The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  2. 蜂毒过敏原磷脂酶A2%Research on Phospholipase A2, the Allergen in Bee Venom

    Institute of Scientific and Technical Information of China (English)

    李英华; 胡福良; 刘艳荷

    2001-01-01

    @@ 蜂毒(bee venom)是由工蜂毒腺和副腺分泌的、具有芳香气味的一种透明液体,贮藏在毒囊中,在蜜蜂蛰刺时由蛰针排出[1].蜂毒具有抗菌、消炎、镇痛、降血压、抗辐射、预防癌症等药理作用,可用于治疗风湿性关节炎、类风湿性关节炎、哮喘、神经痛等多种疑难杂症.目前世界上许多国家都已开展蜂针疗法,并有各种类型的蜂毒软膏和针剂生产.但由于蜂毒易使人产生过敏反应,致使蜂针疗法不能得到广泛推广.鉴于这一点,国内外许多学者对主要引起人类过敏的蜂毒组分--磷脂酶A2(phospholipase A2)进行了研究,并且取得了一定进展.

  3. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  4. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival. PMID:26985663

  5. Blockade of Adrenal Medulla-Derived Epinephrine Potentiates Bee Venom-Induced Antinociception in the Mouse Formalin Test: Involvement of Peripheral β-Adrenoceptors

    Directory of Open Access Journals (Sweden)

    Suk-Yun Kang

    2013-01-01

    Full Text Available The injection of diluted bee venom (DBV into an acupoint has been used traditionally in eastern medicine to treat a variety of inflammatory chronic pain conditions. We have previously shown that DBV had a potent antinociceptive efficacy in several rodent pain models. However, the peripheral mechanisms underlying DBV-induced antinociception remain unclear. The present study was designed to investigate the role of peripheral epinephrine on the DBV-induced antinociceptive effect in the mouse formalin assay. Adrenalectomy significantly enhanced the antinociceptive effect of DBV during the late phase of the formalin test, while chemical sympathectomy had no effect. Intraperitoneal injection of epinephrine blocked this adrenalectomy-induced enhancement of the DBV-induced antinociceptive effect. Moreover, injection of a phenylethanolamine N-methyltransferase (PNMT inhibitor enhanced the DBV-induced antinociceptive effect. Administration of nonselective β-adrenergic antagonists also significantly potentiated this DBV-induced antinociception, in a manner similar to adrenalectomy. These results demonstrate that the antinociceptive effect of DBV treatment can be significantly enhanced by modulation of adrenal medulla-derived epinephrine and this effect is mediated by peripheral β-adrenoceptors. Thus, DBV acupoint stimulation in combination with inhibition of peripheral β-adrenoceptors could be a potentially novel strategy for the management of inflammatory pain.

  6. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease.

    Science.gov (United States)

    Kim, Mi Eun; Lee, Joo Yeon; Lee, Kyung Moon; Park, Hee Ra; Lee, Eunjin; Lee, Yujeong; Lee, Jun Sik; Lee, Jaewon

    2016-08-01

    Bee venom (BV), also known as apitoxin, is widely used in traditional oriental medicine to treat immune-related diseases. Recent studies suggest that BV could be beneficial for the treatment of neurodegenerative diseases. Parkinson's disease (PD) is the second most common neurodegenerative disease next to Alzheimer's disease, and PD pathologies are closely associated with neuroinflammation. Previous studies have suggested the neuroprotective effects of BV in animal models of PD are due to the modulation of inflammation. However, the molecular mechanisms responsible for the anti-neuroinflammatory effect of BV have not been elucidated in astrocytes. Here, the authors investigated the neuroprotective effects of BV and pramipexole (PPX; a positive control) in a subchronic MPTP-induced murine PD model. Both BV and PPX prevented MPTP-induced impairments in motor performance and reduced dopaminergic neuron loss, and furthermore, these neuroprotective effects of BV and PPX were found to be associated with reduced astroglial activation in vivo PD model. However, in MPP(+) treated primary cultured astrocytes, BV modulated astrocyte activation, whereas PPX did not, indicating that the neuroprotective effects of PPX were not mediated by neuroinflammation. These findings suggest that BV should be considered a potential therapeutic or preventive agent for PD and other neuroinflammatory associated disorders. PMID:27469335

  7. A Case Study of 20 Patients with Lateral Epicondylitis of the Elbow by Using Hwachim (Burning Acupuncture Therapy and Sweet Bee Venom Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Seho Jung

    2014-12-01

    Full Text Available Objectives: This study was performed to estimate the effectiveness of burning acupuncture therapy (Hwachim and sweet bee venom pharmacopuncture (S-BV pharmacopuncture in treating lateral epicondylitis of elbow. Methods: We selected 33 patients at first, but 13 patients were excluded due to unclear medical records. Finally, a total of 20 patients who had received treatment from January 2012 to December 2013 were included in this study; all 20 patients had undergone Hwachim for the treatment of lateral epicondylitis of elbow, and 19 of the 20 had been treated with S-BV pharmacopuncture (Korea Pharmacopuncture Institute, KPI and transcutaneous electrical nerve stimulation (TENS as an ancillary treatment method. The degrees of pain of the 20 patients were evaluated by using the visual analogue scale (VAS score at their first and final visits. The Wilcoxon signed rank test and the Kruskal-Wallis test were used to compare the VAS scores statistically. Results: The VAS score had decreased significantly from 10.00 ± 0.00 to 4.00 ± 2.47 (P = 0.000 by the end of the treatment. No significant changes were observed based on the number of treatments (P = 0.246, the age of the patients (P = 0.810, the duration of the illness (P = 0.705, and the location of the lesion (P = 0.076. Conclusion: This study suggests Hwachim and S-BV pharmacopuncture are very effective for treating lateral epicondylitis of the elbow.

  8. A Clinical Pilot Study Comparing Sweet Bee Venom parallel treatment with only Acupuncture Treatment in patient diagnosed with lumbar spine sprain

    Directory of Open Access Journals (Sweden)

    Shin Yong-jeen

    2011-06-01

    Full Text Available Objectives: This study was carried out to compare the Sweet Bee Venom (referred to as Sweet BV hereafter acupuncture parallel treatment to treatment with acupuncture only for the patient diagnosed with lumbar spine sprain and find a better treatment. Methods: The subjects were patients diagnosed with lumbar spine sprain and hospitalized at Suncheon oriental medical hospital, which was randomly divided into sweet BV parallel treatment group and acupuncture-only group, and other treatment conditions were maintained the same. Then,VAS (Visual Analogue Scale was used to compare the difference in the treatment period between the two groups from VAS 10 to VAS 0, from VAS 10 to VAS 5, and from VAS 5 to VAS 0. Result & Conclusion: Sweet BV parallel treatment group and acupuncture-only treatment group were compared regarding the respective treatment period, and as the result, the treatment period from VAS 10 to VAS 5 was significantly reduced in sweet BV parallel treatment group compared to the acupuncture-only treatment group, but the treatment period from VAS 5 to VAS 0 did not show a significant difference. Therefore, it can be said that sweet BV parallel treatment is effective in shortening the treatment period and controlling early pain compared to acupuncture-only treatment.

  9. The Effects of Bee Venom Acupuncture on the Central Nervous System and Muscle in an Animal hSOD1G93A Mutant

    Directory of Open Access Journals (Sweden)

    MuDan Cai

    2015-03-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM, including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA, also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p. with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  10. Clinical Analysis about Treatment of Myofascial Pain Syndrome(MPS with Sweet Bee Venom on Hand Paresthesia based on Thoracic Outlet Syndrome

    Directory of Open Access Journals (Sweden)

    Sung-Won Oh

    2010-06-01

    Full Text Available Objectives: The objective of this study was to compare the effects of Sweet Bee Venom(Sweet BV Therapy between the hand paresthesia patients with Osteoporosis and without Osteoporosis. Methods: This study was carried out to established the clinical criteria of hand parethesia. The patients who had past history of diabeics, neuropathy induced by alcohol or drug and was positive on Myofacial Pain Syndrome Theory were excluded. 32 patients who had hand paresthesia related with unknown-reason was selected by the interview process. And the effects of treatment were analyzed using VAS score before treatment, after treatment, after 1 month and after 3 months. Results and conclusion: After treatment, While Osteoporosis group decrease from 64.81±17.81 to 27.21±17.32, Non-Osteoporosis group decrease from 58.76±11.43 to 24.74±13.81 by VAS scores. and After 3 months, While Osteoporosis group increase from 27.21±17.32 to 54.96±19.40, Non-Osteoporosis group increase from 24.74±13.81 to 32.43±15.57. Non-Osteoporosis group was accordingly more effective than Osteoporosis group after 3 months. So Sweet BV therapy for hand numbness patients without Osteoporosis was effective than patients with Osteoporosis.

  11. Effect of bee venom peptide on the proliferation of bladder cancer cells T24%蜂毒多肽对人膀胱癌 T24细胞增殖的抑制作用

    Institute of Scientific and Technical Information of China (English)

    王强; 刘艳如; 陈宇东; 史建国; 刘同伟; 李春吾; 苑海波

    2014-01-01

    Objective To investigate the effect of bee venom peptide on the proliferation and cell cycle of bladder cancer . Methods 0.1,1.0,10.0,100.0 μg/ml concentrations of bee venom peptide were used to act on the cultivated bladder cancers T 24. The propagation supressing measuring method with methyl thiazol tetrazolium (MTT)was applied.Flow cytometry was used to assess the effects of bee venom peptide on the expression of proliferating cell nuclear antigen (PCNA)and cell cycle of T24 bladder cancer cells. Results Bee venom peptide could inhibit proliferation of T 24 bladder cancer cells in vitro and inhibit the expression of proliferating cell nuclear antigen dose-dependently( P <0.05 or P <0.01).Bee venom peptide could interfere with cell cycle of T 24 bladder canc-er cells, decrease G2/M phase cells and increase S phase cells .During interference cell cycle , G0/G1 of each group was lower than that of the control group( P <0.05 or P <0.01),but S phase cells were higher than that of the control group ( P <0.05 or P <0.01), G2M phase of 10μg/ml and 100μg /ml group was higher than that of the control group ( P <0.01).Conlc usoi n Bee venom peptide can inhibite proliferation of T 24 bladder cancer cells .The mechanism may be related to inhibition of PCNA expression and interference with cell cycle .%目的:探讨蜂毒多肽对人膀胱癌T24细胞的增殖及细胞周期的影响。方法以浓度为0.1、1.0、10.0、100.0μg/ml的蜂毒多肽作用于体外培养的人膀胱癌T24细胞,应用四甲基偶氮唑盐( MTT)的培养增殖抑制作用,用流式细胞仪检测蜂毒多肽对细胞增殖核抗原( PCNA)表达及对该细胞周期的影响。结果蜂毒多肽能够在体外抑制人膀胱癌T24细胞的增殖活性;抑制PCNA的表达,呈剂量依赖性,各浓度组PCNA量均较对照组降低( P <0.05或P <0.01);干扰细胞周期,各浓度组G0/G1期均低于对照组( P <0.05或P <0.01

  12. EXPRESSION OF A BEE-VENOM PHOSPHOLIPASE A2 FROM APIS CERANA CERANA IN E,.qCHERICHIA COLI

    Institute of Scientific and Technical Information of China (English)

    Li-rongShen; Jia-anCheng; Chuan-xiZhang

    2004-01-01

    The venomous phospholipase A2 (AcPLA2) coding reading region of the Chinese honeybee (Apis cerana cerana), which is composed of 405 bp encoding a mature glycosylated peptide with 134 amino residues was transformed into the expression vector pETblue-1. Then the recombinant vector was introduced into Escherichia coli Tuner (DE3) plac I for expression. Analysis result of SDS-PAGE showed that the expression products had a protein band of about 15 kD. Detection of western blot using ant-European honeybee (Apis mellifera) phospholipase A2 (AmPLA2) polyclonal serum as the first antibody showed that the expression products appeared a special blot same as the native AmPLA2.The result demonstrated that the AcPLA2 peptide had been expressed in E. coli and the AcPLA2 has the similar antigenicity as the AmPLA2.

  13. Clinical Features of 44 Cases of Honey Bee Venom Allergy%44例蜜蜂蜂毒过敏的临床特点

    Institute of Scientific and Technical Information of China (English)

    关凯; 孔瑞; 尹佳

    2013-01-01

    Objective To investigate the clinical characteristics of honey bee venom allergy. Methods Clinical data were collected and summarized from patients who were diagnosed as honeybee venom allergy or other allergic diseases without relevant clinical history of honeybee venom sting reaction but whose honeybee venom (il) sIgE results were positive from Department of Allergy, PUMC hospital since June 2002 to February 2012. Based on honeybee sting reactions, patients were divided into three groups: local reactions, large local reactions and systemic reactions. Habitual residence and exposure types of the patients were analyzed. The sIgE/T-IgE was compared between allergy and control group. Results 44 patients were enrolled into allergy group, male versus female was 31: 13 ; average age was 37 (between 29 and 48 years old). 48% (21/44) of them lived in urban areas and 52% (23/44) lived in the rural areas. 30/44 of the cases were suffering from local reactions, 6/44 of the cases from large local reactions and 8/44 of the cases from systemic reactions. 1/8 of the case was graded as type Ⅱ and 7 /8 of the cases as type Ⅲ in systemic reaction group. The differences were statistically significant (P = 0.0085) among three groups on exposure types. 50% (4/8) of patients were beekeepers in systemic reaction group. There is statistically significant difference (P=0.001) among allergy and control groups on sIgE/T-IgE. The differences were statistically significant between systemic reaction and control group on slgE/T-IgE [ 3. 51% ( 1. 19% , 8. 84% ) vs. 0.16% (0.09%, 0.49%), P = 0.001]. One patient in systemic reaction group was suffering from local months later. Conclusions Occupational exposure was the most common cause of honeybee venom systemic reaction. slgE/T-IgE could be a helpful tool for the diagnosis of honeybee venom allergy.%目的 探讨蜜蜂蜂毒过敏的临床特点.方法 回顾2002年6月至2012年2月到北京协和医院就诊并确诊的蜜蜂蜂毒过敏

  14. Study on a 4-Week Recovery Test of Sweet Bee Venom after a 13-Week, Repeated, Intramuscular Dose Toxicity Test in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Chungsan Lim

    2014-06-01

    Full Text Available Objectives:This study was performed to check for reversibility in the changes induced by a 13-week, repeated, dose toxicity test of Sweet Bee Venom (SBV in Sprague-Dawley (SD rats. Methods:Fifteen male and 15 female SD rats were treated with 0.28 mg/kg of SBV (high-dosage group and the same numbers of male and female SD rats were treated with 0.2 mL/kg of normal saline (control group for 13 weeks. We selected five male and five female SD rats from the high-dosage group and the same numbers of male and female SD rats from the control group, and we observed these rats for four weeks. We conducted body-weight measurements, ophthalmic examinations, urinalyses and hematology, biochemistry, histology tests. Results:(1 Hyperemia and movement disorder were observed in the 13-week, repeated, dose toxicity test, but these symptoms were not observed during the recovery period. (2 The rats in the high-dose group showed no significant changes in weight compared to the control group. (3 No significant differences in the ophthalmic parameters, urine analyses, complete blood cell counts (CBCs, and biochemistry were observed among the recovery groups. (4 No changes in organ weights were observed during the recovery period. (5 Histological examination of the thigh muscle indicated cell infiltration, inflammation, degeneration, necrosis of muscle fiber, and fibrosis during the treatment period, but these changes were not observed during the recovery period. The fatty liver change that was observed during the toxicity test was not observed during the recovery period. No other organ abnormalities were observed. Conclusion:The changes that occurred during the 13-week, repeated, dose toxicity test are reversible, and SBV can be safely used as a treatment modality.

  15. The assessment of bee venom responses in an experimental model of mono-arthritis using Tc-99m DPD bone scintigraphy

    International Nuclear Information System (INIS)

    Several recent studies have shown that bee venom (BV) has an anti-nociceptive and anti-inflammatory effect on arthritis. However, objective methods for evaluation of the therapeutic effect of BV is insufficient in animal studies and clinical trials. Our purpose was to determine the usefulness of bone scintigraphy using Tc-99m DPD (3,3-diphosphono-1,2-propan-dicarbonacid) about effects of BV applied to carrageenan-induced mono-arthritis (CIA) model. Mono-arthritis was induced by an intra-articular injection of carrageenan in Sprague-Dawley rats. Administration of BV (0.8 mg/kg) was performed at 30 min before and at 4 h after the induction of mono-arthritis. We assigned rats to BV-before, BV-after, control-before and control-after groups and compared the results of each group by the weight-loading test and bone scintigraphy. The rats received an intravenous injection of 37 MBq of Tc-99m DPD by the tail vein and then scanning was performed at 4 and 24 h after the injection. Visual assessment and quantitative analysis were performed for both knees. The BV-before and BV-after groups were more improved than the control groups on the weight load test (p<0.05). Bone scintigraphy showed lower activity in the BV-before group than in the control-before group (p<0.05) on the 4 h imaging. However, a significant difference in the BV-before and BV-after groups was not observed on the 24 h imaging. BV had therapeutic effects by anti-nociceptive and anti-inflammatory activity in the CIA and bone scintigraphy performed on 4 h imaging provided visual and quantitative information for the assessment of the therapeutic response to BV as an objective method in mono arthritis model. (author)

  16. Inhibitory effects of microinjection of morphine into thalamic nucleus submedius on ipsilateral paw bee venom-induced inflammatory pain in the rat

    Institute of Scientific and Technical Information of China (English)

    Jie Feng; Ning Jia; Jun-yang Wang; Xin-ai Song; Xiao-ying Li; Jing-shi Tang

    2009-01-01

    Objective To examine whether microinjectlon of morphine into the rat thaiamle nucleus submedlus (Sin) could depress the bee venom (BV)-induced nociceptive behaviours. Methods In inflammatory pain model induced by BV subcutaneous injection into rat unilateral hind paw, the inhibitory effects of morphine microinjection into thalamic nucleus suhmedius (Sin) on the spontaneous nociecptlve behavior, heat hyperalgesia and tactile ailodynia, and the influence of naioxone on the morphine effects were observed in the rat. Results A single dose of morphine (5.0 μg, 0. 5μL) applied into the Sm ipsilaterni to the BV injected paw significantly depressed the spontaneous paw flinching response. Morphine also significantly increased the heat paw withdrawal iateneies in the bilateral hind paw and the tactile paw withdrawal threshold in the ipsilnteral hind paw 2 hours after BV injection. All these depressive effects could be effectively antagonized by pre-treatment with the opiuld receptor antagonist naloxone (1.0μg, 0. 5μL) in the Sm 5rain prior to morphine administration. Naloxone alone injected to the Sm had no effect on the BV-induecd nociceptive behavior. Conclusion These results suggest that Sm is involved in opioid receptor-mediated antt-nociception in the rat with the BV-induced inflammatory pain. Together with results from previous studies, it is likely that this effect is produced by activation of the Sm-ventrolateral orbital cortex-periaqueductal gray pathway, leading to activation of the brainstem descending inhibitory system and depression of the nodceptive inputs at the spinal cord level.

  17. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia

    Directory of Open Access Journals (Sweden)

    Kobayashi Kimiko

    2008-04-01

    Full Text Available Abstract Background Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK in the generation of BV-induced pain hypersensitivity. Results We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38 was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn. Conclusion The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.

  18. Characterization of the N-glycans of recombinant bee venom hyaluronidase (Api m 2) expressed in insect cells.

    Science.gov (United States)

    Soldatova, Lyudmila N; Tsai, Chaoming; Dobrovolskaia, Ekaterina; Marković-Housley, Zora; Slater, Jay E

    2007-01-01

    Honeybee venom hyaluronidase (Api m 2) is a major glycoprotein allergen. Previous studies have indicated that recombinant Api m 2 expressed in insect cells has enzyme activity and IgE binding comparable with that of native Api m 2. In contrast, Api m 2 expressed in Escherichia coli does not. In this study, we characterized the carbohydrate side chains of Api m 2 expressed in insect cells, and compared our data with the established carbohydrate structure of native Api m 2. We assessed both the monosaccharide and the oligosaccharide content of recombinant Api m 2 using fluorophore-assisted carbohydrate electrophoresis and HPLC. To identify the amino acid residues at which glycosylation occurs, we digested recombinant Api m 2 with endoproteinase Glu-C and identified the fragments that contained carbohydrate by specific staining. Recombinant Api m 2 expressed in insect cells contains N-acetylglucosamine, mannose, and fucose, as well as trace amounts of glucose and galactose, and the oligosaccharide analysis is consistent with heterogeneous oligosaccharide chains consisting of two to seven monosaccharides. No sialic acid or N-acetylgalactosamine were detected. These results are similar to published data for native Api m 2, although some monosaccharide components appear to be absent in the recombinant protein. Analysis of proteolytic digests indicates that of the four candidate N-glycosylation sites, carbohydrate chains are attached at asparagines 115 and 263. Recombinant Api m 2 expressed in insect cells has enzymic activity and IgE binding comparable with the native protein, and its carbohydrate composition is very similar. PMID:17479607

  19. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera venom against oral pathogens

    Directory of Open Access Journals (Sweden)

    Luís F. Leandro

    2015-03-01

    Full Text Available In this work, we used the Minimum Inhibitory Concentration (MIC technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in naturaand in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40µg / mL. Phospholipase A2 presented MIC values higher than 400µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80µg / mL. Considering that tooth decay affects people's health, apitoxin and its component melittin have potential application against oral pathogens.

  20. 血浆置换术抢救25例蜂毒致急性重度溶血性贫血临床观察%The clinical abservation of TPE rescue acute severe hemolysis caused by bee venom

    Institute of Scientific and Technical Information of China (English)

    陈劲松; 吴华新; 范萍

    2009-01-01

    目的:观察血浆置换术(TPE)治疗蜂毒致急性重度溶血性贫血的疗效.方法:对25例已被确诊为蜂毒致急性重度溶血性贫血患者,在应用糖皮质激素的基础上进行TPE治疗,并观察其治疗效果.结果:25例患者中,22例患者经1~2次TPE治疗后,中毒症状很快缓解,血氧饱和度上升到90%~99%,溶血基本控制,血红蛋白尿、高胆红素血症消失,降低了多脏器功能衰竭的发生率,有效率为88%,平均住院12.5 d.结论:TPE能快速有效地清除蜂毒及红细胞溶解产物,可阻断因溶血及蜂毒导致的脏器功能衰竭,是抢救蜂毒危重者的有效方法.%Objective:To observe the effect of the rapeutic plasma exchange in acute severe hemolysis which was caused by bee venom.Methods:25 patients were made a definite diagnosis to acute severe hemolysis which was caused by bee venom.Corticosteroid and plasma exchange were given to them.Results:Among 25 patients,22 patients who have undergone 1 to 2 times TPE.During the operation and end of TPE, the symptom of toxicosis remitted at once.The SaO2 rised to 90%- 99%.Hospitalization time was 12.5 days,hemolysis were controlled,hemoglobinnria and hyperbilirubinemia disappeared, the incidence of organ function failure decreased,effective rate was 88%.Conclusion:Plasma exchange can quickly remove the apitoxin and product of crythrolysis,TPE can bolck the organ function failure caused by hemolysis and apitoxin and is an effective method for rescue severe patients by bee venom.

  1. An Application of Tripterygium Wilfordii Aconitum Carmichaeli Root and Bee Venom in Rheumatic Disease Treatment%雷公藤、附子、蜂毒在风湿病中的应用

    Institute of Scientific and Technical Information of China (English)

    黄胜光; 谭宁; 朱辉军

    2011-01-01

    雷公藤、附子、蜂毒在中医治疗风湿病的领域中历史悠久且应用广泛.作者回顾了历代医家对其的认识,并阐述了其现代研究热点,并在长期临床实践的基础上,总结其应用的特点及需要注意的问题.%Tripterygium wilfordii, Aeonitum carmichaeli root and Bee venom have been widely used to treat rheumatic disease for centuries.The author summarizes the experiences and opinions of ancient Chinese medicine doctors about the three traditional Chinese medicines, the focus of current research, the application features and the important facts based on years of clinical experience.

  2. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  3. Bioactive peptide from bee venom for adjuvant-induced arthritis in rats%蜂毒活性肽对大鼠佐剂性关节炎的作用

    Institute of Scientific and Technical Information of China (English)

    余晓东; 李博

    2005-01-01

    BACKGROUND: Traditionally, bee venom can treat rheumatic arthritis,rheumatoid arthritis(RA) and so on, but it has strong side effects. So it has been hoped for a long time that the effective angle component could be screened from bee venom, which can be used for the treatment of arthritis perfectly than bee venom.OBJECTIVE: To investigate whether bioactive peptide from bee venom could inhibit infection of arthritis by regulating immunological function so as to probe into a new treatment for RADESIGN: Completely randomized controlled experimental trial based on experimental animalsMETHODS: A municipal key laboratory of animal biology.MATERIALS: The experiment was carried out in the Chongqing Key Laboratory of animal biology from January 2001 to May 2002. Totally 80 rats of clean grade aged 2 to 3 months old with the body mass of 180 to 200 g were provided by Animal Experiment Center of Third Military Medical University of Chinese PLA. The experimental animal certification number was SYXK1 (army) 2002 -007. The animals were divided into 3 groups: normal control group( 10 cases), arthritis group( 10 cases), bioactive peptide group(30 cases).METHODS: Adjuvant-induced arthritis animal models were used and bioactive peptide were given to the animals by muscle injection to observe the knuckle volume and knuckle index changes.MAIN OUTCOME MEASURES: The effect of bioactive peptide from bee venom on the change of knuckle volume and knuckle index in adjuvant-induced arthritis ratsRESULTS: Ten days after injection of 0. 15 mg for each rat, the volume of the paw was (4.72 ±0. 58) mL and the knuckle index was (4.47 ±0.46) mL,which there was significant difference compared with the control group (P< 0. 05).CONCLUSION: P-peptide possibly has certain inhibitory effect on the development of the adjuvant-induced arthritis in Wistar rat, and will possibly be a potential therapeutic drug.%背景:传统上用蜜蜂粗毒治疗风湿性关节炎、类风湿性关节炎等,但有很

  4. Bee venom treatment reduced C-reactive protein and improved follicle quality in a rat model of estradiol valerate-induced polycystic ovarian syndrome

    OpenAIRE

    Karimzadeh, L; M Nabiuni; Sheikholeslami, A.; S Irian

    2012-01-01

    Polycystic ovarian syndrome (PCOS) is a low grade inflammatory disease characterized by hyperandrogenemia and chronic anovulation. C-reactive protein (CRP), released by adipocytes, plays a key role in PCOS. Apis mellifera honeybee venom (HBV) contains a variety of biologically active components with various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent. To induce PCOS, 1 mg/100 g body weight estradiol ...

  5. Venomous Animals; Are They Important in Iran?

    Directory of Open Access Journals (Sweden)

    Dehghani R.* PhD

    2015-12-01

    Full Text Available Many reports have indicated the medical importance of animal poisons in Iran. The significance numbers of Iranians are injured from high endemic to sporadic, by venomous snakes, scorpions, wasps, bees, fire and velvet ants, spiders and backswimmer bugs, so their nuisance prevention is an important task.

  6. A simple non-invasive technique for venom milking from a solitary wasp Delta conoideum Gmelin (Hymenoptera: Vespidae).

    Science.gov (United States)

    Bhagavathula, Naga Chaitanya; Kumar, Mukesh; Krishnappa, Chandrashekra

    2016-01-01

    Prospecting wasp, ant and bee venom for active bio-molecules has gained considerable interest among researchers in recent years. Collecting sufficient quantity of venom from solitary wasps without sacrificing them is often difficult. Here we describe a non-invasive technique for collecting venom from a solitary wasp Delta conoideum Gmelin (Red-backed potter wasp). Venom was milked by presenting an agar block to a single female wasp for stinging. The venom was extracted from the agar block using ACN: water solvent system. The total protein in venom was estimated quantitatively and the presence of peptides in the venom was confirmed by MALDI-TOF analysis. The proposed technique is non-invasive and pure venom can be repeatedly 'milked' using this method from other wasps and also bees without the need for sacrificing a large number of individuals. PMID:26556656

  7. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Science.gov (United States)

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  8. Bee venom treatment reduced C-reactive protein and improved follicle quality in a rat model of estradiol valerate-induced polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    L Karimzadeh

    2012-01-01

    Full Text Available Polycystic ovarian syndrome (PCOS is a low grade inflammatory disease characterized by hyperandrogenemia and chronic anovulation. C-reactive protein (CRP, released by adipocytes, plays a key role in PCOS. Apis mellifera honeybee venom (HBV contains a variety of biologically active components with various pharmaceutical properties. This study was designed to assess the possibility of HBV application as an anti-inflammatory therapeutic agent. To induce PCOS, 1 mg/100 g body weight estradiol valerate (EV was subcutaneously (SC injected into eight-week-old rats. After 60 days, 0.5 mg/kg HBV was administered SC for 14 consecutive days, and the results of PCOS treatment were investigated. Rats were then anesthetized with chloroform, and their ovaries and livers were surgically removed to determine histomorphometrical changes. Testosterone and 17-β-estradiol were detected by chemiluminescence immunoassay. In order to detect serum CRP, ELISA kit was used in three groups of EV-induced PCOS, HBV-treated PCOS and control animals. Thickness of the theca layer, number of cysts and the level of serum CRP significantly decreased in HBV group in comparison with PCOS group. Moreover, corpus luteum, as a sign of ovulation, was observed in HBV-treated ovaries which were absent in PCOS group. Our results suggest that the beneficial effect of HBV may be mediated through its inhibitory effect on serum CRP levels.

  9. 皮下蜜蜂毒致持续性自发痛反应的两种定量方法及吗啡抑制效果%Two methods of quantitating the bee venom-induced spontaneous pain- related responses and the analgesic effect of morphine

    Institute of Scientific and Technical Information of China (English)

    孙焱芫; 熊利泽; 陈军; 李会莉; 王丽芸

    2001-01-01

    AIM To compare two methods of quantitating spontaneou s pain-related re sponses on evaluating the analgesic effect of morphine. METHODS After subcutaneo us injection of bee venom into the plantar of one hindpaw in rats, the nocicepti ve responses were evaluated by two different methods: by counting the number of flinching reflex and by the four grade weight scoring. RESULTS  The suppressive e ffect of pretreatment with morphine i.v. was found. Pretreatment with 0.015, 0. 15, 0.3, 0.47, 1.5, 3.0 mg*kg-1 morpine i.v. significantly produced a dos e-dependent suppress ion of the bee venom-induced spontaneous pain-related responses (P<0.05). The inhibitory rates were 17, 39, 48, 52, 62 and 89 per cent. The ED50 of morphine was 0.29 mg*kg-1 . Pretreatment with 1.5 mg*kg-1 morphine i.v. produced significant sup pression on the bee venom-induced lifting/ licking nociceptive score. CONCLUSION Pretreatment with morphin e i.v. can produce a dose-dependent suppression on the bee venom-induced spontaneous flinching ref le x. In the bee venom test, the spontaneous flinching reflex as quantitative measu re of spontaneous pain-related responses is more simple, stable and objective t han lifting/licking nociceptive score.%目的 比较两种定量检测皮下蜜蜂毒所致自发痛反应的方法及吗 啡的镇痛效果. 方法 采用大鼠足底皮下注入蜜蜂毒致痛模型,分别以自 发缩足反射次数和四级负重记分两 种定量方法观察记录伤害性反应. 结果 静脉吗啡预处理对大鼠足底注入 蜜蜂毒致自发痛 反应具有一定抑制作用;以自发缩足反射次数定量,6种剂量(0.015, 0.15, 0.3, 0.47, 1 .5和3.0 mg*kg-1)吗啡呈剂量依赖性抑制效应,抑制率分别为:17, 39, 48, 52, 62和89 %,与对照组比较均具有统计学差异(P<0.05),其半数抑制有效量(ED50)为0 .29 mg *kg-1;而采用四级负重记分法定量,仅吗啡1.5 mg*kg-1实验组的抑制具有

  10. Hymenoptera venom review focusing on Apis mellifera

    Directory of Open Access Journals (Sweden)

    P. R. de Lima

    2003-01-01

    Full Text Available Hymenoptera venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements. Several of these components have been isolated and characterized, and their primary structures determined by biochemical techniques. These compounds are responsible for many toxic or allergic reactions in different organisms, such as local pain, inflammation, itching, irritation, and moderate or severe allergic reactions. The most extensively characterized Hymenoptera venoms are bee venoms, mainly from the Apis genus and also from social wasps and ant species. However, there is little information about other Hymenoptera groups. The Apis venom presents high molecular weight molecules - enzymes with a molecular weight higher than 10.0 kDa - and peptides. The best studied enzymes are phospholipase A2, responsible for cleaving the membrane phospholipids, hyaluronidase, which degrades the matrix component hyaluronic acid into non-viscous segments and acid phosphatase acting on organic phosphates. The main peptide compounds of bee venom are lytic peptide melittin, apamin (neurotoxic, and mastocyte degranulating peptide (MCD.

  11. [Risk of bee or wasp stings in various vacation destinations].

    Science.gov (United States)

    Mauss, V

    2014-09-01

    The risk for tourists who are allergic to bee or wasp venom to be stung in various holiday destinations is mainly influenced by the structure of the regional bee or wasp community affected by zoogeographical and ecological factors. Information is presented for important destinations of German holiday-makers concerning distribution of honey bees (Apinae, Apis) and social wasps (Polistinae, Vespinae) as well as places and season of danger.

  12. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus

    OpenAIRE

    Choi, Ji Hae; JANG, A YEUNG; Lin, Shunmei; Lim, Sangyong; Kim, Dongho; Park, Kyungho; Han, Sang-Mi; YEO, JOO-HONG; Seo, Ho Seong

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been investigated extensively. The present study evaluated bee venom and its principal active component, meli...

  13. HYMENOPTERA ALLERGENS: FROM VENOM TO VENOME

    OpenAIRE

    Edzard eSpillner; Simon eBlank; Thilo eJakob

    2014-01-01

    In Western Europe hymenoptera venom allergy primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of hymenoptera venom allergy research has moved rapidly from focusing on venom extr...

  14. Allergies to Insect Venom

    Science.gov (United States)

    ... attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  15. Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis%蜂毒对胶原诱导性关节炎炎性痛大鼠背根神经节TrkA、TRPV1的影响

    Institute of Scientific and Technical Information of China (English)

    冼培凤; 陈莹; 杨路; 刘国涛; 彭澎; 王升旭

    2016-01-01

    Objective To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Methods Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. Results The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. Conclusions Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.%目的:探讨蜂毒对胶原诱导性关节炎(collagen-induced arthritis, CIA)大鼠TrkA、TRPV1疼痛信号分子的影响。方法分为正常对照组、模型组、蜂毒组(BV,3 mg/mL)。采用Wistar雄性成年大鼠,CollagenⅡ+IFA 0.2 mL造模。BV组于造模14 d

  16. Molecular cloning and characterization of a venom phospholipase A2 from the bumblebee Bombus ignitus.

    Science.gov (United States)

    Xin, Yu; Choo, Young Moo; Hu, Zhigang; Lee, Kwang Sik; Yoon, Hyung Joo; Cui, Zheng; Sohn, Hung Dae; Jin, Byung Rae

    2009-10-01

    Phospholipase A(2) (PLA(2)) is one of the main components of bee venom. Here, we identify a venom PLA(2) from the bumblebee, Bombus ignitus. Bumblebee venom PLA(2) (Bi-PLA(2)) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA(2) gene. Bi-PLA(2) is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA(2) (136 amino acids) possesses features consistent with other bee PLA(2)s, including ten conserved cysteine residues, as well as a highly conserved Ca(2+)-binding site and active site. Phylogenetic analysis of bee PLA(2)s separated the bumblebee and honeybee PLA(2) proteins into two groups. The mature Bi-PLA(2) purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA(2). Immunofluorescence staining of Bi-PLA(2)-treated insect Sf9 cells revealed that Bi-PLA(2) binds at the cell membrane and induces apoptotic cell death. PMID:19539776

  17. 468 Urticarial Vasculitis After Bee-sting Therapy

    OpenAIRE

    Lee, June-Hyuk; Park, Sung Woo; Jang, An-Soo; Kim, DoJin; Park, Choon-Sik

    2012-01-01

    Background Bee-sting therapy is one of the oriental traditional medical therapies. Some chemical components of bee venom have been known to have anti-inflammatory effects. Recently, traditional therapists use one chemical component (e.g. Apitoxin) for injection therapy using a syringe, instead of sting method with bee itself as to be known traditional method. 31-year-old woman had a lower back pain because of mild HIVD in lumbar spine for 5 months. She had bee-sting therapies for several time...

  18. 鞘内注射孤啡肽对大鼠足底注入蜜蜂毒诱致长时程自发痛、痛敏和炎症的不同效果%Differential actions of intrathecal nociceptin on persistent spontaneous nociception, hyperalgesia and inflammation produced by subcutaneous bee venom injection in conscious rats

    Institute of Scientific and Technical Information of China (English)

    孙焱芫; 罗层; 李震; 陈军

    2004-01-01

    为进一步了解孤啡肽在脊髓水平是否具有抗伤害及抗炎作用,本实验在具有多种痛行为表现的蜜蜂毒模型上观察了鞘内注射孤啡肽对大鼠一侧后足底注入蜜蜂毒所诱致的同侧自发缩足反射、原发热和机械性痛敏以及注射部位炎症反应的影响,同时观察了新的高选择性孤啡肽受体拮抗剂CompB的作用.结果表明:与生理盐水对照组比较,鞘内注射孤啡肽(3、10、30 nmol/10μl)对蜜蜂毒诱发的自发缩足反射次数的抑制作用随剂量提高而增大,抑制率分别为37±7,43±6and57±11%(三个剂量vs对照,P<0.05);而对蜜蜂毒诱发的注射部位炎症反应(爪体积、爪背腹厚度和蛋白渗出的增加)无显著影响.CompB(30 nmo1)可完全翻转10 nmol孤啡肽对自发缩足反射的抑制作用.鞘内单次或重复注射孤啡肽(10 nmol/10μl)对蜜蜂毒诱致的原发性热和机械性痛敏的发生和维持均无作用.本实验结果提示,外源性孤啡肽在脊髓通过孤啡肽受体的介导产生一定的镇痛作用,但是它可能仅对持续性自发痛有抑制作用,而对热和机械性痛敏及炎症反应均无影响.%Nociceptin is an endogenous ligand for the opioid receptor-like 1 (ORL1) receptor. The present study was designed to investigate spinal actions of nociceptin on the spontaneous nociception, hyperalgesia and inflammation induced by subcutaneous bee venom injection.Subcutaneous injection of bee venom into one hindpaw of conscious rat produced a persistent spontaneous nociception followed by a longlasting primary heat and mechanical hyperalgesia as well as local inflammation. Compared with the pre-saline group, pretreatment with intrathecal injection of three doses (3, 10 and 30 nmol) of nociceptin produced significant suppression on the spontaneous paw flinching reflex.The inhibitory rates were 37 ± 7, 43±6 and 57 ± 11%, respectively, which were enhanced with an increase in the concentration of nociceptin

  19. Hymenoptera allergens: from venom to "venome".

    Science.gov (United States)

    Spillner, Edzard; Blank, Simon; Jakob, Thilo

    2014-01-01

    In Western Europe, Hymenoptera venom allergy (HVA) primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of Hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of HVA research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire "venome" as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function, and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of immunoglobulin E reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in HVA and may serve for monitoring, re-evaluation, and improvement of current therapeutic strategies. PMID:24616722

  20. Effects of Animal Venoms and Toxins on Hallmarks of Cancer.

    Science.gov (United States)

    Chaisakul, Janeyuth; Hodgson, Wayne C; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  1. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    Science.gov (United States)

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  2. 蜂毒蜜点涂佐治小儿急性细菌性扁桃体炎的疗效与安全性%The efficacy and safety of the adjuvant Treatment of the children with acute bacterial tonsillitis by pointing the Honey Bee Venom

    Institute of Scientific and Technical Information of China (English)

    杨俊莉; 成永明; 邓庭超; 朱锦妍; 洁珍; 黄晨娟

    2014-01-01

    目的:评价蜂毒蜜点涂佐治小儿急性细菌性扁桃体炎的临床疗效与安全性。方法:将符合本方案入选条件的患儿125例,随机分成治疗组和对照组,其中治疗组为64例,对照组为61例。治疗组在口服头孢克洛颗粒的基础上,用蜂毒蜜1ml点涂咽部两侧与双侧扁桃体,每天2次,疗程5d;对照组仅口服头孢克洛颗粒,不用蜂毒蜜点涂,疗程相同。结果:治疗组48小时退热率为73.4%,总有效率为100%,不良反应率为3.1%。对照组48小时退热率为55.7%,总有效率为90.2%,不良反应率为1.6%。经统计学处理:两组临床疗效有显著性差异(P0.05)。结论:蜂毒蜜点涂佐治小儿急性细菌性扁桃体炎安全、有效,易于被患儿接受。%Objective:To assess the efficacy and safety of the adjuvant treatment of the children with acute bacterial tonsillitis by pointing the honey bee Venom. Methods:To divide 125 patients into two groups randomly-the treatment group (sixty four) and the control group (sixty one). On the basis of oral cefaclor granules,the treatment group were pointed on the pharynx and bilateral amygdala with the one milliliter of the honey bee venom, twice a day for five days, and control group only with oral cefaclor particles for five days. Results: The treatment group showed antipyretic rate of 73.4% within 48 hours and the total effective rate was 100% with the rate of adverse events of 3.1%. The control group showed antipyretic rate of 55.7% within 48 hours, the total effective rate was 90.2%, the incidence rate of adverse events of 1.6%; After the statistics treatment, the significant difference was seen between the two groups in the antipyretic rate within 48 hours and clinical curative effect (P0.05).Conclusion: The adjuvant treatment with pointing honey bee venom was safe, effective, and easily acceptant in the children with acute bacterial tonsillitis.

  3. Effects of Bee Venom Acupuncture on the Grades of Syndromes and Hemorheology on Joint Pain Identified as Wind-cold Pattern%蜂针疗法对风湿寒性关节痛患者中医证候评分及血液流变学的影响

    Institute of Scientific and Technical Information of China (English)

    黄胜光; 陈辉; 周汝云; 于聪; 谭宁; 朱辉军; 廖康汉; 罗晓光

    2012-01-01

    Objective: To observe the clinical curative effect on rheumatism joint pain by bee venom acupuncture; to explore and evaluate the mechanism from the perspective of grade of TCM symptom and hemorheology. Methods: 60 cases of patients, consistent with inclusion criteria, were randomly divided into treatment group (n=30) and control group (n=30). Patients in the treatment group are treated by bee venom acupuncture and the patients in control group were treated by daphne capsules. The grades of TCM syndrome and hemorheology were observed before and after the treatment. Results: The total curative effects of treatment group and contrastive group are 100% and 87.0% respectively. There are marked differences between the two groups (P<0.05). In both two groups, compared with before, there were statistical difference in grades of TCM syndrome and hemorheology(P<0.01); and the improvement of the treatment was better than that of the control group(P<0.01). Conclusion: Bee venom acupuncture is a kind of effective and safe remedy for the patients with rheumatic joint pain to improve their index of TCM symptom and hemorheology; the effect is better than that of the daphne capsules.%目的:观察蜂钎疗法治疗风温寒性关节痛的临床疗效,从中医证候评分及血液流变学两方面进行评价并探讨其作用机理.方法:入选60例符合纳入标准的患者,随机分为治疗组和对照组各30例,分别予蜂针和口服祖师麻片治疗,观察治疗前后中医证候评分、血液流变学的变化.结果:总有效率治疗组为100%,对照组为86.7%,两组比较,差异有统计学意义(P<0.01);治疗后两组患者中医证候评分、血液流变学与治疗前比较,差异均有统计学意义(P<0.01);且治疗组明显优于对照组(P<0.01).结论:蜂针疗法可明显改善风湿寒性关节痛患者的中医证候评分和血液流变学指标,对风湿寒性关节痛疗效明显优于祖师麻片.

  4. THERAPEUTIC ACTIVITY OF BEE-STINGS THERAPY IN RHEUMATOID ARTHRITIS CAUSES INFLAMMATION AND OXIDATIVE STRESS IN FEMALE PATIENTS

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman M.

    2013-06-01

    Full Text Available Here the present study aimed to evaluate the therapeutic activity of bee venom acupuncture in rheumatoid arthritis (RA which causes inflammation and oxidative stress in female patients. 75 female patients were divided into 5 groups as control, bee venom acupuncture, rheumatoid arthritis, treated rheumatoid arthritis and rheumatoid arthritis stung with bee venom groups. Serum rheumatoid factor, erythrocyte sedimentation rate, C-reactive protein, prostaglandins E2 and F2α, lipid peroxidation, nitric oxide, glutathione and total antioxidant capacity levels were determined in all groups. Rheumatoid arthritis in female patients was resulted in a significant elevation in serum rheumatoid factor, erythrocyte sedimentation rate, C-reactive protein, prostaglandins E2 and F2α, lipid peroxidation and nitric oxide levels (p < 0.05 compared to control group. In addition, rheumatoid arthritis caused a significant reduction in serum glutathione and total antioxidant capacity levels. On the other hand, bee venom stings alleviated rheumatoid arthritis inflammation and oxidative stress effects, where all investigated parameters were statistically significant compared to rheumatoid arthritis group. Moreover, bee venom therapy was more potent than the routine treatment of rheumatoid arthritis in patients treated group. Bee venom acupuncture in RA patient may have therapeutic, anti-inflammatory and antioxidant activities.

  5. HYMENOPTERA ALLERGENS: FROM VENOM TO VENOME

    Directory of Open Access Journals (Sweden)

    Edzard eSpillner

    2014-02-01

    Full Text Available In Western Europe hymenoptera venom allergy primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of hymenoptera venom allergy research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire venome as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of IgE reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in hymenoptera venom allergy and may serve for monitoring, reevaluation and improvement of current therapeutic strategies.

  6. Deaths From Bites and Stings of Venomous Animals

    OpenAIRE

    Ennik, Franklin

    1980-01-01

    Data abstracted from 34 death certificates indicate that the three venomous animal groups most often responsible for human deaths in California from 1960 through 1976 were Hymenoptera (bees, wasps, ants and the like) (56 percent), snakes (35 percent) and spiders (6 percent). An average incidence of 2.0 deaths per year occurred during these 17 years, or an average death rate of 0.01 per 100,000 population per year. Nearly three times more males than females died of venomous animal bites and st...

  7. Venomous and Poisonous Australian Animals of Veterinary Importance: A Rich Source of Novel Therapeutics

    OpenAIRE

    Hardy, Margaret C.; Jonathon Cochrane; Allavena, Rachel E.

    2014-01-01

    Envenomation and poisoning by terrestrial animals (both vertebrate and invertebrate) are a significant economic problem and health risk for domestic animals in Australia. Australian snakes are some of the most venomous animals in the world and bees, wasps, ants, paralysis ticks, and cane toads are also present as part of the venomous and poisonous fauna. The diagnosis and treatment of envenomation or poisoning in animals is a challenge and can be a traumatic and expensive process for owners. ...

  8. 外周NMDA受体介导蜜蜂毒诱导的持续性伤害性反应的行为学研究%INVOLVEMENT OF PERIPHERAL NMDA RECEPTORS IN PERSISTENT NOCICEPTION INDUCED BY SUBCUTANEOUS BEE VENOM INJECTION: A BEHAVIORAL STUDY

    Institute of Scientific and Technical Information of China (English)

    罗层; 陈军

    2000-01-01

    The present study was to investigate whether peripheral NMDA receptors were involved in the persistent nociceptioninduced by subcutaneous (s. C. ) bee venom injection in the conscious rat by using quatitative pain scoring methods, a.c. Bee venom injection into one hindpaw resulted in a persistent, monophasic nociceptive response characterized by continuously flinching.lifting and licking the injected paw for more than I h. The non-competitive. NMDA receptor channel blockers, ketamine and ME-801, were administered s.c. 5 or 20 min after bee venom. Local ketamine injection produced a suppression of flinching reflex by 20. 90±2.88% and 45.76±13.9%, while that of lifting/bcking time by 39. 53±10. 05% and 59.94±5.53%, at doses of 25mmol/L and 50 mmol/L respectively without any motor disturbance, Local MK-801 resulted in an inhibition of flinching reflexby 22.84±3.12% and 49.53±5.35%. While that of lifting/licking time by 17. 49±5.67%and 53.49±3. 87%. At doses of 10μmol/L and 100 ,μmol/L respectively also with no motor disturbance. However, s. C. Administration of ketamine and MK-801 inior region symmetrical to the bee venom injection site on the contralateral hindpaw produced no change in the nociceptive behaviors, suggesting that the analgesic actions of keramme and MK-8Ol were not the result of systemic effects. The present resultsuggests that peripheral NMDA receptors are involved in the production of persistent pain.%为了探讨外周NMDA受体是否介导大鼠足底皮下注入蜜蜂毒诱导的持续伤害性行为反应,本研究应用动物痛行为学定量方法评价局部用药对持续伤害性行为反应的作用效果.大鼠足底皮下注入蜜蜂毒可以诱导动物产生长达1h以上的持续、单相性的自发痛反应,其表现为自发缩足反射、抬足、舔足甚至咬足行为.注入蜜蜂毒之前局部给予非竞争性的NMDA受体通道阻断剂氯胺酮和MK-801.局部注入25mmol/L和50mmol/L氯胺酮可剂量依赖性

  9. Inhibition of bee venom induced persistent pain by intrathecal propofol in rats%鞘内注射异丙酚对大鼠皮下注入蜜蜂毒诱致的持续性痛反应的抑制作用

    Institute of Scientific and Technical Information of China (English)

    王丽芸; 王国良; 孙焱芫; 张英民; 陈军

    2003-01-01

    目的探讨异丙酚是否具有镇痛作用.方法应用蜜蜂毒(bee venom,BV)致痛模型,对大鼠致痛前后鞘内(IT)注入异丙酚是否具有镇痛作用进行比较研究.结果 BV致痛前,IT注入异丙酚(9μg,90μg和900μg)对BV诱致的持续自发性缩足反应具有剂量依赖性抑制作用,持续时间为10~15 min;BV致痛后,IT注入异丙酚亦产生剂量依赖性镇痛作用,而且抑制作用较预先给药强.结论异丙酚在脊髓具有镇痛作用且呈剂量依赖性;异丙酚既可用于疼痛预防也可用于疼痛治疗,其治疗作用优于预防作用.

  10. Venomous and poisonous Australian animals of veterinary importance: a rich source of novel therapeutics.

    Science.gov (United States)

    Hardy, Margaret C; Cochrane, Jonathon; Allavena, Rachel E

    2014-01-01

    Envenomation and poisoning by terrestrial animals (both vertebrate and invertebrate) are a significant economic problem and health risk for domestic animals in Australia. Australian snakes are some of the most venomous animals in the world and bees, wasps, ants, paralysis ticks, and cane toads are also present as part of the venomous and poisonous fauna. The diagnosis and treatment of envenomation or poisoning in animals is a challenge and can be a traumatic and expensive process for owners. Despite the potency of Australian venoms, there is potential for novel veterinary therapeutics to be modeled on venom toxins, as has been the case with human pharmaceuticals. A comprehensive overview of envenomation and poisoning signs in livestock and companion animals is provided and related to the potential for venom toxins to act as therapeutics.

  11. Venomous and Poisonous Australian Animals of Veterinary Importance: A Rich Source of Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Margaret C. Hardy

    2014-01-01

    Full Text Available Envenomation and poisoning by terrestrial animals (both vertebrate and invertebrate are a significant economic problem and health risk for domestic animals in Australia. Australian snakes are some of the most venomous animals in the world and bees, wasps, ants, paralysis ticks, and cane toads are also present as part of the venomous and poisonous fauna. The diagnosis and treatment of envenomation or poisoning in animals is a challenge and can be a traumatic and expensive process for owners. Despite the potency of Australian venoms, there is potential for novel veterinary therapeutics to be modeled on venom toxins, as has been the case with human pharmaceuticals. A comprehensive overview of envenomation and poisoning signs in livestock and companion animals is provided and related to the potential for venom toxins to act as therapeutics.

  12. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry.

    Science.gov (United States)

    Matysiak, Jan; Schmelzer, Christian E H; Neubert, Reinhard H H; Kokot, Zenon J

    2011-01-25

    The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time. PMID:20850943

  13. Are ticks venomous animals?

    OpenAIRE

    Cabezas-Cruz, Alejandro; James J Valdés

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many...

  14. Effects and mechanism of bee-venom-acupuncture based on Midnight-Noon Ebb-Flow doctrine on ankylosing spondylitis%子午流注蜂针对强直性脊柱炎的疗效及机制研究

    Institute of Scientific and Technical Information of China (English)

    温伟强; 黄胜光; 陈辉; 谭宁; 周汝云; 朱辉军

    2012-01-01

    Objective To observe the effects and safety of bee-venom-acupuncture based on Midnight-Noon Ebb-Flow doctrine on ankylosing spondylitis (AS), and its impacts on IL-6, TNF-α and sex hormone levels, and to explore its mechanisms. Methods 120 AS patients were randomly divided into 3 groups: 40 patients in treatment group were treated with bee-venom-acupuncture based on Midnight -Noon Ebb -Flow doctrine and syndrome differentiation; 40 patients in control group A were treated with bee-acupuncture based on syndrome differentiation; and 40 patients in the control group B were treated with sulfasalazine(SSZ) and diclofenac sodium. A treat- ment course was 4 weeks. Before and after 3 courses, indexes were observed and recorded, such as Bath AS disease activity index (BAS-DAI), Bath AS functional index (BASFI), duration of morning stiffness, likert' 4-grade score of whole body pain and spinal pain, evaluation by doctors and patients, the erythrosedi mentation (ESR), C-reactive protein (CRP), and the levels of IL-6, TNF-α and sex hormones. Adverse effects of medicines were also observed. Results The total effective rate was 82.5%, 72.5% and 70.0% in treatment group, control group A and control group B respectively; the statistic differences were significant (P0.05). The incidence rate of adverse effects in treatment group was 10%, while that in the control group A and B was 12% and 30% respectively. Conclusion Bee-venom-acupuncture based on Midnight-Noon Ebb-Flow doctrine presents significant efficacy on AS with less adverse effects. The mechanism may be related to inhibition of IL-6, TNF-α and Testosterone production.%目的 观察子午流注蜂针时强直性脊柱炎(ankylosing spondylitis,AS)的疗效、安全性及对患者血清白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、性激素水平的影响,探讨其产生疗效的机制.方法 将120例AS患者随机分为3组,治疗组40例采用子午流注加辨证取定蜂针治疗,对照1组40例用

  15. The beneficial effects of honeybee-venom serum on facial wrinkles in humans

    Directory of Open Access Journals (Sweden)

    Han SM

    2015-10-01

    Full Text Available Sang Mi Han,1 In Phyo Hong,1 Soon Ok Woo,1 Sung Nam Chun,2 Kwan Kyu Park,3 Young Mee Nicholls,4 Sok Cheon Pak5 1Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 2Dong Sung Pharmaceuticals Co Ltd, Seoul, 3Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, South Korea; 4Manuka Doctor Ltd, Auckland, New Zealand; 5School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW, Australia Abstract: Facial wrinkles are an undesirable outcome caused by extrinsic photodamage and intrinsic aging processes. Currently, no effective strategies are known to prevent facial wrinkles. We assessed the beneficial effects of bee-venom serum on the clinical signs of aging skin. Our results show that bee-venom serum treatment clinically improved facial wrinkles by decreasing total wrinkle area, total wrinkle count, and average wrinkle depth. Therefore, bee-venom serum may be effective for the improvement of skin wrinkles. Keywords: bee venom, wrinkle, area, count, depth

  16. Bee health

    DEFF Research Database (Denmark)

    Lecocq, Antoine

    Research relating to the honey bee is inevitably a multi-faceted affair. Its eusocial nature, domestication by man and value in providing crucial ecosystem services are all topics worthy of investigation. The colony losses reported worldwide in the last decade served as a catalyst for more research...... to be aimed at elucidating some of the mysteries surrounding this most studied of insects. As the results of numerous investigations trickled in, scientists around the world started to get a sense of the various threats faced by honey bees while at the same time becoming more aware of the role humans played...... and descriptive work at the colony, smaller social group and individual levels as well as in a greater pollinator context. Its aim is to confirm and deepen our understanding of the biology and life-history of the Western honey bee, Apis mellifera. In an ever-changing landscape of flower patches and increase...

  17. Bee bread

    DEFF Research Database (Denmark)

    Evans, Joshua David

    2015-01-01

    substances nowadays known primarily only to beekeepers and practitioners of traditional medicines. Propolis (or ‘bee glue’) is a structural sealant and potent antimicrobial agent within the hive, and it carries a beautiful resinous aroma. Royal jelly is what all brood—the immature larvae and pupae—are first...

  18. Brain Infarction: Rare Neurological Presentation of African Bee Stings

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis- Miranda

    2014-01-01

    Full Text Available Bee stings are commonly encountered worldwide. Various manifestations after bee sting have been described including local reactions which are common, systemic responses such as anaphylaxis, diffuse intravascular coagulation and hemolysis. We report a case of a 74-year-old man who developed neurologic deficit 5 hours after bee stings, which was confirmed to be left frontal infarction on brain CT-scan. The case does not follow the reported pattern of hypovolemic or anaphylactic shock, hemolysis and/or rhabdomyolysis, despite the potentially lethal amount of venom injected. Diverse mechanisms have been proposed to give an explanation to all the clinical manifestation of both toxic and allergic reactions secondary to bee stings. Currently, the most accepted one state that victims can develop severe syndrome characterized by the release of a large amount of cytokines.

  19. Brain Infarction: Rare Neurological Presentation of African Bee Stings.

    Science.gov (United States)

    Alvis-Miranda, Hernando Raphael; Duarte-Valdivieso, Nancy Carolina; Alcala-Cerra, Gabriel; Moscote-Salazar, Luis Rafael

    2014-01-01

    Bee stings are commonly encountered worldwide. Various manifestations after bee sting have been described including local reactions which are common, systemic responses such as anaphylaxis, diffuse intravascular coagulation and hemolysis. We report a case of a 74-year-old man who developed neurologic deficit 5 hours after bee stings, which was confirmed to be left frontal infarction on brain CT-scan. The case does not follow the reported  pattern  of hypovolemic or anaphylactic shock, hemolysis and/or  rhabdomyolysis, despite the potentially lethal amount of venom injected. Diverse mechanisms have been proposed to give an explanation to all the clinical manifestation of both toxic and allergic reactions secondary to bee stings. Currently, the most accepted one state that victims can develop severe syndrome characterized by the release of a large amount of cytokines. PMID:27162866

  20. Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS.

    Science.gov (United States)

    Van Vaerenbergh, Matthias; Debyser, Griet; Smagghe, Guy; Devreese, Bart; de Graaf, Dirk C

    2015-08-01

    Within the Apidae, the largest family of bees with over 5600 described species, the honeybee is the sole species with a well studied venom proteome. So far, only little research has focused on bumblebee venom. Recently, the genome sequence of the European large earth bumblebee (Bombus terrestris) became available and this allowed the first in-depth proteomic analysis of its venom composition. We identified 57 compounds, with 52 of them never described in bumblebee venom. Remarkably, 72% of the detected compounds were found to have a honeybee venom homolog, which reflects the similar defensive function of both venoms and the high degree of homology between both genomes. However, both venoms contain a selection of species-specific toxins, revealing distinct damaging effects that may have evolved in response to species-specific attackers. Further, this study extends the list of potential venom allergens. The availability of both the honeybee and bumblebee venom proteome may help to develop a strategy that solves the current issue of false double sensitivity in allergy diagnosis, which is caused by cross-reactivity between both venoms. A correct diagnosis is important as it is recommended to perform an immunotherapy with venom of the culprit species. PMID:26071081

  1. Hormone-like peptides in the venoms of marine cone snails

    DEFF Research Database (Denmark)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.;

    2016-01-01

    /neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom......The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation......, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules...

  2. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  3. Tropilaelaps of bees - epizootiological picture with special emphasis on the first description of the parasite in bumblebees and bees in Serbia

    Directory of Open Access Journals (Sweden)

    Manić Marija

    2014-01-01

    Full Text Available Honey bees are the most significant pollinators of plants worlwide. Importance of plant pollination widely exceeds all other economic benefits of modern beekeeping such as production of honey, Royal jelly, propolis, beeswax, honeybee venom etc. The issues concerning bees diseases are of extreme importance in modern commercial beekeeping. That especially regards to the fact that the number of disease agents in bees has considerably increased in recent decades. Using international transport, export or import of bees and their products, the possibility of entering various agents (parasites, bacterias, viruses and fungi into bee colonies. In recent years one of the biggest problems in beekeeping in Asia has become tropilaelaps - ectoparasitic bee disease caused by mites of the genus Tropilaelaps. But because of prevalent interest in parasites Varroa destructor and Acarapis woodi, the threat of mites from Tropileaps family has not been familiar for a long period of time. Today, Tropilaelaps is on the list of diseases endangering the whole world, made by OIE. There is a real risk of its spreading, mostly through trade, that is import of bees, swarms, queen bees, bee products and equipment. In the Republic of Serbia, this disease was described for the first time in April-May 1981 in bumblebees and bees in which a mass infestation with until then unknown parasites was detected. By additional analysis there was found out that the parasite in question was from Laelapidae (Mesostigmata family, Tropilaelaps.

  4. EXPRESSION OF A BEE-VENOM PHOSPHOLIPASE A2 FROM APIS CERANA CERANA IN ESCHERICHIA COLI%中华蜜蜂蜂毒磷脂酶A2基因在大肠杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    沈立荣; 程家安; 张传溪

    2004-01-01

    将中华蜜蜂蜂毒磷脂酶A2(AcPLA2)蛋白成熟肽编码区基因(495 bp)克隆至表达载体-pETBlue-1,在大肠杆菌Tuner(DE3)plac I中诱导表达,经SDS--PAGE电泳检测,表达产物分子量为15kD,约占细菌总蛋白的百分之四点六;用意大利蜜蜂蜂毒磷脂酶A2(AmPLA2)纯品制备的兔源多克隆抗体为一抗作Westerm blot,表达产物显示类似于天然纯AmPLA2的特异性印迹,证实AcPLA2基因已在大肠杆菌中得到表达.%The venomous phospholipase A2 (AcPLA2) coding reading region of the Chinese honeybee (Apis cerana cerana),which is composed of 405 bp encoding a mature glycosylated peptide with 134 amino residues , was transformed into the expression vector pETblue-1. Then the recombinant vector was introduced into Escherichia coli Tuner (DE3) placⅠfor expression. Analysis result of SDS-PAGE showed that the expression products had a protein band of about 15 kD. Detection of western blot using ant-European honeybee (Apis mellifera)phospholipase A2 (AmPLA2) polyclonal serum as the first antibody showed that the expression products appeared a special blot same as the native AmPLA2. The result demonstrated that the AcPLA2 peptide had been expressed in E. coli. and the AcPLA2 has the similar antigenicity as the AmPLA2.

  5. Modeling Honey Bee Populations.

    Directory of Open Access Journals (Sweden)

    David J Torres

    Full Text Available Eusocial honey bee populations (Apis mellifera employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  6. Radioprotection: mechanism and radioprotective agents including honeybee venom

    International Nuclear Information System (INIS)

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  7. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  8. Management of corneal bee sting

    Directory of Open Access Journals (Sweden)

    Razmjoo H

    2011-12-01

    Full Text Available Hassan Razmjoo1,2, Mohammad-Ali Abtahi1,2,4, Peyman Roomizadeh1,3, Zahra Mohammadi1,2, Seyed-Hossein Abtahi1,3,41Medical School, Isfahan University of Medical Sciences (IUMS; 2Ophthalmology Ward, Feiz Hospital, IUMS; 3Isfahan Medical Students Research Center (IMSRC, IUMS; 4Isfahan Ophthalmology Research Center (IORC, Feiz Hospital, IUMS, Isfahan, IranAbstract: Corneal bee sting is an uncommon environmental eye injury that can result in various ocular complications with an etiology of penetrating, immunologic, and toxic effects of the stinger and its injected venom. In this study we present our experience in the management of a middle-aged male with a right-sided deep corneal bee sting. On arrival, the patient was complaining of severe pain, blurry vision with acuity of 160/200, and tearing, which he had experienced soon after the injury. Firstly, we administered conventional drugs for eye injuries, including topical antibiotic, corticosteroid, and cycloplegic agents. After 2 days, corneal stromal infiltration and edema developed around the site of the sting, and visual acuity decreased to 100/200. These conditions led us to remove the stinger surgically. Within 25 days of follow-up, the corneal infiltration decreased gradually, and visual acuity improved to 180/200. We suggest a two-stage management approach for cases of corneal sting. For the first stage, if the stinger is readily accessible or primary dramatic reactions, including infiltration, especially on the visual axis, exist, manual or surgical removal would be indicated. Otherwise, we recommend conventional treatments for eye injuries. Given this situation, patients should be closely monitored for detection of any worsening. If the condition does not resolve or even deteriorates, for the second stage, surgical removal of the stinger under local or generalized anesthesia is indicated.Keywords: bee sting, stinger, cornea, removal, management, surgery

  9. Clinical effect of combination of conventional therapy with blood purification therapy on acute bee venom poisoning%常规方法与血液净化联合治疗急性蜂毒中毒临床疗效观察

    Institute of Scientific and Technical Information of China (English)

    徐吉先; 符旭红; 刘捷; 李刚; 王元

    2013-01-01

    目的 探讨常规方法联合血液净化治疗急性蜂毒中毒的疗效.方法 本院2010~2011年收治478例急性蜂毒中毒患者,其中222例采用单纯常规内科治疗(常规治疗组),256例采用常规内科治疗联合血液净化即血液透析串联血液灌流治疗(联合治疗组).比较两组疗效.结果 联合治疗组治愈率、好转率明显高于常规治疗组(P<0.05),且死亡率及住院时间明显低于常规治疗组(P<0.05),且无慢性肾功能衰竭(CRF)发生,而常规治疗组发生CRF 3例.结论 常规方法联合血液净化治疗急性蜂毒中毒疗效确切,并发症少,死亡率低,住院时间短,值得临床推广.%Objective To investigate the therapeutic effects of combination of conventional therapy and blood purification therapy on bee venom acute poisoned cases. Methods Four hundred seventy-eight cases treated from 2010 to 2011 were divided into two groups:HP+HD group(n = 111) treated in 2010 and combination of conventional therapy with blood purification therapy group(HP + HD) (n = 256). Results Compared to the conventional therapy group,the recovery rate of HP+HD group was higher,and the average stay in hospital was shorter. Conclusions The therapeutic effects of combination of conventional therapy with HP+HD are better than the conventional therapy alone.

  10. [Venoms and medical research].

    Science.gov (United States)

    Ducancel, Frédéric

    2016-01-01

    Animal venoms are complex chemical cocktails, comprising a wide range of biologically active reticulated peptides that target with high selectivity and efficacy a variety of enzymes, membrane receptors, ion channels...Venoms can therefore be seen as large natural libraries of biologically active molecules that are continuously selected and highly refined by the evolution process, up to the point where every molecule is endowed with pharmacological properties that are highly valuable in the context of human use and drug development. Therefore, venom exploration constitutes a prerequisite to drug discovery. However, mass spectrometry and transcriptomics via NGS (Next Generation Sequencing) studies have shown the presence of up to 1000 peptides in the venom of single species of cone snails and spiders. Therefore the global animal venom resource can be seen as a collection of more than 50 to 100 000 000 peptides and proteins of which only ~5000 are known. That extraordinary "Eldorado" of bio-optimized compounds justifies the development of more global and cutting-edge strategies and technologies to explore this resource more efficiently than actually. De novo developed approaches and recently obtained results will be described. PMID:27687600

  11. PERIPHERALLY SUPPRESSIVE EFFECTS OF KETAMINE ON SUBCUTANEOUS BEE VENOM-INDUCED PROLONGED,PERSISTENT FIRING OF SPINAL WIDE-DYNAMICRANGE NEURONS IN THE CAT%周围注射氯氨酮对皮下注射蜜蜂毒引起的猫脊髓广动力阈神经元长时程持续性放电增强的抑制效应

    Institute of Scientific and Technical Information of China (English)

    李会莉; 陈军; 罗层

    2000-01-01

    By using extracellular single unit recording technique, locally suppressive effects of a single dose of ketamine on sub-cutaneous (s. c. ) bee venom-induced increase in firing of wide dynamic-range (WDR) neurons in spinal dorsal horn were investi-gated on urcthane-chloralose anesthetized cats. Injection of bee venom s.c. into the cutaneous receptive field (RF) resulted in asingle phase of prolonged, persistently increased firing of WDR neurons over background activity for more than 1 h. Local pre-treatment with ketamine (100 mM, 0. 1 m l) into the center of RF where bee venom was injected produced a dramatic suppressionof the increased neuronal firing by 60% (3.10± 0.42 spikes/s, n= 5) when compared with saline pre-treated group (7.61 ± 0.17spikes/ s. n = 5 ). Moreover, local post-treatment with the same dose of ketamine also produced a profound suppression of the in-creased neuronal activity by 81% (1.51±0.06 spikes/s, n=5) when compared with the saline post-treated group (7.76±0.15spikes s, n=5). However, s.c. administration with the same dose of ketamine into a symmetrical region on the bee venom un-treated contralateral hindpaw produced no affection on the increased firing of the WDR neurons, suggesting that the suppressiveaction of local ketamine was not the result of systemic effects. The present result suggests that ketamine may exert its localantinociceptive effects mainly through the peripheral NMDA receptors in addition to its partially potential blocking effects onsodium and voltage-sensitive calcium channels.%通过应用单细胞细胞外电生理记录,在乌拉坦-氯醛糖合剂麻醉状态下,对在猫后爪局部注射单-剂量的氯氨酮对皮下让射蜜蜂毒引起的背角wDR神经元放电增强的抑制作用进行了研究。在wDR神经元周围感受野皮下注射蜜蜂毒可诱发出超过背景放电1小时的单相持续性放电增强。在感受野中心蜜蜂毒注射部位用氯氨酮(100 mmol/L,0.1 ml

  12. Bee-Wild about Pollinators!

    Science.gov (United States)

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  13. Expression of melittin gene in the venom gland of the Chinese honeybee, Apis cerana cerana

    OpenAIRE

    Li, Jiang-Hong; Zhang, Chuan-Xi; Tang, Zhen-Hua

    2005-01-01

    International audience Melittin is the principal component of bee venom. Melittin in Apis cerana (Ac-melt) is a single copy gene. A full length Ac-melt cDNA is 389 bp, with a single 191 bp intron in the genome. Its mRNA level was high during the first week of adult life and low during the rest of adult life. Melittin or its precursor could not be detected in the pupal stage. Melittin level increased rapidly to its maximum (about 95 $\\mu$g per worker bee) during the first 8-10 days of adult...

  14. Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment.

    OpenAIRE

    Currier, Rachel B.; Calvete, Juan J.; Sanz, Libia; Harrison, Robert A.; Rowley, Paul D.; Wagstaff, Simon C

    2012-01-01

    Venom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR d...

  15. Anaphylaxis to Insect Venom Allergens

    DEFF Research Database (Denmark)

    Ollert, Markus; Blank, Simon

    2015-01-01

    Anaphylaxis due to Hymenoptera stings is one of the most severe consequences of IgE-mediated hypersensitivity reactions. Although allergic reactions to Hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, diagnostic tests are still hampered...... by a lack of specificity and venom immunotherapy by severe side effects and incomplete protection. In recent years, the knowledge about the molecular composition of Hymenoptera venoms has significantly increased and more and more recombinant venom allergens with advanced characteristics have become...... available for diagnostic measurement of specific IgE in venom-allergic patients. These recombinant venom allergens offer several promising possibilities for an improved diagnostic algorithm. Reviewed here are the current status, recent developments, and future perspectives of molecular diagnostics of venom...

  16. Synergistic Effects Induced by Combined Treatments of Aqueous Extract of Propolis and Venom

    OpenAIRE

    Drigla, Flaviu; Balacescu, Ovidiu; VISAN, SIMONA; BISBOACA, SIMONA ELENA; BERINDAN-NEAGOE, IOANA; Liviu Alexandru MARGHITAS

    2016-01-01

    Background and aims Breast cancer is a heterogeneous disease and the leading cause of cancer mortality worldwide. Triple negative breast cancer (TNBC) is considered to be one of the most aggressive breast neoplasia due to failure of chemotherapy response. Thus, there is an urgent need of finding alternative therapies for TNBC. This study was designed to evaluate the synergistic effect induced by propolis and bee venom on luminal (MCF-7) and TNBC (Hs578T) cell lines. Methods In order to evalua...

  17. Accidents with venomous and poisonous animals: their impact on occupational health in Colombia

    OpenAIRE

    Juan P. Gómez C

    2011-01-01

    Venomous or poisonous animals are a very common cause of accidents in Colombia. Such accidents occur due to vertebrates such as snakes and fish or invertebrates such as scorpions, spiders, bees, etc. The most affected individuals are young people ages 15 to 45. They are mainly farmers and fishermen. These events can be considered work accidents given their characteristics. Nevertheless, the occupational risk insurance companies, the central Colombian government, and the regional, departmental...

  18. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  19. Bee venom and cancer%蜂毒与癌症

    Institute of Scientific and Technical Information of China (English)

    关绥平

    2007-01-01

    近年来,癌症患者越来越多,患者的年龄越来越年轻化,病情也越来越复杂;发现病症晚期和复发转移的患者越来越多,患者死亡率也越来越高。很多国家的医务工作者正在运用蜂毒疗法抑癌治癌。蜂毒是癌症和疑难杂症的克星,现已受人们重视与认可。

  20. Induction of Specific Immunotherapy with Hymenoptera Venoms Using Ultrarush Regimen in Children: Safety and Tolerance

    Directory of Open Access Journals (Sweden)

    Alice Köhli-Wiesner

    2012-01-01

    Full Text Available Background & Objective. Ultrarush induction for specific venom immunotherapy has been shown to be reliable and efficacious in adults. In this study its safety and tolerance in children was evaluated. Methods. Retrospective analysis of 102 ultrarush desensitizations carried out between 1997 and 2005 in 94 children, aged 4 to 15 years. Diagnosis and selection for immunotherapy were according to recommendations of the European Academy of Allergy and Clinical Immunology. Systemic adverse reactions (SARs were described using the classification of H. L. Mueller. Results. All patients reached the cumulative dose of 111.1 μg hymenoptera venom within 210 minutes. Six patients (6% had allergic reactions grade I; 2 patients (2% grade II and 5 patients (5% grade III. Three patients (3% showed unclassified reactions. SARs did not occur in the 15 patients aged 4 to 8 years and they were significantly more frequent in girls (29% compared with boys (12% (=0.034, multivariant analysis and in bee venom extract treated patients (20% compared to those treated with wasp venom extract (8% (OR 0.33, 95% Cl 0.07–1.25. Conclusion. Initiation of specific immunotherapy by ultrarush regimen is safe and well tolerated in children and should be considered for treating children with allergy to hymenoptera venom.

  1. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. PMID:25196470

  2. Bioactive components in fish venoms.

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-05-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  3. Evaluation of a Novel Rapid Test System for the Detection of Specific IgE to Hymenoptera Venoms

    Directory of Open Access Journals (Sweden)

    Nikolai Pfender

    2012-01-01

    Full Text Available Background. The Allergy Lateral Flow Assay (ALFA is a novel rapid assay for the detection of sIgE to allergens. The objective of this study is the evaluation of ALFA for the detection of sIgE to bee venom (BV and wasp venom (WV in insect venom allergic patients. Methods. Specific IgE to BV and WV was analyzed by ALFA, ALLERG-O-LIQ, and ImmunoCAP in 80 insect venom allergic patients and 60 control sera. Sensitivity and specificity of ALFA and correlation of ALFA and ImmunoCAP results were calculated. Results. The sensitivity/specificity of ALFA to the diagnosis was 100%/83% for BV and 82%/97% for WV. For insect venom allergic patients, the Spearman correlation coefficient for ALFA versus ImmunoCAP was 0.79 for BV and 0.80 for WV. However, significant differences in the negative control groups were observed. Conclusion. ALFA represents a simple, robust, and reliable tool for the rapid detection of sIgE to insect venoms.

  4. Deaths from bee stings: a report of three cases from Pretoria, South Africa.

    Science.gov (United States)

    du Toit-Prinsloo, Lorraine; Morris, Neil Kennith; Meyer, Pieter; Saayman, Gert

    2016-03-01

    In South Africa bee stings are most commonly caused by either Apis mellifera capensis or A. mellifera scutellata, indigenous species which are notoriously aggressive when compared to European honey bees. According to Statistics South Africa, 109 deaths were documented for the period 2001-2011 as having been caused by hornets, wasps, and bees (ICD10-X26). This appears to be a small number but, as was reported in Australia, these statistics might be inaccurate due to either over- or underreporting of cases. We report 3 cases of fatalities due to bee stings, including one with postmortem features of diffuse intravascular coagulopathy. A brief overview of the venom of the honey bee, reactions following a bee sting and possible mechanisms of death are presented. Confirming the diagnosis in these cases may be very problematic for the forensic pathologist, as in many cases minimal history is available and both external and internal examination could fail to reveal any specific signs of bee sting or other obvious morphologic abnormalities. Thus, there is a need for reliable confirmatory or supportive diagnostic tests. PMID:26759134

  5. One World: Service Bees

    Science.gov (United States)

    Thomason, Rhonda

    2009-01-01

    Bees are a vital part of the ecology. People of conscience are a vital part of society. In Nina Frenkel's "One World" poster, the bee is also a metaphor for the role of the individual in a diverse society. This article presents a lesson that uses Frenkel's poster to help early-grades students connect these ideas and explore both the importance of…

  6. Bee deaths need analysing

    NARCIS (Netherlands)

    Boonekamp, P.M.

    2011-01-01

    Alarm bells are ringing all over the world about the death of bee populations. Although it is not known exactly how severe the decline is, it is important to take the problem seriously. The signals are alarming and the bee is important, not just for natural ecosystems but also for the pollination of

  7. Honey bee toxicology.

    Science.gov (United States)

    Johnson, Reed M

    2015-01-01

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed. PMID:25341092

  8. Honey bee toxicology.

    Science.gov (United States)

    Johnson, Reed M

    2015-01-01

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.

  9. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    Science.gov (United States)

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs. PMID:17210232

  10. Extraction of Venom and Venom Gland Microdissections from Spiders for Proteomic and Transcriptomic Analyses

    OpenAIRE

    Garb, Jessica E.

    2014-01-01

    Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom...

  11. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  12. Spider-Venom Peptides as Therapeutics

    OpenAIRE

    Glenn F King; Volker Herzig; Rash, Lachlan D; Jensen, Jonas E.; Sing Yan Er; Sebastian Senff; Saez, Natalie J.

    2010-01-01

    Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more ...

  13. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses.

    Science.gov (United States)

    Garb, Jessica E

    2014-11-03

    Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level.

  14. MiniAp-4: A Venom-Inspired Peptidomimetic for Brain Delivery.

    Science.gov (United States)

    Oller-Salvia, Benjamí; Sánchez-Navarro, Macarena; Ciudad, Sonia; Guiu, Marc; Arranz-Gibert, Pol; Garcia, Cristina; Gomis, Roger R; Cecchelli, Roméo; García, Jesús; Giralt, Ernest; Teixidó, Meritxell

    2016-01-11

    Drug delivery across the blood-brain barrier (BBB) is a formidable challenge for therapies targeting the central nervous system. Although BBB shuttle peptides enhance transport into the brain non-invasively, their application is partly limited by lability to proteases. The present study proposes the use of cyclic peptides derived from venoms as an affordable way to circumvent this drawback. Apamin, a neurotoxin from bee venom, was minimized by reducing its complexity, toxicity, and immunogenicity, while preserving brain targeting, active transport, and protease resistance. Among the analogues designed, the monocyclic lactam-bridged peptidomimetic MiniAp-4 was the most permeable. This molecule is capable of translocating proteins and nanoparticles in a human-cell-based BBB model. Furthermore, MiniAp-4 can efficiently deliver a cargo across the BBB into the brain parenchyma of mice. PMID:26492861

  15. Diagnostic uses of snake venom.

    Science.gov (United States)

    Marsh, N A

    2001-01-01

    Snake venom toxins are invaluable for the assay of coagulation factors and for the study of haemostasis generally. Thrombin-like enzymes (SVTLE) are used for fibrinogen and fibrinogen breakdown product assays as well as detecting dysfibrinogenaemias. Since SVTLE are not inhibited by heparin, they can be used for assaying antithrombin III in samples containing heparin. Snake venom prothrombin activators are utilised in prothrombin assays, whilst Russell's viper venom (RVV) can be used to assay clotting factors V, VII, X and lupus anticoagulants (LA). Activators from the taipan, Australian brown snake and saw-scaled viper have also been used to assay LA. Protein C (PC) and activated PC (APC) resistance can be measured by means of RVV, Protac (from Southern copperhead snake venom) and STA-Staclot (from Crotalus viridis helleri) whilst von Willebrand factor can be studied with Botrocetin (Bothrops jararaca). Finally, snake venom C-type lectins and metalloproteinase disintegrins are being used to study platelet glycoprotein receptors and show great potential for use in the routine coagulation laboratory. PMID:11910187

  16. Venomic and pharmacological activity of Acanthoscurria paulensis (Theraphosidae) spider venom.

    Science.gov (United States)

    Mourão, Caroline Barbosa F; Oliveira, Fagner Neves; e Carvalho, Andréa C; Arenas, Claudia J; Duque, Harry Morales; Gonçalves, Jacqueline C; Macêdo, Jéssica K A; Galante, Priscilla; Schwartz, Carlos A; Mortari, Márcia R; Almeida Santos, Maria de Fátima M; Schwartz, Elisabeth F

    2013-01-01

    In the present study we conducted proteomic and pharmacological characterizations of the venom extracted from the Brazilian tarantula Acanthoscurria paulensis, and evaluated the cardiotoxicity of its two main fractions. The molecular masses of the venom components were identified by mass spectrometry (MALDI-TOF-MS) after chromatographic separation (HPLC). The lethal dose (LD(50)) was determined in mice. Nociceptive behavior was evaluated by intradermal injection in mice and the edematogenic activity by the rat hind-paw assay. Cardiotoxic activity was evaluated on in situ frog heart and on isolated frog ventricle strip. From 60 chromatographic fractions, 97 distinct components were identified, with molecular masses between 601.4 and 21,932.3 Da. A trimodal molecular mass distribution was observed: 30% of the components within 500-1999 Da, 38% within 3500-5999 Da and 21% within 6500-7999 Da. The LD(50) in mice was 25.4 ± 2.4 μg/g and the effects observed were hypoactivity, anuria, constipation, dyspnea and prostration until death, which occurred at higher doses. Despite presenting a dose-dependent edematogenic activity in the rat hind-paw assay, the venom had no nociceptive activity in mice. Additionally, the venom induced a rapid blockage of electrical activity and subsequent diastolic arrest on in situ frog heart preparation, which was inhibited by pretreatment with atropine. In the electrically driven frog ventricle strip, the whole venom and its low molecular mass fraction, but not the proteic one, induced a negative inotropic effect that was also inhibited by atropine. These results suggest that despite low toxicity, A. paulensis venom can induce severe physiological disturbances in mice.

  17. Wild bees and agroecosystems

    OpenAIRE

    Morandin, Lora

    2005-01-01

    Research in agriculture often focuses on development of new technologies rather than on potential environmental impacts. Pollinators, primarily bees, are essential to agriculture, providing significant yield benefit in over 66% of crop species. Currently, dramatic losses of managed honey bee pollinators in North America along with suspected world-wide losses of wild pollinators are focusing research attention on an impending but still poorly documented pollination crisis. Essential questions ...

  18. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    Science.gov (United States)

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.

  19. Hospitalizations of victims of accidents with venomous animals

    Directory of Open Access Journals (Sweden)

    William Campo Meschial

    2013-05-01

    Full Text Available A descriptive study based on data obtained from a toxicological information and assistance center, from 2007 to 2011. This study aimed to characterize hospitalizations of victims of accidents with venomous animals, in order to support the development of preventive and assistance measures. Data were tabulated using the Epi Info 6.04d® program; and the results were presented in tables and figure. 344 hospitalizations were found, with predominance of male patients (58.1%, from 20 to 59 years (56.8%, mostly in the summer (39.0% spring (27.0%, for snakebites (35.2%. The hospital stay ranged from one to 23 days, with 39.0% of patients hospitalized for two or more days, with two deadly accidents with bees. The profile of the inpatients showed a higher number of cases in the economically active population and in males, the percentage of hospitalizations per animal aggressor differed from morbidity data, giving greater severity of accidents by snakes and bees.

  20. Magnetic effect on dancing bees

    Science.gov (United States)

    Lindauer, M.; Martin, H.

    1972-01-01

    Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.

  1. [Study on the venoms of the principal venomous snakes from French Guiana and the neutralization].

    Science.gov (United States)

    Estévez, J; Magaña, P; Chippaux, J P; Vidal, N; Mancilla, R; Paniagua, J F; de Roodt, A R

    2008-10-01

    We studied some biochemical, toxic and immunological characteristics of the venoms of Bothrops atrox, Bothrops brazili and Lachesis muta, Viperidae responsible for most of the bites of venomous snakes in French Guiana. Chromatographic (HPLC) and electrophoretical profiles (SDS-PAGE), lethal, hemorrhagic, defibrinogenating, coagulant, thrombin like, proteolytic, fibrino(geno)lytic and phospholipase activities were studied. In addition, the neutralization of some toxic activities conferred by four antivenins was compared. The chromatographic and electrophoretic profiles were different for the three venoms, showing differences between Bothrops and L. muta venoms. In general, bothropic venoms showed the highest toxic and enzymatic activities, while the venom of L. muta showed the lowest lethal, hemorrhagic and coagulant activities. The enzymes of bothropic venoms responsible for gelatinolytic activity were around 50-90 kDa. All the venoms were able to hydrolyze a and beta chains of the fibrinogen, showing different patterns of degradation. Although all the antivenoms tested were effective to various degrees in neutralizing the venom of B. brazili and B. atrox, neutralization of L. muta venom was significantly better achieved using the antivenom including this venom in its immunogenic mixture. For the neutralization of L. muta venom, homologous or polyvalent antivenoms that include the "bushmaster" venom in their immunogenic mixture should be preferred. PMID:18956820

  2. Insemination of Honey Bee Queens

    OpenAIRE

    SOJKOVÁ, Lada

    2013-01-01

    Instrumental insemination honey bee queen is in Czech Republic only possibility, how make controlled mating bees. Main significance lies in expanding desirable feature in the bee colony. Instrumental inseminations are thus obtained the required feature, that are the mildness of bees, sitting on the comb, or resistance to disease. Insemination must precede controlled breeding drones and controlled breeding queens. That drones were sexually mature at the time of insemination must be breeding dr...

  3. Colubrid Venom Composition: An -Omics Perspective

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L. M.; Campos, Pollyanna F.; Ching, Ana T. C.; Mackessy, Stephen P.

    2016-01-01

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. PMID:27455326

  4. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac.

    Science.gov (United States)

    Dong, Jiangtao; Ying, Bihua; Huang, Shaokang; Ma, Shuangqin; Long, Peng; Tu, Xijuan; Yang, Wenchao; Wu, Zhenhong; Chen, Wenbin; Miao, Xiaoqing

    2015-10-01

    Melittin is the major toxin peptide in bee venom, which has diverse biological effects. In the present study, melittin was separated by reverse-phase high-performance liquid chromatography, and was then detected using intrinsic fluorescence signal of tryptophan residue. The accuracy, linearity, limit of quantitation (LOQ), intra-day and inter-day precision of the method were carefully validated in this study. Results indicate that the intrinsic fluorescence signal of melittin has linear range from 0.04μg/mL to 20μg/mL with LOQ of 0.04μg/mL. The recovery range of spiked samples is between 81.93% and 105.25%. The precision results are expressed as relative standard deviation (RSD), which is in the range of 2.1-7.4% for intra-day precision and 6.2-10.8% for inter-day precision. Because of the large linear dynamic range and the high sensitivity, intrinsic fluorescence detection (IFD) can be used for analyzing melittin contents in individual venom sac of honeybee (Apis mellifera). The detected contents of melittin in individual bee venom sac are 0.18±0.25μg for one-day old honeybees (n=30), and 114.98±43.51μg for 25-day old (n=30) honeybees, respectively. Results indicate that there is large bee-to-bee difference in melittin contents. The developed method can be useful for discovering the melittin related honeybee biology information, which might be covered in the complex samples. PMID:26319802

  5. Diagnosis of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Bilo, BM; Rueff, F; Mosbech, H; Bonifazi, F; Oude-Elberink, JNG

    2005-01-01

    The purpose of diagnostic procedure is to classify a sting reaction by history, identify the underlying pathogenetic mechanism, and identify the offending insect. Diagnosis of Hymenoptera venom allergy thus forms the basis for the treatment. In the central and northern Europe vespid (mainly Vespula

  6. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees.

    Science.gov (United States)

    Nakasu, Erich Y T; Williamson, Sally M; Edwards, Martin G; Fitches, Elaine C; Gatehouse, John A; Wright, Geraldine A; Gatehouse, Angharad M R

    2014-07-22

    Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.

  7. The biochemical toxin arsenal from ant venoms

    OpenAIRE

    Aili, Samira R.; Fox, Eduardo Goncalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralyt...

  8. The Biochemical Toxin Arsenal from Ant Venoms

    OpenAIRE

    Axel Touchard; Aili, Samira R.; Eduardo Gonçalves Paterson Fox; Pierre Escoubas; Jérôme Orivel; Nicholson, Graham M; Alain Dejean

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralyt...

  9. A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp.

    Science.gov (United States)

    Siebert, Aisha L; Wheeler, David; Werren, John H

    2015-12-01

    A new method is developed to investigate functions of venom components, using venom gene RNA interference knockdown in the venomous animal coupled with RNA sequencing in the envenomated host animal. The vRNAi/eRNA-Seq approach is applied to the venom calreticulin component (v-crc) of the parasitoid wasp Nasonia vitripennis. Parasitoids are common, venomous animals that inject venom proteins into host insects, where they modulate physiology and metabolism to produce a better food resource for the parasitoid larvae. vRNAi/eRNA-Seq indicates that v-crc acts to suppress expression of innate immune cell response, enhance expression of clotting genes in the host, and up-regulate cuticle genes. V-crc KD also results in an increased melanization reaction immediately following envenomation. We propose that v-crc inhibits innate immune response to parasitoid venom and reduces host bleeding during adult and larval parasitoid feeding. Experiments do not support the hypothesis that v-crc is required for the developmental arrest phenotype observed in envenomated hosts. We propose that an important role for some venom components is to reduce (modulate) the exaggerated effects of other venom components on target host gene expression, physiology, and survival, and term this venom mitigation. A model is developed that uses vRNAi/eRNA-Seq to quantify the contribution of individual venom components to total venom phenotypes, and to define different categories of mitigation by individual venoms on host gene expression. Mitigating functions likely contribute to the diversity of venom proteins in parasitoids and other venomous organisms. PMID:26359852

  10. Venomous Frogs Use Heads as Weapons.

    Science.gov (United States)

    Jared, Carlos; Mailho-Fontana, Pedro Luiz; Antoniazzi, Marta Maria; Mendes, Vanessa Aparecida; Barbaro, Katia Cristina; Rodrigues, Miguel Trefaut; Brodie, Edmund D

    2015-08-17

    Venomous animals have toxins associated with delivery mechanisms that can introduce the toxins into another animal. Although most amphibian species produce or sequester noxious or toxic secretions in the granular glands of the skin to use as antipredator mechanisms, amphibians have been considered poisonous rather than venomous because delivery mechanisms are absent. The skin secretions of two Brazilian hylid frogs (Corythomantis greening and Aparasphenodon brunoi) are more toxic than the venoms of deadly venomous Brazilian pitvipers, genus Bothrops; C. greeningi secretion is 2-fold and A. brunoi secretion is 25-fold as lethal as Bothrops venom. Like the venoms of other animals, the skin secretions of these frogs show proteolytic and fibrinolytic activity and have hyaluronidase, which is nontoxic and nonproteolytic but promotes diffusion of toxins. These frogs have well-developed delivery mechanisms, utilizing bony spines on the skull that pierce the skin in areas with concentrations of skin glands. C. greeningi has greater development of head spines and enlarged skin glands producing a greater volume of secretion, while A. brunoi has more lethal venom. C. greeningi and A. brunoi have highly toxic skin secretions and an associated delivery mechanism; they are therefore venomous. Because even tiny amounts of these secretions introduced into a wound caused by the head spines could be dangerous, these frogs are capable of using their skin toxins as venoms against would-be predators. PMID:26255851

  11. Peptide Toxins in Solitary Wasp Venoms

    Science.gov (United States)

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  12. Peptide Toxins in Solitary Wasp Venoms

    Directory of Open Access Journals (Sweden)

    Katsuhiro Konno

    2016-04-01

    Full Text Available Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs, in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.

  13. The Biochemical Toxin Arsenal from Ant Venoms.

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  14. Snake venom antibodies in Ecuadorian Indians.

    Science.gov (United States)

    Theakston, R D; Reid, H A; Larrick, J W; Kaplan, J; Yost, J A

    1981-10-01

    Serum samples from 223 Waorani Indians, a tribe in eastern Ecuador, were investigated by enzyme-linked immunosorbent assay for antibodies to snake venom. Seventy-eight per cent were positive, confirming the highest incidence and mortality from snake bite poisoning yet recorded in the world. Most samples were positive for more than one venom antibody. Antibodies were found to venoms of Bothrops viper in 60% of positive cases, of Micrurus coral snake in 21%, and of the bushmaster, Lachesis muta, in 18%. Further studies are needed to determine whether high venom-antibody levels afford protection against further snake envenoming. PMID:7299877

  15. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  16. Proteome and peptidome profiling of spider venoms.

    Science.gov (United States)

    Liang, Songping

    2008-10-01

    Spider venoms are an important source of novel molecules with different pharmacological properties. Recent technological developments of proteomics, especially mass spectrometry, have greatly promoted the systematic analysis of spider venom. The enormous diversity of venom components between spider species and the lack of complete genome sequence, and the limited database of protein and peptide sequences make spider venom profiling a challenging task and special considerations for technical strategies are required. This review highlights recently used methods for spider venom profiling. In general, spider venom profiling can be achieved in two parts: proteome profiling of the components with molecular weights above 10 kDa, and peptidome profiling of the components with a molecular weight of 10 kDa or under through the use of different methods. Venom proteomes are rich in various enzymes, hemocyanins, toxin-like proteins and many unknown proteins. Peptidomes are dominated by peptides with a mass of 3-6 kDa with three to five disulfide bonds. Although there are some similarities in peptide superfamily types of venoms from different spider species, the venom profile of each species is unique. The linkage of the peptidomic data with that of the cDNA approach is discussed briefly. Future challenges and perspectives are also highlighted in this review.

  17. Sandhills native bee survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report includes the results of a bee survey conducted in Sandhills region of north and south Carolina on May 18th and 19th 2006. Part of the survey was...

  18. How bees distinguish colors

    Directory of Open Access Journals (Sweden)

    Horridge A

    2015-03-01

    Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, Australia Abstract: Behind each facet of the compound eye, bees have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by sunlight reflected from the surrounding panorama. In experiments that excluded ultraviolet, bees learned to distinguish between black, gray, white, and various colors. To distinguish two targets of differing color, bees detected, learned, and later recognized the strongest preferred inputs, irrespective of which target displayed them. First preference was the position and measure of blue reflected from white or colored areas. They also learned the positions and a measure of the green receptor modulation at vertical edges that displayed the strongest green contrast. Modulation is the receptor response to contrast and was summed over the length of a contrasting vertical edge. This also gave them a measure of angular width between outer vertical edges. Third preference was position and a measure of blue modulation. When they returned for more reward, bees recognized the familiar coincidence of these inputs at that place. They cared nothing for colors, layout of patterns, or direction of contrast, even at black/white edges. The mechanism is a new kind of color vision in which a large-field tonic blue input must coincide in time with small-field phasic modulations caused by scanning vertical edges displaying green or blue contrast. This is the kind of system to expect in medium-lowly vision, as found in insects; the next steps are fresh looks at old observations and quantitative models. Keywords: vision, honey bee, visual processing, optimum system, picture sorting

  19. Recombinant snake venom prothrombin activators

    OpenAIRE

    Lövgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  20. In-vitro diagnostics of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Rueff, F.; Vos, B.; Przybilla, B.

    2013-01-01

    In-vitro diagnostics of Hymenoptera venom allergy Patients with a history of anaphylactic sting reactions require an allergological work-up (history, in-vitro tests, and skin tests) to clarify indications on venom immunotherapy and on the type of venom to be used. To demonstrate a venom sensitisatio

  1. Researching nature's venoms and poisons.

    Science.gov (United States)

    Warrell, David A

    2009-09-01

    Our environment hosts a vast diversity of venomous and poisonous animals and plants. Clinical toxinology is devoted to understanding, preventing and treating their effects in humans and domestic animals. In Sri Lanka, yellow oleander (Thevetia peruviana, Sinhala 'kaneru'), a widespread and accessible ornamental shrub, is a popular means of self-harm. Its toxic glycosides resemble those of foxglove, against which therapeutic antibodies have been raised. A randomised placebo-controlled trial proved that this treatment effectively reversed kaneru cardiotoxicity. There are strong scientific grounds for the use of activated charcoal, but encouraging results with multiple-dose activated charcoal were not confirmed by a recent more powerful study. Venom of Russell's viper (Daboia siamensis) in Burma (Myanmar) produces lethal effects in human victims. The case of a 17-year-old rice farmer is described with pathophysiological interpretations. During the first 9 days of hospital admission he suffered episodes of shock, coagulopathy, bleeding, acute renal failure, local tissue necrosis, generally increased capillary permeability and acute symptomatic hypoglycaemia with evidence of acute pituitary/adrenal insufficiency. Antivenom rapidly restored haemostatic function but failed to correct other effects of venom toxins incurred during the 3h before he could be treated.

  2. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera.

    Science.gov (United States)

    Heavner, Mary E; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E; Small, Chiyedza; Govind, Shubha

    2013-09-10

    Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma's predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation is among the first functional genomic studies for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts' immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557

  3. Moving pieces in a venomic puzzle

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Dutra, Alexandre A A; León, Ileana R;

    2013-01-01

    Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteo...

  4. Venom Evolution: Gene Loss Shapes Phenotypic Adaptation.

    Science.gov (United States)

    Casewell, Nicholas R

    2016-09-26

    Snake venoms are variable protein mixtures with a multitude of bioactivities. New work shows, surprisingly, that it is the loss of toxin-encoding genes that strongly influences venom function in rattlesnakes, highlighting how gene loss can underpin adaptive phenotypic change. PMID:27676304

  5. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  6. Reappraisal of Vipera aspis venom neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Elisabeth Ferquel

    Full Text Available BACKGROUND: The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA(2 neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA(2 composition of the snakes captured in the same areas. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA(2s. We used SELDI technology to study the diversity of PLA(2 in various venom samples. Neurological signs (mainly cranial nerve disturbances were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA(2s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA(2 venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. CONCLUSIONS/SIGNIFICANCE: The association of epidemiological studies to

  7. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-01

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  8. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  9. Spider venomics: implications for drug discovery.

    Science.gov (United States)

    Pineda, Sandy S; Undheim, Eivind A B; Rupasinghe, Darshani B; Ikonomopoulou, Maria P; King, Glenn F

    2014-10-01

    Over a period of more than 300 million years, spiders have evolved complex venoms containing an extraordinary array of toxins for prey capture and defense against predators. The major components of most spider venoms are small disulfide-bridged peptides that are highly stable and resistant to proteolytic degradation. Moreover, many of these peptides have high specificity and potency toward molecular targets of therapeutic importance. This unique combination of bioactivity and stability has made spider-venom peptides valuable both as pharmacological tools and as leads for drug development. This review describes recent advances in spider-venom-based drug discovery pipelines. We discuss spider-venom-derived peptides that are currently under investigation for treatment of a diverse range of pathologies including pain, stroke and cancer.

  10. Spider-Venom Peptides as Therapeutics

    Directory of Open Access Journals (Sweden)

    Glenn F. King

    2010-12-01

    Full Text Available Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.

  11. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-01

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins. PMID:27269771

  12. The plight of the bees

    Science.gov (United States)

    Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.

    2011-01-01

    Some environmental issues polarize people, producing weary political stalemates of indecision and inaction. Others, however, grab hold of our most primeval instincts, causing us to reach deeply into our memories of childhood, and our first direct experiences with nature: the bumble bee nest we poked at with a stick; the man at the county fair with the bee beard. Those memories expand backward in time to our barefoot ancestors who climbed trees and robbed honey. They help define the human experience and provide context to our own place in the world.And so the plight of the bees strikes a common chord. For a brief moment simple matters of politics, economics, and nationality seem irrelevant. Colony collapse disorder, the name for the syndrome causing honey bees (Apis mellifera) to suddenly and mysteriously disappear from their hives - thousands of individual worker bees literally flying off to die - captured public consciousness when it was first named in 2007 (1). Since then, the story of vanishing honey bees has become ubiquitous in popular consciousness - driving everything from ice cream marketing campaigns to plots for The Simpsons. The untold story is that these hive losses are simply a capstone to more than a half-century of more prosaic day-to-day losses that beekeepers already faced from parasites, diseases, poor nutrition, and pesticide poisoning (2). The larger story still is that while honey bees are charismatic and important to agriculture, other important bees are also suffering, and in some cases their fates are far worse (3). These other bees are a subset of the roughly 4000 species of wild bumble bees (Bombus), leafcutter bees (Megachile), and others that are native to North America. While the honey bee was originally imported from Europe by colonists in the early 17th century, it is these native bees that have evolved with our local ecosystems, and, along with honey bees, are valuable crop pollinators. People want to know why bees are dying and how

  13. In Vitro Antiplasmodial Activity of Phospholipases A2 and a Phospholipase Homologue Isolated from the Venom of the Snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alarcón Pérez

    2012-12-01

    Full Text Available The antimicrobial and antiparasite activity of phospholipase A2 (PLA2 from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A2 (PLA2 (fraction V and another containing a PLA2 homologue devoid of enzymatic activity (fraction VI. The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA2 and its homologue have antiplasmodial potential.

  14. Pimecrolimus Is a Potent Inhibitor of Allergic Reactions to Hymenopteran Venom Extracts and Birch Pollen Allergen In Vitro.

    Science.gov (United States)

    Heneberg, Petr; Riegerová, Kamila; Kučera, Petr

    2015-01-01

    Pimecrolimus (Elidel, SDZ ASM 981) is an anti-inflammatory and immunomodulatory 33-epichloro-derivative of macrolactam ascomycin, with low potential for affecting systemic immune responses compared with other calcineurin inhibitors, cyclosporin A and tacrolimus. Despite numerous studies focused on the mechanism of pimecrolimus action on mast cells, only the single report has addressed pimecrolimus effects on other typical FcεRI-expressing cells, the basophils. Patients allergic to birch pollen (n = 20), hymenopteran venoms (n = 23) and 10 non-allergic volunteers were examined. Primary human basophils pre-treated or not with 0.5-50 μMol pimecrolimus were exposed to various concentrations of recombinant Bet v 1a allergen, bee or wasp venom extracts and anti-IgE for 20 min, and then examined for the expression of CD45, CD193, CD203c, CD63 and CD164 using flow cytometry. The externalization of basophil activation markers (CD63 and CD164) was equally inhibited through pimecrolimus in cells activated by recombinant pollen allergen, hymenopteran venom extracts and anti-IgE. Although the individual response rate was subject to strong variation, importantly, pre-treatment with pimecrolimus lowered the number of activated basophils in response to any of the stimuli in the basophils from all patients. The inhibition was concentration-dependent; approximately half of the basophils were inhibited in the presence of 2.5 mMol pimecrolimus. Pimecrolimus is a valuable new tool for the inhibition of hyper-reactive basophils in patients with pollen allergy and a history of anaphylactic reactions to bee or wasp venoms. Further research should address short-term use of pimecrolimus in vivo in a wide spectrum of allergic diseases. PMID:26562153

  15. Pimecrolimus Is a Potent Inhibitor of Allergic Reactions to Hymenopteran Venom Extracts and Birch Pollen Allergen In Vitro.

    Directory of Open Access Journals (Sweden)

    Petr Heneberg

    Full Text Available Pimecrolimus (Elidel, SDZ ASM 981 is an anti-inflammatory and immunomodulatory 33-epichloro-derivative of macrolactam ascomycin, with low potential for affecting systemic immune responses compared with other calcineurin inhibitors, cyclosporin A and tacrolimus. Despite numerous studies focused on the mechanism of pimecrolimus action on mast cells, only the single report has addressed pimecrolimus effects on other typical FcεRI-expressing cells, the basophils. Patients allergic to birch pollen (n = 20, hymenopteran venoms (n = 23 and 10 non-allergic volunteers were examined. Primary human basophils pre-treated or not with 0.5-50 μMol pimecrolimus were exposed to various concentrations of recombinant Bet v 1a allergen, bee or wasp venom extracts and anti-IgE for 20 min, and then examined for the expression of CD45, CD193, CD203c, CD63 and CD164 using flow cytometry. The externalization of basophil activation markers (CD63 and CD164 was equally inhibited through pimecrolimus in cells activated by recombinant pollen allergen, hymenopteran venom extracts and anti-IgE. Although the individual response rate was subject to strong variation, importantly, pre-treatment with pimecrolimus lowered the number of activated basophils in response to any of the stimuli in the basophils from all patients. The inhibition was concentration-dependent; approximately half of the basophils were inhibited in the presence of 2.5 mMol pimecrolimus. Pimecrolimus is a valuable new tool for the inhibition of hyper-reactive basophils in patients with pollen allergy and a history of anaphylactic reactions to bee or wasp venoms. Further research should address short-term use of pimecrolimus in vivo in a wide spectrum of allergic diseases.

  16. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. PMID:27158113

  17. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions.

  18. [Venomous and poisonous animals. IV. Envenomations by venomous aquatic vertebrates].

    Science.gov (United States)

    Bédry, R; De Haro, L

    2007-04-01

    Epidemiological information on marine envenomation is generally less extensive in Europe than in tropical regions where these injuries are more severe and the need for medical advice is more frequent. For these reasons use of regional Poison Control Centers in the area where the injury occurs must be encouraged. The purpose of this review is to describe envenomation by bony fish (lion fish, stone fish, and catfish), cartilaginous fish (stingrays and poisonous sharks), or other venomous aquatic vertebrates (moray-eels and marine snakes). Understanding of these envenomation syndromes is important not only in tropical areas but also in Europe where importation of dangerous species has increased in recent years.

  19. Injuries caused by venomous animals and folk medicine in farmers from Cuité, State of Paraiba, Northeast of Brazil

    OpenAIRE

    Hellyson Fidel Araújo de Oliveira; Cristiane Francisca da Costa; Roberto Sassi

    2013-01-01

    Injuries caused by venomous animals reported by the agricultural workers from the municipality of Cuité, Curimataú region of Paraiba State, Northeast of Brazil, and the practices of folk medicine which they use to treat these cases were studied in this work from June to August 2010. The farmers studied aged from 11 to 90 years. The number of people who reported cases of injury by these animals in their families was high (89.3%). Scorpions, wasps, bees and snakes were the most cited and the ex...

  20. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression.

  1. Improvised Scout Bee Movements in Artificial Bee Colony

    Directory of Open Access Journals (Sweden)

    Tarun Kumar Sharma

    2014-01-01

    Full Text Available In the basic Artificial Bee Colony (ABC algorithm, if the fitness value associated with a food source is not improved for a certain number of specified trials then the corresponding bee becomes a scout to which a random value is assigned for finding the new food source. Basically, it is a mechanism of pulling out the candidate solution which may be entrapped in some local optimizer due to which its value is not improving. In the present study, we propose two new mechanisms for the movements of scout bees. In the first method, the scout bee follows a non-linear interpolated path while in the second one, scout bee follows Gaussian movement. Numerical results and statistical analysis of benchmark unconstrained, constrained and real life engineering design problems indicate that the proposed modifications enhance the performance of ABC.

  2. Tityus serrulatus venom--A lethal cocktail.

    Science.gov (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). PMID:26522893

  3. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses. PMID:26812904

  4. Identifying and managing Hymenoptera venom allergy.

    Science.gov (United States)

    Matron, Patricia Kane; Timms, Victoria; Fitzsimons, Roisin

    2016-05-25

    Hymenoptera venom allergy is an immunoglobulin E (IgE)-mediated hypersensitivity to the venom of insects from the Hymenoptera order and is a common cause of anaphylaxis. A diagnosis of venom allergy is made by taking an accurate medical, family and social history, alongside specific allergy testing. Systemic reactions to Hymenoptera venom occur in a small proportion of the population; these range from mild to life-threatening in severity. Treatment for local reactions involves the use of cold packs, antihistamines, analgesia and topical corticosteroids to help alleviate swelling, pain and pruritus. Venom immunotherapy is the treatment of choice for reducing the incidence of future anaphylactic reactions in individuals who have signs of respiratory obstruction or hypotension. Venom immunotherapy is the most effective treatment in reduction of life-threatening reactions to venom, and can improve quality of life for individuals. Treatment should only be provided by experienced staff who are able to provide emergency care for anaphylaxis and life-threatening episodes. A risk assessment to deliver treatment should be undertaken before treatment is commenced. PMID:27224630

  5. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M.

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  6. Safety with Wasps and Bees.

    Science.gov (United States)

    Hackett, Erla

    This guide is designed to provide elementary school teachers with safe learning activities concerning bees and wasps. The following topics are included: (1) the importance of a positive teacher attitude towards bees and wasps; (2) special problems posed by paper wasps; (3) what to do when a child is bothered by a wasp; (4) what to do if a wasp…

  7. Bee-inspired protocol engineering

    CERN Document Server

    Farooq, Muddassar

    2008-01-01

    Honey bee colonies demonstrate robust adaptive efficient agent-based communications and task allocations without centralized controls - desirable features in network design. This book introduces a multi path routing algorithm for packet-switched telecommunication networks based on techniques observed in bee colonies.

  8. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    Science.gov (United States)

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. PMID:27608950

  9. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  10. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  11. 7 CFR 322.29 - Dead bees.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must...

  12. [Venomous and poisonous animals--I. Overview].

    Science.gov (United States)

    Chippaux, J P; Goyffon, M

    2006-06-01

    Venomous animals that are able to innoculate or inject venom and poisonous animals that cannot inject venom but are toxic when ingested belong to all zoological groups. They can be encountered worldwide in any ecosystem on land and at sea but they are more common and more dangerous in tropical areas. This first article of a series to appear in the next issues of Medecine Tropicale presents an overview of species involved in envenomations and poisonings. In addition to a brief reviewing geographic risks and circumstances in which bites, stings or ingestion occur, some information is provided about antivenim therapy, the only etiological treatment.

  13. Characterizing Tityus discrepans scorpion venom from a fractal perspective: Venom complexity, effects of captivity, sexual dimorphism, differences among species.

    Science.gov (United States)

    D'Suze, Gina; Sandoval, Moisés; Sevcik, Carlos

    2015-12-15

    A characteristic of venom elution patterns, shared with many other complex systems, is that many their features cannot be properly described with statistical or euclidean concepts. The understanding of such systems became possible with Mandelbrot's fractal analysis. Venom elution patterns were produced using the reversed phase high performance liquid chromatography (HPLC) with 1 mg of venom. One reason for the lack of quantitative analyses of the sources of venom variability is parametrizing the venom chromatograms' complexity. We quantize this complexity by means of an algorithm which estimates the contortedness (Q) of a waveform. Fractal analysis was used to compare venoms and to measure inter- and intra-specific venom variability. We studied variations in venom complexity derived from gender, seasonal and environmental factors, duration of captivity in the laboratory, technique used to milk venom.

  14. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers.

    Science.gov (United States)

    Falcao, C B; de La Torre, B G; Pérez-Peinado, C; Barron, A E; Andreu, D; Rádis-Baptista, G

    2014-11-01

    Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides-also called antimicrobial peptides (AMPs)-expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)-distant relatives of Asian cobras and kraits, previously shown to express cathelicidins-and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics. PMID:25100358

  15. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers.

    Science.gov (United States)

    Falcao, C B; de La Torre, B G; Pérez-Peinado, C; Barron, A E; Andreu, D; Rádis-Baptista, G

    2014-11-01

    Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides-also called antimicrobial peptides (AMPs)-expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)-distant relatives of Asian cobras and kraits, previously shown to express cathelicidins-and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.

  16. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Monotremes (echidna and platypus are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  17. Red mason bees cannot compete with honey bees for floral resources in a cage experiment

    OpenAIRE

    Hudewenz, Anika; Klein, Alexandra‐Maria

    2015-01-01

    Abstract Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whet...

  18. Venom-based biotoxins as potential analgesics.

    Science.gov (United States)

    Gazerani, Parisa; Cairns, Brian Edwin

    2014-11-01

    Chronic pain is a common debilitating condition with negative social and economic consequences. Management of chronic pain is challenging and the currently available medications do not yet yield satisfactory outcomes for many patients. Venom-derived biotoxins from various venomous species consist of several substances with different structures and compositions that include peptides. A unique characteristic of some venom-based biotoxins is the ability to block essential components of the pain signaling system, notably ion channels. This property is leading to the evaluation of the potential of biotoxins as analgesics to manage chronic pain. In addition to their therapeutic potential, biotoxins have also been essential tools to probe mechanisms underlying pain signaling, channelopathies and receptor expression. This review discusses venom-derived peptidergic biotoxins that are in preclinical stages or already in clinical trials. Some promising results from preliminary in vitro studies, ongoing challenges and unmet needs will also be discussed. PMID:25234848

  19. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    Science.gov (United States)

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide. PMID:24721445

  20. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    Science.gov (United States)

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.

  1. Venom: the sharp end of pain therapeutics

    OpenAIRE

    Trim, Steven A; Trim, Carol M

    2013-01-01

    Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host anim...

  2. Snake oil and venoms for medical research

    Science.gov (United States)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  3. Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function.

    Science.gov (United States)

    Diego-García, Elia; Peigneur, Steve; Waelkens, Etienne; Debaveye, Sarah; Tytgat, Jan

    2010-08-01

    Despite strong efforts, knowledge about the composition of the venom of many spider species remains very limited. This work is the first report of transcriptome and venom analysis of the African spider Citharischius crawshayi. We used combined protocols of transcriptomics, venomics, and biological assays to characterize the venom and genes expressed in venom glands. A cDNA library of the venom glands was constructed and used to generate expressed sequence tags (ESTs). Sequence comparisons from 236 ESTs revealed interesting and unique sequences, corresponding to toxin-like and other components. Mass spectrometrical analysis of venom fractions showed more than 600 molecular masses, some of which showed toxic activity on crickets and modulated sodium currents in DmNa(v)1 and Na(v)1.6 channels as expressed in Xenopus oocytes. Taken together, our results may contribute to a better understanding of the cellular processes involved in the transcriptome and help us to discover new components from spider venom glands with therapeutic potential.

  4. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics.

    Science.gov (United States)

    Serrano, Solange M T; Shannon, John D; Wang, Deyu; Camargo, Antonio C M; Fox, Jay W

    2005-02-01

    The complexity of Viperid venoms has long been appreciated by investigators in the fields of toxinology and medicine. However, it is only recently that the depth of that complexity has become somewhat quantitatively and qualitatively appreciated. With the resurgence of two-dimensional gel electrophoresis (2-DE) and the advances in mass spectrometry virtually all venom components can be visualized and identified given sufficient effort and resources. Here we present the use of 2-DE for examining venom complexity as well as demonstrating interesting approaches to selectively delineate subpopulations of venom proteins based on particular characteristics of the proteins such as antibody cross-reactivity or enzymatic activities. 2-DE comparisons between venoms from different species of the same genus (Bothrops) of snake clearly demonstrated both the similarity as well as the apparent diversity among these venoms. Using liquid chromatography/tandem mass spectrometry we were able to identify regions of the two-dimensional gels from each venom in which certain classes of proteins were found. 2-DE was also used to compare venoms from Crotalus atrox and Bothrops jararaca. For these venoms a variety of staining/detection protocols was utilized to compare and contrast the venoms. Specifically, we used various stains to visualize subpopulations of the venom proteomes of these snakes, including Coomassie, Silver, Sypro Ruby and Pro-Q-Emerald. Using specific antibodies in Western blot analyses of 2-DE of the venoms we have examined subpopulations of proteins in these venoms including the serine proteinase proteome, the metalloproteinase proteome, and the phospholipases A2 proteome. A functional assessment of the gelatinolytic activity of these venoms was also performed by zymography. These approaches have given rise to a more thorough understanding of venom complexity and the toxins comprising these venoms and provide insights to investigators who wish to focus on these venom

  5. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  6. Recombinant snake venom prothrombin activators.

    Science.gov (United States)

    Lövgren, Ann

    2013-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need for additional cofactors, but does not discriminate non-carboxylated prothrombin from biologically active γ-carboxylated prothrombin. Here we report that recombinant trocarin and oscutarin could not efficiently generate thrombin without additional protein co-factors. We confirm that both trocarin and oscutarin are similar to human coagulation Factor X (FX), explaining the need for additional cofactors. Sequencing of a genomic fragment containing 7 out of the 8 exons coding for oscutarin further confirmed the similarity to human FX. PMID:23111318

  7. Factors underlying the natural resistance of animals against snake venoms

    Directory of Open Access Journals (Sweden)

    H. Moussatché

    1989-01-01

    Full Text Available The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

  8. Hymenoptera Allergens: From Venom to “Venome”

    OpenAIRE

    Spillner, Edzard; Blank, Simon; Jakob, Thilo

    2014-01-01

    In Western Europe, Hymenoptera venom allergy (HVA) primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of Hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of HVA research has moved rapidly from focusing on venom extract and single m...

  9. Centipede Venom: Recent Discoveries and Current State of Knowledge

    OpenAIRE

    Eivind A. B. Undheim; Fry, Bryan G.; Glenn F King

    2015-01-01

    Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede v...

  10. Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators*

    OpenAIRE

    Yang, Shilong; Liu, Zhonghua; Xiao, Yao; Li, Yuan; Rong, Mingqiang; Liang, Songping; Zhang, Zhiye; Yu, Haining; Glenn F King; LAI, Ren

    2012-01-01

    Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, re...

  11. Recent Advances in Research on Widow Spider Venoms and Toxins

    OpenAIRE

    Shuai Yan; Xianchun Wang

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom...

  12. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    OpenAIRE

    Md Abdul Hakim; Shilong Yang; Ren Lai

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signify...

  13. Bee-sting Therapy on Treatment of Rheumatoid Arthritis%蜂疗对类风湿性关节炎的治疗

    Institute of Scientific and Technical Information of China (English)

    马辉; 袁敏哲; 姚卓

    2012-01-01

    Rheumatoid arthritis ( RA) has high incidence, long duration and high disability rate conditions, there is no ideal treatment. Bee-sting therapy is the use of live bee stinging point or area as well as the injection of bee venom injection to treat diseases. The therapy of rheumatoid arthritis has unique curative effect. 178 cases were reported as follows.%类风湿性关节炎(RA)是一种发病率高、病程长、致残率高的病症,目前尚无理想的治疗药物.蜂针疗法是用活蜂蛰刺穴位或患处,以及注射蜂毒注射液以治疗疾病的一种方法,该疗法对类风湿性关节炎有奇特的疗效.

  14. Use of gamma irradiated viper venom as the toxoid against viper venom poisoning in mice and rabbits

    International Nuclear Information System (INIS)

    The present paper deals with detoxification of the crude viper (Vipera russelli) venom by gamma irradiation and its effective immunogenic role in Balb/C mice, used as a toxoid. The successful immunization of rabbits with irradiated viper venom toxoid is also reported. Certain biochemical changes of the venom due to radiation exposure and neutralization capacity of the immune sera against phosphodiesterase and protease activity of the crude viper venom have also been studied. The neutralizing potency of Russell's viper venom (RVV) toxoid anti venom (anti venom raised in rabbits against γ-irradiated RVV toxoid adsorbed on aluminium phosphate), in comparison with a commercial bivalent anti venom (as a standard reference) with reference to haemorrhagic, necrotic and lethal effects of Russell's viper envenomation are reported. 25 refs

  15. Viral diseases in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew

    Honey bees are important insects for human welfare, due to pollination as well as honey production. Viral diseases strongly impact honey bee health, especially since the spread of varroa mites. This dissertation deals with the interactions between honey bees, viruses and varroa mites. A new tool...... was developed to diagnose three viruses in honey bees. Quantitative PCR was used to investigate the distribution of two popular viruses in five different tissues of 86 honey bee queens. Seasonal variation of viral infection in honey bee workers and varroa mites were determined by sampling 23 colonies under...

  16. ZigBee-2007 Security Essentials

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2008-01-01

    ZigBee is a fairly new but promising standard for wireless networks due to its low resource requirements. As in other wireless network standards, security is an important issue and each new version of the ZigBee Specification enhances the level of the ZigBee security. In this paper, we present...... the security essentials of the latest ZigBee Specification, ZigBee-2007. We explain the key concepts, protocols, and computations. In addition, we formulate the protocols using standard protocol narrations. Finally, we identify the key challenges to be considered for consolidating ZigBee....

  17. Cocaine Tolerance in Honey Bees

    OpenAIRE

    Eirik Søvik; Jennifer L. Cornish; Barron, Andrew B.

    2013-01-01

    Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor...

  18. Cocaine tolerance in honey bees.

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    Full Text Available Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor effects of a higher cocaine dose, indicating the development of physiological tolerance to cocaine in bees. Cocaine inhibits biogenic amine reuptake transporters, but neither acute nor repeated cocaine treatments caused measurable changes in levels of biogenic amines measured in whole bee brains. Our data show clear short and long-term behavioural responses of bees to cocaine administration, but caution that, despite the small size of the bee brain, measures of biogenic amines conducted at the whole-brain level may not reveal neurochemical effects of the drug.

  19. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.

    Science.gov (United States)

    Hill, R E; Mackessy, S P

    2000-12-01

    R.E. Hill and S.P. Mackessy. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon XX, xx-yy, 2000. - Venomous colubrids, which include more than 700 snake species worldwide, represent a vast potential source of novel biological compounds. The present study characterized venom (Duvernoy's gland secretion) collected from twelve species of opisthoglyphous (rear-fanged) colubrid snakes, an extremely diverse assemblage of non-venomous to highly venomous snakes. Most venoms displayed proteolytic activity (casein), though activity levels varied considerably. Low phosphodiesterase activity was detected in several venoms (Amphiesma stolata, Diadophis punctatus, Heterodon nasicus kennerlyi, H. n. nasicus and Thamnophis elegans vagrans), and acetylcholinesterase was found in Boiga irregularis saliva and venom, but no venoms displayed hyaluronidase, thrombin-like or kallikrein-like activities. High phospholipase A(2) (PLA(2)) activity was found in Trimorphodon biscutatus lambda venom, and moderate levels were detected in Boiga dendrophila and D. p. regalis venoms as well as B. dendrophila and H. n. nasicus salivas. Non-reducing SDS-PAGE revealed 7-20 protein bands (3.5 to over 200 kD, depending on species) for all venoms analyzed, and electrophoretic profiles of venoms were typically quite distinct from saliva profiles. Components from A. stolata, Hydrodynastes gigas, Tantilla nigriceps and T. e. vagrans venoms showed protease activity when run on gelatin zymogram gels. N-terminal protein sequences for three 26 kD venom components of three species (H. gigas, H. torquata, T. biscutatus) and one 3.5 kD component (T. nigriceps) were also obtained, and the 3.5 kD peptide showed apparent sequence homology with human vascular endothelial growth factor; these data represent the first sequences of colubrid venom components. Protease, phosphodiesterase and PLA(2) activities are also common to elapid

  20. Accidents with venomous and poisonous animals: their impact on occupational health in Colombia

    Directory of Open Access Journals (Sweden)

    Juan P. Gómez C

    2011-11-01

    Full Text Available Venomous or poisonous animals are a very common cause of accidents in Colombia. Such accidents occur due to vertebrates such as snakes and fish or invertebrates such as scorpions, spiders, bees, etc. The most affected individuals are young people ages 15 to 45. They are mainly farmers and fishermen. These events can be considered work accidents given their characteristics. Nevertheless, the occupational risk insurance companies, the central Colombian government, and the regional, departmental, and municipal governmental authorities do not record or study these events. Therefore, the true magnitude of the problems caused by this, and the social, economic and occupational losses for Colombia and its companies are not perceived. Likewise, Colombian companies lack protocols, manuals, mechanisms for the identification of potentially dangerous animals to which workers are exposed based on their sector or occupation. This critical factor can have direct implications in the treatments applied to specific cases. This review article attempts to contextualize the impact of poisonous and venomous animals on the health of workers by presenting theoretical foundations and concepts for approaching this issue.

  1. Snake venoms in science and clinical medicine. 2. Applied immunology in snake venom research.

    Science.gov (United States)

    Theakston, R D

    1989-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a very important tool for studying both the epidemiology and clinical effects of snake bite in man. For epidemiology ELISA depends on the development and persistence of specific humoral venom antibody in previous snake bite victims. In the Nigerian savanna 63% of previous bite victims possessed specific venom antibodies against Echis carinatus venom; in Ecuador, where there is a 5% annual mortality due to snake bite in a population of Waorani Indians, venom antibodies against a wide range of different venoms were identified in previous bite victims using ELISA. In certain areas it is often not possible, using the symptoms of envenoming, to determine which species of snake has bitten the patient. Field studies using ELISA in Nigeria and Thailand have been successful in establishing the species responsible for envenoming. Current studies are in progress on the development of a rapid immunoassay which should be capable of detecting the biting species within 5-10 min of sampling from the admission patient. This will be useful for the clinician as it will enable the rapid detection of the species responsible for envenoming and, therefore, the use of the correct antivenom. Experimental work on the development of new methods of antivenom production includes immunization of experimental animals with venom/liposome preparations, the preparation of venom antigens using monoclonal antibodies on affinity columns, and recombinant deoxyribonucleic acid technology. Liposomal immunization requires only a single injection of venom to obtain a rapid, high level and protective immune response. Venom liposomes may also be given orally resulting in a serum immunoglobulin G immune response in experimental animals. Use of such a system may eventually result in immunization of man in areas of high snake bite incidence and mortality. PMID:2617643

  2. Scorpion Venom and the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2010-01-01

    Full Text Available Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.

  3. Entomology: A Bee Farming a Fungus.

    Science.gov (United States)

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list.

  4. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus.

    Science.gov (United States)

    Wagstaff, Simon C; Sanz, Libia; Juárez, Paula; Harrison, Robert A; Calvete, Juan J

    2009-01-30

    Snakebite in Africa causes thousands of deaths annually and considerable permanent physical disability. The saw-scaled viper, Echis ocellatus, represents the single most medically important snake species in West Africa. To provide a detailed compositional analysis of the venom of E. ocellatus for designing novel toxin-specific immunotherapy and to delineate sequence structure-function relationships of individual toxins, we characterised the venom proteome and the venom gland transcriptome. Whole E. ocellatus venom was fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction using a combination of SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS of tryptic peptides. This analysis identified around 35 distinct proteins of molecular masses in the range of 5.5-110 kDa belonging to 8 different toxin families (disintegrin, DC-fragment, phospholipase A(2), cysteine-rich secretory protein, serine proteinase, C-type lectin, l-amino acid oxidase, and Zn(2+)-dependent metalloprotease). Comparison of the toxin composition of E. ocellatus venom determined using a proteomic approach, with the predicted proteome derived from assembly of 1000 EST sequences from a E. ocellatus venom gland cDNA library, shows some differences. Most notably, peptides derived from 26% of the venom proteins could not be ascribed an exact match in the transcriptome. Similarly, 64 (67%) out of the 95 putative toxin clusters reported in the transcriptome did not match to peptides detected in the venom proteome. These data suggest that the final composition of venom is influenced by transcriptional and post-translational mechanisms that may be more complex than previously appreciated. This, in turn, emphasises the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the precise composition of snake venom, than would be gleaned from using one analysis alone. From a clinical perspective, the large

  5. Honey Bees Inspired Optimization Method: The Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Ernesto Mastrocinque

    2013-11-01

    Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  6. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    Science.gov (United States)

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-01-01

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528

  7. Viral diseases in honey bee queens

    OpenAIRE

    Francis, Roy Mathew

    2012-01-01

    Honey bees are one of the most important insects useful to human beings. They provide us with several biological products such as honey and wax, but more importantly carries out the invaluable laborious work of pollination. The honey bee industry in Europe and elsewhere has been plagued by recently introduced pests such as varroa mites and subsequent rise of viruses which has resulted in widespread decline of bee population. Of the numerous pathogens of honey bees that are being studied, viru...

  8. Centipede venoms and their components: resources for potential therapeutic applications.

    Science.gov (United States)

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  9. Inhibition of Naja kaouthia venom activities by plant polyphenols.

    Science.gov (United States)

    Pithayanukul, Pimolpan; Ruenraroengsak, Pakatip; Bavovada, Rapepol; Pakmanee, Narumol; Suttisri, Rutt; Saen-oon, Suwipa

    2005-03-21

    Plant polyphenols from the aqueous extracts of Pentace burmanica, Pithecellobium dulce, Areca catechu and Quercus infectoria were tested for their inhibitory activities against Naja kaouthia (NK) venom by in vitro neutralization method. The first three extracts could completely inhibit the lethality of the venom at 4 LD50 concentration and the venom necrotizing activity at the minimum necrotizing dose while also inhibited up to 90% of the acetylcholinesterase activity of NK venom at much lower tannin concentrations than that of Quercus infectoria. The ED50 of plant tannins in inhibiting NK venom activities varied according to condensed tannins and their content in the extracts. Molecular docking of the complexes between alpha-cobratoxin and either hydrolysable or condensed tannins at their lowest energetic conformations were proposed. The anti-venom activities of these plant polyphenols by selectively blocking the nicotinic acetylcholine receptor and non-selectively by precipitation of the venom proteins were suggested. PMID:15740891

  10. Tracing Monotreme Venom Evolution in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Camilla M. Whittington

    2014-04-01

    Full Text Available The monotremes (platypuses and echidnas represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  11. Angiotensin processing activities in the venom of Thalassophryne nattereri.

    Science.gov (United States)

    Tenório, Humberto de Araújo; Marques, Maria Elizabeth da Costa; Machado, Sonia Salgueiro; Pereira, Hugo Juarez Vieira

    2015-05-01

    The venom of marine animals is a rich source of compounds with remarkable functional specificity and diversity. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. This venom presents characterized components such as proteases (Natterins 1-4) and a lectin (Nattectin) with complex effects on the human organism. A specific inhibitor of tissue kallikrein (TKI) reduces the nociception and the edema caused by the venom in mice. Our study sought to investigate the proteolytic activities against vasopeptides Angiotensin I, Angiotensin II, Angiotensin 1-9 and Bradykinin. The venom indicated angiotensin conversion against angiotensin I, as well as kininase against bradykinin. Captopril conducted the total inhibition of the converting activity, featuring the first report of ACE activity in fish venoms. PMID:25702959

  12. Bumble bees at home and at school

    NARCIS (Netherlands)

    Kwak, MM

    1997-01-01

    Do you know how bumble bees live and what they need? You can discover a lot about bumble bees if you watch them while they visit flowers. This article is a shortened version of a chapter from the IBRA publication Bumble bees for pleasure and profit*, and gives you information on how to do small-scal

  13. Honey bee genotypes and the environment

    DEFF Research Database (Denmark)

    Meixner, Marina D; Büchler, Ralph; Costa, Cecilia;

    2014-01-01

    Although knowledge about honey bee geographic and genetic diversity has increased tremendously in recent decades, the adaptation of honey bees to their local environment has not been well studied. The current demand for high economic performance of bee colonies with desirable behavioural...

  14. Tarantula (Eurypelma californicum) venom, a multicomponent system.

    Science.gov (United States)

    Savel-Niemann, A

    1989-05-01

    The venom of the tarantula Eurypelma californicum was analysed biochemically, the components were isolated and characterized. The pH value of the crude venom is 5.3 +/- 0.3. After dilution with distilled water, UV-absorption spectra showed a single maximum at 258 nm (pH ca. 7.0). A second maximum at 328 nm emerged above pH 8.0. Protein concentration of the venom is ca. 65 mg/ml. After Coomassie staining SDS-PAGE patterns show three major bands with apparent molecular masses around 40 kDa, 4.3 kDa and 1.3 kDa besides some weak high molecular protein bands. The following low-molecular mass constituents were determined in the crude venom: ATP, ADP, AMP, glutamic acid, aspartic acid, gamma-aminobutyric acid, glucose and the ions potassium, sodium, calcium, magnesium and chloride; the osmolality was 361 micro0smol/ml. The LD50 value for female cockroaches was 0.15 microliters venom per g body weight and for male cockroaches 0.4 microliters venom per g body weight. Separation of the crude venom by gel chromatography yielded four elution peaks. Peak I contains the enzyme hyaluronidase. The activity is 200-900 U/microliters. Peak II contains a mixture of toxic peptides. Peak III contains the 1.3-kDa components of SDS-PAGE and peak IV mainly contains ATP. Venom proteins including the enzyme hyaluronidase were precipitated by 5% trichloroacetic acid. The supernatant was separated by HPLC into 13 fractions. Fraction 1 contains glutamic acid, aspartic acid, gamma-aminobutyric acid and ATP; fraction 2 contains ATP, ADP and AMP as well as a component 2' visible in SDS-PAGE as 1.3-kDa band and consisting of spermine and tryptophan; fraction 3 contains ATP and an unknown component 3'; fractions 4-6 also show a 1.3-kDa band in SDS-PAGE, fraction 4 being tyrosylspermine and fractions 5 and 6 containing compounds of spermine and aromatic molecules; fraction 7 contains a peptide which lacks aromatic amino acids, it was sequenced from the N-terminus; fractions 8-13 contain very similar

  15. THE USE OF THE ANTI-VENOM SPECIFIC ANTIBODIES ISOLATED FROM DUCK EGGS FOR INACTIVATION OF THE VIPER VENOM

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2013-12-01

    Full Text Available The activity of specific anti-venom can be demonstrated using protection test in laboratory mice. Our study aimed to emphasize the possibility of viper venom inactivation by the antibodies produced and isolated from duck eggs and also to the activation concentration of these antibodies. The venom used for inoculation was harvested from two viper species (Vipera ammodytes and Vipera berus. The immunoglobulin extract had a better activity on the venom from Vipera berus compared to the venom from Vipera ammodytes. This could be the result of a better immunological response, as consequence of the immunization with this type of venom, compared to the response recorded when the Vipera ammodytes venom was used. Besides the advantages of low cost, high productivity and reduced risk of anaphylactic shock, the duck eggs also have high activity up to dilutions of 1/16, 1/32, respectively, with specific activity and 100 surviving in individuals which received 3 x DL50.

  16. Improvised Scout Bee Movements in Artificial Bee Colony

    OpenAIRE

    Tarun Kumar Sharma; Millie Pant

    2014-01-01

    In the basic Artificial Bee Colony (ABC) algorithm, if the fitness value associated with a food source is not improved for a certain number of specified trials then the corresponding bee becomes a scout to which a random value is assigned for finding the new food source. Basically, it is a mechanism of pulling out the candidate solution which may be entrapped in some local optimizer due to which its value is not improving. In the present study, we propose two new mechanisms for the movements ...

  17. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters

    Directory of Open Access Journals (Sweden)

    Ivan Koludarov

    2014-12-01

    Full Text Available Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum. Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences. While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  18. Categorization of venoms according to bonding properties: An immunological overview.

    Science.gov (United States)

    Ibrahim, Nihal M; El-Kady, Ebtsam M; Asker, Mohsen S

    2016-02-01

    In this report, we present a study on the antigenic cross-reactivity of various venoms from the most dangerous Egyptian snakes and scorpions belonging to families Elapidae, Viperidae and Buthidae. The study was carried out with special reference to bonding properties between venoms and antivenoms and their involvement in the formation of specific and/or cross-reactive interactions. The homologous polyclonal antivenoms showed high reactivity to the respective venoms and cross-reacted with varying degrees to other non-homologous venoms. Assorting the antivenoms according to their susceptibility to dissociation by different concentrations of NH4SCN revealed that most of the antibodies involved in homologous venom-antivenom interactions were highly avid; building up strong venom-antivenom bonding. Whereas cross-reactions due to heterologous interactions were mediated by less avid antibodies that ultimately led to the formation of venom-antivenom bonding of different power strengths depending on the antigenic similarity and hence on the phylogenetic relationship of the tested venom. A new parameter evaluating high and low avid interactions, designated as H/L value, for each antigen-antibody bonding was initiated and used as an indicator of bonding strength between different venom-antivenom partners. H/L values were many folds higher than 1 for homologous and closely related venoms, 1 or around 1 for cross-reactive venoms, whereas venoms from unrelated remote sources recorded H/L values far less than 1. Using well defined polyclonal antivenoms, H/L value was successfully used to assign eight unknown venoms to their animal families and the results were confirmed by species-specific ELISA and immunoblotting assays. PMID:26690707

  19. Modulation of intracellular Ca2+ levels by Scorpaenidae venoms.

    Science.gov (United States)

    Church, Jarrod E; Moldrich, Randal X; Beart, Philip M; Hodgson, Wayne C

    2003-05-01

    The crude venoms of the soldierfish (Gymnapistes marmoratus), the lionfish (Pterois volitans) and the stonefish (Synanceia trachynis) display pronounced neuromuscular activity. Since [Ca(2+)](i) is a key regulator in many aspects of neuromuscular function we sought to determine its involvement in the neuromuscular actions of the venoms. In the chick biventer cervicis muscle, all three venoms produced a sustained contraction (approx 20-30% of 1mM acetylcholine). Blockade of nicotinic receptors with tubocurarine (10 micro M) failed to attenuate the contractile response to either G. marmoratus venom or P. volitans venom, but produced slight inhibition of the response to S. trachynis venom. All three venoms produced a rise in intracellular Ca(2+) (approx. 200-300% of basal) in cultured murine cortical neurons. The Ca(2+)-channel blockers omega-conotoxin MVIIC, omega-conotoxin GVIA, omega-agatoxin IVa and nifedipine (each at 1 micro M) potentiated the increase in [Ca(2+)](i) in response to G. marmoratus venom and P. volitans venom, while attenuating the response to S. trachynis venom. Removal of extracellular Ca(2+), replacement of Ca(2+) with La(3+) (0.5mM), or addition of stonefish antivenom (3units/ml) inhibited both the venom-induced increase in [Ca(2+)](i) in cultured neurones and contraction in chick biventer cervicis muscle. Venom-induced increases in [Ca(2+)](i) correlated with an increased cell death of cultured neurones as measured using propidium iodide (1 micro g/ml). Morphological analysis revealed cellular swelling and neurite loss consistent with necrosis. These data indicate that the effects of all three venoms are due in part to an increase in intracellular Ca(2+), possibly via the formation of pores in the cellular membrane which, under certain conditions, can lead to necrosis. PMID:12727272

  20. SdPI, The First Functionally Characterized Kunitz-Type Trypsin Inhibitor from Scorpion Venom

    OpenAIRE

    Zhao, Ruiming; Dai, Hui; Qiu, Su; Li, Tian; He, Yawen; Ma, Yibao; Chen, Zongyun; Wu, Yingliang; Li, Wenxin; Cao,Zhijian

    2011-01-01

    Background Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized. Principal Findings A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gla...

  1. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is muc

  2. From silkworms to bees: Diseases of beneficial insects

    Science.gov (United States)

    The diseases of the silkworm (Bombyx mori) and managed bees, including the honey bee (Apis mellifera), bumbles bees (Bombus spp.), the alfalfa leafcutting bee (Megachile rotundata), and mason bees (Osmia spp.) are reviewed, with diagnostic descriptions and a summary of control methods for production...

  3. Advance on the Main Compositions and the Functions of Honeybee Venom%蜜蜂蜂毒主要成分与功能研究进展

    Institute of Scientific and Technical Information of China (English)

    高丽娇; 吴杰

    2013-01-01

      蜜蜂蜂毒(honeybee venom)作为重要的蜂产品之一,其中的很多蛋白在抗炎、抗癌、抗菌、抗辐射和杀虫等方面具有很好的效果.20世纪40年代以来,国内外在蜂毒活性成分分析、作用机理、重要基因克隆和毒蛋白功能等方面进行广泛地研究,取得了重要的进展.本文的目的是总结蜜蜂蜂毒主要成分磷脂酶A2、透明质酸酶、蜂毒肽、蜂毒明肽、肥大细胞脱粒肽和镇静肽等毒蛋白的基因结构、生化特性及功能等方面的研究进展,为蜂毒基因的研究和利用提供一定的理论基础.%Honeybee venom is one of important bee products, of which many proteins were identified to play a role in anti-inflammatory, anti-cancer, antimicrobial, anti-radiation, insect disinfestation, and so on. Since 1940s, there had made many significant advances in component analysis, action mechanisms, gene cloning, and protein function analysis of honeybee's venom. The aim of present review was to summarize the gene structure, biochemical characteristics and function of the main components in honeybee venom, such as phospholipase A2, hyaluronidase, melittin, apamin, mast cell degranulating peptides and secapin. It would will provide the theoretical basis for the research and utilization of honeybee venom.

  4. Sickness Behavior in Honey Bees

    Science.gov (United States)

    Kazlauskas, Nadia; Klappenbach, Martín; Depino, Amaicha M.; Locatelli, Fernando F.

    2016-01-01

    During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model. PMID:27445851

  5. Sickness Behavior in Honey Bees.

    Science.gov (United States)

    Kazlauskas, Nadia; Klappenbach, Martín; Depino, Amaicha M; Locatelli, Fernando F

    2016-01-01

    During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model. PMID:27445851

  6. Hey! A Bee Stung Me!

    Science.gov (United States)

    ... feeding on pollen and honey, wasps eat animal food, other insects, or spiders. They are not fuzzy like bees, ... Wear shoes outdoors. Don't disturb hives or insect nests. Don't wear sweet-smelling perfume, ... food when eating outdoors. Be careful when outside with ...

  7. Animal venom studies: Current benefits and future developments

    Institute of Scientific and Technical Information of China (English)

    Yuri; N; Utkin

    2015-01-01

    Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom ofthese animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and

  8. Antibacterial activity of Rhynocoris marginatus (Fab. and Catamirus brevipennis (Servile (Hemiptera: reduviidae venomS against human pathogens

    Directory of Open Access Journals (Sweden)

    K. Sahayaraj

    2006-01-01

    Full Text Available The reduviid predators Rhynocoris marginatus (Fab. and Catamirus brevipennis (Servile use their venoms to paralyze their preys. We detected the antibacterial activity of R. marginatus and C. brevipennis venoms against seven Gram-negative and four Gram-positive bacteria by using the disc diffusion method. Rhynocoris marginatus venom exhibited antibacterial activity against four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimurium and one Gram-positive (Streptococcus pyogenes. Catamirus brevipennis venom showed antibacterial activity against six Gram-negative (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and Salmonella typhimurium and three Gram-positive (Bacillus subtilis, Staphylococcus aureus, and Bacillus sphaericus bacteria. Both C. brevipennis (90.91% and R. marginatus (45.45% venoms were more effective against Gram-negative bacteria (80% and 70% for R. marginatus and C. brevipennis, respectively. The venoms of both reduviid predators are composed of low molecular weight proteins (7-33 kD.

  9. Anti-necrosis potential of polyphenols against snake venoms.

    Science.gov (United States)

    Leanpolchareanchai, Jiraporn; Pithayanukul, Pimolpan; Bavovada, Rapepol

    2009-01-01

    Polyphenols from the extracts of Areca catechu L. and Quercus infectoria Oliv. inhibited phospholipase A(2), proteases, hyaluronidase and L-amino acid oxidase of Naja naja kaouthia Lesson (NK) and Calloselasma rhodostoma Kuhl (CR) venoms by in vitro tests. Both extracts inhibited the hemorrhagic activity of CR venom and the dermonecrotic activity of NK venom by in vivo tests. The inhibitory activity of plant polyphenols against local tissue necrosis induced by snake venoms may be caused by inhibition of inflammatory reactions, hemorrhage, and necrosis. The result implies the therapeutic potential of plant polyphenols against necrosis in snakebite victims. PMID:19874222

  10. Tc 99m - scorpion venom: labelling, biodistribution and scintiimaging

    International Nuclear Information System (INIS)

    Labelling of scorpion (Mesobuthus tamulus concanesis Pocock) venom was successfully achieved with Tc 99m using direct tin reduction procedure. Biodistribution studies were carried out in Wistar rats at different time intervals after i.v. administration of the labelled venom. Scintiimages were obtained after scorpion envenoming using a large field of view gamma camera to ascertain the pharmacological action of venom in the body. Within 5 min of administration, labelled venom was found in the blood (27.7%), muscle (30.11%), bone (13.3%), kidneys (11.5%), liver (10.4%) and other organs. The level of venom in the kidneys was higher than in the liver. The labelled venom was excreted through renal and hepatobiliary pathways. An immunoreactivity study was carried out in rabbits after i.v. injection of labelled scorpion venom followed by the injection of the species specific antivenom. A threefold increase in uptake by the kidneys ss was observed compared with that seen with scorpion venom alone. the neutralisation of the venom in the kidneys was higher than in the liver. (author)

  11. Tc 99m - scorpion venom: labelling, biodistribution and scintiimaging

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, S.; Noronha, O.P.D.; Samuel, A.M. [Bhabha Atomic Research Centre, Mumbai (India). Tata Hospital Annexe. Radiation Medicine Center; Murthy, K. Radha Krishna [Seth G.S. Medical College, Mumbai (India). Dept. of Physiology

    1999-07-01

    Labelling of scorpion (Mesobuthus tamulus concanesis Pocock) venom was successfully achieved with Tc 99m using direct tin reduction procedure. Biodistribution studies were carried out in Wistar rats at different time intervals after i.v. administration of the labelled venom. Scintiimages were obtained after scorpion envenoming using a large field of view gamma camera to ascertain the pharmacological action of venom in the body. Within 5 min of administration, labelled venom was found in the blood (27.7%), muscle (30.11%), bone (13.3%), kidneys (11.5%), liver (10.4%) and other organs. The level of venom in the kidneys was higher than in the liver. The labelled venom was excreted through renal and hepatobiliary pathways. An immunoreactivity study was carried out in rabbits after i.v. injection of labelled scorpion venom followed by the injection of the species specific antivenom. A threefold increase in uptake by the kidneys ss was observed compared with that seen with scorpion venom alone. the neutralisation of the venom in the kidneys was higher than in the liver. (author)

  12. [Use of medicinal plants against scorpionic and ophidian venoms].

    Science.gov (United States)

    Memmi, A; Sansa, G; Rjeibi, I; El Ayeb, M; Srairi-Abid, N; Bellasfer, Z; Fekhih, A

    2007-01-01

    The scorpionic and ophidian envenomations are a serious public health problem in Tunisia especially in Southeastern regions. In these regions Artemisia campestris L is a plant well known which has a very important place in traditional medicine for its effectiveness against alleged venom of scorpions and snakes. In this work, we tested for the first time, the anti-venomous activity of Artemisia campestris L against the scorpion Androctonus australis garzonii and the viper Macrovipera lebetina venoms. Assays were conducted by fixing the dose of extract to3 mg/mouse while doses of venom are variable. The leaves of Artemisia campestris L were extracted by various organic solvents (Ether of oil, ethyl acetate, methanol and ethanol) and each extract was tested for its venom neutralizing capacity. For the ethanolic extract, a significant activity with respect to the venoms of scorpion Androctonus australis garzonii (Aag), was detected. Similarly, a significant neutralizing activity against the venom of a viper Macrovipera lebetina (Ml), was obtained with the dichloromethane extract. These results suggest the presence of two different type of chemical components in this plant: those neutralizing the venom of scorpion are soluble in ethanol whereas those neutralizing the venom of viper are soluble in dichloromethane.

  13. Inhibitors of snake venoms and development of new therapeutics.

    Science.gov (United States)

    Sánchez, Elda E; Rodríguez-Acosta, Alexis

    2008-01-01

    Natural inhibitors of snake venoms play a significant role in the ability to neutralize the degradation effects induced by venom toxins. It has been known for many years that animal sera and some plant extracts are competent in neutralizing snake venoms. The purpose of this review is to highlight the recent work that has been accomplished with natural inhibitors of snake venoms as well as revisiting the past research including those found in plants. The biomedical value of these natural inhibitors can lead to the development of new therapeutics for an assortment of diseases as well as contributing to efficient antivenoms for the treatment of ophidic accidents.

  14. Diversity of peptide toxins from stinging ant venoms.

    Science.gov (United States)

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:25448389

  15. Observations on white and yellow venoms from an individual southern Pacific rattlesnake (Crotalus viridis helleri).

    Science.gov (United States)

    Johnson, E K; Kardong, K V; Ownby, C L

    1987-01-01

    Biochemical differences in white and yellow venoms produced in the separate venom glands of an individual southern Pacific rattlesnake (Crotalus viridis helleri) were investigated. Compared to the yellow venom, the white venom contained fewer low molecular weight components and was considerably less toxic. Although the exact LD50 was not determined, the white venom did not produce toxic effects in mice when injected i.v. at concentrations up to 10 mg/kg. The i.v. LD50 of the yellow venom was approximately 1.6 mg/kg. Both white and yellow venoms had hemorrhagic activity, but the white venom caused less intradermal hemorrhage in mice. No L-amino acid oxidase activity was measured in the white venom and protease and phospholipase A2 activities of the white venom were much less than in the yellow venom. The white and yellow venoms both produced myonecrosis at 1, 3 and 24 hr after i.m. injection into mice, however, there were some qualitative differences in the myonecrosis produced. When the venom samples were reacted against Wyeth's polyvalent (Crotalidae) antivenom using immunodiffusion, three precipitin bands formed against the yellow venom, whereas only one formed against the white venom. When reacted against an antiserum to myotoxin alpha from C. viridis viridis venom, both the white and yellow venoms produced one precipitin band each.

  16. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey.

    Science.gov (United States)

    Holding, Matthew L; Biardi, James E; Gibbs, H Lisle

    2016-04-27

    Measuring local adaptation can provide insights into how coevolution occurs between predators and prey. Specifically, theory predicts that local adaptation in functionally matched traits of predators and prey will not be detected when coevolution is governed by escalating arms races, whereas it will be present when coevolution occurs through an alternate mechanism of phenotype matching. Here, we analyse local adaptation in venom activity and prey resistance across 12 populations of Northern Pacific rattlesnakes and California ground squirrels, an interaction that has often been described as an arms race. Assays of venom function and squirrel resistance show substantial geographical variation (influenced by site elevation) in both venom metalloproteinase activity and resistance factor effectiveness. We demonstrate local adaptation in the effectiveness of rattlesnake venom to overcoming present squirrel resistance, suggesting that phenotype matching plays a role in the coevolution of these molecular traits. Further, the predator was the locally adapted antagonist in this interaction, arguing that rattlesnakes are evolutionarily ahead of their squirrel prey. Phenotype matching needs to be considered as an important mechanism influencing coevolution between venomous animals and resistant prey. PMID:27122552

  17. Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals

    Directory of Open Access Journals (Sweden)

    Caroline B. F. Mourão

    2013-06-01

    Full Text Available The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.

  18. Do managed bees drive parasite spread and emergence in wild bees?

    OpenAIRE

    Peter Graystock; Edward J. Blane; McFrederick, Quinn S.; Dave Goulson; Hughes, William O. H.

    2016-01-01

    Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite...

  19. Chronic Bee Paralysis Virus in Honeybee Queens

    DEFF Research Database (Denmark)

    Amiri, Esmaeil; Meixner, Marina; Büchler, Ralph;

    2014-01-01

    Chronic bee paralysis virus (CBPV) is known as a disease of worker honey bees. To investigate pathogenesis of the CBPV on the queen, the sole reproductive individual in a colony, we conducted experiments regarding the susceptibility of queens to CBPV. Results from susceptibility experiment showed...... a similar disease progress in the queens compared to worker bees after infection. Infected queens exhibit symptoms by Day 6 post infection and virus levels reach 1011 copies per head. In a transmission experiment we showed that social interactions may affect the disease progression. Queens with forced...... contact to symptomatic worker bees acquired an overt infection with up to 1011 virus copies per head in six days. In contrast, queens in contact with symptomatic worker bees, but with a chance to receive food from healthy bees outside the cage appeared healthy. The virus loads did not exceed 107...

  20. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian;

    2015-01-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominate...... against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening....

  1. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid).

    Science.gov (United States)

    Cresswell, James E; Page, Christopher J; Uygun, Mehmet B; Holmbergh, Marie; Li, Yueru; Wheeler, Jonathan G; Laycock, Ian; Pook, Christopher J; de Ibarra, Natalie Hempel; Smirnoff, Nick; Tyler, Charles R

    2012-12-01

    Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125μg l(-1). Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10-30% in the environmentally relevant range of up to 10μg l(-1), but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations. PMID:23044068

  2. Host Range Expansion of Honey Bee Black Queen Cell Virus in the Bumble Bee, Bombus huntii

    Science.gov (United States)

    Honey bee viruses display a host range that is not restricted to their original host, European honey bees, Apis mellifera. Here we provide the first evidence that Black Queen Cell Virus (BQCV), one of the most prevalent honey bee viruses, can cause an infection in both laboratory-reared and field-co...

  3. Comparative Analyses of Proteome Complement Between Worker Bee Larvae of High Royal Jelly Producing Bees (A. m. ligustica) and Carniolian Bees (A. m. carnica)

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; LI Jian-ke

    2009-01-01

    This study is to compare the protein composition of the high royal jelly producing bee (A. m. ligustica) with that of Carniolian bee (A. m. carnica) during their worker larval developmental stage. The experiment was carried out by two-dimensional gel electrophoresis. The results showed that significant higher numbers of total proteins (283) were detected in larvae of high royal jelly producing bees (Jelly bee) than those of Camiolian bees (152) on 2-d-old larvae. Among them, 110 proteins were presented on both strains of bee larvae, whereas 173 proteins were specific to larvae of Jelly bees, and 42 proteins were exclusive to Carniolian larvae. However, on the 4th d, a significant higher number of total proteins (290) were detected in larvae of Jelly bees than those of Camiolian bees (240), 163 proteins resolved to both bee larvae, and 127 proteins were specific to Jelly bees and 77 proteins to Camiolian bees. Until the 6th d, also a significant higher number of total proteins (236) were detected in larvae of Jelly bees than those of Carniolian bees (180), 132 proteins were constantly expressed in two bee larvae, whereas 104 and 48 proteins are unique to Jelly bee and Camiolian bee larvae, respectively. We tentatively concluded that the metabolic rate and gene expression of Jelly bees larvae is higher than those of Carniolian bees based proteins detected as total proteins and proteins specific to each stage of two strains of bee larvae. Proteins constantly expressed on 3 stages of larval development with some significant differences between two bee strains, and proteins unique to each stage expressed differences in term of quality and quantity, indicating that larval development needed house keeping and specific proteins to regulate its growth at different development phage, but the expression mold is different between two strains of larval development.

  4. Bee sting after seizure and ischemic attack

    Directory of Open Access Journals (Sweden)

    Aynur Yurtseven

    2015-09-01

    Full Text Available Insect bites, bee stings are the most frequently encountered. Often seen after bee stings usually only local allergic reactions. Sometimes with very serious clinical condition may also be confronted. Of this rare clinical findings; polyneuritis, parkinsonism, encephalitis, acute disseminated encephalomyelitis, Guillain-Barre syndrome, myocardial infarction, pulmonary edema, hemorrhage, hemolytic anemia and renal disease has. Here a rare convulsions after a bee sting is presented.

  5. Bee Venom Inhibits Prostate Cancer Growth in LNCaP Xenografts via Apoptosis

    Directory of Open Access Journals (Sweden)

    Yang Chang-yeol

    2010-03-01

    Full Text Available 연구목적 : 이 연구는 봉약침의 봉독이 NF-κB 활성억제와 안드로겐 수용체 조절 단백질 및 세포자멸사 조절 단백질의 발현을 통하여 세포자멸사를 유도하고, 전립선 암세포를 이식한 쥐에서의 세포자멸사 유도 효과를 확인함으로써, 봉약침의 봉독이 생체 내에서도 세포자멸사를 유도하여 전립선암에 효과를 나타냄을 확인하고자 하였다. 실험방법 : 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였으며, 세포자멸사 조절 단백질의 변동 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-κB의 활성 변화를 관찰하기 위해 EMSA를 시행하였다. 결 과 : 1. DAPI, TUNEL staining assay 결과 봉독 및 melittin을 처리한 LNCaP 세포 모두에서 세포자멸사 유도율이 유의한 증가를 나타내었다. 2. LNCaP 세포에 봉독이나 melittin을 처리한 결과, 안드로겐 수용체 조절 단백질 중 p-Akt, COX-2, calpain은 봉독과 melittin 모두에서 유의한 감소를 나타내었고, Akt는 melittin에서 유의한 감소를 나타냈으며, 봉독에서 증가하는 경향을 보였고, MMP-9은 증가하였다. 3. 생체 내에서의 봉독의 항암효과를 확인하기 위해 전립선암세포가 이식된 쥐에 봉독을 처리한 후 암세포의 부피와 무게, 쥐의 체중을 측정한 결과, 봉독을 처리한 군에서 암세포 부피비율 및 무게는 감소하였고, 쥐의 체중은 증가하였다. 4. 전립선암세포가 이식된 쥐에 봉독을 처리한 결과, NF-κB 활성에서 유의한 감소를 나타내었다. 5. 전립선암세포가 이식된 쥐에 봉독을 처리한 결과, 세포자멸사 조절 단백질 중 Bax/Bcl-2, p53, caspase-3, caspase-9, calpain은 유의한 증가를, COX-2는 유의한 감소를 나타냈으며, MMP-9는 증가를 나타내었다. 결 론 : 이상의 결과는 봉독이 시험관 내에서 뿐만 아니라 생체 내에서도 NF-κB의 활성을 억제하고 안드로겐 수용체 조절 단백질 및 세포자멸사 조절 단백질의 조절을 통하여 인간 전립선암 세포주인 LNCaP의 세포자멸사를 유도함으로써 전립선암 세포 증식억제 효과 및 호르몬 비의존적인 전립선암으로의 전이를 지연시키는 경향이 있을 것으로 사료되고, 봉독이 전립선암의 예방과 치료에 효과적으로 활용될 수 있을 것으로 기대된다.

  6. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Lee, Meryl; Sivaraman, J; Chatterjee, Chiradip

    2013-01-01

    Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) (1)H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.

  7. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms. PMID:20677373

  8. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani.

    Science.gov (United States)

    Zhu, Jia-Ying

    2016-04-01

    Similar to venom found in most venomous animals, parasitoid venoms contain a complex cocktail of proteins with potential agrichemical and pharmaceutical use. Even though parasitoids are one of the largest group of venomous animals, little is known about their venom composition. Recent few studies revealed high variated venom composition existing not only in different species but also between closely related strains, impling that increasing information on the venom proteins from more greater diversity of species of different taxa is key to comprehensively uncover the complete picture of parasitoid venom. Here, we explored the major protein components of the venom of ectoparasitic ant-like bethylid wasp, Scleroderma guani by an integrative transcriptomic-proteomic approach. Illumina deep sequencing of venom apparatus cDNA produced 49,873 transcripts. By mapping the peptide spectral data derived from venom reservoir against these transcripts, mass spectrometry analysis revealed ten main venom proteins, including serine proteinase, metalloprotease, dipeptidyl peptidase IV, esterase, antithrombin-III, acid phosphatase, neural/ectodermal development factor IMP-L2 like protein, venom allergen 3, and unknown protein. Interestingly, one serine proteinase was firstly identified with rarely high molecular weight about 200 kDa in parasitoid venom. The occurrence of abundant acid phosphatase, antithrombin-III and venom allergen 3 demonstrated that S. guani venom composition is similar to that of social wasp venoms. All identified venom genes showed abundantly biased expression in venom apparatus, indicating their virulent functions involved in parasitization. This study shed light on the more better understanding of parasitoid venom evolution across species and will facilitate the further elucidation of function and toxicity of these venom proteins. PMID:26853496

  9. Bee Queen Breeding Methods - Review

    Directory of Open Access Journals (Sweden)

    Silvia Patruica

    2016-05-01

    Full Text Available The biological potential of a bee family is mainly generated by the biological value of the queen. Whether we grow queens widely or just for our own apiaries, we must consider the acquisition of high-quality biological material, and also the creation of optimal feeding and caring conditions, in order to obtain high genetic value queens. Queen breeding technology starts with the setting of hoeing families, nurse families, drone-breeding families – necessary for the pairing of young queens, and also of the families which will provide the bees used to populate the nuclei where the next queens will hatch. The complex of requirements for the breeding of good, high-production queens is sometimes hard to met, under the application of artificial methods. The selection of breeding method must rely on all these requirements and on the beekeeper’s level of training.

  10. Detection of Snake Venom in Post-Antivenom Samples by Dissociation Treatment Followed by Enzyme Immunoassay

    Directory of Open Access Journals (Sweden)

    Kalana P. Maduwage

    2016-04-01

    Full Text Available Venom detection is crucial for confirmation of envenomation and snake type in snake-bite patients. Enzyme immunoassay (EIA is used to detect venom, but antivenom in samples prevents venom detection. We aimed to detect snake venom in post-antivenom samples after dissociating venom-antivenom complexes with glycine-HCl (pH 2.2 and heating for 30 min at 950 °C. Serum samples underwent dissociation treatment and then Russell’s viper venom or Australian elapid venom measured by EIA. In confirmed Russell’s viper bites with venom detected pre-antivenom (positive controls, no venom was detected in untreated post-antivenom samples, but was after dissociation treatment. In 104 non-envenomed patients (negative controls, no venom was detected after dissociation treatment. In suspected Russell’s viper bites, ten patients with no pre-antivenom samples had venom detected in post-antivenom samples after dissociation treatment. In 20 patients with no venom detected pre-antivenom, 13 had venom detected post-antivenom after dissociation treatment. In another 85 suspected Russell’s viper bites with no venom detected pre-antivenom, 50 had venom detected after dissociation treatment. Dissociation treatment was also successful for Australian snake envenomation including taipan, mulga, tiger snake and brown snake. Snake venom can be detected by EIA in post-antivenom samples after dissociation treatment allowing confirmation of diagnosis of envenomation post-antivenom.

  11. Detection of Snake Venom in Post-Antivenom Samples by Dissociation Treatment Followed by Enzyme Immunoassay.

    Science.gov (United States)

    Maduwage, Kalana P; O'Leary, Margaret A; Silva, Anjana; Isbister, Geoffrey K

    2016-01-01

    Venom detection is crucial for confirmation of envenomation and snake type in snake-bite patients. Enzyme immunoassay (EIA) is used to detect venom, but antivenom in samples prevents venom detection. We aimed to detect snake venom in post-antivenom samples after dissociating venom-antivenom complexes with glycine-HCl (pH 2.2) and heating for 30 min at 950 °C. Serum samples underwent dissociation treatment and then Russell's viper venom or Australian elapid venom measured by EIA. In confirmed Russell's viper bites with venom detected pre-antivenom (positive controls), no venom was detected in untreated post-antivenom samples, but was after dissociation treatment. In 104 non-envenomed patients (negative controls), no venom was detected after dissociation treatment. In suspected Russell's viper bites, ten patients with no pre-antivenom samples had venom detected in post-antivenom samples after dissociation treatment. In 20 patients with no venom detected pre-antivenom, 13 had venom detected post-antivenom after dissociation treatment. In another 85 suspected Russell's viper bites with no venom detected pre-antivenom, 50 had venom detected after dissociation treatment. Dissociation treatment was also successful for Australian snake envenomation including taipan, mulga, tiger snake and brown snake. Snake venom can be detected by EIA in post-antivenom samples after dissociation treatment allowing confirmation of diagnosis of envenomation post-antivenom. PMID:27136587

  12. SNAKE BITE, SNAKE VENOM, ANTI-VENOM AND HERBAL ANTIDOTE – A REVIEW

    OpenAIRE

    Paul Rita; Datta K. Animesh; Mandal Aninda; Ghosh K Benoy; Halder Sandip

    2011-01-01

    The mortality associated with snake bites is a serious public health problem as the estimated death incidence per year is about 1,25,000 globally. In India about 35,000 to 50,000 people reportedly die of snake bite; although, unreported cases may be even more in rural areas. Considering the socio-medical problem due to snake bite, a review is being conducted on snake bite (management aspects), snake venom (nature and its utility), anti-venom and herbal antidote to provide adequate information...

  13. Collective thermoregulation in bee clusters

    OpenAIRE

    Ocko, Samuel A; Mahadevan, L.

    2014-01-01

    Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller, and raises the question of how this is achieved. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to co...

  14. Detection of Snake Venom in Post-Antivenom Samples by Dissociation Treatment Followed by Enzyme Immunoassay

    OpenAIRE

    Maduwage, Kalana P.; O’Leary, Margaret A.; Anjana Silva; Isbister, Geoffrey K

    2016-01-01

    Venom detection is crucial for confirmation of envenomation and snake type in snake-bite patients. Enzyme immunoassay (EIA) is used to detect venom, but antivenom in samples prevents venom detection. We aimed to detect snake venom in post-antivenom samples after dissociating venom-antivenom complexes with glycine-HCl (pH 2.2) and heating for 30 min at 950 °C. Serum samples underwent dissociation treatment and then Russell’s viper venom or Australian elapid venom measured by EIA. In confirmed ...

  15. Analgesic effect of Persian Gulf Conus textile venom

    Directory of Open Access Journals (Sweden)

    Nasim Tabaraki

    2014-10-01

    Results: SDS-PAGE indicated 12 bands ranged between 6 and 180 KDa. Finally, ten ng of Conus crude venom showed the best analgesic activity in formalin test. No death observed up to 100 mg/kg. Analgesic activity of crude venom was more significant (P

  16. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  17. Irradiated cobra (Naja naja) venom for biomedical applications

    International Nuclear Information System (INIS)

    Ionizing radiation is known to cause damage to proteins in aqueous solutions in a selective manner, thereby producing remarkable changes in their properties. Since venoms are very rich in proteins, it was felt that they would also show such changes upon irradiation. It was of interest to know if one could get rid of the toxicity and retain the immunogenicity of the venom by suitable choice of radiation dose and strength of venom solution. If so, the method could be profitably exploited for the rapid preparation of venom toxoid and this could be expected to have many applications in the biological sciences. Accordingly, laboratory investigations were undertaken on the effect of gamma radiation on cobra (Naja naja) venom. To avoid drastic changes, solutions of cobra venom having low protein content were irradiated with gamma radiation from a cobalt-60 source. The results obtained with 0.01 to 1.0% venom solutions are found to be encouraging. The solutions did not manifest any toxicity in mice. For the immunogenicity test, guinea pigs were immunized with varying doses of the irradiated cobra venom and the immunized guinea pigs were found to survive when challenged with as big a dose as 10 MLD (i.e. minimum lethal dose, approximately 1 mg). The paper describes the experimental details and the results of the observations. (author)

  18. Embriotoxic effects of maternal exposure to Tityus serrulatus scorpion venom

    Directory of Open Access Journals (Sweden)

    A. A. S. Barão

    2008-01-01

    Full Text Available Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg. The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10. The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.

  19. Recent Advances in Research on Widow Spider Venoms and Toxins.

    Science.gov (United States)

    Yan, Shuai; Wang, Xianchun

    2015-12-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  20. Recent Advances in Research on Widow Spider Venoms and Toxins

    Directory of Open Access Journals (Sweden)

    Shuai Yan

    2015-11-01

    Full Text Available Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.

  1. Recent Advances in Research on Widow Spider Venoms and Toxins.

    Science.gov (United States)

    Yan, Shuai; Wang, Xianchun

    2015-11-27

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.

  2. Nucleotidase and DNase activities in Brazilian snake venoms.

    Science.gov (United States)

    Sales, Paulo Bruno Valadão; Santoro, Marcelo L

    2008-01-01

    Among the myriad of enzymes present in animal venoms, nucleotidases and nucleases are poorly investigated. Herein, we studied such enzymes in 28 crude venoms of animals found in Brazil. Higher levels of ATPase, 5'-nucleotidase, ADPase, phosphodiesterase and DNase activities were observed in snake venoms belonging to Bothrops, Crotalus and Lachesis genera than to Micrurus genus. The venom of Bothrops brazili snake showed the highest nucleotidase and DNase activities, whereas that of Micrurus frontalis snake the highest alkaline phosphatase activity. On the other hand, the venoms of the snake Philodryas olfersii and the spider Loxosceles gaucho were devoid of most nucleotidase and DNase activities. Species that exhibited similar nucleotidase activities by colorimetric assays showed different banding pattern by zymography, suggesting the occurrence of structural differences among them. Hydrolysis of nucleotides showed that 1 mol of ATP is cleaved in 1 mol of pyrophosphate and 1 mol of orthophosphate, whereas 1 mol of ADP is cleaved exclusively in 2 mol of orthophosphates. Pyrophosphate is barely hydrolyzed by snake venoms. Phosphodiesterase activity was better correlated with 5'-nucleotidase, ADPase and ATPase activities than with DNase activity, evidencing that phosphodiesterases are not the main agent of DNA hydrolysis in animal venoms. The omnipresence of nucleotidase and DNase activities in viperid venoms implies a role for them within the repertoire of enzymes involved in immobilization and death of preys. PMID:17904425

  3. Bumble bee fauna of Palouse Prairie: survey of native bee pollinators in a fragmented ecosystem.

    Science.gov (United States)

    Hatten, T D; Looney, C; Strange, J P; Bosque-Pérez, N A

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002-2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002-2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  4. [Accidents with venomous and poisonous animals in Central Europe].

    Science.gov (United States)

    Bodio, Mauro; Junghanss, Thomas

    2009-05-01

    Central Europe is largely safe from accidents with venomous and poisonous animals. The regions where European vipers are regularly found are shrinking. Today accidents with jellyfish and stings of venomous fish afflicted during leisure activities at the sea side play the dominant role. Life threatening accidents in Europe are mainly due to exotic snakes held in captivity. A system useful in daily medical practice is explained to classify and stage accidents due to poisonous and venomous animals. The important poisonous and venomous animals of Central Europe and the specific therapeutics, the antivenoms, are covered. The antivenom depot "Antivenin-CH" of the Swiss Toxicology Information Centre in Zurich and the MRITox in Munich with the antivenom registry Munich AntiVenom INdex (MAVIN) are presented.

  5. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian;

    2015-01-01

    /cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential...

  6. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach.

    Science.gov (United States)

    Escoubas, Pierre; Sollod, Brianna; King, Glenn F

    2006-05-01

    The complexity of Australian funnel-web spider venoms has been explored via the combined use of MALDI-TOF mass spectrometry coupled with chromatographic separation and the analysis of venom-gland cDNA libraries. The results show that these venoms are far more complex than previously realized. We show that the venoms of Australian funnel-web spiders contain many hundreds of peptides that follow a bimodal distribution, with about 75% of the peptides having a mass of 3000-5000 Da. The mass spectral data were validated by matching the experimentally observed masses with those predicted from peptide sequences derived from analysis of venom-gland cDNA libraries. We show that multiple isoforms of these peptides are found in small chromatographic windows, which suggests that the wide distribution of close molecular weights among the chromatographic fractions probably reflects a diversity of structures and physicochemical properties. The combination of all predicted and measured parameters permits the interpretation of three-dimensional 'venom landscapes' derived from LC-MALDI analysis. We propose that these venom landscapes might have predictive value for the discovery of various groups of pharmacologically distinct toxins in complex venoms.

  7. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes.

    Science.gov (United States)

    Chaim, Olga Meiri; Trevisan-Silva, Dilza; Chaves-Moreira, Daniele; Wille, Ana Carolina M; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Mangili, Oldemir Carlos; da Silveira, Rafael Bertoni; Gremski, Luiza Helena; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2011-03-01

    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5-40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  8. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  9. The Plight of the Honey Bee

    Science.gov (United States)

    Hockridge, Emma

    2010-01-01

    The decline of colonies of honey bees across the world is threatening local plant biodiversity and human food supplies. Neonicotinoid pesticides have been implicated as a major cause of the problem and are banned or suspended in several countries. Other factors could also be lowering the resistance of bees to opportunist infections by, for…

  10. Bees prefer foods containing neonicotinoid pesticides

    Science.gov (United States)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  11. Epithelium specific ETS transcription factor, ESE-3, of Protobothrops flavoviridis snake venom gland transactivates the promoters of venom phospholipase A2 isozyme genes.

    Science.gov (United States)

    Nakamura, Hitomi; Murakami, Tatsuo; Hattori, Shosaku; Sakaki, Yoshiyuki; Ohkuri, Takatoshi; Chijiwa, Takahito; Ohno, Motonori; Oda-Ueda, Naoko

    2014-12-15

    Protobothrops flavoviridis (habu) (Crotalinae, Viperidae) is a Japanese venomous snake, and its venom contains the enzymes with a variety of physiological activities. The phospholipases A2 (PLA2s) are the major components and exert various toxic effects. They are expressed abundantly in the venom gland. It is thought that the venom gland-specific transcription factors play a key role for activation of PLA2 genes specifically expressed in the venom gland. Thus, the full-length cDNA library for P. flavoviridis venom gland after milking of the venom was made to explore the transcription factors therein. As a result, three cDNAs encoding epithelium-specific ETS transcription factors (ESE)-1, -2, and -3 were obtained. Among them, ESE-3 was specifically expressed in the venom gland and activated the proximal promoters of venom PLA2 genes, which are possibly regarded as the representatives of the venom gland-specific protein genes in P. flavoviridis. Interestingly, the binding specificity of ESE-3 to the ETS binding motif located near TATA box is well correlated with transcriptional activities for the venom PLA2 genes. This is the first report that venom gland-specific transcription factor could actually activate the promoters of the venom protein genes.

  12. Venom immunotherapy improves health-related quality of life in patients allergic to yellow jacket venom

    NARCIS (Netherlands)

    Elberink, JNGO; de Monchy, JGR; van der Heide, S; Guyatt, GH; Dubois, AEJ

    2002-01-01

    Background: Venom immunotherapy (VIT) is effective in preventing anaphylactic reactions after insect stings. The effect of VIT on health-related quality of life (HRQL) was studied to evaluate whether this treatment is of importance to patients. Objective: We compared HRQL outcomes measured with a di

  13. Assessing grooming behavior of Russian honey bees toward Varroa destructor.

    Science.gov (United States)

    The grooming behavior of Russian bees was compared to Italian bees. Overall, Russian bees had significantly lower numbers of mites than the Italian bees with a mean of 1,937 ± 366 and 5,088 ± 733 mites, respectively. This low mite population in the Russian colonies was probably due to the increased ...

  14. Stingless bees (Meliponini): senses and behavior.

    Science.gov (United States)

    Hrncir, Michael; Jarau, Stefan; Barth, Friedrich G

    2016-10-01

    Stingless bees (Hymenoptera, Apidae, Meliponini) are by far the largest group of eusocial bees on Earth. Due to the diversity of evolutionary responses to specific ecological challenges, the Meliponini are well suited for comparative studies of the various adaptations to the environment found in highly eusocial bees. Of particular interest are the physiological mechanisms underlying the sophisticated cooperative and collective actions of entire colonies, which form the basis of the ecological success of the different bee species under the particular conditions prevailing in their respective environment. The present Special Issue of the Journal of Comparative Physiology A provides a sample of the exciting diversity of sensorial and behavioral adaptations in stingless bees, particularly concerning (1) the sensory bases for foraging, (2) chemical communication, and (3) the behavioral ecology of foraging. PMID:27518819

  15. Metatranscriptomic analyses of honey bee colonies.

    Science.gov (United States)

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  16. Metatranscriptomic analyses of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Cansu Ozge Tozkar

    2015-03-01

    Full Text Available Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers of apiculture, harboring 5 subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library remained. These were then mapped to a curated set of public sequences containing ca. 60 megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp., neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae, Varroa destructor-1 virus, Sacbrood virus, Apis filamentous virus and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus, Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly. We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  17. Clinical analysis of ocular injuries caused by bee sting%蜂螫伤眼病例临床分析

    Institute of Scientific and Technical Information of China (English)

    徐海萍; 於水清; 张志勇

    2016-01-01

    Objective To investigate the clinical feature,treatment and pathogenesis of ocular injuries caused by bee sting.Methods Retrospective study on the 25 eyes of 20 patients harmed by bee sting.Results The clinical feature of the patients suffered from bee sting included tissue edema,corneal epithelium defect,iridocyclitis,secondary glaucoma,cataract and optic neuritis.The vision was recovered after immediate removal of the stinger,and the application of corticosteroids,antihistamines and neurotrophic drugs.Nonenzymatic polypeptide toxins and enzymes in bee venom caused severe toxic effect and hypersensitivity reaction might be the main pathogenesis of ocular injuries caused by bee sting.Conclusion Bee stings can cause the injury of ocular tissues.Removal of the stinger,and application of steroids,antihistamines,and neurotrophic drugs are effective treatments for bee stings.%目的 探讨蜂螫伤的临床表现、治疗方法以及致病机制.方法 回顾性分析我院就诊的蜂螫伤21例(25眼)的临床资料.结果 患者的临床表现主要为组织水肿,角膜上皮缺损,虹膜睫状体炎,继发性青光眼,白内障,视神经炎.通过去除蜂螫刺,应用糖皮质激素、抗组胺药及神经营养药,大部分患者的视力基本恢复.蜂毒中的非酶多肽类毒素产生的直接毒性作用和酶类引起的超敏变态反应可能是致病的主要因素.结论 蜂螫伤可以产生明显的眼组织损伤,去除蜂的螫刺以及应用糖皮质激素,抗组胺药,神经营养药是有效治疗方法.

  18. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.

    Science.gov (United States)

    Calvete, Juan J; Fasoli, Elisa; Sanz, Libia; Boschetti, Egisto; Righetti, Pier Giorgio

    2009-06-01

    We report the proteomic characterization of the venom of the medically important North American western diamondback rattlesnake, Crotalus atrox, using two complementary approaches: snake venomics (to gain an insight of the overall venom proteome), and two solid-phase combinatorial peptide ligand libraries (CPLL), followed by 2D electrophoresis and mass spectrometric characterization of in-gel digested protein bands (to capture and "amplify" low-abundance proteins). The venomics approach revealed approximately 24 distinct proteins belonging to 2 major protein families (snake venom metalloproteinases, SVMP, and serine proteinases), which represent 69.5% of the total venom proteins, 4 medium abundance families (medium-size disintegrin, PLA(2), cysteine-rich secretory protein, and l-amino acid oxidase) amounting to 25.8% of the venom proteins, and 3 minor protein families (vasoactive peptides, endogenous inhibitor of SVMP, and C-type lectin-like). This toxin profile potentially explains the cytotoxic, myotoxic, hemotoxic, and hemorrhagic effects evoked by C. atrox envenomation. Further, our results showing that C. atrox exhibits a similar level of venom variation as Sistrurus miliarius points to a "diversity gain" scenario in the lineage leading to the Sistrurus catenatus taxa. On the other hand, the two combinatorial hexapeptide libraries captured distinct sets of proteins. Although the CPLL-treated samples did not retain a representative venom proteome, protein spots barely, or not at all, detectable in the whole venom were enriched in the two CPLL-treated samples. The amplified low copy number C. atrox venom proteins comprised a C-type lectin-like protein, several PLA(2) molecules, PIII-SVMP isoforms, glutaminyl cyclase isoforms, and a 2-cys peroxiredoxin highly conserved across the animal kingdom. Peroxiredoxin and glutaminyl cyclase may participate, respectively, in redox processes leading to the structural/functional diversification of toxins, and in the N

  19. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  20. Ancient Venom Systems: A Review on Cnidaria Toxins.

    Science.gov (United States)

    Jouiaei, Mahdokht; Yanagihara, Angel A; Madio, Bruno; Nevalainen, Timo J; Alewood, Paul F; Fry, Bryan G

    2015-06-01

    Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design. PMID:26094698

  1. [Drug or plant substances which antagonize venoms or potentiate antivenins].

    Science.gov (United States)

    Chippaux, J P; Rakotonirina, V S; Rakotonirina, A; Dzikouk, G

    1997-01-01

    Dendroaspis jamesoni (Elapidae) and Echis oceliatus (Viperidae) are responsible for most of severe evenomation in Cameroon. Toxicity of venoms of these two species has been measured using mice according to the method of Spearman & Kàrber. The effect on experimental envenomation of various drugs (atropine, promethazine, neostigmine, hydrocortisone, pentosane sulfuric polyester, heparin, tranexamic acid and aminocaproic acid) and plant extracts (Schumanniophyton magnificum, Bidens pilosa, Securidaca longepedunculata and Garcinia lucida) has been observed associated or not with the antivenom lpser Afrique (SAV). The venom of D. jamesoni contains neurotoxins agonizing and antagonising acetylcholine. The toxicity of the venom did not depend on the route of injection. Atropine, promethazine, neostigmine and hydrocortisone protected animals against a venom dose up to 2 LD50. Moreover, atropine and promethazine potentiated the SAV. Similar results have been obtained with extracts from S. magnificum and B. pilosa. The venom of E. ocellatus induces haemorrhage and necrosis. The toxicity increased by 3-fold when the venom was injected through intravenous or intraperitoneal route, compared to intramuscular route. Pentosane sulfuric polyester and tranexamic acid protected mice against doses up to 3 LD50. Pentosane sulfuric polyester, hydrocortisone, heparin and aminocaproic acid increased the SAV protective titre by 50%. However, tried plant extracts weakly antagonised the venom and did not potentiate the SAV. PMID:9479470

  2. [Drug or plant substances which antagonize venoms or potentiate antivenins].

    Science.gov (United States)

    Chippaux, J P; Rakotonirina, V S; Rakotonirina, A; Dzikouk, G

    1997-01-01

    Dendroaspis jamesoni (Elapidae) and Echis oceliatus (Viperidae) are responsible for most of severe evenomation in Cameroon. Toxicity of venoms of these two species has been measured using mice according to the method of Spearman & Kàrber. The effect on experimental envenomation of various drugs (atropine, promethazine, neostigmine, hydrocortisone, pentosane sulfuric polyester, heparin, tranexamic acid and aminocaproic acid) and plant extracts (Schumanniophyton magnificum, Bidens pilosa, Securidaca longepedunculata and Garcinia lucida) has been observed associated or not with the antivenom lpser Afrique (SAV). The venom of D. jamesoni contains neurotoxins agonizing and antagonising acetylcholine. The toxicity of the venom did not depend on the route of injection. Atropine, promethazine, neostigmine and hydrocortisone protected animals against a venom dose up to 2 LD50. Moreover, atropine and promethazine potentiated the SAV. Similar results have been obtained with extracts from S. magnificum and B. pilosa. The venom of E. ocellatus induces haemorrhage and necrosis. The toxicity increased by 3-fold when the venom was injected through intravenous or intraperitoneal route, compared to intramuscular route. Pentosane sulfuric polyester and tranexamic acid protected mice against doses up to 3 LD50. Pentosane sulfuric polyester, hydrocortisone, heparin and aminocaproic acid increased the SAV protective titre by 50%. However, tried plant extracts weakly antagonised the venom and did not potentiate the SAV.

  3. Use of snake venom fractions in the coagulation laboratory.

    Science.gov (United States)

    Marsh, N A

    1998-07-01

    Snake venom toxins are now regularly used in the coagulation laboratory for assaying haemostatic parameters and as coagulation reagents. Snake venom thrombin-like enzymes (SVTLE) are used for fibrinogen and fibrinogen breakdown product assay as well as detecting dysfibrinogenaemias. Significantly, because SVTLE are not inhibited by heparin, they can be used for defibrinating samples that contain the anticoagulant before assay of haemostatic variables. Prothrombin activators are found in many snake venoms and are used in prothrombin assays, for studying dysprothrombinaemias and preparing meizothrombin and non-enzymic prothrombin. Russell's viper (Daboia russelli) venom (RVV) contains a number of compounds useful in the assay of factors V, VII, X, platelet factor 3 and lupus anticoagulants. Activators from the taipan, Australian brown snake and saw-scaled viper have been used to assay lupus anticoagulants. Protein C and activated protein C resistance can be measured by means of RVV and Protac, a fast acting inhibitor from Southern copperhead snake venom and von Willebrand factor can be studied with Botrocetin from Bothrops jararaca venom. Finally, phospholipase A2 enzymes and the disintegrins, a family of Arg-Gly-Asp (RGD)-containing proteins found in snake venoms, show great potential for the study of haemostasis including, notably, platelet glycoprotein receptors GPIIb/IIIa and Ib. PMID:9712287

  4. The First Venomous Crustacean Revealed by Transcriptomics and Functional Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail Dominated by Enzymes and a Neurotoxin

    OpenAIRE

    Reumont, von; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A.

    2013-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipe...

  5. Practical applications of snake venom toxins in haemostasis.

    Science.gov (United States)

    Marsh, Neville; Williams, Vaughan

    2005-06-15

    Snake venom toxins affecting haemostasis have facilitated extensively the routine assays of haemostatic parameters in the coagulation laboratory. Snake venom thrombin-like enzymes (SVTLE) are used for fibrinogen/fibrinogen breakdown product assay and for the detection of fibrinogen dysfunction. SVTLE are not inhibited by heparin and can thus can be used for assaying antithrombin III and other haemostatic variables in heparin-containing samples. Snake venoms are a rich source of prothrombin activators and these are utilised in prothrombin assays, for studying dysprothrombinaemias and for preparing meizothrombin and non-enzymic forms of prothrombin. Russell's viper (Daboia russelli) venom (RVV) contains toxins which have been used to assay blood clotting factors V, VII, X, platelet factor 3 and, importantly, lupus anticoagulants (LA). Other prothrombin activators (from the taipan, Australian brown snake and saw-scaled viper) have now been used to assay LA. Protein C and activated protein C resistance can be measured by means of RVV and Protac, a fast acting inhibitor from Southern copperhead snake venom and von Willebrand factor can be studied with botrocetin from Bothrops jararaca venom. The disintegrins, a large family of Arg-Gly-Asp (RGD)-containing snake venom proteins, show potential for studying platelet glycoprotein receptors, notably, GPIIb/IIIa and Ib. Snake venom toxins affecting haemostasis are also used in the therapeutic setting: Ancrod (from the Malayan pit viper, Calloselasma rhodostoma), in particular, has been used as an anticoagulant to achieve 'therapeutic defibrination'. Other snake venom proteins show promise in the treatment of a range of haemostatic disorders. PMID:15922782

  6. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A2, an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  7. Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint.

    Science.gov (United States)

    Undheim, Eivind A B; Hamilton, Brett R; Kurniawan, Nyoman D; Bowlay, Greg; Cribb, Bronwen W; Merritt, David J; Fry, Bryan G; King, Glenn F; Venter, Deon J

    2015-03-31

    Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought. PMID:25775536

  8. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    Science.gov (United States)

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  9. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle.

    Science.gov (United States)

    Friedel, T; Nentwig, W

    1989-01-01

    Immobilizing and lethal effects of the venoms obtained from six spider species (Brachypelma albopilosum, Atrax robustus, Cupiennius salei, Selenops mexicanus, Tegenaria atrica, Argiope bruennichi) were tested on Blatta orientalis (cockroach) and Tenebrio molitor (common mealbeetle). The immobilizing effects were quantified by measuring insect locomotor activity in circle arenas observed over 72 hr after venom injection. Both insect species showed cramps, quivering and jerking of the limbs as well as flaccid paralysis after venom injection. Through relative toxicity of the venoms tested is the same in T. molitor and B. orientalis, T. molitor is absolutely less sensitive to spider venoms. The effects on locomotor activity show time characteristics specific for each venom. A dependence of the venom paralyzing effects on insect locomotor activity, low intensity of the initial excitatory phase of the venom effects and partial recovery of the insects was found with A. bruennichi and T. atrica venom. The maximal venom yields of A. bruennichi and S. mexicanus are not lethal to B. orientalis, indicating that the mere immobilizing effects of spider venoms are far more crucial to prey capture than their lethal effects. The contribution of a variety of differently acting neurotoxic components in spider venoms to the observed venom effects on insects and the significance of the venoms in spider nutrition, hunting behaviour and ecology are discussed. PMID:2728023

  10. A modified scout bee for artificial bee colony algorithm and its performance on optimization problems

    Directory of Open Access Journals (Sweden)

    Syahid Anuar

    2016-10-01

    Full Text Available The artificial bee colony (ABC is one of the swarm intelligence algorithms used to solve optimization problems which is inspired by the foraging behaviour of the honey bees. In this paper, artificial bee colony with the rate of change technique which models the behaviour of scout bee to improve the performance of the standard ABC in terms of exploration is introduced. The technique is called artificial bee colony rate of change (ABC-ROC because the scout bee process depends on the rate of change on the performance graph, replace the parameter limit. The performance of ABC-ROC is analysed on a set of benchmark problems and also on the effect of the parameter colony size. Furthermore, the performance of ABC-ROC is compared with the state of the art algorithms.

  11. Gentle Africanized bees on an oceanic island.

    Science.gov (United States)

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-11-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture.

  12. Enzymatic detection of troponin C and melittin bee

    Science.gov (United States)

    Jeetender, Amritsar; Stiharu, Ion; Packirisamy, Muthukumaran

    2005-04-01

    One of the major goals of biosensor technology is to detect and quantify in detail analytes with very high accuracy. To achieve this, much of the emphasis in sensor fabrication has been laid on antibody-antigen interaction. The consequence of this focus of enzyme biosensor studies is the development of critical techniques which can be extended in the detection of Acute Myocardial Infarction (AMI). Biosensors for AMI have attracted considerable interest in the last few years since the monitoring of a specific substance is central in enzymatic reactions. This interest has led to the investigation of biochemical markers of myocardial injury. These biomarkers facilitate the diagnosis and treatment of patients with AMI. Serial measurements of biochemical markers are now universally accepted as an important determinant in AMI diagnosis. Due to their high sensitivity and specificity over other biomarkers, the troponins are the markers of choice for the diagnosis or exclusion of AMI. The present techniques used in the identification of the troponins are lengthy and require large amount of specimen solution. The present research is directed towards the identification of optical detection procedures that are compatible to the miniaturization. In the present study an effort has been made to study the antigen-antibody reaction of rabbit skeletal muscle troponin C (TnC) and bee venom melittin (ME). Fluorescence energy transfer experiments were done to investigate the Ca 2+ -dependant interaction of TnC-ME in a 1:1 complex. Experiments were also conducted on TnC-ME binding at different ratios. These results validate the biosensor technology and illustrate how a biosensor can be developed based on the study of interaction between monoclonal antibody and antigen reaction in real time. The reported experimental results provide valuable information that will be useful in the development of a biosensor for the detection of AMI.

  13. Analysis of Fang Puncture Wound Patterns in Isfahan Province’s, Iran, Venomous and Non-Venomous Snakes

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2015-01-01

    Full Text Available Aims Venomous snake bites are public health problems in different parts of the world. The most specific mainstay in the treatment of envenomation is anti-venom. To treat the envenomation, it is very important to identify the offending species. This study was designed to determine the penetrating pattern of fangs and teeth of some viper snakes. Materials & Methods This descriptive study was performed on live venomous and nonvenomous snakes from 2010 till 2011. All 47 sample snakes were collected from different regions of Isfahan province such as Kashan City, Ghamsar, Niasar, Mashhad Ardehal, Taher- Abad and Khozagh. Their mouths were inspected every two weeks and development of their fangs and teeth were recorded by taking clear digital photos. Fangs and teeth patterns of samples were drawn and the results were compared. Findings One or two wounds appeared as typical fang marks at the bite site of venomous snakes while non-venomous snakes had two carved rows of small teeth. Three different teeth and fang patterns were recognized in venomous snakes which were completely different. Conclusion The fang marks of venomous snakes do not always have a common and classic pattern and there are at least 3 different patterns in Isfahan province, Iran.

  14. Enhanced production of parthenocarpic cucumbers pollinated with stingless bees and Africanized honey bees in greenhouses

    Directory of Open Access Journals (Sweden)

    Euclides Braga Malheiros

    2013-12-01

    Full Text Available Crops have different levels of dependence on pollinators; this holds true even for cultivars of the same species, as in the case of cucumber (Cucumis sativus. The aim of this research was to assess the attractiveness of flowers of three Japanese parthenocarpic cucumber cultivars and evaluate the importance of Africanized bees (Apis mellifera, and the Brazilian native stingless bees, Jataí (Tetragonisca angustula and Iraí (Nannotrigona testaceicornis on fruit production. Several parameters, including frequency of bee visits to flowers as well as duration of nectar collection and fruit set were examined; additionally, fruit weight, length and diameter were evaluated. Three greenhouses located in Ribeirão Preto, SP, were used for planting three cucumber cultivars (Hokushin, Yoshinari and Soudai. The female flowers were more attractive than male flowers; however, Jataí bees were not observed visiting the flowers. The Africanized and the Iraí bees collected only nectar, with a visitation peak between 10 and 12h. Visits to female flowers had a longer duration than visits to male flower visits in all three cultivars. Africanized bee colonies declined due to loss of bees while in the greenhouse; the native stingless bee colonies did not suffer these losses. When bees were excluded, fruit set was 78%; however, when bees had access to the flowers, fruit set was significantly (19.2% higher. Fruit size and weight did not differ with and without bees. This demonstrates that even in parthenocarpic cucumber cultivars, which do not require pollination in order to from fruits, fruit production is significantly increased by bee pollination.

  15. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    Directory of Open Access Journals (Sweden)

    Philippe Favreau

    2012-01-01

    Full Text Available Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal, from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands of a fish-hunting cone snail, Conus consors (Pionoconus clade. The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex and N-acetylhexosamine (HexNAc moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade, implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.

  16. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei.

    Directory of Open Access Journals (Sweden)

    Olivier Biner

    Full Text Available Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis.Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well

  17. Single Assay Detection of Acute Bee Paralysis Virus, Kashmir Bee Virus and Israeli Acute Paralysis Virus

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Kryger, Per

    2012-01-01

    A new RT-PCR primer pair designed to identify Acute Bee Paralysis Virus (ABPV), Kashmir Bee Virus (KBV) or Israeli Acute Bee Paralysis Virus (IAPV) of honey bees (Apis mellifera L.) in a single assay is described. These primers are used to screen samples for ABPV, KBV, or IAPV in a single RT-PCR ......-PCR reaction saving time and money. The primers are located in the predicted overlapping gene (pog/ORFX) which is highly conserved across ABPV, KBV, IAPV and other dicistroviruses of social insects. This study has also identified the first case of IAPV in Denmark....

  18. Synergistic effects of non-Apis bees and honey bees for pollination services.

    Science.gov (United States)

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-03-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  19. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana.

    Science.gov (United States)

    Park, Doori; Jung, Je Won; Lee, Mi Ok; Lee, Si Young; Kim, Boyun; Jin, Hye Jun; Kim, Jiyoung; Ahn, Young-Joon; Lee, Ki Won; Song, Yong Sang; Hong, Seunghun; Womack, James E; Kwon, Hyung Wook

    2014-03-01

    Insect-derived antimicrobial peptides (AMPs) have diverse effects on antimicrobial properties and pharmacological activities such as anti-inflammation and anticancer properties. Naturally occurring genetic polymorphism have a direct and/or indirect influence on pharmacological effect of AMPs, therefore information on single nucleotide polymorphism (SNP) occurring in natural AMPs provides an important clue to therapeutic applications. Here we identified nucleotide polymorphisms in melittin gene of honey bee populations, which is one of the potent AMP in bee venoms. We found that the novel SNP of melittin gene exists in these two honey bee species, Apis mellifera and Apis cerana. Nine polymorphisms were identified within the coding region of the melittin gene, of which one polymorphism that resulted in serine (Ser) to asparagine (Asp) substitution that can potentially effect on biological activities of melittin peptide. Serine-substituted melittin (Mel-S) showed more cytotoxic effect than asparagine-substituted melittin (Mel-N) against E. coli. Also, Mel-N and Mel-S had different inhibitory effects on the production of inflammatory factors such as IL-6 and TNF-α in BV-2 cells. Moreover, Mel-S showed stronger cytotoxic activities than Mel-N peptide against two human ovarian cancer cell lines. Using carbon nanotube-based transistor, we here characterized that Mel-S interacted with small unilamellar liposomes more strongly than Mel-N. Taken together, our present study demonstrates that there exist different characteristics of the gene frequency and the biological activities of the melittin peptide in two honey bee species, Apis mellifera and A. cerana. PMID:24512991

  20. Spider-Venom Peptides as Bioinsecticides

    Directory of Open Access Journals (Sweden)

    Glenn F. King

    2012-03-01

    Full Text Available Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides.

  1. IgE antibodies against snake venoms.

    Science.gov (United States)

    Alonso, A; Scavini, L M; Marino, G A; Rodríguez, S M

    1995-01-01

    A similar event was detected in the clinical records of a small group of atopic patients living in the northern provinces of Argentina, i.e., they were bitten by a snake of the Bothrops species (or yarará) during their rural activities (woodcutters, cattle-drivers and farmers). Those who were bitten twice suffered an acute episode of hives and angioedema within 15 minutes after the snake bite. The presence of specific antibodies against Bothrops alternata (Ba) extract was detected by means of RAST for IgE and Ouchterlony and Boyden for IgG. The Ouchterlony also demonstrated crossreactivity among the venoms of the Bothrops species and the positivity of the six fractions obtained by DEAE-cellulose column fractionation against the horse anti-Ba serum. The Ba antigen induced a definite inhibition of the RAST. We presume that hives and angioedema in atopic patients immediately after a second snake bite could be attributed to the presence of a specific IgE antibody against the venom, and must not be misinterpreted with the toxic effects that appear later. PMID:7551202

  2. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-01

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees. PMID:25901681

  3. Applications of snake venoms in treatment of cancer

    Institute of Scientific and Technical Information of China (English)

    Vagish; Kumar; Laxman; Shanbhag

    2015-01-01

    Snake venoms are folk medicines used since ages. The components of snake venoms have high specific affinity and actions on cells and cell components. Also snake venoms are largely cytotoxic to tumor cells than normal cells. In addition to these, they have several therapeutic actions that make them an attractive option in the management of cancer. The advent of modern technologies has greatly helped in extracting and identifying new components of therapeutic interests in short time. The article highlights the importance of snake venoms in the management of cancer, so as to motivate curious researchers to devote their skills in this fascinating area. This in turn may bring hope, smile and relief to several cancer patients in future.

  4. Biotechnological applications of brown spider (Loxosceles genus) venom toxins.

    Science.gov (United States)

    Senff-Ribeiro, Andrea; Henrique da Silva, Paulo; Chaim, Olga Meiri; Gremski, Luiza Helena; Paludo, Kátia Sabrina; Bertoni da Silveira, Rafael; Gremski, Waldemiro; Mangili, Oldemir Carlos; Veiga, Silvio Sanches

    2008-01-01

    Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5-40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6-7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.

  5. ZigBee : A Promising Wireless Technology

    Directory of Open Access Journals (Sweden)

    Harleen Kaur Sahota

    2012-12-01

    Full Text Available As a result of high cost of laying the wired networks andincreasing demand for mobility, the wireless network has gainedpopularity in recent times in residential, commercial andindustrial applications. Several wireless technologies haveemerged ranging from short, medium and long distances.Presently, Bluetooth, Infrared and Wireless Local Area Network(WLAN are some of the most widely used wirelesscommunication technologies. These technologies had somelimitations like short battery life, high power dissipation, highdata rate, complex, etc. ZigBee emerges as a powerful wirelessnetwork technology which overcomes these shortcomings ofother wireless technologies. The paper reviews different aspectsof ZigBee network: ZigBee architecture, Devices, RoutingProtocol, Forming and Joining a ZigBee Network.

  6. Gut microbial communities of social bees.

    Science.gov (United States)

    Kwong, Waldan K; Moran, Nancy A

    2016-06-01

    The gut microbiota can have profound effects on hosts, but the study of these relationships in humans is challenging. The specialized gut microbial community of honey bees is similar to the mammalian microbiota, as both are mostly composed of host-adapted, facultatively anaerobic and microaerophilic bacteria. However, the microbial community of the bee gut is far simpler than the mammalian microbiota, being dominated by only nine bacterial species clusters that are specific to bees and that are transmitted through social interactions between individuals. Recent developments, which include the discovery of extensive strain-level variation, evidence of protective and nutritional functions, and reports of eco-physiological or disease-associated perturbations to the microbial community, have drawn attention to the role of the microbiota in bee health and its potential as a model for studying the ecology and evolution of gut symbionts. PMID:27140688

  7. Molecular cloning of a hyaluronidase from Bothrops pauloensis venom gland

    OpenAIRE

    Castanheira, Letícia Eulalio; Rodrigues, Renata Santos; Boldrini-França, Johara; Fonseca, Fernando PP; Henrique-Silva, Flávio; Homsi-Brandeburgo, Maria I; Rodrigues, Veridiana M.

    2014-01-01

    Background Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victim’s body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under inve...

  8. IN VIVO NEUTRALIZATION OF NAJA NIGRICOLLIS VENOM BY UVARIA CHAMAE

    Directory of Open Access Journals (Sweden)

    Omale James

    2013-01-01

    Full Text Available Uvaria chamae is a well known medicinal plant in Nigerian traditional medicine for the management of many diseases, but investigations concerning its pharmacological characteristics are rare. In this study, we evaluate its venom neutralizing properties against Naja nigricollis venom in rats. Freshly collected Uvaria chamae leaves were air dried, powdered and extracted in methanol. To study the antivenom properties, albino rats were orally administered with a dose of 400 mg kg-1 body weight and one hour later, the venom was administered intraperitoneally at a dose of 0.08 mg kg-1 body weight of rats. Albino rats (male weighing between 180-200g were randomly divided into five (5 groups of three (3. Groups 1-5 received water, normal saline, venom, Uvaria chamae and venom, Uvaria chamae respectively. Blood clothing time, bleeding time, antipyretic activity, haemoglobin, RBC, WBC, creatine kinase, AST, ALP and ALT activities total protein antioxidant activity and some blood electrolytes, plasma urea and uric acid were measured. Our results showed that Uvaria chamae methanol extract neutralized some biological effects of Naja nigricollis venom. The venom increased the rectal temperature, enzyme activities, bleeding time and other blood parameters. The plant extract was able to reduce these parameters in the extract treated groups. Details of the results are discussed. From this study, it is clear that U. chamae leaf extract had antivenom activity in animal models. The above results indicate that the plant extract possess potent snake venom neutralizing capacity and could potentially be used for therapeutic purpose in case of snake bite envenomation.

  9. Venom Proteome of the Box Jellyfish Chironex fleckeri

    OpenAIRE

    Brinkman, Diane L; Ammar Aziz; Alex Loukas; Jeremy Potriquet; Jamie Seymour; Jason Mulvenna

    2012-01-01

    The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious heal...

  10. IgY antibodies anti-Tityus caripitensis venom: purification and neutralization efficacy.

    Science.gov (United States)

    Alvarez, Aurora; Montero, Yuyibeth; Jimenez, Eucarys; Zerpa, Noraida; Parrilla, Pedro; Malavé, Caridad

    2013-11-01

    Tityus caripitensis is responsible for most of scorpion stings related to human incidents in Northeastern Venezuela. The only treatment for scorpion envenomation is immunotherapy based on administration of scorpion anti-venom produced in horses. Avian antibodies (IgY) isolated from chicken egg yolks represent a new alternative to be applied as anti-venom therapy. For this reason, we produced IgY antibodies against T. caripitensis scorpion venom and evaluated its neutralizing capacity. The anti-scorpion venom antibodies were purified by precipitation techniques with polyethylene glycol and evaluated by Multiple Antigen Blot Assay (MABA), an indirect ELISA, and Western blot assays. The lethality neutralization was evaluated by preincubating the venom together with the anti-venom prior to testing. The IgY immunoreactivity was demonstrated by a dose-dependent inhibition in Western blot assays where antibodies pre-absorbed with the venom did not recognize the venom proteins from T. caripitensis. The anti-venom was effective in neutralizing 2LD50 doses of T. caripitensis venom (97.8 mg of IgY neutralized 1 mg of T. caripitensis venom). Our results support the future use of avian anti-scorpion venom as an alternative to conventional equine anti-venom therapy in our country. PMID:23994592

  11. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  12. Octopamine modulates honey bee dance behavior

    OpenAIRE

    Barron, Andrew B.; Maleszka, Ryszard; Robert K. Vander Meer; Robinson, Gene E.

    2007-01-01

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic “dance language.” The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopa...

  13. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  14. Extracellular matrix molecules as targets for brown spider venom toxins

    Directory of Open Access Journals (Sweden)

    Veiga S.S.

    2001-01-01

    Full Text Available Loxoscelism, the term used to describe lesions and clinical manifestations induced by brown spider's venom (Loxosceles genus, has attracted much attention over the last years. Brown spider bites have been reported to cause a local and acute inflammatory reaction that may evolve to dermonecrosis (a hallmark of envenomation and hemorrhage at the bite site, besides systemic manifestations such as thrombocytopenia, disseminated intravascular coagulation, hemolysis, and renal failure. The molecular mechanisms by which Loxosceles venoms induce injury are currently under investigation. In this review, we focused on the latest reports describing the biological and physiopathological aspects of loxoscelism, with reference mainly to the proteases recently described as metalloproteases and serine proteases, as well as on the proteolytic effects triggered by L. intermedia venom upon extracellular matrix constituents such as fibronectin, fibrinogen, entactin and heparan sulfate proteoglycan, besides the disruptive activity of the venom on Engelbreth-Holm-Swarm basement membranes. Degradation of these extracellular matrix molecules and the observed disruption of basement membranes could be related to deleterious activities of the venom such as loss of vessel and glomerular integrity and spreading of the venom toxins to underlying tissues.

  15. Venom proteome of the box jellyfish Chironex fleckeri.

    Directory of Open Access Journals (Sweden)

    Diane L Brinkman

    Full Text Available The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis. The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.

  16. Venom proteome of the box jellyfish Chironex fleckeri.

    Science.gov (United States)

    Brinkman, Diane L; Aziz, Ammar; Loukas, Alex; Potriquet, Jeremy; Seymour, Jamie; Mulvenna, Jason

    2012-01-01

    The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome. PMID:23236347

  17. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  18. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  19. How bees distinguish black from white

    Directory of Open Access Journals (Sweden)

    Horridge A

    2014-10-01

    Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, AustraliaAbstract: Bee eyes have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by reflected white but not by black. With ultraviolet reflections excluded by the apparatus, bees can learn to distinguish between black, gray, and white, but theories of color vision are clearly of no help in explaining how they succeed. Human vision sidesteps the issue by constructing black and white in the brain. Bees have quite different and accessible mechanisms. As revealed by extensive tests of trained bees, bees learned two strong signals displayed on either target. The first input was the position and a measure of the green receptor modulation at the vertical edges of a black area, which included a measure of the angular width between the edges of black. They also learned the average position and total amount of blue reflected from white areas. These two inputs were sufficient to help decide which of two targets held the reward of sugar solution, but the bees cared nothing for the black or white as colors, or the direction of contrast at black/white edges. These findings provide a small step toward understanding, modeling, and implementing in silicon the anti-intuitive visual system of the honeybee, in feeding behavior. Keywords: vision, detectors, black/white, color, visual processing

  20. Alexander Mikhailovich Zakharov and his works on the venom apparatus and venoms of some poisonous snakes

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir Alexandrovich

    2013-10-01

    Full Text Available The article gives brief biographical information about a very talented herpetologist Alexander M. Zakharov, and describes the general results of his works on the structure and function of venom glands of some poisonous snakes and their venoms. In his studies, he got the results, which are fundamentally different from the conventional concept of 30s - 70s of the XX century. Unfortunately, among physicians this concept has not changed up today. At that time it was thought that the poisons of Viperidae snakes are almost completely hemotoxic, and poisons of Elapidae (cobra are almost neurotoxic. But A.M.Zaharov found out, that poisons of both types of snakes (Viperidae and Elapidae include three groups of substances: hemotoxins, neurotoxins and non-toxic component – hyaluronidase. Each of these groups of substances is produced by independent part of venom glands and has its own special effect. Neurotoxins act on the central nervous system (mainly the respiratory center, but are greatly destroyed by means of the blood antigen properties and cannot pass through the hematoencephalic barrier. Hyaluronidase , connecting with neurotoxins, has an important property – to "smuggle" neurotoxins through the hematoencephalic barrier exactly into the target organ – the respiratory center in the central nervous system. In this case, neurotoxin enters the respiratory center not through the blood and lymph vessels, but directly through the nerve channel, through synapsis. The main function of hemotoxins is not to kill the victim, but to protect neurotoxins and hyaluronidase from the destructive activity of the victim's blood. Therefore, the target of the poisons of Viperidae and Elapidae snakes is the central nervous system of victims, but Elapidae has almost no hemotoxins. That’s why their striking effect can be achieved only by a strong increase in the amount of neurotoxins and hyaluronidase. Hemotoxins of Viperidae venoms permits to reduce the amount of

  1. Biochemical and pharmacological study of venom of the wolf spider Lycosa singoriensis

    Directory of Open Access Journals (Sweden)

    ZH Liu

    2009-01-01

    Full Text Available The wolf spider Lycosa singoriensis is a large and venomous spider distributed throughout northwestern China. Like other spider venoms, the wolf spider venom is a chemical cocktail. Its protein content is 0.659 mg protein/mg crude venom as determined by the Lowry method. MALDI-TOF analysis revealed that the venom peptides are highly diverse and may be divided into three groups characterized by three independent molecular ranges: 2,000 to 2,500 Da, 4,800 to 5,500 Da and 7,000 to 8,000 Da, respectively. This molecular distribution differs substantially from those of most spider venoms studied so far. This wolf spider venom has low neurotoxic action on mice, but it can induce hemolysis of human erythrocytes. Furthermore, the venom shows antimicrobial activity against prokaryotic and eukaryotic cells.

  2. Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms.

    Science.gov (United States)

    Romano, Joseph D; Tatonetti, Nicholas P

    2016-01-01

    Venoms and venom-derived compounds constitute a rich and largely unexplored source of potentially therapeutic compounds. To facilitate biomedical research, it is necessary to design a robust informatics infrastructure that will allow semantic computation of venom concepts in a standardized, consistent manner. We have designed an ontology of venom-related concepts - named Venom Ontology - that reuses an existing public data source: UniProt's Tox-Prot database. In addition to describing the ontology and its construction, we have performed three separate case studies demonstrating its utility: (1) An exploration of venom peptide similarity networks within specific genera; (2) A broad overview of the distribution of available data among common taxonomic groups spanning the known tree of life; and (3) An analysis of the distribution of venom complexity across those same taxonomic groups. Venom Ontology is publicly available on BioPortal at http://bioportal.bioontology.org/ontologies/CU-VO. PMID:27570672

  3. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    Science.gov (United States)

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  4. Imidacloprid alters foraging and decreases bee avoidance of predators.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb imidacloprid, honey bees (Apis cerana showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera, to other important bee species.

  5. Imidacloprid alters foraging and decreases bee avoidance of predators.

    Science.gov (United States)

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.

  6. Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russellii (Russell's viper) venom.

    Science.gov (United States)

    Dhananjaya, B L; Zameer, F; Girish, K S; D'Souza, Cletus J M

    2011-06-01

    Several plant extracts rich in pharmacologically active compounds have shown to antagonize venom of several species. Mangifera indica has been used against snakebite by the traditional healers. However, there is paucity of scientific data in support. In this study, we evaluated the antivenom potential of aqueous extract of stem bark of M. indica against D. russellii venom-induced pharmacological effects such as life myotoxicity, edema, LD50 etc. The extract inhibited the phospholipase, protease, hyaluronidase, 5'nucleotidase, ATPase and alkaline phosphomonoesterase activities with varying IC50 values. It significantly inhibited both metalloproteases and serine proteases activities. Further, the extract significantly reduced the myotoxicity of the venom, as evident by the reduction of serum creatin kinase and lactate dehydrogenase activities. Though the extract completely inhibited in vitro PLA2 activity, it was unable to completely inhibit in situ hemolytic and in vivo edema-inducing activities, usually brought about by PLA2s. In lethality studies, co-injection of the venom preincubated with the extract showed higher protection than the independent injection of venom, followed by the extract in the mice. However, in both the cases the extract -a cocktail of inhibitors significantly increased the survival time, when compared to that of mice injected (i.p) with the venom alone. These results encourage further studies on the potential use of cocktail of inhibitors in improving the treatment of snake envenomation. Further, this study substantiates the use of M. indica as an antidote against snakebite by the traditional healers.

  7. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes*

    OpenAIRE

    Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.

    2012-01-01

    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for...

  8. Technetium-99m labeling of tityustoxin and venom from the scorpion Tityus serrulatus

    International Nuclear Information System (INIS)

    The tityustoxin, the most toxic fraction from scorpion Tityus serrulatus venom, has been used as a tool in several neurochemical and neuropharmacological studies. Biological activities of labeled and unlabeled tityustoxin and venom were compared. The samples were labeled in the presence of stannous chloride and sodium borohydride with a yield of 60-70% for the venom and 75-85% for tityustoxin and then chromatographed in Sephadex G-10. Biological activities of tityustoxin and venom were preserved after labeling

  9. Venom Variation during Prey Capture by the Cone Snail, Conus textile

    OpenAIRE

    Cecilia A Prator; Murayama, Kellee M.; Schulz, Joseph R.

    2014-01-01

    Observations of the mollusc-hunting cone snail Conus textile during feeding reveal that prey are often stung multiple times in succession. While studies on the venom peptides injected by fish-hunting cone snails have become common, these approaches have not been widely applied to the analysis of the injected venoms from mollusc-hunters. We have successfully obtained multiple injected venom samples from C. textile individuals, allowing us to investigate venom compositional variation during pre...

  10. Evolution of the Toxoglossa Venom Apparatus as Inferred by Molecular Phylogeny of the Terebridae

    OpenAIRE

    Holford, Mandë; Puillandre, Nicolas; Terryn, Yves; Cruaud, Corinne; Olivera, Baldomero; Bouchet, Philippe

    2008-01-01

    Toxoglossate marine gastropods, traditionally assigned to the families Conidae, Terebridae, and Turridae, are one of the most populous animal groups that use venom to capture their prey. These marine animals are generally characterized by a venom apparatus that consists of a muscular venom bulb and a tubular venom gland. The toxoglossan radula, often compared with a hypodermic needle for its use as a conduit to inject toxins into prey, is considered a major anatomical breakthrough that assist...

  11. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    OpenAIRE

    Andrew A Walker; Christiane Weirauch; Fry, Bryan G; Glenn F. King

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insec...

  12. Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (formicidae: ponerinae) from French Guiana

    OpenAIRE

    Dejean, Alain (collab.); Escoubas,Pierre; Orivel, Jérôme

    2015-01-01

    Ant venoms are complex cocktails of toxins employed to subdue prey and to protect the colony from predators and microbial pathogens. Although the extent of ant venom peptide diversity remains largely unexplored, previous studies have revealed the presence of numerous bioactive peptides in most stinging ant venoms. We investigated the venom peptidome of the ponerine ant Odontomachus haematodus using LC-MS analysis and then verified whether the division of labor in the colonies and their geogra...

  13. Production and packaging of a biological arsenal: Evolution of centipede venoms under morphological constraint

    OpenAIRE

    Undheim, Eivind A.B.; Hamilton, Brett R.; Kurniawan, Nyoman D.; Bowlay, Greg; Cribb, Bronwen W.; Merritt, David J.; Fry, Bryan G; Glenn F. King; Venter, Deon J.

    2015-01-01

    Venom peptides have attracted considerable attention because of their value as pharmacological tools and their potential for development as novel pharmaceuticals and bioinsecticides. There is also a growing interest in venoms as model evolutionary systems, particularly for understanding antagonistic coevolutionary processes. We previously demonstrated that although centipede venoms are rich in novel proteins and peptides, there are considerable differences in venom complexity between high-ord...

  14. In vitro hemolytic activity of Bothrops lanceolatus (fer-de-lance) venom

    OpenAIRE

    LJ Martins; PMF de Araújo; Bon, C.; S. HYSLOP; AL de Araújo

    2009-01-01

    Bothrops lanceolatus venom contains a variety of enzymatic and biological activities. The present work investigated the hemolytic activity of this venom and its phospholipase A2 (PLA2). Bothrops lanceolatus venom (6.7 µg/mL) caused indirect hemolysis of cow, horse, rat and sheep erythrocytes, with horse erythrocytes being the most sensitive; no direct hemolysis was observed. Hemolysis in sheep erythrocytes was concentration-dependent (5-11.7 µg/mL) and markedly attenuated by heating the venom...

  15. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation.

    Directory of Open Access Journals (Sweden)

    Coby van Dooremalen

    Full Text Available BACKGROUND: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. METHODOLOGY/PRINCIPAL FINDINGS: Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated. We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. CONCLUSIONS/SIGNIFICANCE: This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.

  16. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  17. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    Science.gov (United States)

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-01-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems. PMID:26463198

  18. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Directory of Open Access Journals (Sweden)

    Si Hyeock Lee

    2016-01-01

    Full Text Available The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide and proteins (e.g., insulin-like peptide binding protein appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.

  19. Preparation of cobra (Naja naja) venom toxoid using gamma-radiations. Part I

    International Nuclear Information System (INIS)

    Detoxification of venom by radiation was investigated. Two concentrations i.e. 0.01% of venom solution were irradiated with different doses of gamma-radiations from cobalt-60 source. The results obtained indicate that the toxicity of venom is markedly attenuated by gamma-radiation. (author)

  20. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    Directory of Open Access Journals (Sweden)

    Sebastián Estrada-Gómez

    2014-07-01

    Full Text Available We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation.

  1. Application of Bees Algorithm in Multi-Join Query Optimization

    OpenAIRE

    Mohammad Alamery; Ahmad Faraahi; H. Haj Seyyed Javadi; Sadegh Nourossana; Hossein Erfani

    2012-01-01

    Multi-join query optimization is an important technique for designing and implementing database management system. It is a crucial factor that affects the capability of database. This paper proposes a Bees algorithm that simulates the foraging behavior of honey bee swarm to solve Multi-join query optimization problem. The performance of the Bees algorithm and Ant Colony Optimization algorithm are compared with respect to computational time and the simulation result indicates that Bees algorit...

  2. A Survey on the Applications of Bee Colony Optimization Techniques

    OpenAIRE

    Dr.Arvinder Kaur; Shivangi Goyal

    2011-01-01

    In this paper an overview of the areas where the Bee Colony Optimization (BCO) and its variants are applied have been given. Bee System was identified by Sato and Hagiwara in 1997 and the Bee Colony Optimization (BCO) was identified by Lucic and Teodorovic in 2001. BCO has emerged as a specialized class of Swarm Intelligence with bees as agents. It is an emerging field for researchers in the field of optimization problems because it provides immense problem solving scope for combinatorial and...

  3. A HONEY BEE SWARM INTELLIGENCE ALGORITHM FOR COMMUNICATION NETWORKS

    OpenAIRE

    Prof. Amol V. Zade; Dr. R. M. Tugnayat

    2015-01-01

    A particular intelligent behavior of a honey bee swarm, foraging behavior, is considered and a new artificial bee colony algorithm simulating this behavior of real honey bees for solving multidimensional and multimodal optimization problems. A new optimization algorithm based on the intelligent behavior of honey bee swarm has been described. The proposed algorithm can be used for solving Traveling salesman problem and other applications. The proposed research work combines the ene...

  4. Imidacloprid alters foraging and decreases bee avoidance of predators

    OpenAIRE

    Ken Tan; Weiwen Chen; Shihao Dong; Xiwen Liu; Yuchong Wang; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 μg/L (34 ppb) imidacloprid, hon...

  5. Blood Puriifcation Treatment Experiences of Bee Stings%血液净化治疗蜂蜇伤的经验体会

    Institute of Scientific and Technical Information of China (English)

    廖莹; 陈秀萍; 郝孟琼; 张俊勇

    2015-01-01

    Objective To summary the clinical experiences of blood puriifcation treatment for bee stings.Methods 11 patients with bee stings were collected in the department of nephrology of People’s hospital of Qixingguan District, the diagnosis and treatment of bee stings time, clinical manifestations, treatment methods and treatment results were analyzed and summarized.Results 11 patients 10 cases of hemodialysis combined with hemoperfusion, hospital stay 1-11 days, an average of 5.3 days; all patients meet with the clinical cure.Conclusion Bee venom can cause severe human allergic reactions, severe bee stings allows patients with multiple organ dysfunction, serious life-threatening. Hemodialysis joint hemoperfusion blood puriifcation treatment is the bases not only help clear the venom, but also help maintain water and electrolyte and acid-base balance of the patient. Blood puriifcation therapy should be concentrated as early as possible, thus improving the prognosis of patients.%目的:总结血液净化治疗蜂蜇伤的临床救治经验。方法以近2年来贵州省毕节市七星关区人民医院肾内科收治的11例蜂蜇伤患者的住院治疗的病历资料为依据,对蜂蜇伤后诊治时间、临床表现、救治方法和治疗结果进行分析总结。结果11例患者中10例进行血液透析联合血液灌流治疗,留院时间1—11天,平均5.3天,全部临床治愈。结论蜂毒可导致人体严重的过敏反应,重症蜂蜇伤可使患者多器官功能受损,严重者危及生命。采用血液透析联合血液灌流的血液净化是基础治疗,既有利于清除蜂毒,也利于维持患者水电解质和酸碱平衡。强调尽早进行血液净化治疗,从而改善患者预后。

  6. 29 CFR 780.123 - Raising of bees.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with...

  7. Invasion of Varroa mites into honey bee brood cells.

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a drone or a worker cell is therefore a crucial step in the life of Varroa m

  8. Trap-nests for stingless bees (Hymenoptera, Meliponini)

    NARCIS (Netherlands)

    Oliveira, Ricardo Caliari; Menezes, Cristiano; Egea Soares, Ademilson Espencer; Imperatriz Fonseca, Vera Lucia

    2013-01-01

    Most stingless bee species build their nests inside tree hollows. In this paper, we present trap-nest containers which simulate nesting cavities so as to attract swarms of stingless bees. Although regularly used by stingless bee beekeepers in Brazil, this technique to obtain new colonies has not yet

  9. Multiyear survey targeting disease incidence in US honey bees

    Science.gov (United States)

    The US National Honey Bee Disease Survey sampled colony pests and diseases from 2009 to 2014. We verified the absence of Tropilaelaps spp., the Asian honey bee (Apis cerana), and slow bee paralysis virus. Endemic health threats were quantified, including Varroa destructor, Nosema spp., and eight hon...

  10. The honey bee parasite Nosema ceranae: transmissible via food exchange?

    Directory of Open Access Journals (Sweden)

    Michael L Smith

    Full Text Available Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cages were separated by one screen, food could be passed between the older bees and the young bees, but when separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P=0.0097. Young bees fed by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test 40.8%; 2-Screen Test 3.4%; Solo Control 2.8%. Although fecal-oral transmission is still possible in this experimental design, oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.

  11. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    OpenAIRE

    Coby van Dooremalen; Lonne Gerritsen; Bram Cornelissen; van der Steen, Jozef J. M.; Frank van Langevelde; Tjeerd Blacquière

    2012-01-01

    BACKGROUND: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived w...

  12. Social apoptosis in honey bee superorganisms.

    Science.gov (United States)

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite's original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  13. Honey Bee Infecting Lake Sinai Viruses.

    Science.gov (United States)

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-01

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels. PMID:26110586

  14. Does bee pollen cause to eosinophilic gastroenteropathy?

    Science.gov (United States)

    Güç, Belgin Usta; Asilsoy, Suna; Canan, Oğuz; Kayaselçuk, Fazilet

    2015-09-01

    Bee pollen is given to children by mothers in order to strengthen their immune systems. There are no studies related with the side effects of bee polen in the literature. In this article, the literature was reviewed by presenting a case of allergic eosinophilic gastropathy related with bee polen. A 5-year old child was admitted due to abdominal pain. Edema was detected on the eyelids and pretibial region. In laboratory investigations, pathology was not detected in terms of hepatic and renal causes that would explain the protein loss of the patient diagnosed with hypoproteinemia and hypoalbuminemia. Urticaria was detected during the follow-up visit. When the history of the patient was deepened, it was learned that bee pollen was given to the patient every day. The total eosinophil count was found to be 1 800/mm(3). Allergic gastroenteropathy was considered because of hypereosinophilia and severe abdominal pain and endoscopy was performed. Biopsy revealed abundant eosinophils in the whole gastric mucosa. A diagnosis of allergic eosinophilic gastropathy was made. Bee polen was discontinued. Abdominal pain and edema disappeared in five days. Four weeks later, the levels of serum albumin and total eosinophil returned to normal. PMID:26568697

  15. Social apoptosis in honey bee superorganisms

    Science.gov (United States)

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite’s original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  16. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  17. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.

    Directory of Open Access Journals (Sweden)

    Lina De Smet

    Full Text Available The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.

  18. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.

    Science.gov (United States)

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717

  19. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Directory of Open Access Journals (Sweden)

    Barrett Anthony Klein

    Full Text Available Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.. Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  20. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism.

    Science.gov (United States)

    Núñez, Vitelbina; Cid, Pedro; Sanz, Libia; De La Torre, Pilar; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2009-11-01

    The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA(2) molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA(2) molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil. PMID:19665598