WorldWideScience

Sample records for bee honey setting

  1. Modeling Honey Bee Populations.

    Directory of Open Access Journals (Sweden)

    David J Torres

    Full Text Available Eusocial honey bee populations (Apis mellifera employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  2. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. PMID:25196470

  3. Widespread occurrence of honey bee pathogens in solitary bees

    OpenAIRE

    Ravoet, J.; De Smet, L.; Meeus, I; Smagghe, G.; Wenseleers, Tom; de Graaf, D C

    2014-01-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our resul...

  4. Metatranscriptomic analyses of honey bee colonies.

    Science.gov (United States)

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  5. Metatranscriptomic analyses of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Cansu Ozge Tozkar

    2015-03-01

    Full Text Available Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers of apiculture, harboring 5 subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library remained. These were then mapped to a curated set of public sequences containing ca. 60 megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp., neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae, Varroa destructor-1 virus, Sacbrood virus, Apis filamentous virus and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus, Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly. We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  6. Sickness Behavior in Honey Bees

    Science.gov (United States)

    Kazlauskas, Nadia; Klappenbach, Martín; Depino, Amaicha M.; Locatelli, Fernando F.

    2016-01-01

    During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model. PMID:27445851

  7. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Science.gov (United States)

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear. PMID:22829932

  8. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Directory of Open Access Journals (Sweden)

    Zakee L Sabree

    Full Text Available Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012 Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3: e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  9. Insemination of Honey Bee Queens

    OpenAIRE

    SOJKOVÁ, Lada

    2013-01-01

    Instrumental insemination honey bee queen is in Czech Republic only possibility, how make controlled mating bees. Main significance lies in expanding desirable feature in the bee colony. Instrumental inseminations are thus obtained the required feature, that are the mildness of bees, sitting on the comb, or resistance to disease. Insemination must precede controlled breeding drones and controlled breeding queens. That drones were sexually mature at the time of insemination must be breeding dr...

  10. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  11. Viral diseases in honey bee queens

    OpenAIRE

    Francis, Roy Mathew

    2012-01-01

    Honey bees are one of the most important insects useful to human beings. They provide us with several biological products such as honey and wax, but more importantly carries out the invaluable laborious work of pollination. The honey bee industry in Europe and elsewhere has been plagued by recently introduced pests such as varroa mites and subsequent rise of viruses which has resulted in widespread decline of bee population. Of the numerous pathogens of honey bees that are being studied, viru...

  12. Viral diseases in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew

    was developed to diagnose three viruses in honey bees. Quantitative PCR was used to investigate the distribution of two popular viruses in five different tissues of 86 honey bee queens. Seasonal variation of viral infection in honey bee workers and varroa mites were determined by sampling 23 colonies...

  13. IMPACT OF HONEY BEE POLLINATION ON POD SET OF MUSTARD (BRASSICA JUNCEA L.: CRUCIFERAE AT PANTNAGAR

    Directory of Open Access Journals (Sweden)

    VIMLA GOSWAMI

    2014-03-01

    Full Text Available The diversity and abundance of different insect visitors on mustard (Brassica juncea were studied at Pantnagar. A total of 19 insect visitors belonging to order Hymenoptera (15 and Diptera (4 were found to visit the mustard blossoms at Pantnagar. The abundance (percentage of insect/m2/2min. of Hymenopterans were maximum followed by the Dipterans and others. In Hymenopterans, the honeybees (Apis bees were observed maximum followed by non Apis bees and the scolid wasp. Insect pollinations increased the number of pods and percent pod set.

  14. Cocaine Tolerance in Honey Bees

    OpenAIRE

    Eirik Søvik; Jennifer L. Cornish; Barron, Andrew B.

    2013-01-01

    Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor...

  15. Honey bee genotypes and the environment

    DEFF Research Database (Denmark)

    Meixner, Marina D; Büchler, Ralph; Costa, Cecilia;

    2014-01-01

    Although knowledge about honey bee geographic and genetic diversity has increased tremendously in recent decades, the adaptation of honey bees to their local environment has not been well studied. The current demand for high economic performance of bee colonies with desirable behavioural...

  16. Honey and honey bees of Guinea-Bissau

    OpenAIRE

    Pinto, M. Alice; Batista, Vânia; Alves, Dulce; Vilas-Boas, Miguel

    2011-01-01

    Beekeeping is an ancient activity in Guinea-Bissau. The ancestral interaction with bees stands on “honey hunting” of natural colonies or use of traditional hives hanged on trees. These hives are perfect shelters for swarms but the colony is destroyed every year after honey harvesting. Bees are therefore kept as wild as ever with little, if any, interference from man. Reports on honey bees and honey of Guinea-Bissau are scarce. Herein we report the first data on honey quality and provide a...

  17. Pathogen Webs in Collapsing Honey Bee Colonies

    OpenAIRE

    Cornman, R Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Jay D. Evans

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, ...

  18. Proceedings "… Towards Resilient Honey Bees …"

    OpenAIRE

    Dooremalen, van, C.; Zweep, A.

    2015-01-01

    The Research Roadmap is a co-creation by Bees@wur and the Dutch government, and the (inter)national researchers participating in the workshop Resilient Honey bees 23-24 November 2015, Castle Hoekelum, Bennekom, The Netherlands

  19. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    Science.gov (United States)

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-01-01

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528

  20. Honey Bees Inspired Optimization Method: The Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Ernesto Mastrocinque

    2013-11-01

    Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  1. Cocaine tolerance in honey bees.

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    Full Text Available Increasingly invertebrates are being used to investigate the molecular and cellular effects of drugs of abuse to explore basic mechanisms of addiction. However, in mammals the principle factors contributing to addiction are long-term adaptive responses to repeated drug use. Here we examined whether adaptive responses to cocaine are also seen in invertebrates using the honey bee model system. Repeated topical treatment with a low dose of cocaine rendered bees resistant to the deleterious motor effects of a higher cocaine dose, indicating the development of physiological tolerance to cocaine in bees. Cocaine inhibits biogenic amine reuptake transporters, but neither acute nor repeated cocaine treatments caused measurable changes in levels of biogenic amines measured in whole bee brains. Our data show clear short and long-term behavioural responses of bees to cocaine administration, but caution that, despite the small size of the bee brain, measures of biogenic amines conducted at the whole-brain level may not reveal neurochemical effects of the drug.

  2. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  3. Synergistic effects of non-Apis bees and honey bees for pollination services.

    Science.gov (United States)

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-03-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  4. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites.

    Directory of Open Access Journals (Sweden)

    Miguel E Arechavaleta-Velasco

    Full Text Available Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05 on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2 including Atlastin, Ataxin and Neurexin-1 (AmNrx1, which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.

  5. Mass envenomations by honey bees and wasps.

    OpenAIRE

    Vetter, R S; Visscher, P.K.; Camazine, S

    1999-01-01

    Stinging events involving honey bees and wasps are rare; most deaths or clinically important incidents involve very few stings (< 10) and anaphylactic shock. However, mass stinging events can prove life-threatening via the toxic action of the venom when injected in large amounts. With the advent of the Africanized honey bee in the southwestern United States and its potential for further spread, mass envenomation incidents will increase. Here we review the literature on mass stinging events in...

  6. The Plight of the Honey Bee

    Science.gov (United States)

    Hockridge, Emma

    2010-01-01

    The decline of colonies of honey bees across the world is threatening local plant biodiversity and human food supplies. Neonicotinoid pesticides have been implicated as a major cause of the problem and are banned or suspended in several countries. Other factors could also be lowering the resistance of bees to opportunist infections by, for…

  7. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-mccabe, Kirsten J [Los Alamos National Laboratory; Wingo, Robert M [Los Alamos National Laboratory; Haarmann, Timothy K [Los Alamos National Laboratory

    2008-01-01

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response to TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.

  8. BEES, HONEY AND HEALTH IN ANTIQUITY

    Directory of Open Access Journals (Sweden)

    L. Cilliers

    2012-03-01

    Full Text Available

    In antiquity bees and honey had a very special significance. Honey was indeed considered to drip from heaven as the food of the gods. As an infant Zeus was fed on honey in the cave of Dicte, by bees and the beautiful Melissa, whose name became the Greek word for “bee”. When the ancient Romans wished you luck they said “May honey drip on you!” and for the Israelites Palestine was a “land of milk and honey” (Forbes 1957:85-87. In his Georgics Vergil likened the inhabitants of the new Golden Age to an orderly swarm of bees (Johnson 1980:90-105, and the word “honeymoon” probably derived from the ancient custom of newlyweds to drink mead (honey-wine for a month after their wedding (Hajar 2002:5-6. Allsop and Miller state that even today honey is popularly associated with warmth, nostalgia, goodness and flattery (1996:513-520.

    In this study the origins of apiculture (bee-keeping and the status and uses of honey in antiquity are analysed – with emphasis on its assumed value as a health promoting agent.

  9. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    Science.gov (United States)

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-01-01

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations. PMID:27188735

  10. Honey Bee Infecting Lake Sinai Viruses.

    Science.gov (United States)

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-01

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels. PMID:26110586

  11. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  12. Allee effects and colony collapse disorder in honey bees

    Science.gov (United States)

    We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...

  13. Acute paralysis viruses of the honey bee

    Institute of Scientific and Technical Information of China (English)

    Chunsheng; Hou; Nor; Chejanovsky

    2014-01-01

    <正>The alarming decline of honey bee(Apis mellifera)colonies in the last decade drove the attention and research to several pathogens of the honey bee including viruses.Viruses challenge the development of healthy and robust colonies since they manage to prevail in an asymptomatic mode and reemerge in acute infections following external stresses,as well as they are able to infect new healthy colonies(de Miranda J R,et al.,2010a;de Miranda J R,et al.,2010b;Di Prisco G,et al.,2013;Nazzi F,et al.,2012;Yang X L,et al.,2005).

  14. Octopamine modulates honey bee dance behavior

    OpenAIRE

    Barron, Andrew B.; Maleszka, Ryszard; Robert K. Vander Meer; Robinson, Gene E.

    2007-01-01

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic “dance language.” The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopa...

  15. A HONEY BEE SWARM INTELLIGENCE ALGORITHM FOR COMMUNICATION NETWORKS

    OpenAIRE

    Prof. Amol V. Zade; Dr. R. M. Tugnayat

    2015-01-01

    A particular intelligent behavior of a honey bee swarm, foraging behavior, is considered and a new artificial bee colony algorithm simulating this behavior of real honey bees for solving multidimensional and multimodal optimization problems. A new optimization algorithm based on the intelligent behavior of honey bee swarm has been described. The proposed algorithm can be used for solving Traveling salesman problem and other applications. The proposed research work combines the ene...

  16. Host Range Expansion of Honey Bee Black Queen Cell Virus in the Bumble Bee, Bombus huntii

    Science.gov (United States)

    Honey bee viruses display a host range that is not restricted to their original host, European honey bees, Apis mellifera. Here we provide the first evidence that Black Queen Cell Virus (BQCV), one of the most prevalent honey bee viruses, can cause an infection in both laboratory-reared and field-co...

  17. One moment in time : Gene expression analysis of honey bees; nurse bees v.s. foragers

    OpenAIRE

    Rimestad, Tove

    2012-01-01

    Honey bees live in complex societies based on a division of labour. The honey bee workers specialise in different tasks throughout their lives, starting off as nurse bees and ending as foragers. The nurse bees and foragers display interesting phenotypic differences that do not have its origins in differences at genotype level, but in differences in gene expression. This thesis presents the results from an expression analysis done on honey bee workers comparing the expression profiles of nu...

  18. Virus infections in Brazilian honey bees

    Science.gov (United States)

    Brazilian honey bees are famously resistant to disease, perhaps because of long-term introgression from Apis mellifera subsp. scutellata. Recently, colony losses were observed in the Altinópolis region of southeastern Brazil. We sampled 200 colonies from this region for Israeli acute paralysis vir...

  19. Testing Honey Bees' Avoidance of Predators

    Science.gov (United States)

    Robinson, Jesse Wade; Nieh, James C.; Goodale, Eben

    2012-01-01

    Many high school science students do not encounter opportunities for authentic science inquiry in their formal coursework. Ecological field studies can provide such opportunities. The purpose of this project was to teach students about the process of science by designing and conducting experiments on whether and how honey bees (Apis mellifera)…

  20. Social apoptosis in honey bee superorganisms.

    Science.gov (United States)

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite's original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  1. Invasion of Varroa mites into honey bee brood cells.

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a drone or a worker cell is therefore a crucial step in the life of Varroa m

  2. Red mason bees cannot compete with honey bees for floral resources in a cage experiment

    OpenAIRE

    Hudewenz, Anika; Klein, Alexandra‐Maria

    2015-01-01

    Abstract Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whet...

  3. No apparent correlation between honey bee forager gut microbiota and honey production

    OpenAIRE

    Horton, Melissa A.; Oliver, Randy; Irene L. Newton

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amount...

  4. Molecular diagnosis and characterization of honey bee pathogens

    OpenAIRE

    Forsgren, Eva

    2009-01-01

    Bees are crucial for maintaining biodiversity by pollination of numerous plant species. The European honey bee, Apis mellifera, is of great importance not only for the honey they produce, but also as vital pollinators of agricultural and horticultural crops. The economical value of pollination has been estimated to be several billion dollars, and pollinator declines are a global biodiversity threat. Hence, honey bee health has great impact on the economy, food production and biodiversity worl...

  5. Phylogenetic analysis of honey bee behavioral evolution.

    Science.gov (United States)

    Raffiudin, Rika; Crozier, Ross H

    2007-05-01

    DNA sequences from three mitochondrial (rrnL, cox2, nad2) and one nuclear gene (itpr) from all 9 known honey bee species (Apis), a 10th possible species, Apis dorsata binghami, and three outgroup species (Bombus terrestris, Melipona bicolor and Trigona fimbriata) were used to infer Apis phylogenetic relationships using Bayesian analysis. The dwarf honey bees were confirmed as basal, and the giant and cavity-nesting species to be monophyletic. All nodes were strongly supported except that grouping Apis cerana with A. nigrocincta. Two thousand post-burnin trees from the phylogenetic analysis were used in a Bayesian comparative analysis to explore the evolution of dance type, nest structure, comb structure and dance sound within Apis. The ancestral honey bee species was inferred with high support to have nested in the open, and to have more likely than not had a silent vertical waggle dance and a single comb. The common ancestor of the giant and cavity-dwelling bees is strongly inferred to have had a buzzing vertical directional dance. All pairwise combinations of characters showed strong association, but the multiple comparisons problem reduces the ability to infer associations between states between characters. Nevertheless, a buzzing dance is significantly associated with cavity-nesting, several vertical combs, and dancing vertically, a horizontal dance is significantly associated with a nest with a single comb wrapped around the support, and open nesting with a single pendant comb and a silent waggle dance. PMID:17123837

  6. POLLUTION MONITORING OF PUGET SOUND WITH HONEY BEES

    Science.gov (United States)

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were genera...

  7. A fluorescent method for visualization of Nosema infection in whole-mount honey bee tissues.

    Science.gov (United States)

    Snow, Jonathan W

    2016-03-01

    Honey bees are critical pollinators in both agricultural and ecological settings. The Nosema species, ceranae and apis, are microsporidian parasites that are pathogenic to honey bees. While current methods for detecting Nosema infection have key merits, additional techniques with novel properties for studying the cell biology of Nosema infection are highly desirable. We demonstrate that whole-mount staining of honey bee midgut tissue with chitin-binding agent Fluorescent Brightener 28 and DNA dye Propidium Iodide allows for observation of Nosema infection in structurally intact tissue, providing a new tool for increasing our understanding of Nosema infection at the cellular and tissue level. PMID:26802732

  8. Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees.

    Science.gov (United States)

    Johnston, Brittany A; Hooks, Katarzyna B; McKinstry, Mia; Snow, Jonathan W

    2016-03-01

    Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees. The IRE1-dependent splicing of the mRNA for the transcription factor Xbp1, leading to translation of an isoform with more transactivation potential, represents the most conserved of the UPR pathways. Honey bees and other Apoidea possess unique features in the Xbp1 mRNA splice site, which we reasoned could have functional consequences for the IRE1 pathway. However, we find robust induction of target genes upon UPR stimulation. In addition, the IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA upon UPR, is conserved. By providing foundational knowledge about the UPR in the honey bee and the relative sensitivity of this species to divergent stresses, this work stands to improve our understanding of the mechanistic underpinnings of honey bee health and disease. PMID:26699660

  9. Autogrooming by resistant honey bees challenged with individual tracheal mites

    OpenAIRE

    Danka, Robert; Villa, José

    2003-01-01

    Autogrooming responses of resistant and susceptible strains of honey bees were measured when bees were challenged by placing adult female tracheal mites on their thoraces. Marked, young adult workers of the two strains of bees were added to colonies in observation hives. We transferred a single, live, adult, female mite onto the mesoscutum of a marked bee, monitored the bee for seven minutes and then removed it and searched for the mite. Greater proportions of resistant bees autogroomed, and ...

  10. Magnetic Sensing through the Abdomen of the Honey bee.

    Science.gov (United States)

    Liang, Chao-Hung; Chuang, Cheng-Long; Jiang, Joe-Air; Yang, En-Cheng

    2016-01-01

    Honey bees have the ability to detect the Earth's magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception. PMID:27005398

  11. Taxonomy Icon Data: honey bee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available honey bee Apis mellifera Arthropoda Apis_mellifera_L.png Apis_mellifera_NL.png Apis_mellife...ra_S.png Apis_mellifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellife...ra&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NS ...

  12. Predictive markers of honey bee colony collapse.

    Directory of Open Access Journals (Sweden)

    Benjamin Dainat

    Full Text Available Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies.

  13. Honey Bees, Satellites and Climate Change

    Science.gov (United States)

    Esaias, W.

    2008-05-01

    Life isn't what it used to be for honey bees in Maryland. The latest changes in their world are discussed by NASA scientist Wayne Esaias, a biological oceanographer with NASA Goddard Space Flight Center. At Goddard, Esaias has examined the role of marine productivity in the global carbon cycle using visible satellite sensors. In his personal life, Esaias is a beekeeper. Lately, he has begun melding his interest in bees with his professional expertise in global climate change. Esaias has observed that the period when nectar is available in central Maryland has shifted by one month due to local climate change. He is interested in bringing the power of global satellite observations and models to bear on the important but difficult question of how climate change will impact bees and pollination. Pollination is a complex, ephemeral interaction of animals and plants with ramifications throughout terrestrial ecosystems well beyond the individual species directly involved. Pollinators have been shown to be in decline in many regions, and the nature and degree of further impacts on this key interaction due to climate change are very much open questions. Honey bee colonies are used to quantify the time of occurrence of the major interaction by monitoring their weight change. During the peak period, changes of 5-15 kg/day per colony represent an integrated response covering thousands of hectares. Volunteer observations provide a robust metric for looking at spatial and inter-annual variations due to short term climate events, complementing plant phenology networks and satellite-derived vegetation phenology data. In central Maryland, the nectar flows are advancing by about -0.6 d/y, based on a 15 yr time series and a small regional study. This is comparable to the regional advancement in the spring green-up observed with MODIS and AVHRR. The ability to link satellite vegetation phenology to honey bee forage using hive weight changes provides a basis for applying satellite

  14. Socialized Medicine: Individual and communal disease barriers in honey bees

    Science.gov (United States)

    Honey bees are attacked by numerous parasites and pathogens toward which they present defenses. In this review, we will briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biologies of specific taxonomic groups mainly as they relate to virulence and possible de...

  15. Invasion of Varroa mites into honey bee brood cells.

    OpenAIRE

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a drone or a worker cell is therefore a crucial step in the life of Varroa mites. In this thesis, individual mites, the population of mites and characteristics of honey bee brood cells have been studied in relation to invasion behaviour. In addition, a simple model has been...

  16. Why are African honey bees and not European bees invasive? Pollen diet diversity in community experiments

    OpenAIRE

    Rogel Villanueva-G.,; Roubik, David

    2004-01-01

    We studied resource use and competition by varieties of a honey bee, Apis mellifera, through re-introducing European A. m. ligustica in experimental apiaries in a habitat 'saturated' by African (or hybrid African and European) honey bees that naturally colonized forest in the Yucatan Peninsula of Mexico. Over 171 pollen species comprised honey bee diets. The Morisita-Horn similarity index (highest similarity = 1.0) between the two honey bee races was 0.76 for pollen use and, from the average ...

  17. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-06-01

    Full Text Available The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for

  18. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    Science.gov (United States)

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  19. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Science.gov (United States)

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  20. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State

    OpenAIRE

    Adam G Dolezal; Carrillo-Tripp, Jimena; Miller, W. Allen; Bryony C. Bonning; Toth, Amy L.

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of int...

  1. Kin discrimination by worker honey bees in genetically mixed groups

    OpenAIRE

    Breed, Michael D.; Butler, Linda; Stiller, Tammy M.

    1985-01-01

    We tested the hypothesis that in a genetically mixed assemblage of worker honey bees, individual workers would behave differently toward unfamiliar sisters than toward unfamiliar nonsisters. Groups of worker honey bees of mixed genetic composition were assembled by collecting pupae from separate colonies and placing the worker bees together on eclosion. A total of 10 workers, 5 from each of two kin groups, were used to form each group. When the workers were 5 days old, a worker of one of the ...

  2. Parasite-host interactions between the Varroa mite and the honey bee

    OpenAIRE

    Calis, J.N.M.

    2001-01-01

    IntroductionVarroa mites as parasites of honey beesVarroa destructor (Anderson & Trueman, 2000), is the most important pest of European races of the Western honey bee, Apis mellifera L., weakening bees and vectoring bee diseases (Matheson, 1993). Over the past decades it has spread all over the world and control measures are required to maintain healthy honey bee colonies.Originally, this mite only occurred in colonies of the Eastern honey bee, Apis cerana Fabr., in Asia. Varroa destructor wa...

  3. Impacts of Austrian Climate Variability on Honey Bee Mortality

    Science.gov (United States)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  4. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status.

    Science.gov (United States)

    Mogren, Christina L; Lundgren, Jonathan G

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  5. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    Science.gov (United States)

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  6. Antagonistic interactions between honey bee bacterial symbionts and implications for disease

    Directory of Open Access Journals (Sweden)

    Armstrong Tamieka-Nicole

    2006-03-01

    Full Text Available Abstract Background Honey bees, Apis mellifera, face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. One route by which honey bees and other insects might combat disease is through the shielding effects of their microbial symbionts. Bees carry a diverse assemblage of bacteria, very few of which appear to be pathogenic. Here we explore the inhibitory effects of these resident bacteria against the primary bacterial pathogen of honey bees, Paenibacillus larvae. Results Here we isolate, culture, and describe by 16S rRNA and protein-coding gene sequences 61 bacterial isolates from honey bee larvae, reflecting a total of 43 distinct bacterial taxa. We culture these bacteria alongside the primary larval pathogen of honey bees, Paenibacillus larvae, and show that many of these isolates severely inhibit the growth of this pathogen. Accordingly, symbiotic bacteria including those described here are plausible natural antagonists toward this widespread pathogen. Conclusion The results suggest a tradeoff in social insect colonies between the maintenance of potentially beneficial bacterial symbionts and deterrence at the individual and colony level of pathogenic species. They also provide a novel mechanism for recently described social components behind disease resistance in insect colonies, and point toward a potential control strategy for an important bee disease.

  7. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    NARCIS (Netherlands)

    Dooremalen, van C.; Gerritsen, L.J.M.; Cornelissen, B.; Steen, van der J.J.M.; Langevelde, van F.; Blacquiere, T.

    2012-01-01

    Background: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to s

  8. REVIEW: The Diversity of Indigenous Honey Bee Species of Indonesia

    Directory of Open Access Journals (Sweden)

    SOESILAWATI HADISOESILO

    2001-01-01

    Full Text Available It has been known that Indonesia has the most diverse honey bee species in the world. At least five out of nine species of honey bees are native to Indonesia namely Apis andreniformis, A. dorsata, A. cerana, A. koschevnikovi, and A. nigrocincta. One species, A. florea, although it was claimed to be a species native to Indonesia, it is still debatable whether it is really found in Indonesia or not. The new species, A. nuluensis, which is found in Sabah, Borneo is likely to be found in Kalimantan but it has not confirmed yet. This paper discusses briefly the differences among those native honey bees.

  9. Iridovirus and microsporidian linked to honey bee colony decline.

    Directory of Open Access Journals (Sweden)

    Jerry J Bromenshenk

    Full Text Available BACKGROUND: In 2010 Colony Collapse Disorder (CCD, again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. METHODOLOGY/PRINCIPAL FINDINGS: We used Mass spectrometry-based proteomics (MSP to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV (Iridoviridae associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1 bees from commercial apiaries sampled across the U.S. in 2006-2007, (2 bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3 bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. CONCLUSIONS/SIGNIFICANCE: These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey

  10. Parasite pressures on feral honey bees (Apis mellifera sp..

    Directory of Open Access Journals (Sweden)

    Catherine E Thompson

    Full Text Available Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  11. Parasite pressures on feral honey bees (Apis mellifera sp.).

    Science.gov (United States)

    Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840

  12. Honey bees and bumble bees respond differently to inter- and intra-specific encounters

    OpenAIRE

    Rogers, Shelley; Cajamarca, Peter; Tarpy, David; Burrack, Hannah

    2013-01-01

    Multiple bee species may forage simultaneously at a common resource. Physical encounters among these bees may modify their subsequent foraging behavior and shape pollinator distribution and resource utilization in a plant community. We observed physical encounters between honey bees, Apis mellifera, and bumble bees, Bombus impatiens, visiting artificial plants in a controlled foraging arena. Both species were more likely to leave the plant following an encounter with another bee, but differed...

  13. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    OpenAIRE

    Coby van Dooremalen; Lonne Gerritsen; Bram Cornelissen; van der Steen, Jozef J. M.; Frank van Langevelde; Tjeerd Blacquière

    2012-01-01

    BACKGROUND: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived w...

  14. The bacterial communities associated with honey bee (Apis mellifera foragers.

    Directory of Open Access Journals (Sweden)

    Vanessa Corby-Harris

    Full Text Available The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop, a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1 despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2 corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3 the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae, highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  15. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    Directory of Open Access Journals (Sweden)

    Evans JD

    2008-06-01

    Full Text Available Abstract Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey

  16. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    Directory of Open Access Journals (Sweden)

    Elsa Youngsteadt

    Full Text Available Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus, the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  17. Honey bee success predicted by landscape composition in Ohio, USA

    OpenAIRE

    DB Sponsler; RM Johnson

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating c...

  18. First detection of viruses in Africanized honey bees from Peru

    Institute of Scientific and Technical Information of China (English)

    Orlando; Yaez; Graciano; Tejada; Peter; Neumann

    2014-01-01

    <正>Dear Editor,The ability of the Western honey bee,Apis mellifera,to adapt to most climates of the world and the ongoing standardization of colony management has made this species of honey bees the most important species for crop pollination.In recent years,Peru emerged as a main exporter of industrial crops.This industry is mainly concentrated in the Peruvian coastal region,because the local climate permits off-season production

  19. Assessment of risks to honey bees posed by guttation

    OpenAIRE

    Pistorius, Jens; Campbell, Peter; Forster, Rolf; Lortsch, Jose-Anne; Marolleau, Franck; Maus, Christian; Lückmann, Johannes; Suzuki, Hiroyuki; Wallner, Klaus; Becker, Roland

    2012-01-01

    Background: Besides their nectar and pollen collecting activities, honey bees also forage water. Guttation droplets may be used as a water source. Measurements of high residue levels of some intrinsically highly toxic, systemic insecticides in guttation droplets triggered research activities on the potential risk for honey bees. Since 2009, a large number of studies have been conducted on the environmental conditions and factors favoring guttation, foraging of guttation, the occurrence of gut...

  20. Effects of cocaine on honey bee dance behaviour

    OpenAIRE

    Barron, Andrew B.; Maleszka, Ryszard; Helliwell, Paul G.; Robinson, Gene E

    2008-01-01

    The role of cocaine as an addictive drug of abuse in human society is hard to reconcile with its ecological role as a natural insecticide and plant-protective compound, preventing herbivory of coca plants (Erythroxylum spp.). This paradox is often explained by proposing a fundamental difference in mammalian and invertebrate responses to cocaine, but here we show effects of cocaine on honey bees (Apis mellifera L.) that parallel human responses. Forager honey bees perfo...

  1. Neural effects of insecticides in the honey bee

    OpenAIRE

    Belzunces, Luc; Tchamitchian, Sylvie; Brunet, Jean-Luc

    2012-01-01

    International audience During their foraging activity, honey bees are often exposed to direct and residual contacts with pesticides, especially insecticides, all substances specifically designed to kill, repel, attract or perturb the vital functions of insects. Insecticides may elicit lethal and sublethal effects of different natures that may affect various biological systems of the honey bee. The first step in the induction of toxicity by a chemical is the interaction between the toxic co...

  2. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives

    OpenAIRE

    Rokop, Z. P.; Horton, M. A.; Newton, I. L. G.

    2015-01-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of ...

  3. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

    OpenAIRE

    Catherine E Thompson; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Stéphane Pietravalle; Budge, Giles E.

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires...

  4. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid).

    Science.gov (United States)

    Cresswell, James E; Page, Christopher J; Uygun, Mehmet B; Holmbergh, Marie; Li, Yueru; Wheeler, Jonathan G; Laycock, Ian; Pook, Christopher J; de Ibarra, Natalie Hempel; Smirnoff, Nick; Tyler, Charles R

    2012-12-01

    Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125μg l(-1). Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10-30% in the environmentally relevant range of up to 10μg l(-1), but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations. PMID:23044068

  5. A quantitative model of honey bee colony population dynamics.

    Directory of Open Access Journals (Sweden)

    David S Khoury

    Full Text Available Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  6. Ecological adaptation of diverse honey bee (Apis mellifera populations.

    Directory of Open Access Journals (Sweden)

    Robert Parker

    Full Text Available BACKGROUND: Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. RESULTS: Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. CONCLUSIONS: Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context.

  7. Nosema ceranae escapes fumagillin control in honey bees.

    Directory of Open Access Journals (Sweden)

    Wei-Fone Huang

    2013-03-01

    Full Text Available Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2 in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  8. Detecting population admixture in honey bees of Serbia

    DEFF Research Database (Denmark)

    Nedic, Nebojsa; Francis, Roy Mathew; Stanisavljevic, Ljubisa;

    2014-01-01

    morphometrics and 122 bees were successfully analysed using 24 DNA microsatellite markers. A combination of methods including multivariate statistics and assignment tests (frequency-based and Bayesian) revealed the honey bees of this region to resemble the subspecies Apis mellifera macedonica, Apis mellifera...

  9. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  10. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    OpenAIRE

    Francis, Roy M; NIELSEN, STEEN L.; Per Kryger

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were ...

  11. Radioactive contamination of honey and other bee-keeping products

    International Nuclear Information System (INIS)

    Great amount of dust is collected in propolis under emergency atmospheric fallouts. Specific coefficient of the product migration amounts to several m2 per 1 kg. Propolis is a good biological indicator of radioactive fallouts. The propolis collection is inadmissible after radioactive fallouts. Cocoon residuals obtained during bees-wax separation contain many radionuclides and should be disposed in special places. Nuclides are absent in bees-wax. Nuclides accumulated absent in a bee organism migrate into honey and queen milk, the honey is contaminated mainly via biogenic path

  12. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season

    OpenAIRE

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout ...

  13. Studies on wings symmetry and honey bee races discrimination by using standard and geometric morphometrics

    OpenAIRE

    Abou-Shaara H.F.; Al-Ghamdi A.A.

    2012-01-01

    Morphometric is an essential tool for honey bee races discrimination and characterization. Such vital tool has been applied widely in honey bee researches. Unfortunately there is no available literature for confirming honey bee wings symmetry. Therefore, standard and geometric morphometric analyses were employed for investigating wings symmetry as well as for discriminating between Carniolan and Yemeni honey bees. Moreover, three angles of hind wings (H1, H...

  14. Contribution to the epidemiological profile of main honey bee brood fungal diseases

    OpenAIRE

    Pires, Sância; Durão, Luís; Karolos, Douvlataniotis; Vasileios, Papazis; Pilão, Vasco; Rodrigues, Paula

    2015-01-01

    The aim of this study was to determine the etiopathology and epidemiology of the honey bee brood diseases in Portugal. Honey bee brood samples were collected and analysed at the Laboratory of Honey Bee Pathology (LPAESAB) and Microbiology of IPB. Samples were processed for epidemiological characterization of fungal diseases of honey bee brood. In general, the prevalence of this fungal disease occurs along all the distritos and seasons of the country. The diagnosis of chalkbrood were higher (P

  15. Multitrophic interaction facilitates parasite–host relationship between an invasive beetle and the honey bee

    OpenAIRE

    Torto, Baldwyn; Boucias, Drion G.; Arbogast, Richard T.; Tumlinson, James H.; Teal, Peter E. A.

    2007-01-01

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles f...

  16. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    Science.gov (United States)

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  17. No apparent correlation between honey bee forager gut microbiota and honey production.

    Science.gov (United States)

    Horton, Melissa A; Oliver, Randy; Newton, Irene L

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted. PMID:26623177

  18. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation.

    Directory of Open Access Journals (Sweden)

    Coby van Dooremalen

    Full Text Available BACKGROUND: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. METHODOLOGY/PRINCIPAL FINDINGS: Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated. We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. CONCLUSIONS/SIGNIFICANCE: This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.

  19. Resistance to Acarapis woodi by honey bees from far-eastern Russia

    OpenAIRE

    Guzman, Lilia; Rinderer, Thomas; Delatte, Gary; Anthony Stelzer, J.; Beaman, Lorraine; Kuznetsov, Victor

    2002-01-01

    Honey bees from the Primorsky region of far-eastern Russia were evaluated for their resistance to Acarapis woodi. Results from a field test in Louisiana showed that Primorsky honey bees showed strong resistance to tracheal mites. The Primorsky honey bees maintained nearly mite-free colonies throughout the experiment while the domestic stocks were ultimately parasitized by high levels of tracheal mites.

  20. Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies

    OpenAIRE

    Odoux, Jean Francois; Feuillet, Dalila; Aupinel, Pierrick; Loublier, Yves; Tasei, Jean Noel; Mateescu, Cristina

    2012-01-01

    Pollen resources may become a constraint for the honey bee in cereal farming agrosystems and thus influence honey bee colony development. This survey intended to increase knowledge on bee ecology in order to understand how farming systems can provide bee forage throughout the year. We conducted a 1-year study to investigate the flower range exploited in an agrarian environment in western France, the physico-chemical composition of honey bee-collected pollen, the territorial biodiversity visit...

  1. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    OpenAIRE

    Andrew Core; Charles Runckel; Jonathan Ivers; Christopher Quock; Travis Siapno; Seraphina Denault; Brian Brown; Joseph Derisi; Smith, Christopher D.; John Hafernik

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees s...

  2. Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers

    OpenAIRE

    Carneiro, Liedson; Martins, Celso

    2012-01-01

    The invasion of generalist Africanized honey bees may change certain plant-pollinator interactions. We evaluated the preemption by honey bees and the exploitative competition with native bees on a tree with nocturnally dehiscent small flowers. Our main objectives were to quantify pollen production and harvesting, to verify whether honey bees exploitatively compete with native bees and to identify the effective pollinators of Spondias mombin. The nocturnally dehiscent flowers were pollen deple...

  3. The Impact of Pesticides on Honey Bees and Hence on Humans

    OpenAIRE

    Antonina Jivan

    2013-01-01

    Bee crisis is threatening global food security, given the fact that one third of global agricultural production relies on pollination, especially that of honey bees. Despite their importance for human being, honey bees die with alarming speed. In recent years, in Europe and America, due to pollution, pesticides and neglect there was registered an unprecedented rate of disappearance of honey bees. Einstein's theory, the fact that once the bees cease to exist, humanity has only four years to e...

  4. Sublethal imidacloprid effects on honey bee flower choices when foraging.

    Science.gov (United States)

    Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington

    2015-11-01

    Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies. PMID:26415950

  5. Functional morphology of the honey stomach wall of European honey bees (Apis mellifera L.)

    Science.gov (United States)

    The honey bee crop, or honey stomach, is designed with cords of muscles that are numerous enough in both latitudinal and longitudinal directions to fully enclose and confine the underlying, cuticle-lines epithelium. Although appressed against the inner wall of this enclosure by the crop's contents,...

  6. Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.)

    Science.gov (United States)

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. In this study winter worker bees were experimentally infected using three different experiments. Bees were inoculated orally or topically with CBPV to evaluate the l...

  7. Parasite-host interactions between the Varroa mite and the honey bee

    NARCIS (Netherlands)

    Calis, J.N.M.

    2001-01-01

    Introduction

    Varroa mites as parasites of honey bees

    Varroa destructor (Anderson & Trueman, 2000), is the most important pest of European races of the Western honey bee, Apis mellifera L., weakening bees and vectoring bee diseases (Matheson, 1993). Over the past decades it has spread

  8. Resource Potential Analysis Of Honey Bee Feed Apis Dorsata In Mountain Tinanggo Kolaka

    OpenAIRE

    Rosmarlinasiah; Daud Malamassam; Sampe Paembonan; Yusran Yusuf

    2015-01-01

    Abstract Honey Bees feed in the form of nectar pollen and water the bees used to build nests and establish colonies. A hexagonal honeycomb as a store of honey pollen and seedlings. If feed honey bees flower plants are abundantly available continuously then the always active bees build nests and fill each cell nest of honey pollen eggs and other products. The purpose of research is to determine the types of flowering plants as a potential feed honey bees nectar and pollen. The experiment was c...

  9. Social immunity in honey bees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour

    Science.gov (United States)

    Honey bees tend to have a reduced number of immune genes compared to solitary insects. They actually developed an alternative collective defence consisting in the cooperation of individuals to decrease disease development. We identified a set of genes involved in this social immunity by comparing br...

  10. The honey bee parasite Nosema ceranae: transmissible via food exchange?

    Directory of Open Access Journals (Sweden)

    Michael L Smith

    Full Text Available Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cages were separated by one screen, food could be passed between the older bees and the young bees, but when separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P=0.0097. Young bees fed by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test 40.8%; 2-Screen Test 3.4%; Solo Control 2.8%. Although fecal-oral transmission is still possible in this experimental design, oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.

  11. Effects of Long Distance Transportation on Honey Bee Physiology

    Directory of Open Access Journals (Sweden)

    Kiheung Ahn

    2012-01-01

    Full Text Available Despite the requirement of long distance transportation of honey bees used for pollination, we understand little how transportation affects honey bees. Three trials in three different states (CA, GA, and MI were conducted to study the effects of long distance transportation on honey bee physiology. Newly emerged bees from one colony were split into two groups and introduced into a transported (T colony or a stationary (S colony in each trial. Volumes of hypopharyngeal gland acini in T colonies were significantly smaller than S colonies in all three trials. There were no significant differences between S and T colonies in juvenile hormone titers. Protein content in head showed no significant differences between S and T either in 7-day-old or 17-day-old bees of MI trial, but GA trial showed a significant reduction in bees experiencing transportation. Protein content in thorax was only measured in GA trial and was not significantly different between the two groups. Lipid content in abdomen was not significantly different between the S and T colonies in all three trials. This study suggests that bees experiencing transportation have trouble fully developing their food glands and this might affect their ability to nurse the next generation of workers.

  12. Functionality of Varroa-Resistant Honey Bees (Hymenoptera: Apidae) When Used for Western U.S. Honey Production and Almond Pollination

    Science.gov (United States)

    Two types of honey bees, Apis mellifera L., bred for resistance to Varroa destructor Anderson & Trueman, were evaluated for performance when used for honey production in Montana, USA, and for almond pollination the following winter. Colonies of Russian honey bees (RHB) and outcrossed honey bees with...

  13. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Directory of Open Access Journals (Sweden)

    Timothy J Ciarlo

    Full Text Available BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s. The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many

  14. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10......Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in...... subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be...

  15. Modelling food and population dynamics in honey bee colonies.

    Directory of Open Access Journals (Sweden)

    David S Khoury

    Full Text Available Honey bees (Apis mellifera are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  16. Pharmacological modulation of aversive responsiveness in honey bees

    OpenAIRE

    Tedjakumala, Stevanus R.; Aimable, Margaux; Giurfa, Martin

    2014-01-01

    Within a honey bee colony, individuals performing different tasks exhibit different sensitivities to noxious stimuli. Noxious-stimulus sensitivity can be quantified in harnessed bees by measuring the sting extension response (SER) to a series of increasing voltages. Biogenic amines play a crucial role in the control of insect responsiveness. Whether or not these neurotransmitters affect the central control of aversive responsiveness, and more specifically of electric-shock responsiveness, rem...

  17. The Adoption of Russian Varroa-Resistant Honey Bees

    OpenAIRE

    Kim, Seon-Ae; Westra, John V.; Gillespie, Jeffrey M.

    2006-01-01

    Factors influencing the adoption of Russian Varroa-Resistant honey bees were assessed using a double hurdle model. Results indicate factors associated with the adoption include sales over $1,000 of bee related products, residence in the delta states, internet use, and membership in the AHPA. Negatively associated factors are high percentage of income coming from beekeeping, and membership in the ABF. Intensity of adoption increased with frequent contact with the USDA, and decreased with great...

  18. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    Science.gov (United States)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  19. Parasite infection accelerates age polyethism in young honey bees.

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  20. The colony environment modulates sleep in honey bee workers.

    Science.gov (United States)

    Eban-Rothschild, Ada; Bloch, Guy

    2015-02-01

    One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process. PMID:25524987

  1. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; YOSHIYAMA, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  2. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee.

    Science.gov (United States)

    Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A

    2007-05-15

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee. PMID:17483478

  3. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?

    OpenAIRE

    M. L. Smith

    2012-01-01

    Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cag...

  4. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences

    OpenAIRE

    Hawkins, Jennifer; de Vere, Natasha; Griffith, Adelaide; Ford, Col R.; Allainguillaume, Joel; Hegarty, Matthew J.; Baillie, Les; Adams-Groom, Beverley

    2015-01-01

    Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspon...

  5. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohsen Momenzadeh

    2014-01-01

    Full Text Available Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal of this study was isolation of melittin from honey bee venom and evaluation of its antibacterial activity against the agents of bacterial peritonitis. Materials and methods: Honey bee venom prepared using electrical stimulation and the quality of venom confirmed by SDS-PAGE. Melittin isolated from the venom using a linear gradient of acetonitrile and C18 column by Reverse Phase-High Performance Chromatography (RP-HPLC. Minimal Inhibition and Bactericidal concentration for melittin examined on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Results: Honey bee venom composed of twenty distinct fraction in which melittin was the major one. Melittin inhibited Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa growth at 0.39, 6.25, and 12.5 µg and was bactericide at 1.56, 25, and >50 µg respectively. Conclusion: Melittin specifically invade the corresponding bacteria and induce significant inhibitory and bactericidal activity against the main agents of bacterial peritonitis. Complementary studies in animal model would be overcome bacterial drug resistance issue specifically in bacterial peritonitis.

  6. Lipophilic extracts composition of honey-bee collected pollen

    OpenAIRE

    Barbosa, Sandra; Vilas-Boas, Miguel; Dias, L. G.; Estevinho, Leticia M.; Silvestre, Armando; Simões, Mário

    2003-01-01

    Honey-bee derived products such as pollen have been applied for centuries in traditional medicine as well as in food diets and supplementary nutrition due to their nutritional and physiological properties, above all in regard to their healthy effects on the human organism

  7. Patterns of viral infection in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Kryger, Per; Nielsen, Steen Lykke

    2013-01-01

    The well-being of a colony and replenishment of the workers depends on a healthy queen. Diseases in queens are seldom reported, and our knowledge on viral infection in queens is limited. In this study, 86 honey bee queens were collected from beekeepers in Denmark. All queens were tested separately...

  8. Hybrid origins of Australian honey bees (Apis mellifera)

    Science.gov (United States)

    With increased globalisation and homogenisation the maintenance of genetic integrity of local populations of agriculturally important species is of increasing concern. The honey bee provides an interesting perspective as it is both domesticated and wild, with a large native range and much larger int...

  9. SWEETNESS AND LIGHT: ILLUMINATING THE HONEY BEE GENOME

    Science.gov (United States)

    The genome sequence and annotated gene list of the honey bee Apis mellifera is the first genome of the Hymenoptera to be deciphered. As such it has already, and will continue, to provide an avalanche of insights into insect biology and the genetic basis of social behavior. The project was centered a...

  10. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?

    NARCIS (Netherlands)

    Smith, M.L.

    2012-01-01

    Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it

  11. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  12. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  13. The Impact of Pesticides on Honey Bees and Hence on Humans

    Directory of Open Access Journals (Sweden)

    Antonina Jivan

    2013-10-01

    Full Text Available Bee crisis is threatening global food security, given the fact that one third of global agricultural production relies on pollination, especially that of honey bees. Despite their importance for human being, honey bees die with alarming speed. In recent years, in Europe and America, due to pollution, pesticides and neglect there was registered an unprecedented rate of disappearance of honey bees. Einstein's theory, the fact that once the bees cease to exist, humanity has only four years to extinction, seems now truer than ever. Thus, the issue has gained a tone of maximum urgency; the bee crisis can entirely shatter the world food security, already affected by the economic crisis. There are plenty of factors that could cause honey bee population decline: disease, parasites, climatic factors (high temperature, drought or decrease in the diversity of honey flora. It may sometimes happen that the beekeeper himself causes the poisoning of his honey bees, use inappropriate products which should protect the honey bees. It is therefore possible to imagine a multi-factorial explanation of problems encountered by honey bees and to underestimate the key role of pesticides. Considering these, a review of the impact of pesticides on honey bees should not be superfluous.

  14. Antioxidant activity of honey supplemented with bee products.

    Science.gov (United States)

    Juszczak, Lesław; Gałkowska, Dorota; Ostrowska, Małgorzata; Socha, Robert

    2016-06-01

    The aim of this work was to evaluate the influence of supplementation of multiflower honey with bee products on the phenolic compound content and on antioxidant activity. Average total phenolic and flavonoids contents in the multiflower honeys were 36.06 ± 10.18 mg GAE/100 g and 4.48 ± 1.69 mg QE/100 g, respectively. The addition of royal jelly did not affect significantly the phenolic compound content and antioxidant activity. Supplementation of honey with other bee products, i.e. beebread, propolis, pollen, resulted in significant increase in the total phenolic and flavonoids contents, and in antiradical activity and reducing power, with the largest effect found for addition of beebread. Significant linear correlations between the total phenolic and flavonoids contents and antiradical activity and reducing power were found. PMID:26153086

  15. Hydroxymethylfurfural: a possible emergent cause of honey bee mortality?

    Science.gov (United States)

    Zirbes, Lara; Nguyen, Bach Kim; de Graaf, Dirk C; De Meulenaer, Bruno; Reybroeck, Wim; Haubruge, Eric; Saegerman, Claude

    2013-12-11

    Hydroxymethylfurfural (HMF), a common product of hexose degradation occurring during the Maillard reaction and caramelization, has been found toxic for rats and mice. It could cause a potential health risk for humans due to its presence in many foods, sometimes exceeding 1 g/kg (in certain dried fruits and caramel products), although the latter still is controversial. HMF can also be consumed by honey bees through bad production batches of sugar syrups that are offered as winter feeding. In Belgium, abnormal losses of honey bee colonies were observed in colonies that were fed with syrup of inverted beet sugar containing high concentrations of HMF (up to 475 mg/kg). These losses suggest that HMF could be implicated in bee mortality, a topic that so far has received only little attention. This paper reviews the current knowledge of the presence of HMF in honey bee environment and possible consequences on bee mortality. Some lines of inquiry for further toxicological analysis are likewise proposed. PMID:24127696

  16. Complete mitochondrial genome of the Himalayan honey bee, Apis laboriosa.

    Science.gov (United States)

    Chhakchhuak, Liansangmawii; De Mandal, Surajit; Gurusubramanian, Guruswami; Sudalaimuthu, Naganeeswaran; Gopalakrishnan, Chellappa; Mugasimangalam, Raja C; Senthil Kumar, Nachimuthu

    2016-09-01

    The complete mitochondrial genome of Himalayan bee Apis laboriosa, from Mizoram, India, has been sequenced using Illumina NextSeq500 platform and analysed. The mitogenome was assembled and found to be 15 266 bp in length and the gene arrangement is similar to other honey bee species. The A. laboriosa mitogenome comprises of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs and an A + T-rich region of 346 bp. Based on the concatenated PCGs, in the phylogenetic tree, A. laboriosa is placed as a sister group along with the cavity nesting honey bees. The present study reports the first complete mitochondrial genome sequence of A. laboriosa, which will enhance our knowledge on Apinae mitogenomes and phylogeny. PMID:26360118

  17. Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location.

    Directory of Open Access Journals (Sweden)

    Zuzana Hroncova

    Full Text Available Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes and Gilliamella apicola (Gammaproteobacteria 1. However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both

  18. A Scientific Note on the Lactic Acid Bacterial Flora Discovered in the Honey Stomach of Swedish honey bees - a continuing study on honey bees in the U.S.A.

    Science.gov (United States)

    Beneficial bacteria have been found in honey stomachs of the honey bee, Apis mellifera; a unique flora that appears to have coevolved with the honey bees. The health of our most important pollinators has come into focus during the last few years, because of yet unexplained conditions and diseases t...

  19. Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem

    OpenAIRE

    Broderick Crawford; Ricardo Soto; Rodrigo Cuesta; Fernando Paredes

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show...

  20. Intraspecific Aggression in Giant Honey Bees (Apis dorsata

    Directory of Open Access Journals (Sweden)

    Frank Weihmann

    2014-09-01

    Full Text Available We investigated intraspecific aggression in experimental nests (expN1, expN2 of the giant honey bee Apis dorsata in Chitwan (Nepal, focusing on interactions between surface bees and two other groups of bees approaching the nest: (1 homing “nestmate” foragers landing on the bee curtain remained unmolested by guards; and (2 supposed “non-nestmate” bees, which were identified by their erratic flight patterns in front of the nest, such as hovering or sideways scanning and splaying their legs from their body, and were promptly attacked by the surface bees after landing. These supposed non-nestmate bees only occurred immediately before and after migration swarms, which had arrived in close vicinity (and were most likely scouting for a nesting site. In total, 231 of the “nestmate” foragers (fb and 102 approaches of such purported “non-nestmate” scouts (sc were analysed (total observation time expN1: 5.43 min regarding the evocation of shimmering waves (sh. During their landing the “nestmate” foragers provoked less shimmering waves (relnsh[fb] = 23/231 = 0.0996, relnsh[sc] = 75/102 = 0.7353; p <0.001, χ2-test with shorter duration (Dsh[fb] = 197 ± 17 ms, Dsh[sc] = 488 ± 16 ms; p <0.001; t-test than “non-nestmates”. Moreover, after having landed on the nest surface, the “non-nestmates” were attacked by the surface bees (expN1, expN2: observation time >18 min quite similarly to the defensive response against predatory wasps. Hence, the surface members of settled colonies respond differently to individual giant honey bees approaching the nest, depending on whether erratic flight patterns are displayed or not.

  1. Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera

    OpenAIRE

    Sarto, Mário; Oliveira, Eugênio; Guedes,Raul; Campos, Lúcio

    2014-01-01

    International audience The toxicity of three insecticides frequently used in Neotropical tomato cultivation (abamectin, deltamethrin, and methamidophos) was estimated on foragers of the Neotropical stingless bee Melipona quadrifasciata (Lep.) and the honey bee Apis mellifera (L.). Our results showed that the susceptibility varied significantly with the type of exposure (ingestion, topical, or contact), and there were significant differences between species. While M. quadrifasciata was usua...

  2. Can We Disrupt the Sensing of Honey Bees by the Bee Parasite Varroa destructor?

    OpenAIRE

    Nurit Eliash; Nitin Kumar Singh; Yosef Kamer; Govardhana Reddy Pinnelli; Erika Plettner; Victoria Soroker

    2014-01-01

    Background The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa – honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of vola...

  3. Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae

    OpenAIRE

    Qiang Huang; Yanping Chen; Rui Wu Wang; Schwarz, Ryan S.; Evans, Jay D.

    2015-01-01

    In order to study the effects of Nosema ceranae infection on honey bee microRNA (miRNA) expression, we deep-sequenced honey bee miRNAs daily across a full 6-day parasite reproduction cycle. Seventeen miRNAs were differentially expressed in honey bees infected by N. ceranae that potentially target over 400 genes predicted to primarily involve ion binding, signaling, the nucleus, transmembrane transport, and DNA binding. Based on Enzyme Code analysis, nine biological pathways were identified by...

  4. Influence of feeding bee colonies on colony strenght and honey authenticity

    OpenAIRE

    Andreja KANDOLF BOROVŠAK; Ogrinc, Nives; Lilek, Nataša; Boštjan NOČ; Božič, Janko; Korošec, Mojca

    2015-01-01

    For the natural development of bee colonies, there is the need for appropriate nutrition. Lack of natural honey flow must be supplemented by feeding bee colonies with sugar syrups or candy paste. This supplementary feeding encourages brood breeding and forage activity, whereby stronger colonies collect more honey. Sugar syrups can cause honey adulteration, which is more frequent with the reversing of the brood combs with the bee food, with the combs moved from the brood chamber to the upper c...

  5. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera

    OpenAIRE

    Schneider, Stanley; Lewis, Lee

    2004-01-01

    Cooperative activities in honey bee colonies involve the coordinated interactions of multiple workers that perform different, but interrelated tasks. A central objective in the study of honey bee sociality therefore is to understand the communication signals used to integrate behavior within and among worker groups. This paper focuses on the role of the "vibration signal" in organizing labor in honey bee colonies. The vibration signal functions as a type of "modulatory communication signal". ...

  6. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    OpenAIRE

    Cordelia Forkpah; Dixon, Luke R.; Fahrbach, Susan E.; Olav Rueppell

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by prolifer...

  7. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations

    OpenAIRE

    Locke, Barbara; Conte, Yves Le; Crauser, Didier; Fries, Ingemar

    2012-01-01

    Honey bee societies (Apis mellifera), the ectoparasitic mite Varroa destructor, and honey bee viruses that are vectored by the mite, form a complex system of host–parasite interactions. Coevolution by natural selection in this system has been hindered for European honey bee hosts since apicultural practices remove the mite and consequently the selective pressures required for such a process. An increasing mite population means increasing transmission opportunities for viruses that can quickly...

  8. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor

    OpenAIRE

    Hongbo Jiang; Donghun Kim; Sharon Dobesh; Evans, Jay D.; Nachman, Ronald J.; Krzysztof Kaczmarek; Janusz Zabrocki; Yoonseong Park

    2016-01-01

    The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and ...

  9. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    OpenAIRE

    Zhiguo Li; Yanping Chen; Shaowu Zhang; Shenglu Chen; Wenfeng Li; Limin Yan; Liangen Shi; Lyman Wu; Alex Sohr; Songkun Su

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and ra...

  10. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    OpenAIRE

    Jian J Duan; Michelle Marvier; Joseph Huesing; Galen Dively; Zachary Y Huang

    2008-01-01

    BACKGROUND: Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or ...

  11. Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera)

    OpenAIRE

    Thom, Corinna

    2002-01-01

    In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony ...

  12. Host-parasite adaptations and interactions between honey bees, Varroa mites and viruses

    OpenAIRE

    Locke, Barbara

    2012-01-01

    The ectoparasitic mite, Varroa destructor, has become the largest threat to apiculture and honey bee health world-wide. Since it was introduced to the new host species, the European honey bee (Apis mellifera), it has been responsible for the near complete eradication of wild and feral honey bee populations in Europe and North America. Currently, the apicultural industry depends heavily on chemical Varroa control treatments to keep managed colonies alive. Without such control the mite populati...

  13. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    OpenAIRE

    Yuksel Celik; Erkan Ulker

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test funct...

  14. Why, when and where did honey bee dance communication evolve?

    Directory of Open Access Journals (Sweden)

    Robbie eI'Anson Price

    2015-11-01

    Full Text Available Honey bees (Apis sp. are the only known bee genus that uses nest-based communication to provide nest-mates with information about the location of resources, the so-called dance language. Successful foragers perform waggle dances for high quality food sources and suitable nest-sites during swarming. However, since many species of social insects do not communicate the location of resources to their nest-mates, the question of why the dance language evolved is of ongoing interest. We review recent theoretical and empirical research into the ecological circumstances that make dance communication beneficial in present day environments. This research suggests that the dance language is most beneficial when food sources differ greatly in quality and are hard to find. The dances of extant honey bee species differ in important ways, and phylogenetic studies suggest an increase in dance complexity over time: species with the least complex dance were the first to appear and species with the most complex dance are the most derived. We review the fossil record of honey bees and speculate about the time and context (foraging vs. swarming in which spatially referential dance communication might have evolved. We conclude that there are few certainties about when the dance language first appeared; dance communication could be older than 40 million years and, thus, predate the genus Apis, or it could be as recent as 20 million years when extant honey bee species diverged during the early Miocene. The most parsimonious scenario assumes it evolved in a sub-tropical to temperate climate, with patchy vegetation somewhere in Eurasia.

  15. Bees, honey and pollen as sentinels for lead environmental contamination

    International Nuclear Information System (INIS)

    Three beehive matrices, sampled in eighteen apiaries from West France, were analysed for the presence of lead (Pb). Samples were collected during four different periods in both 2008 and 2009. Honey was the matrix the least contaminated by Pb (min = 0.004 μg g−1; max = 0.378 μg g−1; mean = 0.047 μg g−1; sd = 0.057). The contamination of bees (min = 0.001 μg g−1; max = 1.869 μg g−1; mean = 0.223 μg g−1; sd = 0.217) and pollen (min = 0.004 μg g−1; max = 0.798 μg g−1; mean = 0.240 μg g−1; sd = 0.200) showed similar levels and temporal variations but bees seemed to be more sensitive bringing out the peaks of Pb contamination. Apiaries in urban and hedgerow landscapes appeared more contaminated than apiaries in cultivated and island landscapes. Sampling period had a significant effect on Pb contamination with higher Pb concentrations determined in dry seasons. - Highlights: ► Bees, pollen and honey were analysed for the presence of lead. ► The contamination of bees and pollen showed similar levels. ► Honey was the least contaminated matrix. ► Apiaries in urban and hedgerow landscapes appeared more contaminated. ► Pb concentrations varied across the year and were higher in dry seasons. - The aim of this study was to investigate the contamination of 18 apiaries by lead through analyses on 3 different matrices, foraging bees, honey and pollen over 2 beekeeping seasons and in 4 different landscape contexts.

  16. Salt preferences of honey bee water foragers.

    Science.gov (United States)

    Lau, Pierre W; Nieh, James C

    2016-03-15

    The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers. PMID:26823100

  17. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Science.gov (United States)

    Porrini, Claudio; Mutinelli, Franco; Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health. PMID:27182604

  18. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Directory of Open Access Journals (Sweden)

    Claudio Porrini

    Full Text Available In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  19. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network

    Science.gov (United States)

    Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47–69% in 2009 and from 30–60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health. PMID:27182604

  20. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees.

    OpenAIRE

    Parrinello Hughes; Dantec Christelle; Alaux Cédric; Le Conte Yves

    2011-01-01

    Abstract Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the inf...

  1. Assessing the comparative risk of plant protection products to honey bees, non-target arthropods and non-Apis bees

    OpenAIRE

    Miles, Mark J.; Alix, Anne

    2012-01-01

    Background: In the European Union the placing of pesticides on the market requires as a prerequisite that a risk assessment demonstrates low risks to human health and the environment, among which includes pollinators. Currently risks are evaluated for honey bees and for non-target arthropods (NTA) of cultivated ecosystems. The actual protection of pollinators other than the honey bees, as for example for non-Apis bees, in relation to these risk assessments has recently been questioned and req...

  2. Topic acute toxicity of Bioenraiz in honey bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Odette Beiro Castro

    2007-05-01

    Full Text Available Introduction. Bioenraiz is a phytohormone which active ingredient is indolacetic acid (AIA, an auxina that promotes vegetable vegetable growth. The most important feature is that it regulates growth by inducing the synthesis of ribonucleic acid (RNA or specific enzymes, which in turn are linked into a central genetic as biological modulators.Objective. To evaluate the potential toxicity of Bioenraiz when is administered to honey bees. Method. The product was applied in single and topic doses of 0.650 mg/ bee; equivalent to a concentration of 130 mg/ L. Two hundred honey bees of the Apis mellifera specie were used and distributed in two experimental groups: a control one (non treated and a group treated with Bioenraiz. The mortality of the bee and the appearance of toxicity signs at the 4, 24 and 48 hours of the test, were the variables analyzed. Results and Discussion. Bioenraiz caused a 2 percent of mortality, a non biological and statistical significant value according to the validation criteria of the test. Concerning clinical observations, the animals did not show toxic signs nor alterations in their behavor attribute to the administration of the test substance. Conclusions. According to the results obtained in this highly sensitive specie for ecotoxicological tests, this product did not provoke neither mortality, nor toxicity for the Apis mellifera bee.

  3. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    Science.gov (United States)

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  4. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  5. Honey bee colonies that have survived Varroa destructor

    OpenAIRE

    Le Conte, Yves; de Vaublanc, Gérard; Crauser, Didier; Jeanne, François; Rousselle, Jean-Claude; Bécard, Jean-Marc

    2007-01-01

    We document the ability of a population of honey bee colonies to survive in France without Varroa suppression measures. We compared the mortality of collected Varroa surviving bee (VSB) stock with that of miticide-treated Varroa-susceptible colonies. Varroa infestation did not induce mortality in the VSB colonies. Some of the original colonies survived more than 11 years without treatment and the average survival of the experimental colonies was 6.54 ± 0.25 years. Swarming was variable (41.50...

  6. APIS - a novel approach for conditioning honey bees

    Directory of Open Access Journals (Sweden)

    Nicholas Hagen Kirkerud

    2013-04-01

    Our data show that in a short-term memory test the response rate for the conditioned stimulus in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER-conditioning. Additionally, we discovered that bees modulate their behaviour to aversively learned odours by reducing their rate, speed and magnitude of escapes and that both generalisation and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardised and convenient way, and its flexibility adds to our toolbox for studying honey bee behaviour.

  7. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico

    OpenAIRE

    Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul

    2013-01-01

    Background The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees. To examine the genetic variation of honey bee feral populations and colonies from different lo...

  8. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    OpenAIRE

    Katherine A. Aronstein; Eduardo Saldivar; Rodrigo Vega; Stephanie Westmiller; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to lim...

  9. Varroa-virus interaction in collapsing honey bee colonies.

    Directory of Open Access Journals (Sweden)

    Roy M Francis

    Full Text Available Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI and Deformed Wing Virus (DWV were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries under three treatment conditions: Organic acids (11 colonies, pyrethroid (9 colonies and untreated (3 colonies. Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin.

  10. Comparative testing of different methods for evaluation of Varroa destructor infestation of honey bee colonies

    OpenAIRE

    Nikolay D. Dobrynin; Mario Colombo; Francesca Romana Eördegh

    2011-01-01

    Different methods for evaluation of the degree of Varroa destructor infestation of honey bee colonies were tested. The methods using in vivo evaluation were the most sparing for the bees but less precise. The methods using evaluation with the killing of the bees or brood were the most precise but less sparing for bees.

  11. Comparative testing of different methods for evaluation of Varroa destructor infestation of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Nikolay D. Dobrynin

    2011-09-01

    Full Text Available Different methods for evaluation of the degree of Varroa destructor infestation of honey bee colonies were tested. The methods using in vivo evaluation were the most sparing for the bees but less precise. The methods using evaluation with the killing of the bees or brood were the most precise but less sparing for bees.

  12. MICROSATELLITE ANALYSIS OF THE SLOVAK CARNIOLAN HONEY BEE (APIS MELLIFERA CARNICA

    Directory of Open Access Journals (Sweden)

    Dušan Paál

    2013-02-01

    Full Text Available The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using the same set of markers. We identified a total of 123 alleles in the Slovak carniolan honey bee samples, with the mean value of 8,78 allele per locus. Eleven markers showed the PIC value greater than 0,5 and thus were highly informative. The mean value of expected heterozygosity HE for all loci was 0,705 ± 0,15, the mean value of observed heterozygosity HO was 0,704 ± 0,18. The frequencies of genotypes for most tested markers were in The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using

  13. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  14. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Directory of Open Access Journals (Sweden)

    Barrett Anthony Klein

    Full Text Available Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.. Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  15. Honey Bee Mating Optimization Vector Quantization Scheme in Image Compression

    Science.gov (United States)

    Horng, Ming-Huwi

    The vector quantization is a powerful technique in the applications of digital image compression. The traditionally widely used method such as the Linde-Buzo-Gray (LBG) algorithm always generated local optimal codebook. Recently, particle swarm optimization (PSO) is adapted to obtain the near-global optimal codebook of vector quantization. In this paper, we applied a new swarm algorithm, honey bee mating optimization, to construct the codebook of vector quantization. The proposed method is called the honey bee mating optimization based LBG (HBMO-LBG) algorithm. The results were compared with the other two methods that are LBG and PSO-LBG algorithms. Experimental results showed that the proposed HBMO-LBG algorithm is more reliable and the reconstructed images get higher quality than those generated form the other three methods.

  16. A non-policing honey bee colony (Apis mellifera capensis)

    Science.gov (United States)

    Beekman, Madeleine; Good, Gregory; Allsopp, Mike; Radloff, Sarah; Pirk, Chris; Ratnieks, Francis

    2002-09-01

    In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.

  17. First Complete Genome Sequence of Chronic Bee Paralysis Virus Isolated from Honey Bees (Apis mellifera) in China.

    Science.gov (United States)

    Li, Beibei; Hou, Chunsheng; Deng, Shuai; Zhang, Xuefeng; Chu, Yanna; Yuan, Chunying; Diao, Qingyun

    2016-01-01

    Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments. PMID:27491983

  18. Genetic Architecture of a Hormonal Response to Gene Knockdown in Honey Bees

    OpenAIRE

    Ihle, Kate E.; Rueppell, Olav; Huang, Zachary Y.; Ying WANG; Fondrk, M. Kim; Page, Robert E.; Amdam, Gro V.

    2015-01-01

    Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several ...

  19. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    OpenAIRE

    Mohsen Momenzadeh; Delavar Shahbazzadeh1; Mohammad Dakhili; Mohammad Reza Zolfaghari; Kamran Pooshang Bagheri

    2014-01-01

    Abstract Background and objective: Bacterial peritonitis is one of the nosocomial infections that is due to direct invasion of bacteria to peritoneal membrane. Resistance to antibiotic is of great significance in this disease and could be led to morbidity and mortality of patients. During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined. The main goal...

  20. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  1. Brain composition and olfactory learning in honey bees

    OpenAIRE

    Gronenberg, Wulfila; Couvillon, Margaret J

    2010-01-01

    Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, o...

  2. Transcriptome analysis of honey bee larvae following neonicotinoid exposure

    OpenAIRE

    Snart, Charles J. P.

    2011-01-01

    The current decline of the European Honey Bee (Apis Mellifera) has been linked to the increasing use of neonicotinoid pesticides within agriculture. Whilst the toxicity of these pesticides to Apis has long been established, the possibility of low dosages inducing molecular stress has not yet been fully explored. Of particular interest is the action of these nicotine derivatives on the nicotinic acetylcholine receptor, and its association with the DNA methyltransferase family (Dnmts). An ...

  3. Ecological Adaptation of Diverse Honey Bee (Apis mellifera) Populations

    OpenAIRE

    Parker, Robert; Melathopoulos, Andony P; White, Rick; Pernal, Stephen F; Guarna, M. Marta; Leonard J Foster

    2010-01-01

    Background Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among...

  4. No intracolonial nepotism during colony fissioning in honey bees

    OpenAIRE

    Rangel, Juliana; Mattila, Heather R.; Seeley, Thomas D.

    2009-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony whose workers belong to multiple patrilines. This colony genetic structure creates a potential for intracolonial nepotism. One context with great potential for such nepotism arises in species, like honey bees, whose colonies reproduce by fissioning. During fissioning, workers might nepotistically choose between serving a young (sister) queen or the old (mother) ...

  5. Genomic dissection of behavioral maturation in the honey bee

    OpenAIRE

    Whitfield, Charles W.; Ben-Shahar, Yehuda; Brillet, Charles; Leoncini, Isabelle; Crauser, Didier; LeConte, Yves; Rodriguez-Zas, Sandra; Robinson, Gene E

    2006-01-01

    Honey bees undergo an age-related, socially regulated transition from working in the hive to foraging that has been previously associated with changes in the expression of thousands of genes in the brain. To understand the meaning of these changes, we conducted microarray analyses to examine the following: (i) the ontogeny of gene expression preceding the onset of foraging, (ii) the effects of physiological and genetic factors that influence this behavioral transition, and (iii) the effects o...

  6. A morphometry map and a new method for honey bee morphometric analysis by using the ArcGIS

    OpenAIRE

    ABOU-SHAARA, Hossam F.

    2013-01-01

    The morphometric analysis of honey bees has a substantial importance for honey bee subspecies characterization and discrimination while the ArcGIS is a geographical program for data analysis. In the present research, the combination between the morphometric data and the spatial analysis options of the ArcGIS was done and subsequently tested in creating a morphometry map for honey bees from some regions in Egypt as well as for the discrimination between two honey bee subspecies. Therefore, I p...

  7. Acaricide Treatment Affects Viral Dynamics in Varroa destructor-Infested Honey Bee Colonies via both Host Physiology and Mite Control

    OpenAIRE

    Locke, B.; Forsgren, E.; Fries, I; Miranda, J. R.

    2012-01-01

    Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate)...

  8. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor

    OpenAIRE

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F.A.; Kraus, F B

    2011-01-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mit...

  9. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    OpenAIRE

    Priyadarshini Chakrabarti; Santanu Rana; Sreejata Bandopadhyay; Naik, Dattatraya G.; Sagartirtha Sarkar; Parthiba Basu

    2015-01-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free ...

  10. Effects of queen importation on the genetic diversity of Macaronesian island honey bee populations (Apis mellifera Linneaus 1758)

    OpenAIRE

    Muñoz, Irene; Pinto, M. Alice; De La Rúa, Pilar

    2014-01-01

    Beekeeping practices such as the importation of non-native honey bee queens may interact with the conservation of honey bee biodiversity. Island honey bee populations are particularly appropriate to test the impact of the introduction of foreign subspecies into their genetic diversity and structure. Here we have used microsatellite markers to evaluate the temporal genetic variation over the last decade in Macaronesian honey bee populations, which have been exposed to different beekeeping stra...

  11. Comparison of acute effects of heroin and Kerack on sensory and motor activity of honey bees (Apis mellifera)

    OpenAIRE

    Majid Hassanpour-Ezatti

    2015-01-01

    Objective(s): Previous studies demonstrated a functional similarity between vertebrate and honey bee nervous systems. The aim of the present study was to compare the effects of heroin and Iranian street Kerack, a combination of heroin and caffeine, on sensory threshold and locomotor activity in honey bees. Materials and Methods: All drugs were given orally to honey bees 30 min before each experiment. The levels of these drugs and their metabolites in brain samples of honey bees were determine...

  12. The microsporidian Nosema ceranae, the antibiotic Fumagilin-B®, and western honey bee (Apis mellifera) colony strength

    OpenAIRE

    Williams, Geoffrey,; Shutler, Dave; Little, Catherine; Burgher-Maclellan, Karen; Rogers, Richard

    2011-01-01

    International audience Western honey bees (Apis mellifera) are under threat from a number of emerging pathogens, including the microsporidian Nosema ceranae historically of Asian honey bees (Apis cerana). Because of its recent detection, very little is known about the biology, pathology, and control of N. ceranae in western honey bees. Here we investigated effects of the antibiotic Fumagilin-B®, which is commonly used to control the historical Nosema parasite of western honey bees Nosema a...

  13. Honey bee success predicted by landscape composition in Ohio, USA.

    Science.gov (United States)

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland. PMID:25802808

  14. Honey bee success predicted by landscape composition in Ohio, USA

    Directory of Open Access Journals (Sweden)

    DB Sponsler

    2015-03-01

    Full Text Available Foraging honey bees (Apis mellifera L. can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  15. Variation morphogeometrics of Africanized honey bees (Apis mellifera in Brazil

    Directory of Open Access Journals (Sweden)

    Lorena A. Nunes

    2012-09-01

    Full Text Available The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.

  16. Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies.

    Science.gov (United States)

    Péntek-Zakar, Erika; Oleksa, Andrzej; Borowik, Tomasz; Kusza, Szilvia

    2015-12-01

    Carniolan honey bees (Apis mellifera carnica) are considered as an indigenous subspecies in Hungary adapted to most of the ecological and climatic conditions in this area. However, during the last decades Hungarian beekeepers have recognized morphological signs of the Italian honey bee (Apis mellifera ligustica). As the natural distribution of the honey bee subspecies can be affected by the importation of honey bee queens or by natural gene flow, we aimed at determining the genetic structure and characteristics of the local honey bee population using molecular markers. All together, 48 Hungarian and 84 foreign (Italian, Polish, Spanish, Liberian) pupae and/or workers were used for mitochondrial DNA analysis. Additionally, 53 sequences corresponding to 10 subspecies and the Buckfast hybrid were downloaded from GenBank. For the nuclear analysis, 236 Hungarian and 106 foreign honey bees were genotyped using nine microsatellites. Heterozygosity values, population-specific alleles, FST values, principal coordinate analysis, assignment tests, structure analysis, and dendrograms were calculated. Haplotype and nucleotide diversity values showed moderate values. We found that one haplotype (H9) was dominant in Hungary. The presence of the black honey bee (Apis mellifera mellifera) was negligible, but a few individuals resembling other subspecies were identified. We proved that the Hungarian honey bee population is nearly homogeneous but also demonstrated introgression from the foreign subspecies. Both mitochondrial DNA and microsatellite analyses corroborated the observations of the beekeepers. Molecular analyses suggested that Carniolan honey bee in Hungary is slightly affected by Italian and black honey bee introgression. Genetic differences were detected between Polish and Hungarian Carniolan honey bee populations, suggesting the existence of at least two different gene pools within A. m. carnica. PMID:27069597

  17. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim.

    Science.gov (United States)

    Ravoet, Jorgen; Schwarz, Ryan S; Descamps, Tine; Yañez, Orlando; Tozkar, Cansu Ozge; Martin-Hernandez, Raquel; Bartolomé, Carolina; De Smet, Lina; Higes, Mariano; Wenseleers, Tom; Schmid-Hempel, Regula; Neumann, Peter; Kadowaki, Tatsuhiko; Evans, Jay D; de Graaf, Dirk C

    2015-09-01

    Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor. PMID:26146231

  18. Finding the missing honey bee genes: Lessons learned from a genome upgrade

    KAUST Repository

    Elsik, Christine G

    2014-01-30

    Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. 2014 Elsik et al.; licensee BioMed Central Ltd.

  19. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor...

  20. 75 FR 12171 - Notice of Availability of a Draft Pest Risk Assessment on Honey Bees Imported from Australia

    Science.gov (United States)

    2010-03-15

    ... Honey Bees Imported from Australia AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... importation of honey bees from Australia. The draft pest risk assessment considers potential pest risks... honey bee pathogens or parasites may have been introduced into Australia. We are making the draft...

  1. Varroa jacobsoni infestation of adult Africanized and Italian honey bees (Apis mellifera) in mixed colonies in Brazil

    OpenAIRE

    Moretto Geraldo; Mello Jr. Leonidas João de

    1999-01-01

    Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to b...

  2. Application of the artificial bee colony algorithm for solving the set covering problem.

    Science.gov (United States)

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem. PMID:24883356

  3. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    Directory of Open Access Journals (Sweden)

    Érica Donato Tanaka

    2009-01-01

    Full Text Available Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution.

  4. The Potential of Bee-Generated Carbon Dioxide for Control of Varroa Mite (Mesostigmata: Varroidae) in Indoor Overwintering Honey bee (Hymenoptera: Apidae) Colonies.

    Science.gov (United States)

    Bahreini, Rassol; Currie, Robert W

    2015-10-01

    The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not affect worker bee mortality relative to that for

  5. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available BACKGROUND: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. METHODOLOGY/PRINCIPAL FINDINGS: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. CONCLUSIONS/SIGNIFICANCE: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  6. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Reed M Johnson

    Full Text Available BACKGROUND: Chemical analysis shows that honey bees (Apis mellifera and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. METHODOLOGY/PRINCIPAL FINDINGS: Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17 while amitraz toxicity was mostly unchanged (1 of 15. The sterol biosynthesis inhibiting (SBI fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. CONCLUSIONS/SIGNIFICANCE: Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication

  7. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada.

    Science.gov (United States)

    Codling, Garry; Al Naggar, Yahya; Giesy, John P; Robertson, Albert J

    2016-02-01

    Neonicotinoid insecticides (NIs) and their transformation products were detected in honey, pollen and honey bees, (Apis mellifera) from hives located within 30 km of the City of Saskatoon, Saskatchewan, Canada. Clothianidin and thiamethoxam were the most frequently detected NIs, found in 68 and 75% of honey samples at mean concentrations of 8.2 and 17.2 ng g(-1) wet mass, (wm), respectively. Clothianidin was also found in >50% of samples of bees and pollen. Concentrations of clothianidin in bees exceed the LD50 in 2 of 28 samples, while for other NIs concentrations were typically 10-100-fold less than the oral LD50. Imidaclorpid was detected in ∼30% of samples of honey, but only 5% of pollen and concentrations were bees. Transformation products of Imidaclorpid, imidaclorpid-Olefin and imidacloprid-5-Hydroxy were detected with greater frequency and at greater mean concentrations indicating a need for more focus on potential effects of these transformation products than the untransformed, active ingredient NIs. Results of an assessment of the potential dietary uptake of NIs from honey and pollen by bees over winter, during which worker bees live longer than in summer, suggested that, in some hives, consumption of honey and pollen during over-wintering might have adverse effects on bees. PMID:26606186

  8. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.

    Science.gov (United States)

    Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathog...

  9. Effective gene silencing of a microsporidian parasite associated with honey bee (Apis mellifera) colony declines

    Science.gov (United States)

    Honey bee colonies are vulnerable to parasites and pathogens ranging from viruses to vertebrates. An increasingly prevalent disease of managed honey bees is caused by the microsporidian, Nosema ceranae. Microsporidia are basal fungi and obligate parasites with much reduced genomic and cellular compo...

  10. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L workers.

    Directory of Open Access Journals (Sweden)

    Cordelia Forkpah

    Full Text Available The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  11. The potential for using ozone to decrease pesticide residues in honey bee comb

    Science.gov (United States)

    As a strong oxidizer, ozone is known to breakdown some organic pesticides, and we evaluated the potential for using a gaseous fumigation of ozone to decontaminate honeycomb and empty honey bee hives. Honey bees are inadvertently exposed to pesticides when they forage for nectar and pollen in agricul...

  12. Intracolonial genetic diversity in honey bee (Apis mellifera) colonies increases pollen foraging efficiency

    Science.gov (United States)

    Multiple mating by honey bee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honey bee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, ...

  13. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    Science.gov (United States)

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. PMID:26210039

  14. STUDIES OF CHOSEN TOXIC ELEMENTS CONCENTRATION IN MULTIFLOWER BEE HONEY

    Directory of Open Access Journals (Sweden)

    Ewa Popiela

    2011-04-01

    Full Text Available 72 544x376 Normal 0 21 false false false  The aim of the study was to determine the bioaccumulation level of chosen toxic elements (Zn, Cu, Pb, As and Cd in multiflower honey collected from Brzeg area. Biological material (honey was mineralized using the microwave technique at an elevated pressure in the microprocessor station of pressure in the type Mars 5. Quantitative analysis of elements (As, Cd, Cu, Pb and Zn was performed by plasma spectrometry method using a Varian ICP-AES apparatus. The presence of toxic elements was determined in examined biological materials. The elements fallowed the fallowing decreasing order with respect to their content of honey: Zn>Cu>Pb>As>Cd. The average concentrations of studied elements observed in multi-flower honey were as follows: 6.24 mg.kg-1 of zinc, 2.75 mg.kg-1 of copper, 0.53, 0.071, 0.042 mg.kg-1of lead, arsenic and cadmium, respectively. Lead was the most problematic in bee honey because its average content exceeded the maximum acceptable concentration. Additionally, this metal concentration was 60% higher in studied samples than allowable standard of lead content.doi:10.5219/134 

  15. Measurement of optical activity of honey bee

    Science.gov (United States)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  16. Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees

    Science.gov (United States)

    He, Xu Jiang; Zhang, Xue Chuan; Jiang, Wu Jun; Barron, Andrew B.; Zhang, Jian Hui; Zeng, Zhi Jiang

    2016-01-01

    Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-β-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-β-ocimene. Behavioural analyses showed that adding E-β-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-β-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-β-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-β-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony. PMID:26924295

  17. Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees.

    Science.gov (United States)

    He, Xu Jiang; Zhang, Xue Chuan; Jiang, Wu Jun; Barron, Andrew B; Zhang, Jian Hui; Zeng, Zhi Jiang

    2016-01-01

    Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-β-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-β-ocimene. Behavioural analyses showed that adding E-β-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-β-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-β-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-β-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony. PMID:26924295

  18. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis

    DEFF Research Database (Denmark)

    Jensen, Annette Bruun; Palmer, Kellie A.; Chaline, Nicolas;

    2005-01-01

    Apis mellifera mellifera, gene flow, honey bee conservation, mating distance, National Park, European black bee, Peak District, polyandry, social insects Udgivelsesdato: JUL......Apis mellifera mellifera, gene flow, honey bee conservation, mating distance, National Park, European black bee, Peak District, polyandry, social insects Udgivelsesdato: JUL...

  19. The tarsal taste of honey bees: behavioral and electrophysiological analyses

    Directory of Open Access Journals (Sweden)

    Maria Gabriela eDe Brito Sanchez

    2014-02-01

    Full Text Available Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors on the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee.

  20. Availability of environmental radioactivity to honey bee colonies at Los Alamos

    International Nuclear Information System (INIS)

    Data are presented on the availability of tritium, cesium 137, and plutonium to honey bee colonies foraging in the environment surrounding the Los Alamos Scientific Laboratory. Sources of these radionuclides in the laboratory environs include liquid and atmospheric effluents and buried solid waste. Honey bee colonies were placed in three canyon liquid waste disposal areas and were sampled frequently, along with honey, surface water, and surrounding vegetation, to qualitatively determine the availability of these radionuclides to bees (Apis mellifera) and to identify potential food chain sources of the elements. Tritium concentrations in bee and honey samples from the canyons increased rapidly from initial values of 137Cs in the environs. The existence of at least three radionuclide sources in the Los Alamos Scientific Laboratory (LASL) environs complicates the interpretation of the data. However, it is apparent that honey bees can acquire 3H, 137Cs, and Pu from multiple sources in the environs

  1. Epidemiological profile of honey bee brood diseases in different regions at center of Portugal

    OpenAIRE

    Marques, Azucena; Durão, Luís; Cadavez, Vasco; Pires, Sância

    2015-01-01

    The aim of this study was to determine the prevalence of the honey bee brood diseases at the Central Region of Portugal through the seven last years. Bee brood samples were collected and analysed at the Laboratory of Honey Bee Pathology at Escola Superior Agrária de Bragança (LPAESAB). Samples were processed for epidemiological characterization of diseases of honey bee brood. In general, only the prevalence of varroatosis increased over the years. Also, the results attained show that varroato...

  2. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Science.gov (United States)

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  3. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Directory of Open Access Journals (Sweden)

    Zhenghua Xie

    Full Text Available Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L. and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover and a low amount of natural habitats (≤ 12% of land cover in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  4. Antimicrobial Effect of Bee Honey in Comparison to Antibiotics on Organisms Isolated From Infected Burns

    OpenAIRE

    Abd-El Aal, A.M.; El-Hadidy, M.R.; El-Mashad, N.B.; El-Sebaie, A.H.

    2007-01-01

    Despite recent advances in antimicrobial chemotherapy and burn wound management, infection continues to be an important problem in burns. Honey is the most famous rediscovered remedy that is used to treat infected wounds and promote healing. The present study aims to evaluate the antimicrobial effect of bee honey on organisms isolated from infected burns in comparison to the antibiotics used in treatment of burn infection, and to evaluate the effects produced when bee honey is added to antibi...

  5. Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia

    OpenAIRE

    Rinderer, Thomas; De Guzman, Lilia; Delatte, G.; Stelzer, J.; Lancaster, V.; Kuznetsov, V.; Beaman, L; Watts, R; Harris, J.

    2001-01-01

    International audience Varroa destructor is a parasitic mite of the Asian honey bee, Apis cerana. Owing to host range expansion, it now plagues Apis mellifera, the world's principal crop pollinator and honey producer. Evidence from A. mellifera in far-eastern Russia, Primorsky (P) originating from honey bees imported in the mid 1800's, suggested that many colonies were resistant to V. destructor. A controlled field study of the development of populations of V. destructor shows that P colon...

  6. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    Directory of Open Access Journals (Sweden)

    Parrinello Hughes

    2011-10-01

    Full Text Available Abstract Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera, pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen were analyzed by performing a digital gene expression (DGE analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome. Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce

  7. Introgression of lineage c honey bees into black honey bee populations: a genome-wide estimation using single nucleotide polymorphisms (SNPS)

    OpenAIRE

    Henriques, Dora; Chavez-Galarza, Julio; Kryger, Per; JOHNSTON, J. SPENCER; De La Rúa, Pilar; Rufino, José; Dall'Olio, Raffaele; Garnery, Lionel; Pinto, M. Alice

    2012-01-01

    The black honey bee, Apis mellifera mellifera L., is probably the honey bee subspecies more threatened by introgression from foreign subspecies, specially lineage C A. m. carnica and A. m. ligustica. In fact, in some areas of its distributional range, intensive beekeeping with foreign subspecies has driven A. m. mellifera populations to nearly replacement. While massive and repeated introductions may lead to loss of native genetic patrimony, a low level of gene flow can also be detrimental be...

  8. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State

    Science.gov (United States)

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W. Allen; Bonning, Bryony C.; Toth, Amy L.

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations. PMID:27070422

  9. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State.

    Science.gov (United States)

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations. PMID:27070422

  10. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    Directory of Open Access Journals (Sweden)

    Nurit Eliash

    Full Text Available BACKGROUND: The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. PRINCIPAL FINDINGS: We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min. Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. CONCLUSIONS: These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.

  11. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    Science.gov (United States)

    Pettis, Jeffery S.; Vanengelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  12. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees

    OpenAIRE

    Olivier Samson-Robert; Geneviève Labrie; Madeleine Chagnon; Valérie Fournier

    2014-01-01

    In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a m...

  13. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health

    OpenAIRE

    Sainath Suryanarayanan

    2013-01-01

    Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticide...

  14. Laboratory approach to study toxico-pathological interactions in the honey bee Apis mellifera

    OpenAIRE

    P. Belzunces, Luc; Blot, Nicolas; Biron, David Georges; Vidau, Cyril; El Alaoui, Hicham; Diogon, Marie; Alaux, Cédric; Le Conte, Yves; Brunet, Jean-Luc; Delbac, Frédéric

    2012-01-01

    International audience Pesticides and pathogens are two categories of environmental stressors that may contribute to the decline of honey bee populations (vanEngelsdorp and Meixner, 2010). However, if their separate impacts on the honey bee are relatively well studied, knowledge on their interactions are somewhat lacking. Pioneer studies on toxico-pathological interactions have been conducted on the association of Nosema and chronic bee paralysis virus (CBPV) with organophosphate, organoch...

  15. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    OpenAIRE

    Evans, Jay D.; Yan Ping Chen; Gloria DeGrandi-Hoffman; Francesco Pennacchio; Michele Hamilton; Emilio Caprio; Gennaro Di Prisco; Xuan Zhang; Jilian Li

    2011-01-01

    The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the v...

  16. Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees

    OpenAIRE

    Aumeier, Pia

    2001-01-01

    International audience Grooming behavior is considered a varroosis tolerance factor of Africanized honey bees, but this behavior is difficult to evaluate directly within the honey bee colony. A laboratory bioassay was developed to measure the intensity and effectiveness of grooming responses by worker bees artificially infested with one Varroa mite. At a study site in tropical Brazil, the sequence of seven well- defined grooming reactions towards mites of different colonial origin was comp...

  17. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    OpenAIRE

    Pettis, Jeffery S.; vanEngelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-01-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrat...

  18. Effects of stingless bee and honey bee propolis on four species of bacteria.

    Science.gov (United States)

    Farnesi, A P; Aquino-Ferreira, R; De Jong, D; Bastos, J K; Soares, A E E

    2009-01-01

    We examined the antibacterial activities of several types of propolis, including Africanized honey bee green propolis and propolis produced by meliponini bees. The antibacterial activity of green propolis against Micrococcus luteus and Staphylococcus aureus was superior to that of Melipona quadrifasciata and Scaptotrigona sp propolis. Only two samples of propolis (green propolis and Scaptotrigona sp propolis) were efficient against Escherichia coli. Melipona quadrifasciata propolis was better than green propolis and Scaptotrigona sp propolis against Pseudomonas aeruginosa. We concluded that these resins have potential for human and veterinary medicine. PMID:19554760

  19. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    Science.gov (United States)

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  20. Honey bees are essential for pollination of Vitellaria paradoxa subsp. paradoxa (Sapotaceae) in Burkina Faso

    DEFF Research Database (Denmark)

    Lassen, Kristin Marie; Nielsen, Lene Rostgaard; Dupont, Yoko Luise;

    2016-01-01

    Shea (Vitellaria paradoxa) is an important fruit tree in West African parklands, and its successful pollination is a requirement for fruit production. Size-based pollinator exclusion experiments combined with visual observations showed that presence of honey bees (Apis mellifera jemenitica) was...... important for pollination and thereby the production of fruits and seeds. Smaller insects, mainly species of stingless bees (Hypotrigona spp. and Liotrigona cf. bottegoi) and solitary bees (Compsomelissa borneri) could partly compensate pollination in absence of honey bees, but fertilisation and fruit yield...... bees were excluded by bagging. We conclude that local beekeeping with honey bees and stingless bees is likely to have a positive influence on fruit production of shea trees in the farmed West African parklands, which speaks in favour of a pollinator friendly environment....

  1. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia.

    Science.gov (United States)

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice

    2015-06-01

    Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. PMID:25930679

  2. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China

    OpenAIRE

    YANG, BU; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-01-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence...

  3. Effects of insect growth regulators on honey bees and non-Apis bees. A review

    OpenAIRE

    Tasei, J.N.

    2001-01-01

    International audience The insect growth regulators (IGRs) are ecdysone or juvenile hormone mimics, or chitin synthesis inhibitors. They are more likely to be hazardous to larval insects than to adults. Application of JH mimics to adult honey bees may affect foraging behaviour and some physiological traits. Topical and feeding tests revealed that application of IGRs to larvae may result in death and larval ejection by workers, malformed larvae and pupae with typical rimmed eyes, or malform...

  4. Transcriptome analysis of the Asian honey bee Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Zi Long Wang

    Full Text Available BACKGROUND: The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE analysis. RESULTS: Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG with a cut-off E-value of 10(-5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. CONCLUSIONS: Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes.

  5. Effects of insemination quantity on honey bee queen physiology.

    Directory of Open Access Journals (Sweden)

    Freddie-Jeanne Richard

    Full Text Available Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI or 10 drones (multi-drone inseminated, or MDI. We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone. The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor. Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the

  6. Antineoplastic Effects of Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohammad Nabiuni

    2013-08-01

    Full Text Available Background: Bee venom (BV, like many other complementary medicines, has been used for thousands of years for the treatment of a range of diseases. More recently, BV is also being considered as an effective composition for the treatment of cancer. Cancer is a major worldwide problem. It is obvious that the identification of compounds that can activate apoptosis could be effective on the treatment of cancer. BV is a very complicated mixture of active peptides, enzymes, and biologically active amines. The two main components of BV are melittin and phospholipase A2 (PLA2. Of these two components, melittin, the major active ingredient of BV, has been identified to induce apoptosis and to possess anti-tumor effects. We tried to review antineoplastic effects of BV in this study. Materials and Methods: The related articles were derived from different data bases such as PubMed, Elsevier Science, and Google Scholar using keywords including bee venom, cancer, and apoptosis.Results: According to the results of this study, BV can induce apoptosis and inhibit tumor cell growth and metastasis. Results of in vivo experiments show that the anti-tumor effect of the BV is highly dependent on the manner of injection as well as the distance between the area of injection and the tumor cells.Conclusion: The results obtained from the reported studies revealed that BV has anti-cancer effects and can be used as an effective chemotherapeutic agent against tumors in the future.

  7. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  8. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    OpenAIRE

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony’s nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutrit...

  9. ECOLOGICAL IMPACT ON NATIVE BEES BY THE INVASIVE AFRICANIZED HONEY BEE

    Directory of Open Access Journals (Sweden)

    ROUBIK DAVID

    2009-08-01

    Full Text Available ABSTRACT

    Very little effort has been made to investigate bee population dynamics among intact wilderness areas. The presence of newly-arrived feral Africanized honey bee (AHB, Apis mellifera (Apidae, populations was studied for 10-17 years in areas previously with few or no escaped European apiary honey bees. Here I describe and interpret the major results from studies in three neotropical forests: French Guiana, Panama and Yucatan, Mexico (5° to 19° N. latitude. The exotic Africanized honey bees did not produce a negative effect on native bees, including species that were solitary or highly eusocial. Major differences over time were found in honey bee abundance on flowers near habitat experiencing the greatest degree of disturbance, compared to deep forest areas. At the population level, sampled at nest blocks, or at flower patches, or at light traps, there was no sudden decline in bees after AHB arrival, and relatively steady or sinusoidal population dynamics. However, the native bees shifted their foraging time or floral species. A principal conclusion is that such competition is silent, in floristically rich habitats, because bees compensate behaviorally for competition. Other factors limit their populations.

    Key words: Africanized honey bee, native bees, competition, population dynamics, neotropical forests

    RESUMEN Pocos estudios han considerado la dinámica de poblaciones de abejas en bosques o hábitats no alterados por el hombre. La presencia de abejas silvestres Africanizadas de Apis mellifera (Apidae fue estudiado por 10-17 años en áreas previamente sin esta especie. Aquí presento e interpreto resultados de tres bosques neotropicales: Guyana Francesa, Panamá y Yucatán, México (5° a 19° N. latitud. La abeja Africanizada exótica no produjo efecto negativo en las abejas nativas, incluyendo especies altamente sociales y solitarias. Diferencias mayores a través del tiempo fueron encontradas en

  10. Molecular genetic analysis of Varroa destructor mites in brood, fallen injured mites and worker bee longevity in honey bees

    Science.gov (United States)

    Two important traits that contribute to honey bee (Apis mellifera) colony survival are resistance to Varroa destructor and longevity of worker bees. We investigated the relationship between a panel of single nucleotide polymorphism (SNP) markers and three phenotypic measurements of colonies: a) perc...

  11. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. PMID:26919127

  12. Does Patriline Composition Change over a Honey Bee Queen’s Lifetime?

    OpenAIRE

    Karl Crailsheim; Robert Brodschneider; Gérard Arnold; Norbert Hrassnigg

    2012-01-01

    A honey bee queen mates with a number of drones a few days after she emerges as an adult. Spermatozoa of different drones are stored in her spermatheca and used for the rest of the queen’s life to fertilize eggs. Sperm usage is thought to be random, so that the patriline distribution within a honey bee colony would remain constant over time. In this study we assigned the progeny of a naturally mated honey bee queen to patrilines using microsatellite markers at the queen’s age of two, three an...

  13. Highly polymorphic DNA markers in an Africanized honey bee population in Costa Rica

    Directory of Open Access Journals (Sweden)

    Lobo Segura Jorge Arturo

    2000-01-01

    Full Text Available Two genetic markers (the mtDNA COI-COII intergenic region and the microsatellite A7 with high levels of variability in South African and European honey bees were analyzed in wild swarms of Africanized honey bees (Apis mellifera from Costa Rica. Allelic or haplotypic frequencies revealed high levels of genetic variability at these loci in this population. Most of the alleles were African alleles, although some European-derived alleles were also present. Differences in the frequencies of African alleles between African and Africanized samples were minor, which could be explained by founder effects occurring during the introduction of African honey bee populations into South America.

  14. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Yuksel Celik

    2013-01-01

    Full Text Available Marriage in honey bees optimization (MBO is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm’s performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  15. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    Science.gov (United States)

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  16. Honey bee protein atlas at organ-level resolution.

    Science.gov (United States)

    Chan, Queenie W T; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J

    2013-11-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  17. Enhanced production of parthenocarpic cucumbers pollinated with stingless bees and Africanized honey bees in greenhouses

    Directory of Open Access Journals (Sweden)

    Euclides Braga Malheiros

    2013-12-01

    Full Text Available Crops have different levels of dependence on pollinators; this holds true even for cultivars of the same species, as in the case of cucumber (Cucumis sativus. The aim of this research was to assess the attractiveness of flowers of three Japanese parthenocarpic cucumber cultivars and evaluate the importance of Africanized bees (Apis mellifera, and the Brazilian native stingless bees, Jataí (Tetragonisca angustula and Iraí (Nannotrigona testaceicornis on fruit production. Several parameters, including frequency of bee visits to flowers as well as duration of nectar collection and fruit set were examined; additionally, fruit weight, length and diameter were evaluated. Three greenhouses located in Ribeirão Preto, SP, were used for planting three cucumber cultivars (Hokushin, Yoshinari and Soudai. The female flowers were more attractive than male flowers; however, Jataí bees were not observed visiting the flowers. The Africanized and the Iraí bees collected only nectar, with a visitation peak between 10 and 12h. Visits to female flowers had a longer duration than visits to male flower visits in all three cultivars. Africanized bee colonies declined due to loss of bees while in the greenhouse; the native stingless bee colonies did not suffer these losses. When bees were excluded, fruit set was 78%; however, when bees had access to the flowers, fruit set was significantly (19.2% higher. Fruit size and weight did not differ with and without bees. This demonstrates that even in parthenocarpic cucumber cultivars, which do not require pollination in order to from fruits, fruit production is significantly increased by bee pollination.

  18. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections

    DEFF Research Database (Denmark)

    Huanga, Qiang; Kryger, Per; Le Conte, Yves;

    2012-01-01

    Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males...

  19. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season.

    Science.gov (United States)

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season. PMID:26330094

  20. Molecular Prevalence of Acarapis Mite Infestations in Honey Bees in Korea.

    Science.gov (United States)

    Ahn, Ah-Jin; Ahn, Kyu-Sung; Noh, Jin-Hyeong; Kim, Young-Ha; Yoo, Mi-Sun; Kang, Seung-Won; Yu, Do-Hyeon; Shin, Sung Shik

    2015-06-01

    Acarapis mites, including Acarapis woodi, Acarapis externus, and Acarapis dorsalis, are parasites of bees which can cause severe damage to the bee industry by destroying colonies and decreasing honey production. All 3 species are prevalent throughout many countries including UK, USA, Iran, Turkey, China, and Japan. Based on previous reports of Acarapis mites occurring in northeast Asia, including China and Japan, we investigated a survey of Acarapis mite infestations in honey bees in Korean apiaries. A total of 99 colonies of Apis mellifera were sampled from 5 provinces. The head and thorax of 20 bees from each colony were removed for DNA extraction. PCR assays were performed with 3 primer sets, including T, A, and K primers. Results indicated that 42.4% (42/99) of samples were Acarapis-positive by PCR assay which were sequenced to identify species. Each sequence showed 92.6-99.3% homology with reference sequences. Based on the homology, the number of colonies infected with A. dorsalis was 32 which showed the highest infection rate among the 3 species, while the number of colonies infected with A. externus and A. woodi was 9 and 1, respectively. However, none of the Acarapis mites were morphologically detected. This result could be explained that all apiaries in the survey used acaricides against bee mites such as Varroa destructor and Tropilaelaps clareae which also affect against Acarapis mites. Based on this study, it is highly probable that Acarapis mites as well as Varroa and Tropilaelaps could be prevalent in Korean apiaries. PMID:26174825

  1. Molecular Effects of Neonicotinoids in Honey Bees (Apis mellifera).

    Science.gov (United States)

    Christen, Verena; Mittner, Fabian; Fent, Karl

    2016-04-01

    Neonicotinoids are implicated in the decline of bee populations. As agonists of nicotinic acetylcholine receptors, they disturb acetylcholine receptor signaling leading to neurotoxicity. Several behavioral studies showed the link between neonicotinoid exposure and adverse effects on foraging activity and reproduction. However, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic levels of three neonicotinoids and nicotine, and compared laboratory studies to field exposures with acetamiprid. We assessed transcriptional alterations of eight selected genes in caged honey bees exposed to different concentrations of the neonicotinoids acetamiprid, clothianidin, imidacloporid, and thiamethoxam, as well as nicotine. We determined transcripts of several targets, including nicotinic acetylcholine receptor α 1 and α 2 subunit, the multifunctional gene vitellogenin, immune system genes apidaecin and defensin-1, stress-related gene catalase and two genes linked to memory formation, pka and creb. Vitellogenin showed a strong increase upon neonicotinoid exposures in the laboratory and field, while creb and pka transcripts were down-regulated. The induction of vitellogenin suggests adverse effects on foraging activity, whereas creb and pka down-regulation may be implicated in decreased long-term memory formation. Transcriptional alterations occurred at environmental concentrations and provide an explanation for the molecular basis of observed adverse effects of neonicotinoids to bees. PMID:26990785

  2. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    Science.gov (United States)

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees. PMID:27380473

  3. Non-cultivated plants present a season-long route of pesticide exposure for honey bees

    Science.gov (United States)

    Long, Elizabeth Y.; Krupke, Christian H.

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  4. Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae.

    Science.gov (United States)

    Huang, Qiang; Chen, Yanping; Wang, Rui Wu; Schwarz, Ryan S; Evans, Jay D

    2015-01-01

    In order to study the effects of Nosema ceranae infection on honey bee microRNA (miRNA) expression, we deep-sequenced honey bee miRNAs daily across a full 6-day parasite reproduction cycle. Seventeen miRNAs were differentially expressed in honey bees infected by N. ceranae that potentially target over 400 genes predicted to primarily involve ion binding, signaling, the nucleus, transmembrane transport, and DNA binding. Based on Enzyme Code analysis, nine biological pathways were identified by screening target genes against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, seven of which involved metabolism. Our results suggest that differentially expressed miRNAs regulate metabolism related genes of host honey bees in response to N. ceranae infection. PMID:26620304

  5. Spread of Africanized Honey Bees in the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer portrays the spread, by year, of the Africanized honey bee (AHB) in the United States, Puerto Rico, and the U.S. Virgin Islands. The data indicate...

  6. Draft genome sequences of two Bifidobacterium sp. from the honey bee (Apis mellifera)

    Science.gov (United States)

    We provide genome sequences for two strains of honey bee associated Bifidobacterium. Reflecting an oxygen-rich niche, both strains possessed catalase, peroxidase, superoxide-dismutase and respiratory chain enzymes indicative of oxidative metabolism. The strains show markedly different carbohydrate ...

  7. Non-cultivated plants present a season-long route of pesticide exposure for honey bees.

    Science.gov (United States)

    Long, Elizabeth Y; Krupke, Christian H

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  8. Genomic Analyses of the Microsporidian Nosema ceranae, an Emergent Pathogen of Honey Bees

    OpenAIRE

    Cornman, R. Scott; Chen, Yan Ping; Schatz, Michael C; Street, Craig; Yan ZHAO; Desany, Brian; Egholm, Michael; Hutchison, Stephen; Pettis, Jeffery S.; Lipkin, W. Ian; Evans, Jay D.

    2009-01-01

    Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models a...

  9. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.

    OpenAIRE

    R. Scott Cornman; Yan Ping Chen; Schatz, Michael C; Craig Street; Yan Zhao; Brian Desany; Michael Egholm; Stephen Hutchison; Pettis, Jeffery S.; W Ian Lipkin; Evans, Jay D.

    2009-01-01

    Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models a...

  10. The possible role of honey bees in the spread of pollen from field trials

    OpenAIRE

    Kleinjans, H.A.W.; Keulen, van, H.; Blacquière, T.; Booij, C.J.H.; Hok-A-Hin, C. H.; Cornelissen, A.C.M.; Dooremalen, van, C.

    2012-01-01

    Honey bees are important pollinators in agricultural crops, home gardens, orchards and wildlife habitats. As they fly from flower to flower in search of nectar and pollen, they transfer pollen from plant to plant, thus fertilizing the plants and enabling them to bear fruit. In light of this, honey bees could be a factor in spreading pollen grains derived from genetically modified (GM) plants in field trials. The extent to which pollen dispersal occurs and the distances achieved depends on man...

  11. Caste-Specific Differences in Hindgut Microbial Communities of Honey Bees (Apis mellifera)

    OpenAIRE

    Kapheim, Karen M.; Rao, Vikyath D.; Yeoman, Carl J.; Wilson, Brenda A.; White, Bryan A.; Goldenfeld, Nigel; Robinson, Gene E

    2015-01-01

    Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses a...

  12. In-depth Proteomics Characterization of Embryogenesis of the Honey Bee Worker (Apis mellifera ligustica) *

    OpenAIRE

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-01-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all thr...

  13. Reproduction of Varroa destructor in South African honey bees: does cell space influence Varroa male survivorship?

    OpenAIRE

    Martin, Stephen; Kryger, Per

    2002-01-01

    International audience The ability of Varroa destructor to reproduce in the African honey bee Apis mellifera scutellata was studied. In addition, the effects of space within the brood cell and short brood developmental time on mite reproduction, was investigated using A. m. scutellata cells parasitised by a A. m. capensis worker pseudo-clone. In A. m. scutellata worker cells Varroa produced 0.9 fertilised females per mother mite which is the same as found in susceptible European honey bees...

  14. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    OpenAIRE

    Yael Garbian; Eyal Maori; Haim Kalev; Sharoni Shafir; Ilan Sela

    2012-01-01

    Author Summary Acquisition of RNAi components (dsRNA, siRNA) by ingestion and their spread within the recipient organism has been previously reported by us and others. Here we extend such observations, demonstrating cross-species horizontal transmission of dsRNA which, upon transmission from one organism to another still retains its biological activity. We show that dsRNA ingested by honey bees is further transmitted to the parasitic mite Varroa destructor that feeds on the honey bee's hemoly...

  15. Complex pleiotropy characterizes the pollen hoarding syndrome in honey bees (Apis mellifera L.)

    OpenAIRE

    Page, Robert E.; Fondrk, M. Kim; Rueppell, Olav

    2012-01-01

    The pollen hoarding syndrome consists of a large suite of correlated traits in honey bees that may have played an important role in colony organization and consequently the social evolution of honey bees. The syndrome was first discovered in two strains that have been artificially selected for high and low pollen hoarding. These selected strains are used here to further investigate the phenotypic and genetic links between two central aspects of the pollen hoarding syndrome, sucrose responsive...

  16. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    OpenAIRE

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker broo...

  17. Microsatellite loci for the small hive beetle, Aethina tumida, a nest parasite of honey bees.

    Science.gov (United States)

    Evans, J D; Spiewok, S; Teixeira, E W; Neumann, P

    2008-05-01

    Aethina tumida, a beetle parasite of honey bee colonies, has recently and dramatically expanded its range and now parasitizes honey bees on three continents. Polymorphic microsatellite loci for this beetle species will help map this continuing range expansion, and will also prove useful for exploring the mating system and local gene flow patterns for this important parasite. We describe 15 loci that are polymorphic in both the native and introduced ranges of this species, showing from two to 22 alleles. PMID:21585875

  18. Comparison of two morphometric methods for discriminating honey bee (Apis mellifera L.) populations in Turkey

    OpenAIRE

    KOCA, Ayça ÖZKAN; KANDEMİR, İrfan

    2013-01-01

    In this study, we compared 2 different methodologies (traditional morphometrics, TM, and geometric morphometrics, GM) in order to determine their ability to discriminate the honey bee populations distributed throughout Turkey. In TM, 16 morphometric characters were measured from the forewings of different honey bee populations from Turkey. A total of 20 landmarks were utilized for the GM analysis. Multivariate statistical analysis of data obtained from the 2 methodologies showed that GM was m...

  19. Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera)

    OpenAIRE

    Ardestani, Masoud M.; Ebadi, Rahim; Tahmasbi, Gholamhossein

    2011-01-01

    The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dor...

  20. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations.

    Science.gov (United States)

    Hagler, James; Mueller, Shannon; Teuber, Larry R; Van Deynze, Allen; Martin, Joe

    2011-01-01

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for "protein-marked" bees. PMID:22236037

  1. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences.

    Science.gov (United States)

    Hawkins, Jennifer; de Vere, Natasha; Griffith, Adelaide; Ford, Col R; Allainguillaume, Joel; Hegarty, Matthew J; Baillie, Les; Adams-Groom, Beverley

    2015-01-01

    Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspondence for the plant taxa that had an abundance of over 20%. However, the level of similarity when all taxa were compared was lower, ranging from 22-45%, and there was little correspondence between the relative abundance of taxa found using the two techniques. DNA metabarcoding provided much greater repeatability, with a 64% taxa match compared to 28% with melissopalynology. DNA metabarcoding has the advantage over melissopalynology in that it does not require a high level of taxonomic expertise, a greater sample size can be screened and it provides greater resolution for some plant families. However, it does not provide a quantitative approach and pollen present in low levels are less likely to be detected. We investigated the plants that were frequently used by honey bees by examining the results obtained from both techniques. Plants with a broad taxonomic range were detected, covering 46 families and 25 orders, but a relatively small number of plants were consistently seen across multiple honey samples. Frequently found herbaceous species were Rubus fruticosus, Filipendula ulmaria, Taraxacum officinale, Trifolium spp., Brassica spp. and the non-native, invasive, Impatiens glandulifera. Tree pollen was frequently seen belonging to Castanea sativa, Crataegus monogyna and species of Malus, Salix and Quercus. We conclude that although honey bees are considered to be supergeneralists in their foraging choices, there are certain key species or plant groups that are particularly

  2. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences.

    Directory of Open Access Journals (Sweden)

    Jennifer Hawkins

    Full Text Available Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspondence for the plant taxa that had an abundance of over 20%. However, the level of similarity when all taxa were compared was lower, ranging from 22-45%, and there was little correspondence between the relative abundance of taxa found using the two techniques. DNA metabarcoding provided much greater repeatability, with a 64% taxa match compared to 28% with melissopalynology. DNA metabarcoding has the advantage over melissopalynology in that it does not require a high level of taxonomic expertise, a greater sample size can be screened and it provides greater resolution for some plant families. However, it does not provide a quantitative approach and pollen present in low levels are less likely to be detected. We investigated the plants that were frequently used by honey bees by examining the results obtained from both techniques. Plants with a broad taxonomic range were detected, covering 46 families and 25 orders, but a relatively small number of plants were consistently seen across multiple honey samples. Frequently found herbaceous species were Rubus fruticosus, Filipendula ulmaria, Taraxacum officinale, Trifolium spp., Brassica spp. and the non-native, invasive, Impatiens glandulifera. Tree pollen was frequently seen belonging to Castanea sativa, Crataegus monogyna and species of Malus, Salix and Quercus. We conclude that although honey bees are considered to be supergeneralists in their foraging choices, there are certain key species or plant groups that

  3. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences

    Science.gov (United States)

    Griffith, Adelaide; Ford, Col R.; Allainguillaume, Joel; Hegarty, Matthew J.; Baillie, Les; Adams-Groom, Beverley

    2015-01-01

    Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspondence for the plant taxa that had an abundance of over 20%. However, the level of similarity when all taxa were compared was lower, ranging from 22–45%, and there was little correspondence between the relative abundance of taxa found using the two techniques. DNA metabarcoding provided much greater repeatability, with a 64% taxa match compared to 28% with melissopalynology. DNA metabarcoding has the advantage over melissopalynology in that it does not require a high level of taxonomic expertise, a greater sample size can be screened and it provides greater resolution for some plant families. However, it does not provide a quantitative approach and pollen present in low levels are less likely to be detected. We investigated the plants that were frequently used by honey bees by examining the results obtained from both techniques. Plants with a broad taxonomic range were detected, covering 46 families and 25 orders, but a relatively small number of plants were consistently seen across multiple honey samples. Frequently found herbaceous species were Rubus fruticosus, Filipendula ulmaria, Taraxacum officinale, Trifolium spp., Brassica spp. and the non-native, invasive, Impatiens glandulifera. Tree pollen was frequently seen belonging to Castanea sativa, Crataegus monogyna and species of Malus, Salix and Quercus. We conclude that although honey bees are considered to be supergeneralists in their foraging choices, there are certain key species or plant groups that are particularly

  4. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    Science.gov (United States)

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  5. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    Science.gov (United States)

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  6. Pharmacological modulation of aversive responsiveness in honey bees

    Directory of Open Access Journals (Sweden)

    Martin Giurfa

    2014-01-01

    Full Text Available Within a honey bee colony, individuals performing different tasks exhibit different sensitivities to noxious stimuli. Noxious-stimulus sensitivity can be quantified in harnessed bees by measuring the sting extension response (SER to a series of increasing voltages. Biogenic amines play a crucial role in the control of insect responsiveness. Whether or not these neurotransmitters affect the central control of aversive responsiveness, and more specifically of electric-shock responsiveness, remains unknown. Here we studied the involvement of the biogenic amines octopamine, dopamine and serotonin, and of the ecdysteroid 20-hydroxyecdisone in the central control of sting responsiveness to electric shocks. We injected pharmacological antagonists of these signaling pathways into the brain of harnessed bees and determined the effect of blocking these different forms of neurotransmission on shock responsiveness. We found that both octopamine and 20-hydroxyecdisone are dispensable for shock responsiveness while dopamine and serotonin act as down-regulators of sting responsiveness. As a consequence, antagonists of these two biogenic amines induce an increase in shock responsiveness to shocks of intermediate voltage; serotonin, can also increase non-specific responsiveness. We suggest that different classes of dopaminergic neurons exist in the bee brain and we define at least two categories: an instructive class mediating aversive labeling of conditioned stimuli in associative learning, and a global gain-control class which down-regulates responsiveness upon perception of noxious stimuli. Serotonergic signaling together with down-regulating dopaminergic signaling may play an essential role in attentional processes by suppressing responses to irrelevant, non-predictive stimuli, thereby allowing efficient behavioral performances.

  7. INTERIM PROTOCOL FOR TESTING THE EFFECTS OF MICROBIAL PATHOGENS ON THE HONEY BEE, APIS MELLIFERA L. (HYMENOPTERA:APIDAE)

    Science.gov (United States)

    Registration of Microbial Pest Control Agents (MPCAs) under Subsection M of the EPA Pesticide Assessment Guidelines requires that the susceptibility of nontarget species be tested. Honey bees as supplemental pollinators of many entomophilous crop species and as producers of honey...

  8. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Honey bee (Apis mellifera drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.We assessed temperature and relative humidity (RH inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1 both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2 temperature in drones are maintained at higher precision (smaller variance in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3 RH regulation showed higher variance in drone than workers across all brood stages; and 4 RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  9. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  10. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    Science.gov (United States)

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies. PMID:22212860

  11. Prevalence and phylogenetic analysis of honey bee viruses in the Biobío Region of Chile and their association with other honey bee pathogens

    Directory of Open Access Journals (Sweden)

    Marta Rodríguez

    2014-04-01

    Full Text Available Different episodes of mortalities of honey bee (Apis mellifera L. colonies have been associated with the presence of honey bee pathogens. Since the Biobío Region has among the highest number of apiaries in Chile, the aim of the present study was to identify viruses in the Region affecting honey bees, evaluate their relation to other pathogens, and conduct a phylogenetic analysis. Pupae and adult bees were collected from 60 apiaries of Apis mellifera L. in the Biobío Region over 2 yr. RNA viruses were detected by reverse transcription PCR (RT-PCR, and Acarapis woodi, Nosema spp., and Varroa destructor via PCR. Three viruses were detected: Acute bee paralysis virus (ABPV, Black queen cell virus (BQCV and Deformed wing virus (DWV in 2%, 10%, and 42% of the apiaries, respectively. No statistical correlation was observed between the presence of the different viruses, V. destructor, A. woodi, and the two Nosema species, and the bee development stages. One year after the first sampling, DWV and BQCV were detected mainly in foraging adult bee samples. Three percent of the apiaries were infected with N. apis and 18% with N. ceranae, 5% were positive for V. destructor, while A. woodi was not detected. PCR products were sequenced and compared to the Genbank database. Chilean sequences of ABPV, BQCV, and DWV showed high percentages of similarity to other isolates in South America.

  12. Honey Bees Inspired Optimization Method: The Bees Algorithm

    OpenAIRE

    Ernesto Mastrocinque; Alfredo Lambiase; Duc Truong Pham; Baris Yuce; Packianather, Michael S.

    2013-01-01

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that s...

  13. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta) SMITH VENOM, ENDEMIC TO SULAWESI

    OpenAIRE

    Mokosuli Yermia Semuel; Rudi Alexander Repi

    2015-01-01

    Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion m...

  14. Spatial patterns of honey bee (Apis mellifera L.) genetic diversity in continental Portugal: the story told by mitochondrial DNA

    OpenAIRE

    Pinto, M. Alice; Muñoz, Irene; Brandão, Andreia; Neto, Margarida; Guedes, Helena; Souza, Larissa; Baptista, Paula; Pires, Sância; De La Rúa, Pilar

    2010-01-01

    Over 24 honey bee (Apis mellifera L.) subspecies occur naturally in Europe, Africa and the Middle East. Morphological and molecular markers have grouped this wide-ranging diversity into four lineages (A, M, C, O). The Iberian Peninsula harbours two of such lineages (A and M) and the greatest honey bee maternal diversity and complexity across Europe. While the Spanish honey bee populations have been extensively surveyed for mtDNA variation, the genetic composition of the populations inhabiting...

  15. The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK

    OpenAIRE

    Martin, Stephen J.; Ball, Brenda V; Carreck, Norman L.

    2013-01-01

    The mite Varroa destructor has been associated with the collapse of millions of Apis mellifera honey bee colonies world-wide. During the past decade, a large body of research has revealed various interactions between varroa, the honey bee and various viral pathogens. One pathogen in particular, deformed wing virus (DWV), has emerged as the key pathogen involved in colony collapse. As varroa has permanently changed the viral landscape in which honey bees exist, we present a large body of data ...

  16. Multiple routes of pesticide exposure for honey bees living near agricultural fields.

    Science.gov (United States)

    Krupke, Christian H; Hunt, Greg J; Eitzer, Brian D; Andino, Gladys; Given, Krispn

    2012-01-01

    Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments. PMID

  17. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Science.gov (United States)

    Tsevegmid, Khaliunaa; Neumann, Peter; Yañez, Orlando

    2016-01-01

    Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research. PMID:26959221

  18. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Directory of Open Access Journals (Sweden)

    Khaliunaa Tsevegmid

    Full Text Available Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies, where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV and Chronic bee paralysis virus were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km. Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  19. Multiple routes of pesticide exposure for honey bees living near agricultural fields.

    Directory of Open Access Journals (Sweden)

    Christian H Krupke

    Full Text Available Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen or by contact (soil/planter dust is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed

  20. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    Full Text Available Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin or presumed (surfactin or no (paromomycin activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  1. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees.

    Science.gov (United States)

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H; Strand, Micheline K; Rueppell, Olav; Tarpy, David R

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such "migratory management" causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  2. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    Science.gov (United States)

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H.; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such “migratory management” causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  3. Effectiveness of managed populations of wild and honey bees as supplemental pollinators of sour cherry (Prunus cerasus L.) under different climatic conditions

    DEFF Research Database (Denmark)

    Hansted, Lise; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo;

    2015-01-01

    rufa and B. terrestris to add to the pollination activity of conventionally employed A. mellifera. However, in a season with a less favourable weather history, and despite comparable activity of the three species during the pollen-receptive period, introduced bees had only a limited effect on fruit set...... and yield and could not raise yield above that of freely pollinated branches. The contribution of appropriately dense populations of introduced bees in the orchard, given favourable weather conditions, is clear, but maintenance of populations of introduced, wild bees, compared with honey bees may well...

  4. Environmental radioactivity and chemical composition of different types of bee honeys produced at in-house area, egypt

    International Nuclear Information System (INIS)

    Environmental radioactivity and chemical composition of bee honey varies with the surrounding environment (major floral and soil contamination), which reflects the nutritional value of honey. 23SU, 232Th, 40K, >37Cs, major elements Na, K, Mg and Cl and trace elements Mn, Fe, Zn, F, I, Cu, Co, Ni and Sr as well as toxic elements Cd and Pb -were all determined in different types of bee honey, which include non-floral honey with artificial feeding (syrup-feed honey) and mono-floral honeys (clover honey or sesame honey or orange honey). These elements were also determined in the bee feeds, which include flowers (clover, sesame and orange) and syrup. The results revealed that of all types of honeys and syrup-feed honey exhibited higher natural radioactivity and higher concentrations ofNa, K, Mg, Cl, oMn, Fe, Co, Cd and Pb than in the other honeys. Orange honey contained the lowest natural radioactivity and element concentrations. Clover honey had the lowest toxic element Cd and Pb concentrations (0.02 and 4.2/xg/g, respectively) while sesame honey contained the highest levels of Cd and F (0.7 and 12.9 /ig/g, respectively). Statistical analysis revealed significant correlation between honey and the feed (R= 0.745 to 0.921). Environmental radioactivity and element concentrations in the honey under study were in the safety baseline levels for human consumption

  5. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae.

    Science.gov (United States)

    Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav

    2014-05-15

    The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system. PMID:24829325

  6. Patriline variation of Nosema ceranae levels in Russian and Italian honey bees

    Science.gov (United States)

    The microsporidian Nosema ceranae has invaded managed honey bee colonies throughout the world. While the presence of N. ceranae is common, infection levels are highly variable, even among bees within a single colony. The underlying mechanisms driving this variation are not well-understood. The high ...

  7. Lessons learned by the Managed Pollinator CAP: The impact of Varroa parasitism on honey bee health

    Science.gov (United States)

    Several years of work consolidated under the Cooperative Agricultural Project (CAP) has allowed a multi-institutional group of scientists to address complex questions related to the decline of honey bee populations. The group implemented a coordinated multi-state approach to improve bee management...

  8. Molecular genetic analysis of tracheal mite resistance of colonies and individual honey bees

    Science.gov (United States)

    Honey bee resistance to the potentially damaging parasitic tracheal mite is known to be mediated by autogrooming. During autogrooming bees use their midlegs to remove migrating foundress mites, thereby reducing infestation rates in their trachea. We investigated the relationship between markers iden...

  9. How Varroa parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera

    Science.gov (United States)

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from up to 10 colonies at one site ...

  10. A method for distinctly marking honey bees, Apis mellifera originating from multiple apiary locations

    Science.gov (United States)

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described. The device is mounted at the entrance of a standard honey bee, Apis mellifera L. (Hymen...

  11. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    Science.gov (United States)

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  12. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae

    Science.gov (United States)

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to have affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity...

  13. Interactions of tropilaelaps mercedesae, honey bee viruses, and immune response in Apis mellifera

    Science.gov (United States)

    Tropilaelaps mites are the major health threat to Apis mellifera colonies in Asia because of their widespread occurrence, rapid population growth and potential ability to transfer bee viruses. Honey bee immune responses in the presence of feeding mites may occur in response to mite feeding, to the ...

  14. Influence of feeding bee colonies on colony strenght and honey authenticity

    Directory of Open Access Journals (Sweden)

    Andreja KANDOLF BOROVŠAK

    2015-12-01

    Full Text Available For the natural development of bee colonies, there is the need for appropriate nutrition. Lack of natural honey flow must be supplemented by feeding bee colonies with sugar syrups or candy paste. This supplementary feeding encourages brood breeding and forage activity, whereby stronger colonies collect more honey. Sugar syrups can cause honey adulteration, which is more frequent with the reversing of the brood combs with the bee food, with the combs moved from the brood chamber to the upper chamber. Authentication of honey from the standpoint of the presence of sugar syrup is very complex, because there is no single method by which honey adulteration can be reliably confirmed. Feeding the colonies in spring should result in stronger colonies and hence the collection of more honey in the brood chambers. The objective of the present study was to determine whether this has effects also on honey authenticity, and to discover a simple method for detection of honey adulteration. The colonies were fed with candy paste that had added yeast and blue dye, to provide markers for detection of honey adulteration. The strength of the colonies and quantity of honey in the brood chambers were monitored. The results of the analysis of stable isotope and activity of foreign enzymes were compared with the results of yeast quantity and colour of the honey (absorbance, L*, a*, b* parameters. Detection of yeast in the honey samples and presence of colour as a consequence of added dye appear to be appropriate methods to follow honey adulteration, and further studies are ongoing.

  15. Honey bees and their products as indicators of environmental radioactive pollution

    International Nuclear Information System (INIS)

    Samples of honey, pollen and honey bees were collected in some regions of Italy after the Chernobyl accident, and subjected to gamma spectrometry in order to assess their possible use as markers of the radioactive environmental contamination. Pollen proved to be the best indicator, since it reflects exactly the air contamination and therefore it is suitable for obtaining a map of fallout. Also bees can be used for this purpose, even if their collection is more difficult, whereas honey gives only an indication. (author) 13 refs.; 4 figs.; 2 tabs

  16. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    Science.gov (United States)

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems. PMID:26802559

  17. The Spatial Information Content of the Honey Bee Waggle Dance

    Directory of Open Access Journals (Sweden)

    Roger eSchürch

    2015-03-01

    Full Text Available In 1954, Haldane and Spurway published a paper in which they discussed the information content of the honey bee waggle dance with regard to the ideas of Norbert Wiener, who had recently developed a formal theory of information. We return to this concept by reanalyzing the information content in both vector components (direction, distance of the waggle dance using recent empirical data from a study that investigated the accuracy of the dance. Our results show that the direction component conveys 2.9 bits and the distance component 4.5 bits of information, which agrees to some extent with Haldane and Spurway's estimates that were based on data gathered by von Frisch. Of course, these are small amounts of information compared to what can be conveyed, given enough time, by human language, or compared to what is routinely transferred via the internet. Nevertheless, small amounts of information can be very valuable if it is the right information. The receivers of this information, the nestmate bees, know how to react adaptively so that the value of the information is not negated by its low information content.

  18. Unequal subfamily proportions among honey bee queen and worker brood

    Science.gov (United States)

    Tilley; Oldroyd

    1997-12-01

    Queens from three colonies of feral honey bees, Apis mellifera were removed and placed in separate nucleus colonies. For each colony, eggs and larvae were taken from the nucleus and placed in the main hive on each of 3-4 consecutive weeks. Workers in the queenless parts selected young larvae to rear as queens. Queen pupae, together with the surrounding worker pupae, were removed from each colony and analysed at two to three microsatellite loci to determine their paternity. In all three colonies, the paternity of larvae chosen by the bees to rear as queens was not a random sample of the paternities in the worker brood, with certain subfamilies being over-represented in queens. These results support an important prediction of kin selection theory: when colonies are queenless, unequal relatedness within colonies could lead to the evolution of reproductive competition, that is some subfamilies achieving greater reproductive success than others. The mechanism by which such dominance is achieved could be through a system of kin recognition and nepotism, but we conclude that genetically based differential attractiveness of larvae for rearing as queens is more likely.Copyright 1997 The Association for the Study of Animal BehaviourCopyright 1997The Association for the Study of Animal Behaviour. PMID:9521799

  19. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera

    OpenAIRE

    Claudia Dussaubat; Jean-Luc Brunet; Mariano Higes; Colbourne, John K.; Jacqueline Lopez; Jeong-Hyeon Choi; Raquel Martín-Hernández; Cristina Botías; Marianne Cousin; Cynthia McDonnell; Marc Bonnet; Luc P Belzunces; Moritz, Robin F.A.; Yves Le Conte; Cédric Alaux

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seve...

  20. Factors Influencing Adoption of VSH Queens in the Honey Bee Breeding Industry

    OpenAIRE

    Leiby, Julie; Westra, John

    2014-01-01

    The Varroa mite is a threat to honey bees and beekeepers across the U.S. and is suspected to be one contributor to colony collapse disorder (CCD). In 2006, Varroa Sensitive Hygiene (VSH) bees were developed in response to this problem in the beekeeping industry. The hygienic behavior of VSH bees helps reduce susceptibility of colonies to Varroa mites, results in stronger colonies and decrease susceptibility to CCD. The objective of this paper is to identify factors that significantly influenc...

  1. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    OpenAIRE

    Evans JD; Robinson GE; Martin-Magniette ML; Alaux C; Migeon A; Navajas M; Cros-Arteil S; Crauser D; Le Conte Y

    2008-01-01

    Abstract Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling m...

  2. Social Modulation of Stress Reactivity and Learning in Young Worker Honey Bees

    OpenAIRE

    Urlacher, Elodie; Tarr, Ingrid S.; Mercer, Alison R.

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cl...

  3. Morphometric identification of queens, workers, intermediates in in vitro reared honey bees (Apis mellifera)

    OpenAIRE

    De Souza, Daiana A.; Ying Wang; Osman Kaftanoglu; David De Jong; Amdam, Gro V.; Lionel S. Gonçalves; Francoy, Tiago M.

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste cla...

  4. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development

    OpenAIRE

    Tautz, Jürgen; Maier, Sven; Groh, Claudia; Rössler, Wolfgang; Brockmann, Axel

    2003-01-01

    To investigate the possible consequences of brood-temperature regulation in honey bee colonies on the quality of behavioral performance of adults, we placed honey bee pupae in incubators and allowed them to develop at temperatures held constant at 32°C, 34.5°C, and 36°C. This temperature range occurs naturally within hives. On emergence, the young adult bees were marked and introduced into foster colonies housed in normal and observation hives and allowed to live out their lives. No obv...

  5. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.)

    OpenAIRE

    Rueppell, Olav; Bachelier, Cédric; Fondrk, M. Kim; Page, Robert E.

    2007-01-01

    Life expectancy of honey bees (Apis mellifera L.) is of general interest to gerontological research because its variability among different groups of bees is one of the most striking cases of natural plasticity of aging. Worker honey bees spend their first days of adult life working in the nest, then transition to foraging and die between 4 and 8 weeks of age. Foraging is believed to be primarily responsible for the early death of workers. Three large-scale experiments were performed to quant...

  6. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid

    OpenAIRE

    Kevin W Wanner; Nichols, Andrew S.; Walden, Kimberly K. O.; Brockmann, Axel; Luetje, Charles W.; Robertson, Hugh M

    2007-01-01

    By using a functional genomics approach, we have identified a honey bee [Apis mellifera (Am)] odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA). Honey bees live in large eusocial colonies in which a single queen is responsible for reproduction, several thousand sterile female worker bees complete a myriad of tasks to maintain the colony, and several hundred male drones exist only to mate. The “queen substance” [also termed the queen retinue pheromone (QRP)] is an eig...

  7. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    Science.gov (United States)

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees. PMID:26774296

  8. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment.

    Science.gov (United States)

    Biluca, Fabíola C; Della Betta, Fabiana; de Oliveira, Gabriela Pirassol; Pereira, Lais Morilla; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2014-09-15

    This study aimed to assess 5-hydroximethylfurfural and carbohydrates (fructose, glucose, and sucrose) in 13 stingless bee honey samples before and after thermal treatment using a capillary electrophoresis method. The methods were validated for the parameters of linearity, matrix effects, precision, and accuracy. A factorial design was implemented to determine optimal thermal treatment conditions and then verify the postprocedural 5-HMF formation, but once 5-HMF were HMF, and carbohydrate levels ranged from 48.59% to 69.36%. In the same conditions of thermal treatment, Apis mellifera honey presented higher 5-HMF content than stingless bee honey. Results suggest that a high temperature related to briefer thermal treatment could be an efficient way to extend shelf life without affecting 5-HMF content in stingless bee honey. PMID:24767051

  9. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Frank D Rinkevich

    Full Text Available The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold, moderate differences in pyrethroid bioassays (1.5 to 3-fold, and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold. Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the

  10. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera.

    Science.gov (United States)

    Rinkevich, Frank D; Margotta, Joseph W; Pittman, Jean M; Danka, Robert G; Tarver, Matthew R; Ottea, James A; Healy, Kristen B

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID:26431171

  11. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    Science.gov (United States)

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  12. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health.

    Science.gov (United States)

    Suryanarayanan, Sainath

    2013-01-01

    Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticides are underpinned by a "control-oriented" approach, which precludes a serious investigation of the indirect and multifactorial ways in which pesticides could drive declines in honey bee health. I trace the historical rise to prominence of this approach in honey bee toxicology to the development of entomology as a science of insecticide development in the United States. Drawing on "complexity-oriented" knowledge practices in ecology, epidemiology, beekeeping and sociology, I suggest an alternative socio-ecological systems approach, which would entail in situ studies that are less concerned with isolating individual factors and more attentive to the interactive and place-based mix of factors affecting honey bee health. PMID:26466800

  13. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health

    Directory of Open Access Journals (Sweden)

    Sainath Suryanarayanan

    2013-03-01

    Full Text Available Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticides are underpinned by a “control-oriented” approach, which precludes a serious investigation of the indirect and multifactorial ways in which pesticides could drive declines in honey bee health. I trace the historical rise to prominence of this approach in honey bee toxicology to the development of entomology as a science of insecticide development in the United States. Drawing on “complexity-oriented” knowledge practices in ecology, epidemiology, beekeeping and sociology, I suggest an alternative socio-ecological systems approach, which would entail in situ studies that are less concerned with isolating individual factors and more attentive to the interactive and place-based mix of factors affecting honey bee health.

  14. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    Directory of Open Access Journals (Sweden)

    Fabien J Démares

    Full Text Available Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera. Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  15. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    Science.gov (United States)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  16. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment

    OpenAIRE

    Retschnig, Gina; Williams, Geoffrey Rhys; Odemer, R; Boltin, J; Di Poto, C; Mehmann, MM; Retschnig, P; Winiger, P; Rosenkranz, P.; Neumann, Peter

    2015-01-01

    Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo...

  17. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    OpenAIRE

    Williams, Geoffrey R; Dave Shutler; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing ...

  18. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C

    2015-04-01

    Honey bees (Apis mellifera) are susceptible to a wide range of pathogens, including a broad set of viruses. Recently, next-generation sequencing has expanded the list of viruses with, for instance, two strains of Lake Sinai Virus. Soon after its discovery in the USA, LSV was also discovered in other countries and in other hosts. In the present study, we assemble four almost complete LSV genomes, and show that there is remarkable sequence heterogeneity based on the Orf1, RNA-dependent RNA polymerase and capsid protein sequences in comparison to the previously identified LSV 1 and 2 strains. Phylogenetic analyses of LSV sequences obtained from single honey bee specimens further revealed that up to three distinctive clades could be present in a single bee. Such superinfections have not previously been identified for other honey bee viruses. In a search for the putative routes of LSV transmission, we were able to demonstrate the presence of LSV in pollen pellets and in Varroa destructor mites. However, negative-strand analyses demonstrated that the virus only actively replicates in honey bees and mason bees (Osmia cornuta) and not in Varroa mites. PMID:25725149

  19. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues

    Science.gov (United States)

    Goblirsch, Michael J.; Spivak, Marla S.; Kurtti, Timothy J.

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz’s L15 medium and incubated at 32°C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10–14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology. PMID:23894551

  20. Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys.

    Science.gov (United States)

    Ramón-Sierra, Jesús Manuel; Ruiz-Ruiz, Jorge Carlos; de la Luz Ortiz-Vázquez, Elizabeth

    2015-09-15

    Increasing production of stingless-bee honey and the prospect of broader marker for natural and organic products indicate the need to establish parameters to determinate the entomological origin and authenticity of honey. In this research, honeys of Apis mellifera, Melipona beecheii and Trigona spp. were collected in Yucatan, Mexico. Stingless-bee honeys contained more water and less total sugars and reducing sugars. SDS-PAGE patterns show distinctive bands for each kind of honey. The SDS-PAGE pattern of A. mellifera proteins honey showed three bands with molecular weights between 10.2 and 74.8kDa, there were five proteins bands in M. beecheii honey with molecular weights between 6.1 and 97.0kDa and nine for Trigona spp. proteins between 9.3 and 86.7kDa. Conventional physicochemical parameters along with electrophoresis profiles of stingless-bee honeys proteins could be an alternative for determination of entomological origin. PMID:25863608

  1. Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Aleš Gregorc

    2013-09-01

    Full Text Available Chronic bee paralysis virus (CBPV is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o or per cuticle (p/c with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR. Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation.

  2. Pollen Contaminated With Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior.

    Science.gov (United States)

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-02-01

    Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen. PMID:26476556

  3. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields.

    Science.gov (United States)

    Hagler, James R; Mueller, Shannon; Teuber, Larry R; Machtley, Scott A; Van Deynze, Allen

    2011-01-01

    A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae), in a 15.2 km(2) area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready alfalfa seed production fields (totaling 120.2 ha). Each year, honey bee self-marking devices were placed on 112 selected honey bee colonies originating from nine different apiary locations. The foraging bees exiting each apiary location were uniquely marked so that the apiary of origin and the distance traveled by the marked (field-collected) bees into each of the alfalfa fields could be pinpointed. Honey bee self-marking devices were installed on 14.4 and 11.2% of the total hives located within the research area in 2006 and 2007, respectively. The frequency of field-collected bees possessing a distinct mark was similar, averaging 14.0% in 2006 and 12.6% in 2007. A grand total of 12,266 bees were collected from the various alfalfa fields on seven sampling dates over the course of the study. The distances traveled by marked bees ranged from a minimum of 45 m to a maximum of 5983 m. On average, marked bees were recovered ~ 800 m from their apiary of origin and the recovery rate of marked bees decreased exponentially as the distance from the apiary of origin increased. Ultimately, these data will be used to identify the extent of pollen-mediated gene flow from Roundup Ready to conventional alfalfa. PMID:22224495

  4. Characterization of viral siRNA populations in honey bee colony collapse disorder.

    Science.gov (United States)

    Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana

    2014-04-01

    Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. PMID:24725944

  5. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    Science.gov (United States)

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p 0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods. PMID:24783783

  6. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    2012-12-01

    Full Text Available The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  7. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera)

    Science.gov (United States)

    Feazel-Orr, Haley K.; Catalfamo, Katelyn M.; Brewster, Carlyle C.; Fell, Richard D.; Anderson, Troy D.; Traver, Brenna E.

    2016-01-01

    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies. PMID:26938563

  8. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera).

    Science.gov (United States)

    Feazel-Orr, Haley K; Catalfamo, Katelyn M; Brewster, Carlyle C; Fell, Richard D; Anderson, Troy D; Traver, Brenna E

    2016-01-01

    Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B(®), and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies. PMID:26938563

  9. Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Haley K. Feazel-Orr

    2016-03-01

    Full Text Available Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies.

  10. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse

    NARCIS (Netherlands)

    Mattila, H.R.; Rios, D.; Walker-Sperling, V.E.; Roeselers, G.; Newton, I.L.G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected poll

  11. Responses to Varroa destructor and Nosema ceranae by several commercial strains of Australian and North American honey bees (Hymenoptera: Apidae)

    Science.gov (United States)

    The potential impact of varroa (Varroa destructor, Anderson & Trueman. 2000) on Australian beekeeping and agriculture depends in part on the levels of resistance to this parasite expressed by Australian commercial honey bees (Apis mellifera). The responses of seven lines of Australian honey bees to ...

  12. Tritium concentrations in bees and honey at Los Alamos National Laboratory: 1979-1996

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R.; Pratt, L.H.

    1997-01-01

    Honeybees are effective monitors of environmental pollution. The objective of this study was to summarize tritium ({sup 3}H) concentrations in bees and honey collected from within and around Los Alamos National Laboratory (LANL) over an 18-year period. Based on the long-term average, bees from nine out of eleven hives and honey from six out of eleven hives on LANL lands contained {sup 3}H that was significantly higher (p <0.05) than background. The highest average concentration of {sup 3}H in bees (435 pCi mL{sup -1}) collected over the years was from LANL`s Technical Area (TA) 54-a low-level radioactive waste disposal site (Area G). Similarly, the highest average concentration of {sup 3}H in honey (709 pCi mL{sup - 1}) was collected from a hive located near three {sup 3}H storage ponds at LANL TA-53. The average concentrations of {sup 3}H in bees and honey from background hives was 1.0 pCi mL{sup -1} and 1.5 pCi ML{sup -1}, respectively. Although the concentrations of 3H in bees and honey from most LANL and perimeter (White Rock/Pajarito Acres) areas were significantly higher than background, most areas, with the exception of TA-53 and TA-54, generally exhibited decreasing 3H concentrations over time.

  13. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory.

    Science.gov (United States)

    Charbonneau, Lise R; Hillier, Neil Kirk; Rogers, Richard E L; Williams, Geoffrey R; Shutler, Dave

    2016-01-01

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex. PMID:26961062

  14. Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats.

    Science.gov (United States)

    Ibrahim, Abdelazim; Eldaim, Mabrouk A Abd; Abdel-Daim, Mohamed M

    2016-08-01

    Cisplatin is one of the most potent and effective chemotherapeutic agents. However, its antineoplastic use is limited due to its cumulative nephrotoxic side effects. Therefore, the present study was undertaken to examine the nephroprotective potential of dietary bee honey and royal jelly against subchronic cisplatin toxicity in rats. Male Wistar rats were randomly divided into controls, cisplatin-treated, bee honey-pretreated cisplatin-treated and royal jelly-pretreated cisplatin-treated groups. Bee honey and royal jelly were given orally at doses of 20 and 100 mg/kg, respectively. Subchronic toxicity was induced by cisplatin (1 mg/kg bw, ip), twice weekly for 10 weeks. Cisplatin treated animals revealed a significant increase in serum level of renal injury products (urea, creatinine and uric acid). Histopathologically, cisplatin produced pronounced tubulointerstitial injuries, upregulated the fibrogenic factors, α-smooth muscle actin (α-SMA) and transforming growth factor β1(TGF-β1), and downregulated the cell proliferation marker, bromodeoxyuridine (Brdu). Dietary bee honey and royal jelly normalized the elevated serum renal injury product biomarkers, improved the histopathologic changes, reduced the expression of α-SMA and TGF-β1 and increased the expression of Brdu. Therefore, it could be concluded that bee honey, and royal jelly could be used as dietary preventive natural products against subchronic cisplatin-induced renal injury. PMID:25720368

  15. Pteridine levels and head weights are correlated with age and colony task in the honey bee, Apis mellifera.

    Science.gov (United States)

    Rinkevich, Frank D; Margotta, Joseph W; Pittman, Jean M; Ottea, James A; Healy, Kristen B

    2016-01-01

    Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old

  16. Causes and Scale of Winter Flights in Honey Bee (Apis Mellifera Carnica Colonies

    Directory of Open Access Journals (Sweden)

    Węgrzynowicz Paweł

    2014-06-01

    Full Text Available Winter honey bee losses were evaluated during the two overwintering periods of 2009/2010 and 2010/2011. The research included dead bee workers that fell on the hive bottom board (debris and the ones that flew out of the hive. Differences were observed in the number of bees fallen as debris between the two periods, whereas the number of bees flying out was similar in both years. No differences were found between the numbers of dead bees in strong and weak colonies. The percentage of bees flying out of the colony increased in the presence of Nosema spores, Varroa infestation, increased average air temperature, and insolation during the day. In addition, both the presence of Nosema and insolation during the day had an impact on the number of bees that died and fell on the hive board.

  17. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.

    Directory of Open Access Journals (Sweden)

    Olivier Samson-Robert

    Full Text Available In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.

  18. Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.

    Science.gov (United States)

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2014-01-01

    In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted. PMID:25438051

  19. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component.

    Directory of Open Access Journals (Sweden)

    Zhengwei Wang

    Full Text Available In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina, mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA, or a floral odor (hexanal as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.

  20. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    Science.gov (United States)

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. PMID:12097861

  1. Insulin-like peptide response to nutritional input in honey bee workers.

    Science.gov (United States)

    Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V

    2014-10-01

    The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health. PMID:24952326

  2. Nutritional Effect of Alpha-Linolenic Acid on Honey Bee Colony Development (Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Ma Lanting

    2015-12-01

    Full Text Available Alpha-linolenic acid (ALA, which is an n-3 polyunsaturated fatty acid (PUFA, influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A, 2 (group B, 4 (group C, 6 (group D, 8 (group E, and 10% (group F. In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05. The workers’ midgut Lipase (LPS activity of group C was significantly lower than that of the other groups (P<0.01. The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05. However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01. These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.

  3. Comparative resistance of Russian and Italian honey bees (Hymenoptera: Apidae) to small hive beetles (Coleoptera: Nitidulidae).

    Science.gov (United States)

    Frake, Amanda M; De Guzman, Lilia I; Rinderer, Thomas E

    2009-02-01

    To compare resistance to small hive beetles (Coleoptera: Nitidulidae) between Russian and commercial Italian honey bees (Hymenoptera: Apidae), the numbers of invading beetles, their population levels through time and small hive beetle reproduction inside the colonies were monitored. We found that the genotype of queens introduced into nucleus colonies had no immediate effect on small hive beetle invasion. However, the influence of honey bee stock on small hive beetle invasion was pronounced once test bees populated the hives. In colonies deliberately freed from small hive beetle during each observation period, the average number of invading beetles was higher in the Italian colonies (29 +/- 5 beetles) than in the Russian honey bee colonies (16 +/- 3 beetles). A similar trend was observed in colonies that were allowed to be freely colonized by beetles throughout the experimental period (Italian, 11.46 +/- 1.35; Russian, 5.21 +/- 0.66 beetles). A linear regression analysis showed no relationships between the number of beetles in the colonies and adult bee population (r2 = 0.1034, P = 0.297), brood produced (r2 = 0.1488, P = 0.132), or amount of pollen (P = 0.1036, P = 0.295). There were more Italian colonies that supported small hive beetle reproduction than Russian colonies. Regardless of stock, the use of entrance reducers had a significant effect on the average number of small hive beetle (with reducer, 16 +/- 3; without reducer, 27 +/- 5 beetles). However, there was no effect on bee population (with reducer, 13.20 +/- 0.71; without reducer, 14.60 +/- 0.70 frames) or brood production (with reducer, 6.12 +/- 0.30; without reducer, 6.44 +/- 0.34 frames). Overall, Russian honey bees were more resistant to small hive beetle than Italian honey bees as indicated by fewer invading beetles, lower small hive beetle population through time, and lesser reproduction. PMID:19253612

  4. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120.

    Science.gov (United States)

    Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Vandame, Rémy; Sánchez, Daniel

    2014-08-01

    We present the results of evaluating the response of three species of bees, Trigona fulviventris (Guérin), Scaptotrigona mexicana (Guérin-Meneville), and Apis mellifera (L.), to food sources baited with the toxic bait GF-120 (NF Naturalyte), a spinosad-based bait exclusively used to manage fruit flies. Groups of foragers were trained to collect honey and water from a feeder located 50 m from the colonies. Once a sufficient number of foragers were observed at the experimental location, the training feeder was changed to two or three feeders that offered either honey and water, GF-120, Captor (hydrolyzed protein), GF-120 and honey (4:6), or Captor and honey (1:19). T fulviventris and S. mexicana rarely visited GF-120, Captor, or their mixtures with honey, while approximately 28.5 and 1.5% of A. mellifera foragers visited the GF-120 and honey and Captor and honey mixtures, respectively. Our results show that GF-120 clearly repels T. fulviventris and S. mexicana, whereas for A. mellifera, repellence is not as marked when GF-120 is combined with highly nutritious substances like honey. PMID:25195434

  5. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health.

    Science.gov (United States)

    Di Prisco, Gennaro; Annoscia, Desiderato; Margiotta, Marina; Ferrara, Rosalba; Varricchio, Paola; Zanni, Virginia; Caprio, Emilio; Nazzi, Francesco; Pennacchio, Francesco

    2016-03-22

    Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite-virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem. PMID:26951652

  6. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse.

    Directory of Open Access Journals (Sweden)

    Heather R Mattila

    Full Text Available Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.

  7. No intracolonial nepotism during colony fissioning in honey bees.

    Science.gov (United States)

    Rangel, Juliana; Mattila, Heather R; Seeley, Thomas D

    2009-11-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony whose workers belong to multiple patrilines. This colony genetic structure creates a potential for intracolonial nepotism. One context with great potential for such nepotism arises in species, like honey bees, whose colonies reproduce by fissioning. During fissioning, workers might nepotistically choose between serving a young (sister) queen or the old (mother) queen, preferring the former if she is a full-sister but the latter if the young queen is only a half-sister. We examined three honeybee colonies that swarmed, and performed paternity analyses on the young (immature) queens and samples of workers who either stayed with the young queens in the nest or left with the mother queen in the swarm. For each colony, we checked whether patrilines represented by immature queens had higher proportions of staying workers than patrilines not represented by immature queens. We found no evidence of this. The absence of intracolonial nepotism during colony fissioning could be because the workers cannot discriminate between full-sister and half-sister queens when they are immature, or because the costs of behaving nepotistically outweigh the benefits. PMID:19692398

  8. Migrating giant honey bees (Apis dorsata congregate annually at stopover site in Thailand.

    Directory of Open Access Journals (Sweden)

    Willard S Robinson

    Full Text Available Giant honey bees (Apis dorsata of southern Asia are vital honey producers and pollinators of cultivated crops and wild plants. They are known to migrate seasonally up to 200 km. It has been assumed their migrations occur stepwise, with stops for rest and foraging, but bivouacking bees have rarely been seen by scientists. Here I report discovery of a site in northern Thailand where bivouacs appeared in large congregations during the wet seasons of 2009 and 2010. The bivouac congregation stopover site is a small mango orchard along the Pai River. Bivouacs rested in branches of mango and other tree species in the immediate vicinity. Departures were preceded by dances indicating approximate direction and apparently, distance of flights. Such consistent stopover sites likely occur throughout southern Asia and may support critical, vulnerable stages in the life history of giant honey bees that must be conserved for populations of the species to survive.

  9. Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field.

    Science.gov (United States)

    Tison, Léa; Hahn, Marie-Luise; Holtz, Sophie; Rößner, Alexander; Greggers, Uwe; Bischoff, Gabriela; Menzel, Randolf

    2016-07-01

    The decline of pollinators worldwide is of growing concern and has been related to the use of plant-protecting chemicals. Most studies have focused on three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) currently subject to a moratorium in the EU. Here, we focus on thiacloprid, a widely used cyano-substituted neonicotinoid thought to be less toxic to honey bees and of which use has increased in the last years. Honey bees (Apis mellifera carnica) were exposed chronically to thiacloprid in the field for several weeks at a sublethal concentration. Foraging behavior, homing success, navigation performance, and social communication were impaired, and thiacloprid residue levels increased both in the foragers and the nest mates over time. The effects observed in the field were not due to a repellent taste of the substance. For the first time, we present the necessary data for the risk evaluation of thiacloprid taken up chronically by honey bees in field conditions. PMID:27268938

  10. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae.

    Science.gov (United States)

    Ebeling, Julia; Knispel, Henriette; Hertlein, Gillian; Fünfhaus, Anne; Genersch, Elke

    2016-09-01

    The gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood of honey bees, a notifiable disease in many countries. Hence, P. larvae can be considered as an entomopathogen of considerable relevance in veterinary medicine. P. larvae is a highly specialized pathogen with only one established host, the honey bee larva. No other natural environment supporting germination and proliferation of P. larvae is known. Over the last decade, tremendous progress in the understanding of P. larvae and its interactions with honey bee larvae at a molecular level has been made. In this review, we will present the recent highlights and developments in P. larvae research and discuss the impact of some of the findings in a broader context to demonstrate what we can learn from studying "exotic" pathogens. PMID:27394713

  11. Morphological Discrimination of Greek Honey Bee Populations Based on Geometric Morphometrics Analysis of Wing Shape

    Directory of Open Access Journals (Sweden)

    Charistos Leonidas

    2014-06-01

    Full Text Available Honey bees collected from 32 different localities in Greece were studied based on the geometric morphometrics approach using the coordinates of 19 landmarks located at wing vein intersections. Procrustes analysis, principal component analysis, and Canonical variate analysis (CVA detected population variability among the studied samples. According to the Principal component analysis (PCA of pooled data from each locality, the most differentiated populations were the populations from the Aegean island localities Astypalaia, Chios, and Kythira. However, the populations with the most distant according to the canonical variate analysis performed on all measurements were the populations from Heraklion and Chania (both from Crete island. These results can be used as a starting point for the use of geometric morphometrics in the discrimination of honey bee populations in Greece and the establishment of conservation areas for local honey bee populations.

  12. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds

    OpenAIRE

    Requier, Fabrice; Odoux, Jean Francois; Tamic, Thierry; Moreau, Nathalie; Henry, Mickaël; Decourtye, Axel; Bretagnolle, Vincent

    2015-01-01

    In intensive farmland habitats, pollination of wild flowers and crops may be threatened by the widespread decline of pollinators. The honey bee decline, in particular, appears to result from the combination of multiple stresses, including diseases, pathogens, and pesticides. The reduction of semi-natural habitats is also suspected to entail floral resource scarcity for bees. Yet, the seasonal dynamics and composition of the honey bee diet remains poorly documented to date. In this study, we s...

  13. Pteridine levels and head weights are correlated with age and colony task in the honey bee, Apis mellifera

    OpenAIRE

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; James A Ottea; Healy, Kristen B.

    2016-01-01

    Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey...

  14. Nosema and imidacloprid synergy affects immune-strength-related enzyme activity in the honey bee, Apis mellifera

    OpenAIRE

    Mondet, Fanny

    2009-01-01

    The dramatic depopulation of honey bee colonies has not yet been associated to a single culprit, although many potential contributing factors have been identified. In an attempt to address the impact of an association of two factors on the honey bee, Apis mellifera, we studied the effects of a joint exposure to the microsporidian Nosema and the systemic insecticide imidacloprid, in the context of parasitisation by the mite Varroa destructor. Young adult bees ...

  15. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse

    OpenAIRE

    Mattila, Heather R.; Daniela Rios; Walker-Sperling, Victoria E.; Guus Roeselers; Newton, Irene L.G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically ...

  16. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis

    OpenAIRE

    Jensen, Annette; Palmer, Kellie; Chaline, Nicolas; Raine, Nigel; Tofilski, Adam; Martin, Stephen; Pedersen, Bo; BOOMSMA, Jacobus; Ratnieks, Francis

    2005-01-01

    Honey bee males and queens mate in mid air and can fly many kilometres on their nuptial flights. The conservation of native honey bees, such as the European black bee (Apis mellifera mellifera), therefore, requires large isolated areas to prevent hybridisation with other subspecies, such as A. m. ligustica or A. m. carnica, which may have been introduced by beekeepers. This study used DNA microsatellite markers to determine the mating range of A. m. mellifera in two adjacent semi-isolated val...

  17. A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008

    OpenAIRE

    Vanengelsdorp, Dennis; Hayes, Jerry; Underwood, Robyn M.; Pettis, Jeffery

    2008-01-01

    Background Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007–2008. Methodology/Princi...

  18. Inorganic Nitrogen Derived from Foraging Honey Bees Could Have Adaptive Benefits for the Plants They Visit

    Science.gov (United States)

    Mishra, Archana; Afik, Ohad; Cabrera, Miguel L.; Delaplane, Keith S.; Mowrer, Jason E.

    2013-01-01

    In most terrestrial ecosystems, nitrogen (N) is the most limiting nutrient for plant growth. Honey bees may help alleviate this limitation because their feces (frass) have high concentration of organic nitrogen that may decompose in soil and provide inorganic N to plants. However, information on soil N processes associated with bee frass is not available. The objectives of this work were to 1) estimate the amount of bee frass produced by a honey bee colony and 2) evaluate nitrogen mineralization and ammonia volatilization from bee frass when surface applied or incorporated into soil. Two cage studies were conducted to estimate the amount of frass produced by a 5000-bee colony, and three laboratory studies were carried out in which bee frass, surface-applied or incorporated into soil, was incubated at 25oC for 15 to 45 days. The average rate of bee frass production by a 5,000-bee colony was estimated at 2.27 to 2.69 g N month−1. Nitrogen mineralization from bee frass during 30 days released 20% of the organic N when bee frass was surface applied and 34% when frass was incorporated into the soil. Volatilized NH3 corresponded to 1% or less of total N. The potential amount of inorganic N released to the soil by a typical colony of 20,000 bees foraging in an area similar to that of the experimental cages (3.24 m2) was estimated at 0.62 to 0.74 g N m−2 month−1 which may be significant at a community scale in terms of soil microbial activity and plant growth. Thus, the deposition of available N by foraging bees could have adaptive benefits for the plants they visit, a collateral benefit deriving from the primary activity of pollination. PMID:23923006

  19. Multielemental determination in Citrus spp bee honey samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Recently interest has grown in the determination of the concentration of inorganic chemical elements in honey bee samples, due its utilization as indicator of environmental pollution in several countries of Europe. In the present work, a method was developed to determine some essential and potentially inorganic elements in honey bee samples by intrumental neutrons activation analysis followed by high resolution gamma ray spectrometry. The honey samples were neutron irradiated during differents times at the nuclear research reactor IEA-Rl of the IPEN-CNEN/SP. The elements Na, Cl, K, Mg and Mn were determined using irradiations of 30 minutes under a thermal neutron flux of 1012 n.cm-2.s-1. With 16 hours of irradiation under a flux of 1013 n.cm-2.s-1 and different cooling times, the elements Br, Ca, Au, Sb, Cs, Rb, Zn, Sc, Fe, Co and La were determined. The concentration of the analyzed elements ranged from ng/g to mg/g. In the future, different kinds of bee honey will be analyzed and the characteristic chemical composition of each one will be established. Based on these elemental concentration data, the relationship between the mineral composition of bee honey and its geographical origin can be studied. (author)

  20. Honey bee (Apis mellifera) strains differ in avocado (Persea americana) nectar foraging preference

    OpenAIRE

    Dag, Arnon; Elizabeth Fetscher, A.; Afik, Ohad; Yeselson, Yelena; Schaffer, Arthur; Kamer, Yossi; Waser, Nicholas; Madore, Monica; Arpaia, Mary; Hofshi, Reuben; Shafir, Sharoni

    2003-01-01

    Avocado nectar is unusual because it contains perseitol, a 7-carbon sugar alcohol. We compared avocado-nectar collection by commonly used Italian-based (IT) honey bee colonies and New World Carniolan (NWC) colonies introduced in avocado orchards in Israel (IS) and California (CA). In IS, NWC colonies had greater honey yields (1.2-4.3 fold), with a higher perseitol content (1.1-5.4 fold), than IT colonies. Overall, we calculated that NWC bees collected 1.4 to 18.1 times more avocado nectar tha...

  1. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used for western U.S. honey production and almond pollination.

    Science.gov (United States)

    Rinderer, Tihomas E; Danka, Robert G; Johnson, Stephanie; Bourgeois, A Lelania; Frake, Amanda M; Villa, José D; De Guzman, Lilia I; Harris, Jeffrey W

    2014-04-01

    Two types of honey bees, Apis mellifera L., bred for resistance to Varroa destructor Anderson & Trueman, were evaluated for performance when used for honey production in Montana, and for almond pollination the following winter. Colonies of Russian honey bees and outcrossed honey bees with Varroa-sensitive hygiene (VSH) were compared with control colonies of Italian honey bees. All colonies were managed without miticide treatments. In total, 185 and 175 colonies were established for trials in 2010-2011 and 2011-2012, respectively. Survival of colonies with original queens or with supersedure queens was similar among stocks for both years. Colony sizes of the Varroa-resistant stocks were as large as or larger than the control colonies during periods critical to honey production and almond pollination. Honey production varied among stocks. In the first year, all stocks produced similar amounts of honey. In the second year, Russian honey bees colonies produced less honey than the control colonies. V. destructor infestations also varied among stocks. In the first year, control colonies had more infesting mites than either of the Varroa-resistant stocks, especially later in the year. In the second year, the control and outcrossed Varroa-sensitive hygiene colonies had high and damaging levels of infestation while the Russian honey bees colonies maintained lower levels of infestation. Infestations of Acarapis woodi (Rennie) were generally infrequent and low. All the stocks had similarly high Nosema ceranae infections in the spring and following winter of both years. Overall, the two Varroa-resistant stocks functioned adequately in this model beekeeping system. PMID:24772530

  2. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    Directory of Open Access Journals (Sweden)

    Garance Di Pasquale

    Full Text Available Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens and diversity (polyfloral pollen diet on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level, and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification, phenoloxidase (immunity and alkaline phosphatase (metabolism. We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  3. Assessing grooming behavior of Russian honey bees toward Varroa destructor.

    Science.gov (United States)

    The grooming behavior of Russian bees was compared to Italian bees. Overall, Russian bees had significantly lower numbers of mites than the Italian bees with a mean of 1,937 ± 366 and 5,088 ± 733 mites, respectively. This low mite population in the Russian colonies was probably due to the increased ...

  4. Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera.

    Science.gov (United States)

    Twidle, Andrew M; Mas, Flore; Harper, Aimee R; Horner, Rachael M; Welsh, Taylor J; Suckling, David M

    2015-06-17

    Volatile organic compounds (VOCs) from male and female kiwifruit (Actinidia deliciosa 'Hayward') flowers were collected by dynamic headspace sampling. Honey bee (Apis mellifera) perception of the flower VOCs was tested using gas chromatography coupled to electroantennogram detection. Honey bees consistently responded to six compounds present in the headspace of female kiwifruit flowers and five compounds in the headspace of male flowers. Analysis of the floral volatiles by gas chromatography-mass spectrometry and microscale chemical derivatization showed the compounds to be nonanal, 2-phenylethanol, 4-oxoisophorone, (3E,6E)-α-farnesene, (6Z,9Z)-heptadecadiene, and (8Z)-heptadecene. Bees were then trained via olfactory conditioning of the proboscis extension response (PER) to synthetic mixtures of these compounds using the ratios present in each flower type. Honey bees trained to the synthetic mixtures showed a high response to the natural floral extracts, indicating that these may be the key compounds for honey bee perception of kiwifruit flower odor. PMID:26027748

  5. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand).

    Science.gov (United States)

    Chuttong, Bajaree; Chanbang, Yaowaluk; Sringarm, Korawan; Burgett, Michael

    2016-02-01

    This study examines the physicochemical properties of stingless bee honey from SE Asia (Thailand). Twenty-eight stingless bee honey samples, from 11 stingless bee species, were examined. Results reveal an average color (67 ± 19 mm Pfund), moisture (31 ± 5.4 g/100g), ash (0.531 ± 0.632 g/100g), electrical conductivity (1.1 ± 0.780 ms/cm), pH of (3.6 ± 0.198), total acidity (164 ± 162 meq/kg), diastase activity (1.5 ± 1.6 °Gothe) and hydroxymethylfurfural (8.7 ± 12 mg/kg). The carbohydrate profile is: total sugar (51 ± 21 g/100g), fructose (17 ± 9.7 g/100g), glucose (14 ± 8.6g/100g), maltose (41 ± 15 g/100g) and sucrose (1.2 ± 2.7 g/100g). These findings are not dissimilar to those reported for stingless bee honeys from the neo-tropics. When compared with the Apis mellifera standard, stingless bee honey is characterized as possessing higher moisture content, acidity, ash and HMF but a lower level of total sugars. PMID:26304332

  6. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.).

    Science.gov (United States)

    Brandt, Annely; Gorenflo, Anna; Siede, Reinhold; Meixner, Marina; Büchler, Ralph

    2016-03-01

    A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity. PMID:26776096

  7. Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health

    Science.gov (United States)

    Chen, Yan Ping; Pettis, Jeffery S.; Corona, Miguel; Chen, Wei Ping; Li, Cong Jun; Spivak, Marla; Visscher, P. Kirk; DeGrandi-Hoffman, Gloria; Boncristiani, Humberto; Zhao, Yan; vanEngelsdorp, Dennis; Delaplane, Keith; Solter, Leellen; Drummond, Francis; Kramer, Matthew; Lipkin, W. Ian; Palacios, Gustavo; Hamilton, Michele C.; Smith, Barton; Huang, Shao Kang; Zheng, Huo Qing; Li, Ji Lian; Zhang, Xuan; Zhou, Ai Fen; Wu, Li You; Zhou, Ji Zhong; Lee, Myeong-L.; Teixeira, Erica W.; Li, Zhi Guo; Evans, Jay D.

    2014-01-01

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide. PMID:25079600

  8. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees

    Science.gov (United States)

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood inside the nest while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydra...

  9. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    Directory of Open Access Journals (Sweden)

    Jerry J. Bromenshenk

    2015-10-01

    Full Text Available This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  10. Honey Bee Venom (Apis mellifera) Contains Anticoagulation Factors and Increases the Blood-clotting Time

    OpenAIRE

    Hossein Zolfagharian; Mohammad Mohajeri; Mahdi Babaie

    2015-01-01

    Objectives: Bee venom (BV) is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera) on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was ...

  11. Collective control of the timing and type of comb construction by honey bees (Apis mellifera)

    OpenAIRE

    Pratt, Stephen

    2004-01-01

    This review considers how a honey bee colony optimally controls the timing and type of new comb construction. Optimal timing requires bees to balance the energy costs of construction with the opportunity costs of lacking storage space during nectar flows. They do so by conditioning the start of building on (1) the attainment of a fullness threshold, and (2) the availability of nectar. A dynamic optimization model has suggested that this rule is slightly suboptimal, but may compensate for this...

  12. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function?

    OpenAIRE

    Elodie Urlacher; Laurent Soustelle; Marie-Laure Parmentier; Heleen Verlinden; Marie-Julie Gherardi; Daniel Fourmy; Alison R. Mercer; Jean-Marc Devaud; Isabelle Massou

    2016-01-01

    Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-A...

  13. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees

    OpenAIRE

    Severac, Dany; Rohmer, Marine; Mercer, Alison R.; Le Conte, Yves

    2015-01-01

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal t...

  14. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity.

    Directory of Open Access Journals (Sweden)

    Daren M Eiri

    Full Text Available Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K, 10,000 (10K, zero (control, or 40K autoclaved (control N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees than the high dose (40K upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.

  15. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    OpenAIRE

    Di pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc; Decourtye, Axel; Kretzschmar, Andre; Suchail, Séverine; Brunet, Jean-Luc

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pol...

  16. Bee health

    DEFF Research Database (Denmark)

    Lecocq, Antoine

    with a queen bee, based on their health status. Some of the methodological novelty, set-backs and preliminary results are discussed. In the fourth part, the thesis concludes by zooming out of the confines of the inner hive in order to address recent concerns regarding the potential spill-over of honey bee...

  17. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers.

    Science.gov (United States)

    Schwarz, Ryan S; Moran, Nancy A; Evans, Jay D

    2016-08-16

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim To test how these species affect microbiome composition and host physiology, we administered S alvi and/or L passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  18. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees.

    Science.gov (United States)

    Mondet, Fanny; Alaux, Cédric; Severac, Dany; Rohmer, Marine; Mercer, Alison R; Le Conte, Yves

    2015-01-01

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal transcriptome of nurse and forager bees suggest that VSH profile is more similar to that of nurse bees than foragers. Enhanced detection of certain odorants in VSH bees may be predicted from transcriptional patterns, as well as a higher metabolism and antennal motor activity. Interestingly, Deformed wing virus/Varroa destructor virus infections were detected in the antennae, with higher level in non-VSH bees; a putative negative impact of viral infection on bees' ability to display VSH behaviour is proposed. These results bring new perspectives to the understanding of VSH behaviour and the evolution of collective defence by focusing attention on the importance of the peripheral nervous system. In addition, such data might be useful for promoting marker-assisted selection of honey bees that can survive Varroa infestations. PMID:26000641

  19. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Richard Freddie-Jeanne

    2008-05-01

    Full Text Available Abstract Background The molecular mechanisms underlying the post-mating behavioral and physiological transitions undergone by females have not been explored in great detail. Honey bees represent an excellent model system in which to address these questions because they exhibit a range of "mating states," with two extremes (virgins and egg-laying, mated queens that differ dramatically in their behavior, pheromone profiles, and physiology. We used an incompletely-mated mating-state to understand the molecular processes that underlie the transition from a virgin to a mated, egg-laying queen. We used same-aged virgins, queens that mated once but did not initiate egg-laying, and queens that mated once and initiated egg-laying. Results Differences in the behavior and physiology among groups correlated with the underlying variance observed in the top 50 predictive genes in the brains and the ovaries. These changes were correlated with either a behaviorally-associated pattern or a physiologically-associated pattern. Overall, these results suggest that the brains and the ovaries of queens are uncoupled or follow different timescales; the initiation of mating triggers immediate changes in the ovaries, while changes in the brain may require additional stimuli or take a longer time to complete. Comparison of our results to previous studies of post-mating changes in Drosophila melanogaster identified common biological processes affected by mating, including stress response and alternative-splicing pathways. Comparison with microarray data sets related to worker behavior revealed no obvious correlation between genes regulated by mating and genes regulated by behavior/physiology in workers. Conclusion Studying the underlying molecular mechanisms of post-mating changes in honey bee queens will not only give us insight into how molecular mechanisms regulate physiological and behavioral changes, but they may also lead to important insights into the evolution of

  20. A honey bee (Apis mellifera L. PeptideAtlas crossing castes and tissues

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2011-06-01

    Full Text Available Abstract Background Honey bees are a mainstay of agriculture, contributing billions of dollars through their pollination activities. Bees have been a model system for sociality and group behavior for decades but only recently have molecular techniques been brought to study this fascinating and valuable organism. With the release of the first draft of its genome in 2006, proteomics of bees became feasible and over the past five years we have amassed in excess of 5E+6 MS/MS spectra. The lack of a consolidated platform to organize this massive resource hampers our ability, and that of others, to mine the information to its maximum potential. Results Here we introduce the Honey Bee PeptideAtlas, a web-based resource for visualizing mass spectrometry data across experiments, providing protein descriptions and Gene Ontology annotations where possible. We anticipate that this will be helpful in planning proteomics experiments, especially in the selection of transitions for selected reaction monitoring. Through a proteogenomics effort, we have used MS/MS data to anchor the annotation of previously undescribed genes and to re-annotate previous gene models in order to improve the current genome annotation. Conclusions The Honey Bee PeptideAtlas will contribute to the efficiency of bee proteomics and accelerate our understanding of this species. This publicly accessible and interactive database is an important framework for the current and future analysis of mass spectrometry data.

  1. The Effects of Sex Allele Homozygote Phenomenon on the Performance and Honey Bee Production

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available Since the homozygote of sex alleles or inbreeding has a great role in the different characteristics of honey bees colony`s like the production of honey, this phenomena has been considered in Mianeh. In order to do this 5% of modern hives were chosen and considered in this area. According to the given method by Rotner. The cells which were free of brood were recorded and considered as index of inbreeding. Also the honey production was measured by weighting the hives. Inbreeding studies showed no significant differences between several of Mianeh so that the percent inbreeding was 9.22, 10.93 and 23.48 for Kandowan, Torkmanchai and Kaghazkonan, respectively. The total mean value in Mianeh was estimated as 15.05%. Mean honey production per hive was 11.9 kg. According to this study there were significant negative relationship between inbreeding and honey production (r = -0.57.

  2. Resource Potential Analysis Of Honey Bee Feed Apis Dorsata In Mountain Tinanggo Kolaka

    Directory of Open Access Journals (Sweden)

    Rosmarlinasiah

    2015-04-01

    Full Text Available Abstract Honey Bees feed in the form of nectar pollen and water the bees used to build nests and establish colonies. A hexagonal honeycomb as a store of honey pollen and seedlings. If feed honey bees flower plants are abundantly available continuously then the always active bees build nests and fill each cell nest of honey pollen eggs and other products. The purpose of research is to determine the types of flowering plants as a potential feed honey bees nectar and pollen. The experiment was conducted at Mount Tinanggo Kolaka Southeast Sulawesi Province which lasted from March 2013 until March 2014. Determined by purposive sample observations based on the location of the nearest and farthest honey using the method of terraced paths. Samples were placed systematically with the withdrawal of the central point on the tree path beehive a radius of 700 meters from the center of the North East South and West. Data type of plant plant density and stem diameter were analyzed to determine the importance value index and diversity index type at the tree level trees saplings and seedlings. Based on the results of the enumeration on the collected research sites by 591 plant specimens were clustered on the tree level 152 level 102 poles 178 degree and 159 degree stake seedlings. Levels of tree species diversity and relatively abundant mast high and the level of saplings and seedlings are relatively abundant. The dominant species on the tree level Meranti Shorea sp and rambutan Nephelium lappaceum levels Holea pole Cleistantus laevis Hook f and Kuma Palaquium obovatum Engl the level of saplings and seedlings levels Holea Cleistantus laevis Hook f and rambutan Nephelium lappaceum. There are 237 types of flowering plants averaging 19.75 per month flowering plants and flowering peak was in September.

  3. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    James C Fleming

    Full Text Available Western honey bee (Apis mellifera L. populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control. The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  4. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.

    Science.gov (United States)

    Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor

    2014-01-01

    In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants. PMID:24676333

  5. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.

    Directory of Open Access Journals (Sweden)

    Stefan Dötterl

    Full Text Available In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues in dioecious sallow, Salix caprea, ii to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.

  6. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

    Directory of Open Access Journals (Sweden)

    Charles Runckel

    Full Text Available Honey bees (Apis mellifera play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD. Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11 viruses per honey bee. Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.

  7. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    Science.gov (United States)

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  8. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. PMID:27030776

  9. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Genersch, Elke

    2013-11-01

    Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. PMID:23809335

  10. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.

    Science.gov (United States)

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis

  11. Genetic characterization of Russian honey bee stock selected for improved resistance to Varroa destructor

    Science.gov (United States)

    Maintenance of genetic diversity among breeding lines is important in selective breeding and stock management. The Russian Honey Bee Breeding Program has strived to maintain high levels of heterozygosity among its breeding lines since its inception in 1997. After numerous rounds of selection for res...

  12. Regulation of caste differentiation in the honey bee (Apis mellifera L.)

    NARCIS (Netherlands)

    Goewie, E.A.

    1978-01-01

    The nutritional environment of honey-bee larvae affects the juvenile hormone (JH) titre of larval haemolymph and tissues. In this investigation the mechanism for the regulation of caste differentiation has been studied.Chemo- and mechanoreceptors are found on larval mouthparts. Chemoreceptors on max

  13. Asymmetrical Coexistence of Nosema ceranae and N. apis in Honey Bees

    Science.gov (United States)

    Globalization has provided opportunities for parasites/pathogens to cross geographic boundaries and expand to new hosts. Recent studies showed that Nosema ceranae, originally considered as a microsporidian parasite of Eastern honey bees, Apis ceranae, was the disease agent of Nosemosis in European ...

  14. External and internal detection of Nosema ceranae on honey bees using real-time PCR

    Science.gov (United States)

    There are numerous methods for molecular-based detection of the microsporidian parasite of honey bees, Nosema ceranae. Here we test for both external and internal parasite loads using a quantitative assay to determine the optimum tissue for pathogen detection and the likely sources of variability am...

  15. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  16. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica).

    Science.gov (United States)

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-09-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects. PMID:24895377

  17. RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)

    OpenAIRE

    Wang, Ying; Baker, Nicholas; Amdam, Gro V.

    2013-01-01

    This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception.

  18. Pollination of Saguaro Cactus by Doves, Nectar-Feeding Bats, and Honey Bees.

    Science.gov (United States)

    Alcorn, S M; McGregor, S E; Olin, G

    1961-05-19

    In a large cage, free-flying western white-winged doves, nectar-feeding Leptonycteris bats, and honey bees were each effective as cross-pollinators of self-sterile saguaro flowers. Seed production and seed viability were not significantly different in fruit from flowers pollinated by these agents. Pollination is not a limiting factor in saguaro repopulation. PMID:17781127

  19. Factors Influencing the Adoption of Russian Varroa-Resistant Honey Bees

    OpenAIRE

    Kim, Seon-Ae; Westra, John V.; Gillespie, Jeffrey M.

    2006-01-01

    Factors influencing the adoption of Russian Varroa-Resistant honey bees were assessed. Logit results indicate factors associated with the adoption include sales, internet use, and contact with other beekeepers. Negatively associated factors are age and income. Future adoption depends upon previous use and perception.

  20. Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status

    Science.gov (United States)

    Honey bee queens mate with multiple males - a reproductive strategy known as polyandry - that results in colonies comprised of high intracolonial genetic diversity among nestmates. Several studies have demonstrated the adaptive significance of polyandry for overall colony performance and colony gro...

  1. Changes in Gene Expression Relating to Colony Collapse Disorder in honey bees, Apis mellifera

    Science.gov (United States)

    Colony collapse disorder (CCD) is a mysterious disappearance of honey bees that has beset beekeepers in the United States since late in 2006. Pathogens and other environmental stresses, including pesticides, have been linked to CCD, but a causal relationship has not yet been demonstrated. The gut,...

  2. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields

    Science.gov (United States)

    A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae) in a 15.2 km2 area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready seed production fields (totalin...

  3. Asynchronous development of Honey Bee host and Varroa destructor (Mesostigmata: Varroidae) influences reproductive potential of mites

    Science.gov (United States)

    A high proportion of non-reproductive (NR) Varroa destructor, is commonly observed in honey bee colonies displaying the Varroa sensitive hygienic trait (VSH). These studies were conducted to determine the influence of brood removal and subsequent host re-invasion of Varroa mites on mite reproduction...

  4. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection.

    Science.gov (United States)

    The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differen...

  5. Swarm prevention and spring treatment against Varroa destructor in honey bee colonies (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Gerritsen, L.J.M.

    2006-01-01

    In 2004 and 2005 experiments were carried out to test the efficacy and efficiency of Varroa control combined with swarm prevention methods in spring. Honey bee colonies were split in an artificial swarm and a brood carrier. Hereafter the swarms were treated with oxalic acid and the brood carriers ei

  6. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees, Apis mellifera L.

    Science.gov (United States)

    Vélez, Ana María; Jurzenski, Jessica; Matz, Natalie; Zhou, Xuguo; Wang, Haichuan; Ellis, Marion; Siegfried, Blair D

    2016-02-01

    Maize plants expressing dsRNA for the management of Diabrotica virgifera virgifera are likely to be commercially available by the end of this decade. Honey bees, Apis mellifera, can potentially be exposed to pollen from transformed maize expressing dsRNA. Consequently, evaluation of the biological impacts of RNAi in honey bees is a fundamental component for ecological risk assessment. The insecticidal activity of a known lethal dsRNA target for D. v. virgifera, the vATPase subunit A, was evaluated in larval and adult honey bees. Activity of both D. v. virgifera (Dvv)- and A. mellifera (Am)-specific dsRNA was tested by dietary exposure to dsRNA. Larval development, survival, adult eclosion, adult life span and relative gene expression were evaluated. The results of these tests indicated that Dvv vATPase-A dsRNA has limited effects on larval and adult honey bee survival. Importantly, no effects were observed upon exposure of Am vATPase-A dsRNA suggesting that the lack of response involves factors other than sequence specificity. The results from this study provide guidance for future RNAi risk analyses and for the development of a risk assessment framework that incorporates similar hazard assessments. PMID:26454117

  7. Predicting honey bee sensitivity based on the conservation of the pesticide molecular initiating event

    Science.gov (United States)

    Concern surrounding the potential adverse impacts of pesticides to honey bee colonies has led to the need for rapid/cost efficient methods for aiding decision making relative to the protection of this important pollinator species. Neonicotinoids represent a class of pesticides th...

  8. Expression of varroa sensitive hygiene (VSH) in commercial VSH honey bees (Hymenoptera: Apidae)

    Science.gov (United States)

    We tested six commercial sources of honey bees (Apis mellifera L.) that were bred to include the trait of varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman. Queens from these sources were established in colonies which later were measure...

  9. Transformations of the gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation

    Science.gov (United States)

    In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae—a deadly pathogen of honey bees. The method is substantially different from the only other electroporation method for a Paenibacillus species found in the literature. Using the ty...

  10. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis

    Science.gov (United States)

    Infectious diseases are a component of the environment in which the organism exists and such an environment must be critically controlled in the dense population structures of a social organism. Honey bee pathogens can be devastating to the colony. Two of the most important are the bacterium Paeniba...

  11. Effects of genotype, environment, and their interactions on honey bee Health in Europe

    DEFF Research Database (Denmark)

    Meixner, Marina D; Kryger, Per; Costa, Cecilia

    2015-01-01

    There are several reports of honey bee populations in Europe which survive without treatment for Varroa. However, when evaluated outside their native area, higher survival and resistance traits were not observed in colonies of a survivor population. Varroa infestation is strongly influenced by en...

  12. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y.; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands. PMID:23483987

  13. Physiological and behavioral changes in honey bees (Apis mellifera induced by Nosema ceranae infection.

    Directory of Open Access Journals (Sweden)

    Mike Goblirsch

    Full Text Available Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg, and endocrine factor, juvenile hormone (JH, functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  14. The impact of insecticides to local honey bee colony Apis cerana indica in laboratory condition

    Science.gov (United States)

    Putra, Ramadhani E.; Permana, Agus D.; Nuriyah, Syayidah

    2014-03-01

    Heavy use of insecticides considered as one of common practice at local farming systems. Even though many Indonesian researchers had stated the possible detrimental effect of insecticide on agriculture environment and biodiversity, researches on this subject had been neglected. Therefore, our purpose in this research is observing the impact of insecticides usage by farmer to non target organisme like local honey bee (Apis cerana indica), which commonly kept in area near agriculture system. This research consisted of field observations out at Ciburial, Dago Pakar, Bandung and laboratory tests at School of Life Sciences and Technology, Institut Teknologi Bandung. The field observations recorded visited agriculture corps and types of pollen carried by bees to the nest while laboratory test recorderd the effect of common insecticide to mortality and behavior of honey bees. Three types of insecticides used in this research were insecticides A with active agent Chlorantraniliprol 50 g/l, insecticide B with active agent Profenofos 500 g/l, and insecticides C with active agent Chlorantraniliprol 100 g/l and λ-cyhalotrin 50g/l. The results show that during one week visit, wild flower, Wedelia montana, visited by most honey bees with average visit 60 honey bees followed by corn, Zea mays, with 21 honey bees. The most pollen carried by foragers was Wedelia montana, Calliandra callothyrsus, and Zea mays. Preference test show that honeybees tend move to flowers without insecticides as the preference to insecticides A was 12.5%, insecticides B was 0%, and insecticides was C 4.2%. Mortality test showed that insecticides A has LD50 value 0.01 μg/μl, insecticide B 0.31 μg/μl, and insecticides C 0.09 μg/μl which much lower than suggested dosage recommended by insecticides producer. This research conclude that the use of insecticide could lower the pollination service provide by honey bee due to low visitation rate to flowers and mortality of foraging bees.

  15. Effect of Iranian Honey bee (Apis Mellifera Venom on Blood Glucose and Insulin in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Seyyedeh Mahbubeh Mousavi

    2012-12-01

    Full Text Available Background: Diabetes is an important disease. This disease is a metabolic disorder characterized by hyperglycemia resulting from perturbation in insulin secretion, insulin action or both. Honey bee venom contains a wide range of polypeptide agents. The principle components of bee venom are mellitin and phospholipase A2. These components increase insulin secretion from the β-cells of pancreas. This study was conducted to show the hypoglycemic effect of honey bee venom on alloxan induced diabetic male rats.Methods: Eighteen adult male rats weighting 200±20 g were placed into 3 randomly groups: control, alloxan monohy­drate-induced diabetic rat and treated group that received honey bee venom daily before their nutrition for four months. Forty eight hours after the last injection, blood was collected from their heart, serum was dissented and blood glucose, insulin, triglyceride and total cholesterol were determined.Results: Glucose serum, triglyceride and total cholesterol level in treated group in comparison with diabetic group was significantly decreased (P< 0.01. On the other hand, using bee venom causes increase in insulin serum in com­parison with diabetic group (P< 0.05.Conclusion: Honeybee venom (apitoxin can be used as therapeutic option to lower blood glucose and lipids in dia­betic rats.

  16. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera

    KAUST Repository

    Khamis, Abdullah M.

    2015-06-15

    Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.

  17. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    Science.gov (United States)

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. PMID:25527406

  18. Nectar Sources for the Honey Bee (Apis mellifera adansonii Revealed by Pollen Content

    Directory of Open Access Journals (Sweden)

    Olusola ADEKANMBI

    2009-11-01

    Full Text Available Nectar sources for the African honeybee Apis mellifera adansonii were investigated. The work involved analysis of three honey samples bought from open markets in Lagos, Nigeria. The pollen sediment of the honeys was acetolysed, mounted on slides and pollen types were identified and counted to determine the relative frequency of the different pollen types in the honey samples. The proportion of pollen from each of the honey samples varied from 196 in sample A, 280 in sample B to 238 in sample C. The most abundant taxa identified from the honey samples were Tridax procumbens and Elaeis guineensis belonging to the families Asteraceae and Palmae. The highest proportion of Palm pollen grain was recorded in sample B with one hundred and ten (110 pollen grains per slide. The pollen grains in the families Palmae and Asteraceae are of great importance to the bees for honey production, this can be seen in the abundance displayed in sample B and C. Other pollen taxa recovered belong to the families Mimosaceae, Euphorbiaceae, Sapotaceae and Anacardiaceae providing a clue on the ecological origin of the pollen grains in the honey sample. Pollen analysis of honey proved to be useful in deciphering nectar sources of Apis mellifera adansonii.

  19. In-vitro infection of pupae with Israeli Acute Paralysis Virus suggests variation for susceptibility and disturbance of transcriptional homeostasis in honey bees (Apis mellifera)

    Science.gov (United States)

    The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An exper...

  20. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Humberto F Boncristiani

    Full Text Available The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health.

  1. Effect of hydroxymethylfurfural (HMF) on mortality of artificially reared honey bee larvae (Apis mellifera carnica).

    Science.gov (United States)

    Krainer, Sophie; Brodschneider, Robert; Vollmann, Jutta; Crailsheim, Karl; Riessberger-Gallé, Ulrike

    2016-03-01

    Hydroxymethylfurfural (HMF) is a heat-formed, acid-catalyzed contaminant of sugar syrups, which find their way into honey bee feeding. As HMF was noted to be toxic to adult honey bees, we investigated the toxicity of HMF towards larvae. Therefore we exposed artificially reared larvae to a chronic HMF intoxication over 6 days using 6 different concentrations (5, 50, 750, 5000, 7500 and 10,000 ppm) and a control. The mortality was assessed from day 2 to day 7 (d7) and on day 22 (d22). Concentrations ranging from 5 to 750 ppm HMF did not show any influence on larval or pupal mortality compared to controls (p > 0.05; Kaplan-Meier analysis). Concentrations of 7500 ppm or higher caused a larval mortality of 100%. An experimental LC50 of 4280 ppm (d7) and 2424 ppm (d22) was determined. The calculated LD50 was 778 µg HMF per larva on d7 and 441 µg HMF on d22. Additionally, we exposed adult honey bees to high concentrations of HMF to compare the mortality to the results from larvae. On d7 larvae are much more sensitive against HMF than adult honey bees after 6 days of feeding. However, on d22 after emergence adults show a lower LC50, which indicates a higher sensitivity than larvae. As toxicity of HMF against honey bees is a function of time and concentration, our results indicate that HMF in supplemental food will probably not cause great brood losses. Yet sublethal effects might decrease fitness of the colony. PMID:26590927

  2. In-vivo two-photon imaging of the honey bee antennal lobe

    CERN Document Server

    Haase, Albrecht; Trona, Federica; Anfora, Gianfranco; Vallortigara, Giorgio; Antolini, Renzo; Vinegoni, Claudio

    2010-01-01

    Due to the honey bee's importance as a simple neural model, there is a great need for new functional imaging modalities. Herein we report on the use of two-photon microscopy for in-vivo functional and morphological imaging of the honey bee's olfactory system focusing on its primary centers, the antennal lobes (ALs). Our imaging platform allows for simultaneously obtaining both morphological measurements of the AL and in-vivo calcium recording of neural activities. By applying external odor stimuli to the bee's antennas, we were able to record the characteristic odor response maps. Compared to previous works where conventional fluorescence microscopy is used, our approach offers all the typical advantages of multi-photon imaging, providing substantial enhancement in both spatial and temporal resolutions while minimizing photo-damages and autofluorescence contribution with a four-fold improvement in the functional signal. Moreover, the multi-photon associated extended penetration depth allows for functional ima...

  3. Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera.

    Science.gov (United States)

    Nazzi, Francesco; Le Conte, Yves

    2016-01-01

    Varroa destructor is the most important ectoparasite of Apis mellifera. This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. V. destructor is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of V. destructor is a prerequisite for creating strategies to sustainably manage the parasite. PMID:26667378

  4. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    Science.gov (United States)

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  5. Dancing to her own beat: honey bee foragers communicate via individually calibrated waggle dances.

    Science.gov (United States)

    Schürch, Roger; Ratnieks, Francis L W; Samuelson, Elizabeth E W; Couvillon, Margaret J

    2016-05-01

    Communication signals often vary between individuals, even when one expects selection to favour accuracy and precision, such as the honey bee waggle dance, where foragers communicate to nestmates the direction and distance to a resource. Although many studies have examined intra-dance variation, or the variation within a dance, less is known about inter-dance variation, or the variation between dances. This is particularly true for distance communication. Here, we trained individually marked bees from three colonies to forage at feeders of known distances and monitored their dances to determine individual communication variation. We found that each honey bee possesses her own calibration: individual duration-distance calibrations varied significantly in both slopes and intercepts. The variation may incur a cost for communication, such that a dancer and recruit may misunderstand the communicated distance by as much as 50%. Future work is needed to understand better the mechanisms and consequences of individual variation in communication. PMID:26944504

  6. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony.

    Science.gov (United States)

    Wegener, J; Ruhnke, H; Scheller, K; Mispagel, S; Knollmann, U; Kamp, G; Bienefeld, K

    2016-01-01

    The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research. PMID:27296894

  7. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa.

    Science.gov (United States)

    Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations. PMID:24740399

  8. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera populations in East Africa.

    Directory of Open Access Journals (Sweden)

    Elliud Muli

    Full Text Available In East Africa, honey bees (Apis mellifera provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  9. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee

    Directory of Open Access Journals (Sweden)

    Tsutsui Neil D

    2011-03-01

    Full Text Available Abstract Background Studies have shown that taxonomically restricted genes are significant in number and important for the evolution of lineage specific traits. Social insects have gained many novel morphological and behavioral traits relative to their solitary ancestors. The task repertoire of an advanced social insect, for example, can be 40-50 tasks, about twice that of a solitary wasp or bee. The genetic basis of this expansion in behavioral repertoire is still poorly understood, and a role for taxonomically restricted genes has not been explored at the whole genome level. Results Here we present comparative genomics results suggesting that taxonomically restricted genes may have played an important role in generating the expansion of behavioral repertoire associated with the evolution of eusociality. First, we show that the current honey bee official gene set contains about 700 taxonomically restricted genes. These are split between orphans, genes found only in the Hymenoptera, and genes found only in insects. Few of the orphans or genes restricted to the Hymenoptera have been the focus of experimental work, but several of those that have are associated with novel eusocial traits or traits thought to have changed radically as a consequence of eusociality. Second, we predicted that if taxonomically restricted genes are important for generating novel eusocial traits, then they should be expressed with greater frequency in workers relative to the queen, as the workers exhibit most of the novel behavior of the honey bee relative to their solitary ancestors. We found support for this prediction. Twice as many taxonomically restricted genes were found amongst the genes with higher expression in workers compared to those with higher expression in queens. Finally, we compiled an extensive list of candidate taxonomically restricted genes involved in eusocial evolution by analyzing several caste specific gene expression data sets. Conclusions This

  10. A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers

    Science.gov (United States)

    The genetic influence on nutrient acquisition was examined using European and African honey bees (EHB and AHB). Both races collected the same pollen and stored it in comb cells where it was converted to a fermented food called bee bread. We compared pH, protein and amino acid concentrations in the...

  11. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions.

    Science.gov (United States)

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Beslay, Dominique; Costagliola, Guy; Soubeyrand, Samuel; Kretzchmar, André; Le Conte, Yves

    2013-05-01

    Parasites are known to cause the loss of individuals in social insects. In honey bee colonies the disappearance of foragers is a common factor of the wide extended colony losses. The emergent parasite of the European honey bee Nosema ceranae has been found to reduce homing and orientation skills and alter metabolism of forager bees. N. ceranae-infected bees also show changes in Ethyl Oleate (EO) levels, which is so far the only primer pheromone identified in workers that is involved in foraging behavior. Thus, we hypothesized that N. ceranae (i) modifies flight activity of honey bees and (ii) induces EO changes that can alter foraging behavior of nestmates. We compared flight activity of infected bees and non-infected bees in small colonies using an electronic optic bee counter during 28 days. We measured EO levels by gas chromatography-mass spectrometry and spore-counts. Bee mortality was estimated at the end of the experiment. Infected bees showed precocious and a higher flight activity than healthy bees, which agreed with the more elevated EO titers of infected bees and reduced lifespan. Our results suggest that the higher EO levels of infected bees might delay the behavioral maturation of same age healthy bees, which might explain their lower level of activity. We propose that delayed behavioral maturation of healthy bees might be a protective response to infection, as healthy bees would be performing less risky tasks inside the hive, thus extending their lifespan. We also discuss the potential of increased flight activity of infected bees to reduce pathogen transmission inside the hive. Further research is needed to understand the consequences of host behavioral changes on pathogen transmission. This knowledge may contribute to enhance natural colony defense behaviors through beekeeping practices to reduce probability of colony losses. PMID:23352958

  12. THE CHARACTERISTICS OF BIOACTIVE PEPTIDES AND ANTIBACTERIAL ACTIVITY OF HONEY BEE (Apis nigrocincta SMITH VENOM, ENDEMIC TO SULAWESI

    Directory of Open Access Journals (Sweden)

    Mokosuli Yermia Semuel

    2015-11-01

    Full Text Available Apis nigrocincta Smith is a species of honey bee cavity nesting, endemic to Sulawesi. Research that aims to find the composition of the bioactive content of peptides and antibacterial activity of honey bee venom A. nigrocincta Smith has been conducted. Honey bee venom composition was analyzed using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE Method and Spectrophotometer UV-Vis Method. Analysis of antibacterial activity, was conducted using a modified agar diffusion method. The results showed that the venom of the honey bee Apis nigrocincta Smith has five bands of molecules with a molecular weight i.e. 33.54kDa; 21 kDa and 15.43 kDa. The peptide detected were hyaluronidase, fosfolipase A, mellitin, lysofosfolipase or antigen 5. Antibacterial activity was higher than the control ampisilin and antibiotic streptomycin.

  13. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales

    Science.gov (United States)

    Budge, Giles E.; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S.

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health. PMID:26186735

  14. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Science.gov (United States)

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P; Moritz, Robin F A; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses. PMID:22623972

  15. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Claudia Dussaubat

    Full Text Available The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera. Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase. At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway, a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  16. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae

    Directory of Open Access Journals (Sweden)

    Foster Leonard J

    2009-08-01

    Full Text Available Abstract Background There is a major paradox in our understanding of honey bee immunity: the high population density in a bee colony implies a high rate of disease transmission among individuals, yet bees are predicted to express only two-thirds as many immunity genes as solitary insects, e.g., mosquito or fruit fly. This suggests that the immune response in bees is subdued in favor of social immunity, yet some specific immune factors are up-regulated in response to infection. To explore the response to infection more broadly, we employ mass spectrometry-based proteomics in a quantitative analysis of honey bee larvae infected with the bacterium Paenibacillus larvae. Newly-eclosed bee larvae, in the second stage of their life cycle, are susceptible to this infection, but become progressively more resistant with age. We used this host-pathogen system to probe not only the role of the immune system in responding to a highly evolved infection, but also what other mechanisms might be employed in response to infection. Results Using quantitative proteomics, we compared the hemolymph (insect blood of five-day old healthy and infected honey bee larvae and found a strong up-regulation of some metabolic enzymes and chaperones, while royal jelly (food and energy storage proteins were down-regulated. We also observed increased levels of the immune factors prophenoloxidase (proPO, lysozyme and the antimicrobial peptide hymenoptaecin. Furthermore, mass spectrometry evidence suggests that healthy larvae have significant levels of catalytically inactive proPO in the hemolymph that is proteolytically activated upon infection. Phenoloxidase (PO enzyme activity was undetectable in one or two-day-old larvae and increased dramatically thereafter, paralleling very closely the age-related ability of larvae to resist infection. Conclusion We propose a model for the host response to infection where energy stores and metabolic enzymes are regulated in concert with direct

  17. Selenium toxicity to honey bee (Apis mellifera L. pollinators: effects on behaviors and survival.

    Directory of Open Access Journals (Sweden)

    Kristen R Hladun

    Full Text Available We know very little about how soil-borne pollutants such as selenium (Se can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae foragers. Antennae and proboscises were stimulated with both organic (selenomethionine and inorganic (selenate forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate, reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other

  18. The atlantic side of the iberian peninsula: a hot-spot of novel maternal honey bee diversity

    OpenAIRE

    Pinto, M. Alice; Muñoz, Irene; De La Rúa, Pilar

    2011-01-01

    The Iberian Peninsula harbors one the highest mitocondrial DNA (mtDNA) diversity ever reported for honey bee subspecies. This finding is explained not only by the co-occurrence of two divergent evolutionary lineages, western European (lineage M) and African (lineage A), but also by the higher variability of African and western European haplotypes. Indeed, over 36 haplotypes of western European and African ancestry, which form complex networks, have been reported for this area of the honey bee...

  19. Effects of spinosad on honey bees (Apis mellifera): Findings from over ten years of testing and commercial use

    OpenAIRE

    Miles, Mark J.; Alix, Anne; Bourgouin, Chloe; Schmitzer, Stephan

    2012-01-01

    Background: Spinosad is widely used as an insecticide in crop protection against thysanopteran, lepidopteran and dipteran species. As such it is intrinsically toxic to insects and among them to the honey bee (Apis mellifera). An updated risk assessment is presented in the context of the regulatory evaluation of spinosad products and is in accordance with the latest recommendation of regulatory guidance documents. Results: The intrinsic toxicity to the honey bee as observed in laboratory condi...

  20. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding

    OpenAIRE

    Rueppell, Olav

    2013-01-01

    International audience Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been co-opted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been id...

  1. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    OpenAIRE

    Kirrane, Maria J.; De Guzman, Lilia I.; Beth Holloway; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Seco...

  2. Signatures of selection in the Iberian honey bee: a genome wide approach using single nucleotide polymorphisms (SNPs)

    OpenAIRE

    Chavez-Galarza, Julio; Johnston, J. Spencer; Azevedo, João; Muñoz, Irene; De La Rúa, Pilar; Patton, John C.; Pinto, M. Alice

    2011-01-01

    Dissecting genome-wide (expansions, contractions, admixture) from genome-specific effects (selection) is a goal of central importance in evolutionary biology because it leads to more robust inferences of demographic history and to identification of adaptive divergence. The publication of the honey bee genome and the development of high-density SNPs genotyping, provide us with powerful tools, allowing us to identify signatures of selection in the honey bee genome. These signatures will be an i...

  3. Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions

    OpenAIRE

    Ben Abdelkader, Faten; Kairo, Guillaume; Tchamitchian, Sylvie; Cousin, Marianne; Senechal, Jacques; Crauser, Didier; Vermandere, Jean Paul; Alaux, Cédric; Le Conte, Yves; Belzunces, Luc; Barbouche, Naima

    2014-01-01

    International audience In order to evaluate the semen quality among honey bee populations, emergent honey bee drones were maintained to sexual maturity for 20 days under laboratory, semi-field, and field conditions. The drones were successfully maintained in laboratory conditions. Drones under laboratory and field conditions presented a lower spermatozoa concentration and lower protein content than those under semi-field conditions. The viability of spermatozoa was higher under laboratory ...

  4. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    Science.gov (United States)

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees. PMID:23467539

  5. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Pettis Jeffery S

    2009-12-01

    Full Text Available Abstract Background For years, the understanding of the pathogenetic mechanisms that underlie honey bee viral diseases has been severely hindered because of the lack of a cell culture system for virus propagation. As a result, it is very imperative to develop new methods that would permit the in vitro pathogenesis study of honey bee viruses. The identification of virus replication is an important step towards the understanding of the pathogenesis process of viruses in their respective hosts. In the present study, we developed a strand-specific RT-PCR-based method for analysis of Deformed Wing Virus (DWV replication in honey bees and in honey bee parasitic mites, Varroa Destructor. Results The results shows that the method developed in our study allows reliable identification of the virus replication and solves the problem of falsely-primed cDNA amplifications that commonly exists in the current system. Using TaqMan real-time quantitative RT-PCR incorporated with biotinylated primers and magnetic beads purification step, we characterized the replication and tissue tropism of DWV infection in honey bees. We provide evidence for DWV replication in the tissues of wings, head, thorax, legs, hemolymph, and gut of honey bees and also in Varroa mites. Conclusion The strategy reported in the present study forms a model system for studying bee virus replication, pathogenesis and immunity. This study should be a significant contribution to the goal of achieving a better understanding of virus pathogenesis in honey bees and to the design of appropriate control measures for bee populations at risk to virus infections.

  6. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees

    Science.gov (United States)

    Wang, Qing; Xu, Xinjian; Zhu, Xiangjie; Chen, Lin; Zhou, Shujing; Huang, Zachary Y.; Zhou, Bingfeng

    2016-01-01

    Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies. PMID:27149383

  7. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available Honey bees (Apis mellifera are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies.

  8. Assessing the Utility of a PCR Diagnostics Marker for the Identification of Africanized Honey Bee, Apis mellifera L., (Hymenoptera: Apidae in the United States.

    Directory of Open Access Journals (Sweden)

    Allen Szalanski

    2014-07-01

    Full Text Available An assessment of a molecular diagnostic technique for distinguishing Africanized honey bees from European honey bees in the United States was conducted. Results from multiplex PCR diagnostics of a mitochondrial DNA cyt-b marker corresponded with results based on COI-COII sequencing analysis, but differed from morphometric analysis results. We suggest utilizing both multiplex PCR and morphometric methods for Africanized honey bee diagnostics in the United States, when possible.

  9. Estimating reproductive success of Aethina tumida (Coleoptera: Nitidulidae) in honey bee colonies by trapping emigrating larvae.

    Science.gov (United States)

    Arbogast, Richard T; Torto, Baldwyn; Willms, Steve; Fombong, Ayuka T; Duehl, Adrian; Teal, Peter E A

    2012-02-01

    The small hive beetle (Aethina tumida Murray) is a scavenger and facultative predator in honey bee colonies, where it feeds on pollen, honey, and bee brood. Although a minor problem in its native Africa, it is an invasive pest of honey bees in the United States and Australia. Adult beetles enter bee hives to oviposit and feed. Larval development occurs within the hive, but mature larvae leave the hive to pupate in soil. The numbers leaving, which can be estimated by trapping, measure the reproductive success of adult beetles in the hive over any given period of time. We describe a trap designed to intercept mature larvae as they reach the end of the bottom board on their way to the ground. Trap efficiency was estimated by releasing groups of 100 larvae into empty brood boxes and counting the numbers trapped. Some larvae escaped, but mean efficiency ranged from 87.2 to 94.2%. We envision the trap as a research tool for study of beetle population dynamics, and we used it to track numbers of larvae leaving active hives for pupation in the soil. The traps detected large increases and then decreases in numbers of larvae leaving colonies that weakened and died. They also detected small numbers of larvae leaving strong European and African colonies, even when no larvae were observed in the hives. PMID:22525070

  10. Evaluation of honeys and bee products quality based on their mineral composition using multivariate techniques.

    Science.gov (United States)

    Grembecka, Małgorzata; Szefer, Piotr

    2013-05-01

    The aim of this investigation was to estimate honeys and bee products quality in view of their mineral composition using multivariate techniques. Fourteen elements (Ca, Mg, K, Na, P, Co, Mn, Fe, Cr, Ni, Zn, Cu, Cd, and Pb) were determined in 66 honeys and bee products from different places of Poland and Europe and various botanical origins. The total metals contents were analyzed by flame atomic absorption spectrometry using deuterium-background correction after wet digestion with nitric acid in an automatic microwave digestion system. Phosphorus was determined in the form of phosphomolybdate by a spectrophotometric method. Reliability of the procedure was checked by analysis of the certified reference materials tea (NCS DC 73351) and cabbage (IAEA-359). The analytical data indicated a good level of quality of honeys, especially with regard to the concentration of toxic trace elements, such as Cd and Pb. Results were submitted to multivariate analysis, including such techniques as factor and cluster analyses in order to evaluate the existence of data patterns and the possibility of classification of honeys from different botanical origins according to their mineral content. The nine metals determined were considered as chemical descriptors of each sample. There was a significant influence of the botanical and geographical provenance as well as technological processing on the elemental composition of honeys. PMID:22930187

  11. Characterization of selected Gram-negative non-fermenting bacteria isolated from honey bees (Apis mellifera carnica)

    OpenAIRE

    Loncaric, Igor; Ruppitsch, Werner; Licek, Elisabeth; Moosbeckhofer, Rudolf; Busse, Hans-Jürgen; Rosengarten, Renate

    2011-01-01

    International audience This study was conducted to improve the knowledge about bacteria associated with honey bees, Apis mellifera carnica. In this survey, the diversity of Gram-negative non-fermenting bacteria isolated and cultivated from pollen loads, honey sac, freshly stored nectar, and honey was investigated. Bacteria were characterized by a polyphasic approach. Based on morphological and physiological characteristics and comparison of isolates protein patterns after sodium dodecyl su...

  12. Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon.

    Science.gov (United States)

    Boesch, Christophe; Head, Josephine; Robbins, Martha M

    2009-06-01

    Homo faber was once proposed as a label for humans specifically to highlight their unique propensity for tool use. However, new observations on complex tool use by the chimpanzees of Loango National Park, Gabon, expand our knowledge about tool-using abilities in Pan troglodytes. Chimpanzees in Loango, when using tools to extract honey from three types of bee nests, were observed to regularly use three- to five-element tool sets. In other words, different types of tools were used sequentially to access a single food source. Such tool sets included multi-function tools that present typical wear for two distinct uses. In addition, chimpanzees exploited underground bee nests and used ground-perforating tools to locate nest chambers that were not visible from the ground surface. These new observations concur with others from Central African chimpanzees to highlight the importance of honey extraction in arguments favoring the emergence of complex tool use in hominoids, including different tool types, expanded tool sets, multifunction tools, and the exploitation of underground resources. This last technique requires sophisticated cognitive abilities concerning unseen objects. A sequential analysis reveals a higher level of complexity in honey extraction than previously proposed for nut cracking or hunting tools, and compares with some technologies attributed to early hominins from the Early and Middle Stone Age. A better understanding of similarities in human and chimpanzee tool use will allow for a greater understanding of tool-using skills that are uniquely human. PMID:19457542

  13. Preliminary Sample of An Economic Analysis of Alternative Control Measures for Small Hive Beetle, Aethina tumida Murray on Honey Bee Colonies in Florida

    OpenAIRE

    Pompilus, Carolyn; Kanga, Lambert; Thomas, Michael

    2015-01-01

    Agriculture has historically depended on honey bees for crop pollination. About 220,000 out of an estimated 240,000 species of plants that depend on pollination have required animals such as the honey bee. For the last several decades, the numbers of managed honey bees have been declining due to infestations of the Small Hive Beetle, in managed hives. Infestations of SHB can threaten honey quality, native bee survival and pollination services. In 1998, it was estimated that Florida’s beekeepe...

  14. Survey of the Health Status of Some Honey Bee Queens in Italy

    Directory of Open Access Journals (Sweden)

    Porporato Marco

    2015-12-01

    Full Text Available While observing: non-acceptance, frequent replacements, and reduced performance in honey bee (Apis mellifera ligustica queens, we were induced to analyse a certain number of queens to detect the causes. For this purpose, 99 newly mated queens were bought from 20 Italian queen breeders. In addition, 109 older or at-the-end-of-their-career queens, that showed poor productivity, were collected from honey production hives throughout Italy. All the queens were dissected to check the status of their reproductive system and/or the presence of various anomalies and diseases.

  15. Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees.

    Science.gov (United States)

    Wilson, Michael B; Spivak, Marla; Hegeman, Adrian D; Rendahl, Aaron; Cohen, Jerry D

    2013-01-01

    The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees. PMID:24204850

  16. A descriptive study of the prevalence of parasites and pathogens in Chinese black honey bees, Apis mellifera mellifera

    Science.gov (United States)

    There has been increasing concern over declines in honey bee colony health that is negatively affected by multiple factors with parasitic mites Varroa destructor, which remains the single most detrimental one. The identification and selective breeding of resistant stock, especially bees resistant...

  17. Methods for comparing beebread made by Africanized and European honey bees and the effects on hemolymph protein titers

    Science.gov (United States)

    The influence of genotype on the conversion of pollen to beebread and on the ability of bees to acquire protein from it was examined using European and Africanized honey bees (EHB and AHB respectively). Both subspecies were provided with the same pollen source. Pollen stored and converted to beebr...

  18. Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees

    NARCIS (Netherlands)

    Dooremalen, van C.; Stam, E.; Gerritsen, L.J.M.; Cornelissen, B.; Steen, van der J.J.M.; Langevelde, van F.; Blacquiere, T.

    2013-01-01

    Varroa destructor in combination with one or more stressors, such as low food availability or chemical exposure, is considered to be one of the main causes for honey bee colony losses. We examined the inter-active effect of pollen availability on the protein content and body weight of young bees tha

  19. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Richard Freddie-Jeanne

    2012-10-01

    Full Text Available Abstract Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood and allo-grooming (where workers remove ectoparasites from nestmates. We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli. Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that

  20. Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores.

    Science.gov (United States)

    Nicodemo, D; De Jong, D; Couto, R H N; Malheiros, E B

    2013-01-01

    Honey bees use propolis to defend against invaders and disease organisms. As some colonies produce much more propolis than others, we investigated whether propolis collecting is associated with disease resistance traits, including hygienic behavior and resistance to the parasitic bee mite, Varroa destructor. The three highest (HP) and three lowest propolis-producing (LP) colonies among 36 Africanized honey bee colonies were initially selected. Queens and drones from these colonies were crossed through artificial insemination to produce five colonies of each of the following crosses: HP♀ X HP♂, LP♀ X HP♂, HP♀ X LP♂, and LP♀ X LP♂. Colonies headed by HP♀ X HP♂ queens produced significantly more propolis than those with HP♀ X LP♂ and LP♀ X HP♂ queens and these in turn produced significantly more propolis than those headed by LP♀ X LP♂ queens. The brood cell uncapping rate of the high-propolis-producing colonies in the hygienic behavior test was significantly superior to that of the other groups. The LP X LP group was significantly less hygienic than the two HP X LP crosses, based on the evaluation of the rate of removal of pin-killed pupae. The HP X HP colonies were significantly more hygienic than the other crosses. No significant differences were found in mite infestation rates among the groups of colonies; although overall, colony infestation rates were quite low (1.0 to 3.2 mites per 100 brood cells), which could have masked such effects. Honey and pollen stores were significantly and positively correlated with propolis production. PMID:24391041

  1. Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay.

    Directory of Open Access Journals (Sweden)

    Maitreyi Agarwal

    Full Text Available Biogenic amines are widely characterized in pathways evaluating reward and punishment, resulting in appropriate aversive or appetitive responses of vertebrates and invertebrates. We utilized the honey bee model and a newly developed spatial avoidance conditioning assay to probe effects of biogenic amines octopamine (OA and dopamine (DA on avoidance learning. In this new protocol non-harnessed bees associate a spatial color cue with mild electric shock punishment. After a number of experiences with color and shock the bees no longer enter the compartment associated with punishment. Intrinsic aspects of avoidance conditioning are associated with natural behavior of bees such as punishment (lack of food, explosive pollination mechanisms, danger of predation, heat, etc. and their association to floral traits or other spatial cues during foraging. The results show that DA reduces the punishment received whereas octopamine OA increases the punishment received. These effects are dose-dependent and specific to the acquisition phase of training. The effects during acquisition are specific as shown in experiments using the antagonists Pimozide and Mianserin for DA and OA receptors, respectively. This study demonstrates the integrative role of biogenic amines in aversive learning in the honey bee as modeled in a novel non-appetitive avoidance learning assay.

  2. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    Science.gov (United States)

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists. PMID:26715114

  3. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite.

    Science.gov (United States)

    Lindberg, C M; Melathopoulos, A P; Winston, M L

    2000-04-01

    A laboratory bioassay was developed to evaluate miticides to control Varroa jacobsoni (Oudemans), an important parasite of the honey bee, Apis mellifera L. Bees and mites were exposed to applications of essential oil constituents in petri dishes (60 by 20 mm). The registered mite control agents tau-fluvalinate (Apistan) and formic acid also were evaluated as positive controls. Treatments that caused high mite mortality (> 70%) at doses that produced low bee mortality (formic acid. The effect of mode of application (complete exposure versus vapor only) on bee and mite mortality was assessed for thymol, clove oil, and Magic3 by using a 2-chambered dish design. Estimated V. jacobsoni LD50 values were significantly lower for complete exposure applications of thymol and Magic3, suggesting that both vapor and topical exposure influenced mite mortality, whereas estimated values for clove oil suggested that topical exposure had little or no influence on mite mortality. These results indicate that essential oil constituents alone may not be selective enough to control Varroa under all conditions, but could be a useful component of an integrated pest management approach to parasitic mite management in honey bee colonies. PMID:10826162

  4. p-Nitrophenylacetate hydrolysis by honey bee esterases: kinetics and inhibition.

    Science.gov (United States)

    Spoonamore, J E; Frohlich, D R; Wells, M A

    1993-03-01

    1. The kinetics and inhibition of p-nitrophenylacetate hydrolysis by cytosolic esterases of 1-day old female honey bees, Apis mellifera L., were studied. 2. The calculated values obtained were Km = 2.27 x 10(-5)M and Vmax = 2.48 x 10(-8) mol/s per mg protein. 3. The inhibition mechanisms examined for four organophosphorus insecticides were highly competitive in nature and based on competitive inhibition coefficients the order of toxicity was naled > dichlorvos > cis-mevinphos = trans-mevinphos. 4. Comparisons are made with the alfalfa leafcutting bee, Megachile rotundata (Fab). PMID:8498090

  5. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    OpenAIRE

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R; James A Ottea; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While ...

  6. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera.

    Science.gov (United States)

    Alayrangues, Julie; Hotier, Lucie; Massou, Isabelle; Bertrand, Yolaine; Armengaud, Catherine

    2016-07-01

    Honey bees are exposed in their environment to contaminants but also to biological stressors such as Varroa destructor that can weaken the colony. Preparations containing monoterpenoids that are essential oil components, can be introduced into hives to control Varroa. The long-term sublethal effects of monoterpenoids used as miticides have been poorly investigated. Analysis of behavior of free-moving bees in the laboratory is useful to evaluate the impact of chemical stressors on their cognitive functions such as vision function. Here, the walking behavior was quantified under a 200-lux light intensity. Weeks and months after introduction of the miticide (74 % thymol) into the hives, decreases of phototaxis was observed with both summer and winter bees. Curiously, in spring, bees collected in treated hives were less attracted by light in the morning than control bees. The survival of bees collected in spring was increased by treatment. After a 1-year period of observation, the colony losses were identical in treated and non-treated groups. Colony loss started earlier in the non-treated group. In public opinion, natural substances as essential oils are safer and more environmentally friendly. We demonstrated that a monoterpenoid-based treatment affects bee responses to light. The latter results have notable implications regarding the evaluation of miticides in beekeeping. PMID:26965704

  7. Varroa destructor virus 1: a new picorna-like virus in Varroa mites as well as honey bees

    OpenAIRE

    Ongus, J.R.

    2006-01-01

    Varroa destructor mite is an ectoparasite of the honey bee Apis mellifera. This species was recently differentiated from Varroa jacobsoni species which infests the Asian bee Apis cerana. Varroa mites feed entirely on the bee's haemolymph and have been associated with the spread of a number of viruses. Since the mites were first observed in Java, Indonesia in 1904, they have been reported in most regions of the world except Australia and the equatorial regions of Africa. V. destructor severely...

  8. Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehive-produced volatiles

    OpenAIRE

    Suazo, Alonso; Torto, Baldwyn; Teal, Peter; Tumlinson, James

    2003-01-01

    International audience The response of male and female Small Hive Beetle (SHB), Aethina tumida, to air-borne volatiles from adult worker bees, (Apis mellifera), pollen, unripe honey, beeswax, wax by-products ("slumgum"), and bee brood, was investigated in olfactometric and flight-tunnel choice bioassays. In both bioassay systems, males and females responded strongly to the volatiles from worker bees, freshly collected pollen and slumgum but not to those from commercially available pollen, ...

  9. Safety assessment of sugar dusting treatments by analysis of hygienic behavior in honey bee colonies

    Directory of Open Access Journals (Sweden)

    Stevanovic Jevrosima

    2011-01-01

    Full Text Available The hygienic behavior in honey bees is a dominant natural defense mechanism against brood diseases. In this study, the influence of sugar dusting treatments on hygienic behavior was evaluated in 44 strong honey bee colonies. Three doses of pulverized sugar, 20, 30 and 40 g, each applied at three-, seven- and fourteen-day intervals were tested. The percentage of cleaned cells (PCC in the total number of those with pin-killed brood served as a measure of the hygienic potential. The effect was dependent on the frequency of treatments: all doses applied every third and seventh day significantly (p<0.001 decreased the PCC in comparison with the untreated control colonies. Nevertheless, sugar did not threaten the hygienic potential, as PPC values remained above 94% following all treatments. Thus, it can be concluded that the tested sugar treatments are safe and can be justifiably implemented into integrated pest management strategies to control Varroa destructor.

  10. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Science.gov (United States)

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection. PMID:26840596

  11. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    Full Text Available To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  12. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    Science.gov (United States)

    Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460

  13. Simulating a base population in honey bee for molecular genetic studies

    Directory of Open Access Journals (Sweden)

    Gupta Pooja

    2012-06-01

    Full Text Available Abstract Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1 the position of markers on each chromosome, (2 allele frequency, (3 χ2 statistics for Hardy-Weinberg equilibrium, (4 a sorted list of markers with a minor allele frequency less than or equal to the input value, (5 average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6 average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee

  14. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    OpenAIRE

    Butzloff, Peter R.

    2011-01-01

    BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and ...

  15. Exposure to cell phone radiations produces biochemical changes in worker honey bees

    OpenAIRE

    Kumar, Neelima R.; Sangwan, Sonika; Badotra, Pooja

    2011-01-01

    The present study was carried out to find the effect of cell phone radiations on various biomolecules in the adult workers of Apis mellifera L. The results of the treated adults were analyzed and compared with the control. Radiation from the cell phone influences honey bees’ behavior and physiology. There was reduced motor activity of the worker bees on the comb initially, followed by en masse migration and movement toward “talk mode” cell phone. The initial quiet period was characterized by ...

  16. Short term hydrothermal scheduling via improved honey-bee mating optimization algorithm

    OpenAIRE

    hamed baradaran tavakoli; babak mozafari

    2012-01-01

    In this paper, a new approach for solving short term hydrothermal scheduling problem is suggested, to minimize the total production cost and to produce electrical energy in an optimized way, by using honey-bee mating optimization algorithm. In the proposed method, lots of the hydrothermal system constraints such as power balance, water balance, time delay between reservoirs, volume limits and the operation limits of hydro and thermal plants, are considered. Therefore, the problem of short ter...

  17. QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees.

    OpenAIRE

    Misato O Miyakawa; Mikheyev, Alexander S

    2015-01-01

    Sex determination mechanisms play a central role in life-history characteristics, affecting mating systems, sex ratios, inbreeding tolerance, etc. Downstream components of sex determination pathways are highly conserved, but upstream components evolve rapidly. Evolutionary dynamics of sex determination remain poorly understood, particularly because mechanisms appear so diverse. Here we investigate the origins and evolution of complementary sex determination (CSD) in ants and bees. The honey b...

  18. Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips

    OpenAIRE

    Chaline, N.; F.L.W. Ratnieks; Raine, N. E.; Badcock, N.S.; Burke, T

    2004-01-01

    DNA sampling of insects frequently relies upon lethal or invasive methods. Because insect colonies contain numerous workers it is often possible to destructively sample workers for genetic analysis. However, this is not possible if queens or workers must remain alive after sampling. Neither is it possible to remove an entire leg, wing or other appendage as this will often hinder normal behaviour. This study investigates the possibility of genotyping queen honey bees Apis mellifera using DNA e...

  19. Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips

    OpenAIRE

    Châline, Nicolas; Ratnieks, Francis; Raine, Nigel; Badcock, Nichola; Burke, Terry

    2004-01-01

    International audience DNA sampling of insects frequently relies upon lethal or invasive methods. Because insect colonies contain numerous workers it is often possible to destructively sample workers for genetic analysis. However, this is not possible if queens or workers must remain alive after sampling. Neither is it possible to remove an entire leg, wing or other appendage as this will often hinder normal behaviour. This study investigates the possibility of genotyping queen honey bees ...

  20. Keystone food resources for honey bees in South Indian west coast during monsoon

    OpenAIRE

    C. Balachandran; Chandran, Subash MD; Ramachandra, TV

    2014-01-01

    The low level, denuded, laterite landscape of coastal Uttara Kannada has a rich diversity of monsoon herbs, including threatened and newly discovered ones. Our study reveals that honey bees congregate on the ephemeral herb community of Utricularias, Eriocaulons and Impatiens during their gregarious monsoon flowering period. Apis dorsata had highest visitations on Utricularias, Impatiens and Flacourtia indica, whereas Trigona preferred Eriocaulons. Laterite herb flora merits conservation effor...