WorldWideScience

Sample records for bedrock uranium 238u

  1. Behavior of uranium along Jucar River (Eastern Spain). Determination of 234U/238U and 235U/238U ratios

    International Nuclear Information System (INIS)

    Rodriguez-Alvarez, M.J.; Sanchez, F.

    1995-01-01

    The uranium concentration and the 234 U/ 238 U, 235 U/ 238 U activity ratios were studied in water samples from Jucar River, using low-level α-spectrometry. The effects of pH, temperature and salinity were considered and more detailed sampling was done in the neighbourhood of Cofrentes Nuclear Plant (Valencia, Spain). Changes were observed in the uranium concentration with the salinity and the 234 U/ 238 U activity ratio was found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes in the concentration of uranium and the activity ratios. (author) 25 refs.; 4 figs.; 1 tab

  2. Determination of the isotopic ratio 234 U/238 U and 235 U/238 U in uranium commercial reagents by alpha spectroscopy

    International Nuclear Information System (INIS)

    Iturbe G, J.L.

    1990-02-01

    In this work the determination of the isotope ratio 234 U/ 238 U and 235 U/ 238 U obtained by means of the alpha spectroscopy technique in uranium reagents of commercial marks is presented. The analyzed uranium reagents were: UO 2 (*) nuclear purity, UO 3 (*) poly-science, metallic uranium, uranyl nitrate and uranyl acetate Merck, uranyl acetate and uranyl nitrate Baker, uranyl nitrate (*) of the Refinement and Conversion Department of the ININ, uranyl acetate (*) Medi-Lab Sigma of Mexico and uranyl nitrate Em Science. The obtained results show that the reagents that are suitable with asterisk (*) are in radioactive balance among the one 234 U/ 238 U, since the obtained value went near to the unit. In the case of the isotope ratio 235 U/ 238 U the near value was also obtained the one that marks the literature that is to say 0.04347, what indicates that these reagents contain the isotope of 235 U in the percentage found in the nature of 0.71%. The other reagents are in radioactive imbalance among the 234 U/ 238 U, the found values fluctuated between 0.4187 and 0.1677, and for the quotient of activities 235 U/ 238 U its were of 0.0226, and the lowest of 0.01084. Also in these reagents it was at the 236 U as impurity. The isotope of 236 U is an isotope produced artificially, for what is supposed that the reagents that are in radioactive imbalance were synthesized starting from irradiated fuel. (Author)

  3. Assay of Uranium Isotopic Ratios 234U/238U, 235U/238U in Bottom Sediment Samples Using Destructive and Non Destructive Techniques (Nasser Lake)

    International Nuclear Information System (INIS)

    Agha, A.R.; El-Mongy, S.A.; Kandel, A.E.

    2011-01-01

    Nasser Lake is the greatest man-made lake in the World. It is considered as the main source of water where the Nile water is impounded behind the Aswan high dam.. Uranium has three naturally occurring isotopes 234 U, 235 U and 238 U with isotopic abundance 0.00548, 0.7200 and 99.2745 atom percent. Dissolved uranium in the lake is primary due to weathering process. Monitoring of the isotopic ratios of uranium is used as a good indicator to trace and evaluate the origin and activities associated with any variation of uranium in the lake environment. The main objective of the present study is to clarify any potential variation of natural uranium 234 U/ 238 U, 235 U/ 238 U ratios in sediment samples of Nasser Lake by using destructive alpha and non destructive gamma- techniques. The results show that the uranium isotopic activity ratios are very close to the natural values. This study can also be used for radiological protection and safety evaluation purposes.

  4. Uranium 234U and 238U isotopes in the southern Baltic environment

    International Nuclear Information System (INIS)

    Borylo, A.; Skwarzec, B.

    2002-01-01

    The concentration and distribution of uranium in water and sediment of selected basins of the southern Baltic Sea have been analysed. It was observed that the concentration of uranium in sediments increases with core depth. This is probably connected to diffusion processes from sediments to water through interstitial water where uranium concentration is much higher than in bottom water. The measurements of 234 U/ 238 U activity ratios indicate that sedimentation of terrigenic material and transport through Vistula river are the major sources of uranium in sediments of the southern Baltic Sea. Estimation of the 234 U/ 238 U ratios in reduction areas of the Baltic Deep and the Bornholm Deep suggest that the processes of reduction of U(VI) to U(IV) and of removal of authogenic uranium from seawater to sediments do not play major roles in the Gdansk Deep. (author)

  5. Uranium contents and 234U/238U activity ratios of modern and fossil marine bivalle molluscan shells

    International Nuclear Information System (INIS)

    Mitsuda, Hiroshi

    1984-01-01

    Uranium contents and 234 U/ 238 U activity ratios in modern and fossil marine bivalle molluscan shells were measured by alpha-spectrometry. Uranium contents and 234 U/ 238 U activity ratios in modern shells were averaged to be 0.266 (dpm/g), and 1.18, respectively and those in fossil shells were averaged to be 0.747 (dpm/g), and 1.19, respectivily. Uranium contents in fossil shells were obviously higher than those in modern shells. It can be explained by the addition of uranium to shell during the deposition. In fossil shells, 234 U/ 238 U activity ratio decreases as 238 U content increases the same tendency is not found in modern shells. The author proposed a mechanism of selective loss of 238 U from the fossil shells for the explanation of this tendency. The height activity ratio of 234 U/ 238 U measured on the fossil shells than that measured on the modern shells, also support the selective loss of 238 U from the fossil shells. (author)

  6. 238U, 234U and 230Th in uranium miners' lungs

    International Nuclear Information System (INIS)

    Singh, M.P.; Wrenn, M.E.; Archer, V.E.; Saccomanno, G.

    1981-01-01

    Fourteen uranium miners' lungs from Colorado plateau were collected at autopsy and the concentrations of 238 U, 234 U and 230 Th were determined by radiochemical procedures utilizing solvent extraction - alpha spectrometric techniques. The uranium and thorium isotopes are in near equilibrium with average concentrations of 238 U, 234 U and 230 Th being 89.3, 95.2 and 91.1 pCi/kg respectively. The combined average radiation dose rate to lung from these three isotopes is about 24.2 mrad/year at death excluding the unmeasured contribution from the 226 Ra and daughters. The average concentration of 230 Th is about 65 times higher than the mean concentration of 230 Th in lungs of non-miners dying at comparable ages from the same region

  7. 238U, 234U and 230Th in uranium miners' lungs

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.; Bennett, D.B.; Archer, V.; Saccomanno, G.

    1982-01-01

    Fourteen uranium miners' lungs from the Colorado Plateau were collected at autopsy and the concentrations of 238 U, 234 U and 230 Th were determined by radiochemical procedures utilizing solvent extraction and alpha spectrometric techniques. The uranium and thorium isotopes are in near equilibrium with average concentrations of 238 U, 234 U and 230 Th being 89.3, 95.2, and 91.1 pCi/kg respectively. The combined average radiation dose rate to lung from these three isotopes is about 24.1 mrad/year at death excluding the unmeasured contribution from the 226 Ra and daughters. The average concentration of 230 Th is about 65 times higher than the mean concentration of 230 Th in lungs of non-miners from the same region dying at comparable ages

  8. Determination of the isotopic ratio {sup 234} U/{sup 238} U and {sup 235} U/{sup 238} U in uranium commercial reagents by alpha spectroscopy; Determinacion de la relacion isotopica {sup 234} U/{sup 238} U y {sup 235} U/{sup 238} U en reactivos comerciales de uranio por espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J L

    1990-02-15

    In this work the determination of the isotope ratio {sup 234} U/{sup 238} U and {sup 235} U/{sup 238} U obtained by means of the alpha spectroscopy technique in uranium reagents of commercial marks is presented. The analyzed uranium reagents were: UO{sub 2} (*) nuclear purity, UO{sub 3} (*) poly-science, metallic uranium, uranyl nitrate and uranyl acetate Merck, uranyl acetate and uranyl nitrate Baker, uranyl nitrate (*) of the Refinement and Conversion Department of the ININ, uranyl acetate (*) Medi-Lab Sigma of Mexico and uranyl nitrate Em Science. The obtained results show that the reagents that are suitable with asterisk (*) are in radioactive balance among the one {sup 234} U/{sup 238} U, since the obtained value went near to the unit. In the case of the isotope ratio {sup 235} U/{sup 238} U the near value was also obtained the one that marks the literature that is to say 0.04347, what indicates that these reagents contain the isotope of {sup 235} U in the percentage found in the nature of 0.71%. The other reagents are in radioactive imbalance among the {sup 234} U/{sup 238} U, the found values fluctuated between 0.4187 and 0.1677, and for the quotient of activities {sup 235} U/{sup 238} U its were of 0.0226, and the lowest of 0.01084. Also in these reagents it was at the {sup 236} U as impurity. The isotope of {sup 236} U is an isotope produced artificially, for what is supposed that the reagents that are in radioactive imbalance were synthesized starting from irradiated fuel. (Author)

  9. Measurements of 234U, 238U and 230Th in excreta of uranium-mill crushermen

    International Nuclear Information System (INIS)

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether 230 Th was preferentially retained over either 234 U or 238 U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of 234 U and 238 U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product 230 Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for 230 Th in ore dust is questioned

  10. Bioaccumulation of uranium 234U and 238U in marine birds

    International Nuclear Information System (INIS)

    Borylo, A.; Skwarzec, B.

    2010-01-01

    In the paper was presented results of our study about uranium 234 U and 238 U radioactivity in the marine birds samples, collected in the Polish area of the southern Baltic Sea. We chose 11 species of sea birds: three species permanently residing at southern Baltic, four species of wintering birds and three species of migrating birds. The obtained results indicated that uranium is very irregularly distributed in organs and tissues of marine birds. The highest uranium content is characterized in liver, rest of viscera and feathers, the smallest in skin and muscles. The uranium concentration was higher for carnivorous species (long-tailed duck (C. hyemalis), common eider (S. mollissima), lower for species eating fish (great cormorant (P. carbo), common guillemot (U. aalge), red-throated diver (G. stellata) and razorbill (A. tarda)), but the biggest amounts for herbivorous species [tufted duck (A. fuligula) and eurasian coot (F. atra)]. About 63-67% of uranium, which was located in feathers of two species of marine birds: razorbill (A. tarda) and long-tailed duck (C. hymealis), was apparently adsorbed, which suggests that uranium adsorption on the feathers may be an important transfer from air to water. (author)

  11. Assessment of uranium exposure from total activity and 234U:238U activity ratios in urine

    International Nuclear Information System (INIS)

    Nicholas, T.; Bingham, D.

    2011-01-01

    Radiation workers at Atomic Weapons Establishment (AWE) are monitored for uranium exposure by routine bioassay sampling (primarily urine sampling). However, the interpretation of uranium in urine and faecal results in terms of occupational intakes is difficult because of the presence of uranium due to intakes from environmental (dietary) sources. For uranium in urine data obtained using current analytical techniques at AWE, the mean, median and standard deviation of excreted uranium concentrations were 0.006, 0.002 and 0.012 μg per g creatinine, respectively. These values are consistent with what might be expected from local dietary intakes and the knowledge that occupational exposures at AWE are likely to be very low. However, some samples do exceed derived investigation levels (DILs), which have been set up taking account of the likely contribution from environmental sources. We investigate how the activity and isotopic composition of uranium in the diet affects the sensitivity of uranium in urine monitoring for occupational exposures. We conclude that DILs based on both total uranium in urine activity and also 234 U: 238 U ratios are useful given the likely variation in dietary contribution for AWE workers. Assuming a background excretion rate and that the enrichment of the likely exposure is known, it is possible to assess exposures using 234 U: 238 U ratios and/or total uranium activity. The health implications of internalised uranium, enriched to 235 U, centre on its nephrotoxicity; the DILs for bioassay samples at AWE are an order of magnitude below the conservative recommendations made by the literature. (authors)

  12. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors

    International Nuclear Information System (INIS)

    Finkel, R.C.

    1981-01-01

    In order to assess the utility of uranium isotopes as fluid phase earthquake precursors, uranium concentrations and 234 U/ 238 U activity ratios have been monitored on a monthly or bimonthly basis in water from 24 wells and springs associated with Southern California fault zones. Uranium concentrations vary from 0.002 ppb at Indian Canyon Springs on the San Jacinto fault to 8.3 ppb at Lake Hughes well on the San Andreas fault in the Palmdale area. 234 U/ 238 U activity ratios vary from 0.88 at Agua Caliente Springs on the Elsinore fault to 5.4 at Niland Slab well on the San Andreas fault in the Imperial Valley. There was one large earthquake in the study area during 1979, the 15 October 1979 M = 6.6 Imperial Valley earthquake. Correlated with this event, uranium concentrations varied by a factor of more than 60 and activity ratios by a factor of 3 at the Niland Slab site, about 70 km from the epicenter. At the other sites monitored, uranium concentrations varied in time, but with no apparent pattern, while uranium activity ratios remained essentially constant throughout the monitoring period

  13. 238U, and its decay products, in grasses from an abandoned uranium mine

    Science.gov (United States)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  14. Uranium contents and {sup 235}U/{sup 238}U atom ratios in soil and earthworms in western Kosovo after the 1999 war

    Energy Technology Data Exchange (ETDEWEB)

    Di Lella, L.A.; Nannoni, F.; Protano, G.; Riccobono, F. [Dipartimento di Scienze Ambientali ' G. Sarfatti' -Sezione di Geochimica Ambientale, University of Siena, Via del Laterino 8, I-53100, Siena (Italy)

    2005-01-20

    The uranium content and {sup 235}U/{sup 238}U atom ratio were determined in soils and earthworms of an area of Kosovo (Djakovica garrison), heavily shelled with depleted uranium (DU) ammunition during the 1999 war. The aim of the study was to reconstruct the small-scale distribution of uranium and assess the influence of the DU added to the surface environment. The total uranium concentration and the {sup 235}U/{sup 238}U ratio of topsoils showed great variability and were inversely correlated. The highest uranium levels (up to 31.47 mg kg{sup -1}) and lowest {sup 235}U/{sup 238}U ratios (minimum 0.002147) were measured in topsoils collected inside, or very close to, the clusters of DU penetrator holes. Regarding the fractionation of uranium in the surface soils, the uranium concentrations in the soluble and exchangeable fractions increased as the total uranium concentration of the topsoils increased. High and rather uniform percentage contents of uranium (24-36%) were associated with the poorly crystalline iron oxide phases of soils. In the U-enriched soils the elevated levels of the element were probably due to the presence of very small, unevenly distributed oxidized DU particles. The total uranium concentration in earthworms was in the range 0.142-0.656 mg kg{sup -1}, with the highest concentrations in Lumbricus terrestris. The juveniles of all three studied species seemed to accumulate uranium more than adults, probably due to age-related differences in metabolism. The {sup 235}U/{sup 238}U ratio in the earthworms was variable (0.005241-0.007266) and independent of both the total uranium contents in soils and the absolute uranium levels in the animals. Bioconcentration was greater at lower U concentrations in soil, probably due to an increasing rate of elimination of uranium by the earthworms as the soil contents of the element increase. The results of this study clearly indicate that DU was added to the soil of the study area. Nevertheless, the phenomenon was

  15. Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland).

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2015-08-01

    The aim of this work was to determine the uranium concentration ((234)U, (235)U and (238)U) and values of the activity ratio (234)U/(238)U in soil samples collected near phosphogypsum waste heap in Wiślinka (northern Poland). On the basis of the studies it was found that the values of the (234)U/(238)U activity ratio in the analyzed soils collected in the vicinity of phosphogypsum dump in Wiślinka are in most cases close to one and indicate the phosphogypsum origin of the analyzed nuclides. The obtained results of uranium concentrations are however much lower than in previous years before closing of the phosphogypsum stockpile. After this process and covering the phosphogypsum stockpile in Wiślinka with sewage sludge, phosphogypsum particles are successfully immobilized. In the light of the results the use of phosphate fertilizers seems to be a major problem. Prolonged and heavy rains can cause leaching accumulated uranium isotopes in the phosphogypsum stockpile, which will be washed into the Martwa Wisła and on the fields in the immediate vicinity of this storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Study of some modern carbonated marine organisms, using U234/U238 activities and its uranium concentration

    International Nuclear Information System (INIS)

    Pregnolatto, Y.

    1975-01-01

    Several types of alive carbonated organisms of marine fluvial or mixed environment origin were analized in its concentrations of Uranium and about its activity ratio U 234 /U 238 . In the same way measurements were made from the water of these three types of environments. The results indicate that the mollusks shells show a very low concentration compared with corals. Its concentration varies from 0.04 to 0.33 ppm. Inside the limit of errors we can say that the several types of carbonated organisms show the same disequilibrium U 234 /U 238 which was found in associated waters. An analysis of a piece of wood from long time immersed in the sea water was made. The result indicates that there was a marked high in concentration of Uranium due to chelatation with organic matter. (C.D.G.) [pt

  17. Bioaccumulation of polonium ({sup 210}Po) and uranium ({sup 234}U, {sup 238}U) in plants around phosphogypsum waste heap in Wislinka (northern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Borylo, A.; Skwarzec, B. [Gdansk Univ. (Poland). Faculty of Chemistry

    2011-07-01

    In the study the activities of polonium {sup 210}Po and uranium {sup 234}U, {sup 238}U in plants, collected near phosphogypsum waste heap in Wis'linka (northern Poland), were determined by using the alpha spectrometry. The obtained results revealed that the concentrations of {sup 210}Po, {sup 234}U, and {sup 238}U in the analyzed plants were differentiated. In the analyzed flora organisms the highest amounts of polonium and uranium were found in ruderal plant samples as well as willow samples (Salix viminalis) from protection zone of phosphogypsum waste heap. The concentrations of {sup 210}Po, {sup 234}U and {sup 238}U in the analyzed plants were higher in roots than in green parts of plants. The higher concentrations of {sup 210}Po and {sup 238}U radionuclides were estimated for hydrophyte (common sedge Carex nigra Reichard), the favourite habitat of which is particularly wet meadow and for plants collected in the vicinity of phosphogypsum waste heap. The major source of polonium and uranium in analyzed plants is root system. The values of {sup 234}U/ {sup 238}U activity ratio in all analyzed plants are closed to one, what indicated that source of uranium in analyzed plants is phosphogypsum. The highest uranium and polonium concentrations were characterized for plants, which are covered with tomentose. The comparability polonium and uranium contents were confirmed in edible plants, but higher accumulation was determined in ripe species than immature species of vegetables. The higher polonium and uranium concentrations were noticed in green parts of plant, the lower in roots. Polonium concentration in cultivated plants samples was not species diverse. Therefore, the significant source of polonium and uranium in analyzed plants is wet and dry atmospheric falls gathering the soil and air dust from phosphogypsum waste dump. The maximum {sup 210}Po and {sup 238}U radionuclides concentrations were found in green parts of red beet (Beta vulgaris esculenta), the

  18. Application of the grey system theory for forecasting the content of 238U in soil near a uranium mine exhaust outlet

    International Nuclear Information System (INIS)

    Ye Yongjun; Ding Dexin; Li Xiangyang; Zhou Xinghuo; Liu Dong

    2008-01-01

    In order to forecast the content of 238 U in soil near a uranium mine exhaust outlet, a general GM(1,1) forecasting model was established based on grey system theory, analyzing association degree and residual error distinction. According to the measuring datum of the content of 238 U in soil near a uranium mine exhaust outlet from 2001 to 2006, used the model to forecast the content of 238 U in soil, The results show that the forecasting value agrees with the measuring results and the forecasting precision is higher; at the same time the content of 238 U in soil in 2007 is also forecasted based on the model, the relative error was 4.8%; which shows the GM(1,1) forecasting model has higher practical value, and is a effective method for forecasting the content of 238 U in soil near a uranium mine exhaust outlet. (authors)

  19. Contribution to study of effects consecutive to alpha decay of uranium 238 in some uranium compounds and uranium ores

    International Nuclear Information System (INIS)

    Ordonez-Regil, E.

    1985-06-01

    The consequences of alpha decay of 238 U in uranium compounds and in uranium bearing ores have been examined in two ways: leaching of 234 Th and determination of the activity ratio of 234 U and 238 U. The results have been interpreted mainly in terms of the ''hot'' character of the nascent 234 Th atoms [fr

  20. Ground water contamination with (238)U, (234)U, (235)U, (226)Ra and (210)Pb from past uranium mining: cove wash, Arizona.

    Science.gov (United States)

    Dias da Cunha, Kenya Moore; Henderson, Helenes; Thomson, Bruce M; Hecht, Adam A

    2014-06-01

    The objectives of the study are to present a critical review of the (238)U, (234)U, (235)U, (226)Ra and (210)Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing (238)U and (234)U. The water quality data were taken from Sect. "Data analysis" of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah-Navajo Lands 1994-2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410-1 Bq/L) in 19 % of the water samples, while (238)U and (234)U concentrations were above in 14 and 17 % of the water samples, respectively. (226)Ra and (210)Pb concentrations in water samples were in the range of 3.7 × 10(-1) to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the (226)Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the (210)Pb/(226)Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the (235)U/(total)U mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of (235)U to (total)U (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations

  1. 238U content in soils of Byelorussia

    International Nuclear Information System (INIS)

    Shagalova, Eh.D.

    1986-01-01

    Results of detection in Byelorussian soils of a heavy natural radionuclide 238 U and its content in humus horizons of the soils on map-schemes are presented. 238 U content is determined by complete decomposition of soils by acids, isolation from thorium using EhDEh-10 P anionite and subsequent solution colorimetry. It is shown that the content of uranium-238 in soils decreases from the North to the South. Its maximum amount (>2x10 -4 %) is detected in turfy-podsolic soils in lake-glacier loams; the minimum one ( -4 %)- in peatymarshy soils. The map-scheme of 238 U content is a background base. Using the background base it is possible to trace the change in uranium content in soils under conditions of technogenic effect and to substantiate the efficiency of environment protection measures

  2. Determination of the activity of the uranium isotopes U-234, U-235 and U-238 in environmental samples by alpha spectrometry

    International Nuclear Information System (INIS)

    Kromphorn, G.

    1996-02-01

    Different materials containing urandium are regularly investigated in the Laboratory for Environmental Radioactivity of the Physikalisch-Technische Bundesanstalt (PTB) with respect to the activity of the uranium isotopes ( 234 U, 235 U, and 238 U). Moreover for reasons of quality assurance, the PTB takes part in international comparisons where also uranium contents are to be determined in environmental samples and in the framework of which reference materials can be certified. Finally in national comparisons the PTB has the task to determine values of the specific activity for the different isotopes which can play the role of nominal (orientation) values. The single steps of uranium analyses are described after a compilation of the most important data of the uranium isotopes contained in natural uranium: The use of 232 U as tracer, the chemical separation analytics, the production of α-sources and the measuring methods. Analyses of a soil sample and a waste water sample with respect to their specific uranium activity have been chosen as examples of a practical application. (orig.) [de

  3. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    The aim of this study was to determine uranium concentrations in common nettle ( Urtica dioica ) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U . dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  4. A study on possible use of Urtica dioica (common nettle) plants as uranium (234U, 238U) contamination bioindicator near phosphogypsum stockpile

    International Nuclear Information System (INIS)

    Olszewski, Grzegorz; Borylo, Alicja; Skwarzec, Bogdan

    2016-01-01

    The aim of this study was to determine uranium concentrations in common nettle (Urtica dioica) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wislinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U. dioica plants. The values of 234 U/ 238 U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile. (author)

  5. Using 238U/235U ratios to understand the formation and oxidation of reduced uranium solids in naturally reduced zones

    Science.gov (United States)

    Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.

    2016-12-01

    Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.

  6. The inflow of 234U and 238U from the River Odra drainage basin to the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Bogdan Skwarzec

    2010-12-01

    Full Text Available In this study the activity of uranium isotopes 234U and 238U in Odra river water samples, collected from October 2003 to July2004, was measured using alpha spectrometry. The uranium concentrations were different in each of the seasons analysed; the lowest values were recorded in summer. In all seasons, uranium concentrations were the highest in Bystrzyca river waters (from 27.81 ± 0.29Bq m-3 of 234U and 17.82 ± 0.23 Bq m-3 of 238U in spring to 194.76 ± 3.43 Bq m-3 of 234U and 134.88 ± 2.85 Bq m-3 of 238U in summer. The lowest concentrations were noted in the Mała Panew (from 1.33 ± 0.02 Bq m-3 of 234U and 1.06 ± 0.02 Bq m-3 of 238U in spring to 3.52 ± 0.05 Bq m-3 of 234U and 2.59± 0.04 Bq m-3 of 238U in autumn. The uranium radionuclides 234U and 238U in the water samples were not in radioactive equilibrium. The 234U / 238U activity ratios were the highest in Odra water samples collected at Głogów (1.84 in autumn, and the lowest in water from the Noteć (1.03 in winter and spring. The 234U / 238U activity ratio decreases along the main stream of the Odra, owing to changes in the salinity of the river's waters. Annually, 8.19 tons of uranium (126.29 G Bq of 234U and 100.80 G Bq of 238U flow into the Szczecin Lagoon with Odra river waters.

  7. Reactive transport of uranium in a groundwater bioreduction study: Insights from high-temporal resolution 238U/235U data

    Science.gov (United States)

    Shiel, A. E.; Johnson, T. M.; Lundstrom, C. C.; Laubach, P. G.; Long, P. E.; Williams, K. H.

    2016-08-01

    We conducted a detailed investigation of U isotopes in conjunction with a broad geochemical investigation during field-scale biostimulation and desorption experiments. This investigation was carried out in the uranium-contaminated alluvial aquifer of the Rifle field research site. In this well-characterized setting, a more comprehensive understanding of U isotope geochemistry is possible. Our results indicate that U isotope fractionation is consistently observed across multiple experiments at the Rifle site. Microbially-mediated reduction is suggested to account for most or all of the observed fractionation as abiotic reduction has been demonstrated to impart much smaller, often near-zero, isotopic fractionation or isotopic fractionation in the opposite direction. Data from some time intervals are consistent with a simple model for transport and U(VI) reduction, where the fractionation factor (ε = +0.65‰ to +0.85‰) is consistent with experimental studies. However, during other time intervals the observed patterns in our data indicate the importance of other processes in governing U concentrations and 238U/235U ratios. For instance, we demonstrate that departures from Rayleigh behavior in groundwater systems arise from the presence of adsorbed species. We also show that isotope data are sensitive to the onset of oxidation after biostimulation ends, even in the case where reduction continues to remove contaminant uranium downstream. Our study and the described conceptual model support the use of 238U/235U ratios as a tool for evaluating the efficacy of biostimulation and potentially other remedial strategies employed at Rifle and other uranium-contaminated sites.

  8. Limitations on the precision of 238U/235U measurements and implications for environmental monitoring

    International Nuclear Information System (INIS)

    Russ III, G.P.

    1997-01-01

    The ability to determine the isotopic composition of uranium in environmental samples is an important component of the International Atomic Energy Agency's (IAEA) safeguards program, and variations in the isotopic ratio 238 U/ 235 U provide the most direct evidence of isotopic enrichment activities. The interpretation of observed variations in 238 U/ 235 U depends on the ability to distinguish enrichment from instrumental biases and any variations occurring in the environment but not related to enrichment activities. Instrumental biases that have historically limited the accuracy of 238 U/ 235 U determinations can be eliminated by the use of the 233 U/ 236 U double-spike technique. With this technique, it is possible to determine the 238 U/ 235 U in samples to an accuracy equal to the precision of the measurement, ca. 0.1% for a few 10's of nanograms of uranium. Given an accurate determination of 238 U/ 235 U, positive identification of enrichment activities depends on the observed value being outside the range of 238 U/ 235 U's expected as a result of natural or environmental variations. Analyses of a suite of soil samples showed no variation beyond 0.2% in 238 U/ 235 U

  9. 232Th/238U in a uranium mobility estimate in an agricultural area in the municipality of Pedra-Pernambuco - Brazil

    International Nuclear Information System (INIS)

    Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Bezerra, Jairo Dias; Damascena, Kennedy Francys Rodrigues; Oliveira, Jose Valdez Monterazo de; Bispo, Rodrigo Cesar Bezerra; Silva, Cleomacio Miguel da; Rocha, Edilson Accioly

    2011-01-01

    The mobility of the radionuclides in soil depends primarily on the physic-chemical parameters. The uranium is easily oxidized in aqueous environment, which allows its characterization with higher mobility. The Thorium is practically insoluble, mainly if the environment has organic matter and sulfates. The geochemical characteristics of the rocks, associated with the weather and metamorphism produce alterations in the concentration diagrams of the natural radionuclides in different types of soil. The ratio 232 Th/ 238 U has been used as an indicator of oxidizing and reducing conditions. Th/U less than 2 suggests that the uranium is in its concentrated form abundantly when compared to the thorium. In reducing conditions, the value Th/U higher than 7 indicates a removal of the uranium. In this work it was possible to analyze the agricultural soil in the municipality of Pedra, Pernambuco, Brazil where there are uranium anomaly and thorium in rocky outcrops. Sixty-two samples of the horizon C soil were collected, in an area of 2 km 2 , where the main uranium occurrences are located. The analyses were done by High-Resolution Gamma-Spectroscopy. In the analyses the secular equilibrium was assumed and the 238 U and the 232 Th specific activities were used to estimate the oxidizing and reducing conditions defining the uranium mobility in the soil. The obtained findings show that the ratio Th/U varied from 0.3 to 13.4, with average of 4.6. The biggest 238 U fraction was fix (80.3%), with low mobility; the smallest fraction concentrated (6.6%) and a lixiviated intermediate fraction (13.1%). (author)

  10. 222Rn content and 234U/238U activity ratio in groundwaters

    International Nuclear Information System (INIS)

    Olguin, M.T.; Segovia, N.; Ordonez, E.; Iturbe, J.L.; Bulbulian, S.; Carrillo, J.

    1990-01-01

    Geochemical radioanalytical studies of ground water were perfomed in the valleys of Villa de Reyes and San Luis Potosi, Mexico. The experiments were designed to measure radon and uranium content and 234 U/ 238 U activity ratio in ground water samples taken from wells in these sites and at the Nuclear Center of Salazar, Mexico. 222 Rn content varied depending on the sample source, reaching a maximum value of 235 pCi/l; uranium concentration results were less than 1 μg/l and 234 U/ 238 U activity ratios were close to equilibrium. (author) 9 refs.; 1 fig.; 1 tab

  11. Isotope shift of 234U, 236U, 238U in U I

    International Nuclear Information System (INIS)

    Gagne, J.M.; Nguyen Van, S.; Saint-Dizier, J.P.; Pianarosa, P.

    1976-01-01

    New and very accurate data of isotope shifts and relative isotope shifts in 234 U, 236 U, 238 U are presented. The invariance of the relative isotope shift, for the transitions we have investigated, supports the hypothesis that the so called specific mass effect is negligible in uranium

  12. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    Alamelu, D.; Parab, A.R.; Sasi Bhushan, K.; Shah, Raju V.; Jagdish Kumar, S.; Rao, Radhika M.; Aggarwal, S.K.; Bhatia, R.K.; Yadav, V.K.; Sharma, Madhavi P.; Tulsyan, Puneet; Chavda, Pradip; Sriniwasan, P.

    2014-07-01

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235 U/ 238 U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235 U/ 238 U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235 U/ 238 U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  13. 238U series isotopes and 232Th in carbonates and black shales from the Lesser Himalaya: implications to dissolved uranium abundances in Ganga-Indus source waters

    International Nuclear Information System (INIS)

    Singh, S.K.; Dalai, Tarun K.; Krishnaswami, S.

    2003-01-01

    238 U and 232 Th concentrations and the extent of 238 U- 234 U- 230 Th radioactive equilibrium have been measured in a suite of Precambrian carbonates and black shales from the Lesser Himalaya. These measurements were made to determine their abundances in these deposits, their contributions to dissolved uranium budget of the headwaters of the Ganga and the Indus in the Himalaya and to assess the impact of weathering on 238 U- 234 U- 230 Th radioactive equilibrium in them. 238 U concentrations in Precambrian carbonates range from 0.06 to 2.07 μg g -1 . The 'mean' U/Ca in these carbonates is 2.9 ng U mg -1 Ca. This ratio, coupled with the assumption that all Ca in the Ganga-Indus headwaters is of carbonate origin and that U and Ca behave conservatively in rivers after their release from carbonates, provides an upper limit on the U contribution from these carbonates, to be a few percent of dissolved uranium in rivers. There are, however, a few streams with low uranium concentrations, for which the carbonate contribution could be much higher. These results suggest that Precambrian carbonates make only minor contributions to the uranium budget of the Ganga-Indus headwaters in the Himalaya on a basin wide scale, however, they could be important for particular streams. Similar estimates of silicate contribution to uranium budget of these rivers using U/Na in silicates and Na* (Na corrected for cyclic and halite contributions) in river waters show that silicates can contribute significantly (∼40% on average) to their U balance. If, however, much of the uranium in these silicates is associated with weathering resistant minerals, then the estimated silicate uranium component would be upper limits. Uranium concentration in black shales averages about 37 μg g -1 . Based on this concentration, supply of U from at least ∼50 mg of black shales per liter of river water is needed to balance the average river water U concentration, 1.7 μg L -1 in the Ganga-Indus headwaters

  14. Uranium ({sup 238}U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi, E-mail: kanthad.arunachalam@gmail.com

    2017-05-15

    Highlights: • Exposure to {sup 238}U deteriorated the antioxidant defenses like SOD, CAT and LPO. • Flow cytometric analysis revealed the increase in G2/M phase and S phase. • Micronucleus frequencies increased with Increased {sup 238}U exposure and time. • Exposure to waterborne {sup 238}U induces both chemical and radiotoxicity in P. sutchi. • ROS-mediated {sup 238}U toxic mechanism and the antioxidant responses has been proposed. - Abstract: The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of {sup 238}U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC{sub 50} doses of waterborne {sup 238}U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods—0 h, 24 h, 48 h, 72 h, 96 h, 7, days 14 days and 21 days—using ICP-MS to determine the toxic effects of uranium and the accumulation of {sup 238}U concentrations. The bioaccumulation of {sup 238}U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills > liver > brain > tissue, with the highest accumulation in the gills. It was observed that exposure to {sup 238}U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term {sup 238}U exposure studies in fish showed increasing

  15. Uranium isotopic ratio measurements ({sup 235}U/{sup 238}U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - {sup 235}U/{sup 238}U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    David, K.; Mokili, M.B.; Rousseau, G.; Deniau, I.; Landesman, C. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of {sup 235}U/{sup 238}U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct {sup 235}U/{sup 238}U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as

  16. Origin and geochemical behavior of uranium in marine sediments. Utilization of the {sup 234}U/{sup 238}U ratio in marine geochemistry; Origine et comportement geochimique de l`uranium dans les sediments marins. Utilisation du rapport ({sup 234}U/{sup 238}U) en geochimie marine

    Energy Technology Data Exchange (ETDEWEB)

    Organo, Catherine [Paris-11 Univ., 91 - Orsay (France)

    1997-01-20

    The first part of this thesis presents the current situation of knowledge of uranium in marine environment. The second part describes the methods of analysis as well as the material support of the study, i.e., the sediments and marine deposits investigated. The third part is dedicated to the study of uranium mobility in marine sediments characterized by detrital terrigenous composition (pelagic clays). This approach allowed quantifying the entering and leaving flux of uranium after the sediment settling and, to discuss, on this basis, the consequences on the uranium oceanic balance. In the third part the origin and behavior of uranium in zones of high surface productivity is studied. The uranium enrichments observed in the hemi-pelagic sediments of the EUMELI (J.G.O.F.S.-France) programme will constitute a material of study adequate for measuring the variations in the {sup 234}U/2{sup 38U} ratio in solid phase, in response to the oxido-reducing characteristics of the sediment. Thus establishing the origin of the trapped uranium has been possible. Also, the nature of the sedimentary phases related to uranium in bio-genetic sediments in the Austral Ocean was determined. Thus a relationship between the variations in the {sup 234}U/{sup 238} and the diagenetic transformations was possible to establish. Finally in the fifth part a study of the behavior of uranium in a polymetallic shell characteristic for deposits of hydrogenized origin 146 refs., 57 figs., 23 tabs.

  17. Optimization of the binary breeder reactor. VIII annular core fueled with 233U - 238U and Pu-238U

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Ishiguro, Y.

    1988-04-01

    First cycle burnup characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analysed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in metal fueled homogeneous fast reactors of 1 m core height. The estimates of the required and available control rod worths show a large shutdown margin throughout the operational cycle. There are flexibilities in the blanket fueling and well balanced breeding in the two cycles, uranium and thorium, with doubling times of about 20 years are possible. (author) [pt

  18. Uranium ("2"3"8U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi

    International Nuclear Information System (INIS)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2017-01-01

    Highlights: • Exposure to "2"3"8U deteriorated the antioxidant defenses like SOD, CAT and LPO. • Flow cytometric analysis revealed the increase in G2/M phase and S phase. • Micronucleus frequencies increased with Increased "2"3"8U exposure and time. • Exposure to waterborne "2"3"8U induces both chemical and radiotoxicity in P. sutchi. • ROS-mediated "2"3"8U toxic mechanism and the antioxidant responses has been proposed. - Abstract: The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of "2"3"8U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC_5_0 doses of waterborne "2"3"8U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods—0 h, 24 h, 48 h, 72 h, 96 h, 7, days 14 days and 21 days—using ICP-MS to determine the toxic effects of uranium and the accumulation of "2"3"8U concentrations. The bioaccumulation of "2"3"8U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills > liver > brain > tissue, with the highest accumulation in the gills. It was observed that exposure to "2"3"8U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term "2"3"8U exposure studies in fish showed increasing micronucleus frequencies in

  19. Origin and geochemical behavior of uranium in marine sediments. Utilization of the 234U/238U ratio in marine geochemistry

    International Nuclear Information System (INIS)

    Organo, Catherine

    1997-01-01

    The first part of this thesis presents the current situation of knowledge of uranium in marine environment. The second part describes the methods of analysis as well as the material support of the study, i.e., the sediments and marine deposits investigated. The third part is dedicated to the study of uranium mobility in marine sediments characterized by detrital terrigenous composition (pelagic clays). This approach allowed quantifying the entering and leaving flux of uranium after the sediment settling and, to discuss, on this basis, the consequences on the uranium oceanic balance. In the third part the origin and behavior of uranium in zones of high surface productivity is studied. The uranium enrichments observed in the hemi-pelagic sediments of the EUMELI (J.G.O.F.S.-France) programme will constitute a material of study adequate for measuring the variations in the 234 U/2 38U ratio in solid phase, in response to the oxido-reducing characteristics of the sediment. Thus establishing the origin of the trapped uranium has been possible. Also, the nature of the sedimentary phases related to uranium in bio-genetic sediments in the Austral Ocean was determined. Thus a relationship between the variations in the 234 U/ 238 and the diagenetic transformations was possible to establish. Finally in the fifth part a study of the behavior of uranium in a polymetallic shell characteristic for deposits of hydrogenized origin

  20. Investigation of the degree of equilibrium of the long-lived uranium-238 decay-chain members in airborne and bulk uranium-ore dusts

    International Nuclear Information System (INIS)

    Jackson, P.O.; Thomas, C.W.

    1982-08-01

    The degree of disequilibrium among 238 U decay chain members in some airborne dusts and typical ores has been established by precise radiochemical analyses. This information is necessary to evaluate the lung dose model currently used for estimating the effect of the inhalation of uranium ore dust. The particle size distributions of airborne decay chain components in dusts at one uranium mill have been investigated. Statistically significant disequilibria were observed for 230 Th, 226 Ra, and 210 Pb in both airborne dusts and composite ore samples. With the exception of ore from one mill in the United States, most of the daughter concentrations in powdered ore composites were within 10% of 238 U. In airborne dusts, the concentration of 226 Ra was typically below 238 U; the minimum 226 Ra concentration observed for airborne ore dusts was 56% of equilibrium. A statistically significant particle size dependence was observed for 226 Ra/ 238 U ratios in several airborne dusts collected at a uranium mill

  1. Determination of uranium concentrations and "2"3"4U/"2"3"8U activity ratio in some granitic rock samples by alpha spectrometry: application of a radiochemical procedure

    International Nuclear Information System (INIS)

    Khattab, Mahmoud R.

    2016-01-01

    The present study is an application of a radiochemical procedure using alpha spectrometry technique for determination of uranium isotopes "2"3"8U, "2"3"4U and "2"3"5U on 13 granitic samples. These samples were collected from Gabal Gattar area, Northeastern Desert, Egypt. The collected samples were digested using microwave technique with aqua regia and spiked with "2"3"2U for chemical yield and activity calculation. Separation of uranium isotopes from the samples was done by Dowex 1 x 4 (50-100 mesh) resin followed by source preparation using microprecipitation technique. The concentrations of "2"3"8U were ranged between 28.9±0.9 and 134.8±1.8 Bq/g, and the "2"3"4U concentrations were between 24±0.6 and 147.7±2.2 Bq/g. For the "2"3"5U, the activity concentrations were between 1.3±0.2 and 6.7±1.2 Bq/g. The activity ratio of "2"3"4U/"2"3"8U was calculated and varied from 0.80 to 1.30. (author)

  2. Comparison of the simulated diffusion of 238U and 234U isotopes with profile data from granite fractures

    International Nuclear Information System (INIS)

    Latham, A.G.

    1991-01-01

    The observed profiles of uranium content and 234 U/ 238 U activity ratios as they vary with distance into the rock at a granite fracture wall have been interpreted using a simple diffusion-sorption model. For simplicity, the model assumes a linear reversible isotherm. Using simple constraints, it has been possible to estimate long-term values appropriate for the distribution coefficient, K d for uranium in granite. A potential constraint on the uranium K d value is provided by the 234 U/ 238 U activity ratio variations. However, natural 234 U/ 238 U activity ratios seldom change monotonically with distance and it is suspected that they are the result, to some extent, of later uranium removal. To take this approach further, corresponding physical rock property data and closer sampling in the fracture profiles would be required. Estimates of K d are in the range 0.1 to 10 m 3 kg -1 , and are in agreement with the upper part of the range obtained from laboratory experiments. (author)

  3. On monitoring anthropogenic airborne uranium concentrations and 235U/238U isotopic ratio by Lichen - bio-indicator technique

    International Nuclear Information System (INIS)

    Golubev, A.V.; Golubeva, V.N.; Krylov, N.G.; Kuznetsova, V.F.; Mavrin, S.V.; Aleinikov, A.Yu.; Hoppes, W.G.; Surano, K.A.

    2005-01-01

    Lichens are widely used to assess the atmospheric pollution by heavy metals and radionuclides. However, few studies are available in publications on using lichens to qualitatively assess the atmospheric pollution levels. The paper presents research results applying epiphytic lichens as bio-monitors of quantitative atmospheric contamination with uranium. The observations were conducted during 2.5 years in the natural environment. Two experimental sites were used: one in the vicinity of a uranium contamination source, the other one - at a sufficient distance away to represent the background conditions. Air and lichens were sampled at both sites monthly. Epiphytic lichens Hypogimnia physodes were used as bio-indicators. Lichen samples were taken from various trees at about 1.5m from the ground. Air was sampled with filters at sampling stations. The uranium content in lichen and air samples as well as isotopic mass ratios 235 U/ 238 U were measured by mass-spectrometer technique after uranium pre-extraction. Measured content of uranium were 1.45mgkg -1 in lichen at 2.09E-04μgm -3 in air and 0.106mgkg -1 in lichen at 1.13E-05μgm -3 in air. The relationship of the uranium content in atmosphere and that in lichens was determined, C AIR =exp(1.1xC LICHEN -12). The possibility of separate identification of natural and man-made uranium in lichens was demonstrated in principle

  4. Concentrations and biological availability of 238U and 230Th in the environs of a uranium milling operation

    International Nuclear Information System (INIS)

    Ibrahim, S.; Flot, S.; Whicker, F.W.

    1982-01-01

    This paper reports on a study whose objectives were to determine 238 U and 230 Th concentrations in soil and native plants from various sites around a conventional acid leach uranium milling operation in the Western US, and to estimate plant/soil concentration factors. Soil and vegetation samples were collected from exposed, weathered tailings; near the edge of a tailings pond; from a reclamation area; and at several native range background (control) locations. The results indicate that mean plant/soil concentration factors varied significantly among sites and between radionuclides, but no significant differences between plant groups were found. Concentration factors for 230 Th were greater than for 238 U for plants growing at the edge of the tailings pond. It is speculated that the lower concentration factors for uranium relative to thorium at this site may be due to the proportion of their contents in soil that is biologically available for plant uptake

  5. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    Science.gov (United States)

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Standard test method for analysis of urine for uranium-235 and uranium-238 isotopes by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of the concentration of uranium-235 and uranium-238 in urine using Inductively Coupled Plasma-Mass Spectrometry. This test method can be used to support uranium facility bioassay programs. 1.2 This method detection limits for 235U and 238U are 6 ng/L. To meet the requirements of ANSI N13.30, the minimum detectable activity (MDA) of each radionuclide measured must be at least 0.1 pCi/L (0.0037 Bq/L). The MDA translates to 47 ng/L for 235U and 300 ng/L for 238U. Uranium– 234 cannot be determined at the MDA with this test method because of its low mass concentration level equivalent to 0.1 pCi/L. 1.3 The digestion and anion separation of urine may not be necessary when uranium concentrations of more than 100 ng/L are present. 1.4 Units—The values stated in picoCurie per liter units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1....

  7. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    International Nuclear Information System (INIS)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ( 238 U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which 238 U can be found, and 238 U behavior in the environment and in the human body

  8. Intake of 210Po, 234U and 238U radionuclides with beer in Poland

    International Nuclear Information System (INIS)

    Skwarzec, B.; Struminska, D.I.; Borylo, A.; Falandysz, J.

    2004-01-01

    238 U, 234 U and 210 Po activity concentrations were determined in beer in Poland by alpha-spectrometry with low-level activity silicon detectors. The results revealed that the mean concentrations of 238 U, 234 U and 210 Po in the analyzed beer samples were 4.63, 4.11 and 4.94 mBq x dm -3 , respectively, the highest in Tyskie (5.71 for 210 Po, 5.06 for 234 U and 6.11 for 238 U) and the lowest in Lech (2.49 for 210 Po). The effective radiation dose due to uranium and polonium ingestions by beer was calculated and were compared to the effective radiation dose from drinking water. (author)

  9. New explanation for extreme u-234 u-238 disequilibria in a dolomitic aquifer

    CSIR Research Space (South Africa)

    Kronfeld, J

    1994-05-01

    Full Text Available High U-234/U-238 activity ratios are found in the shallow groundwater of the phreatic Transvaal Dolomite Aquifer. The aquifer is uranium poor, while the waters are oxygen rich and young. Tritium and C-14 are used to show that the disequilibrium...

  10. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater

    International Nuclear Information System (INIS)

    Chabaux, F.; Cohen, A.S.; O'Nions, R.K.; Hein, J.R.

    1995-01-01

    Comparison of ( 234 U) excess /( 238 U) and ( 230 Th)/( 232 Th) activity ratios in oceanic Fe-Mn deposits provides a method for assessing the closed-system behaviour of 238 U- 234 U- 230 Th, as well as variations in the initial uranium and thorium isotopic ratios of the precipitated metal oxides. This approach is illustrated using a Fe-Mn crust from Lotab seamount (Marshall Islands, west equatorial Pacific). Here we report uranium and thorium isotopic compositions in five subsamples from the surface of one large 5 cm diameter botyroid of this crust, and from two depth profiles of the outermost rim of the same botyroid. The decrease of ( 234 U) excess /( 238 U) and ( 230 Th/ 232 Th) activity ratio with depth in the two profiles gives mean growth rates, for the last 150 ka, of 7.8 ± 2 mm/Ma and 6.6 ± 1 mm/Ma, respectively. All data points (surface and core samples) but one, define a linear correlation in the Ln ( 230 Th/ 232 Th) - Ln [( 234 U) excess ( 238 U)] diagram. This correlation indicates that for all points the U-Th system remained closed after the Fe-Mn layer precipitated, and that the different samples possessed the same initial Uranium and thorium isotope ratios. Furthermore, these results show that the preserved surface of this Fe-Mn crust may not be the present-day growth surface, and that the thorium and uranium isotopic ratios of seawater in west equatorial Pacific have not changed during the past 150 ka. The initial thorium activity ratio is estimated from the correlation obtained between Ln( 230 Th/ 232 Th) and Ln [( 234 U) excess /( 238 U)

  11. Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters

    International Nuclear Information System (INIS)

    Beckova, V.; Malatova, I.

    2008-01-01

    Kinetics of dissolution of 238 U, 234 U and 230 Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultra-filtrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolni Rozinka' at Rozna, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h -1 and the sampling period is typically 1 month. Studied filters contained 125 ± 6 mBq 238 U in equilibrium with 234 U and 230 Th; no 232 Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for 238 U and 234 U and slow dissolution half-times of 173 and 116 d were found for 238 U and 234 U, respectively. No detectable dissolution of 230 Th was found. (authors)

  12. Measurement of the 234U/238U activity ratios in the organs and internal tissues of a domestic goat kid (Capra aegagrus hircus)

    International Nuclear Information System (INIS)

    Francesco De Santis; Massimo Esposito

    2015-01-01

    In this paper, we compare the 234 U/ 238 U activity ratios (ARs) in various internal tissues and organs of a goat kid with the ingested 234 U/ 238 U AR to assess isotopic fractionation. The results obtained from soft tissues (i.e., the kidneys, liver, lung, and bladder) that undergo indirect assimilation of uranium from the feed through the bloodstream suggest an increase in the 234 U/ 238 U AR. In contrast, the intestine, bones and feces had the same AR values as the feed. Finally, we broadly assess uranium transfer from the feed to the animal based on the concentration ratio and the feed transfer coefficient. (author)

  13. Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters.

    Science.gov (United States)

    Becková, Vera; Malátová, Irena

    2008-01-01

    Kinetics of dissolution of (238)U, (234)U and (230)Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultrafiltrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolní Rozínka' at Rozná, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h(-1) and the sampling period is typically 1 month. Studied filters contained 125 +/- 6 mBq (238)U in equilibrium with (234)U and (230)Th; no (232)Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for (238)U and (234)U and slow dissolution half-times of 173 and 116 d were found for (238)U and (234)U, respectively. No detectable dissolution of (230)Th was found.

  14. Determination of 234U and 238U activity concentrations in groundwaters from three deep wells drilled in Itu Intrusive Suite (SP)

    International Nuclear Information System (INIS)

    Souza, Francisca de

    2006-01-01

    Activity concentrations of ( 234 U) and ( 238 U) were determined in groundwaters drawn from three deep wells drilled in rocks from Itu Intrusive Suite (SP), two located in Salto town (S and SY wells) and the other one in Itu (I well). Sampling was done from September, 2004 to December, 2005, and twelve samples of each well were collected monthly. For those determinations alpha spectrometry technique was used, providing high precision results, as shown by the very good agreement of the data obtained in the analyses of 23 duplicates. The waters from the three wells presented a considerable enrichment of 234 U in relation to 238 U, indicating an important radioactive disequilibrium of these isotopes. In well I, the activity concentrations of ( 238 U) varied from (1,06 +- 0,03) to (2,1+- 0,2) mBq/L and those of ( 234 U) spanned from (3,1 +- 0,2) to (6,0 +- 0,4) mBq/L, whereas ( 234 U/ 238 U) activity ratios did not present significant variation, during the sampling time interval, presenting an average of 2,8 +- 0,1. The S waters showed the lowest uranium concentrations and the largest diversity of ( 238 U) and ( 234 U) activity concentrations, which varied from (0,26 +- 0,02) to (1,07+- 0,08) mBq/L and from (1,8 +- 0,1) to (7,0 +- 0,5) mBq/L, respectively, and also presented variable ( 234 U/ 238 U) activity ratios, spanning from (2,79 +- 0,07) to (8,1+- 0,3). In SY well, ( 238 U) activities varied between (0,8 +- 0,1) and (4,2 +- 0,3) mBq/L and those ones of ( 234 U) from (14 +- 1) to (53 +- 4) mBq/L, whereas ( 234 U/ 238 U) ratios fell in the interval from 12,6 +- 0,3 to 18,3 +- 0,4, with the highest activities of both radioisotopes registered during the dry season and the lowest ones in the rainy time period. The ( 234 U/ 238 U) activity ratios, which were invariable during sampling period of well I, indicated the contribution of rainfall to recharge the aquifer. The observed correlation between those ratios and uranium concentrations, for S and SY wells, showed

  15. Activation Doppler Measurements on U 238 and U 235 in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, L I; Gustafsson, I

    1968-03-15

    Measurements of the Doppler effect in U-238 capture and U-235 fission have been made by means of the activation technique in three different neutron spectra in the fast critical assembly FR0. The experiments involved the irradiation of thin uranium metal foils or oxide disks, which were heated in a small oven located at the core centre. The measurements on U-238 were extended to 1780 deg K and on U-235 to 1470 deg K. A core region surrounding the oven was homogenized in order to facilitate the interpretation of results. The reaction rates in the uranium samples were detected by gamma counting. The experimental method was checked with regard to systematic errors by irradiations in a thermal spectrum. The data obtained for U-238 capture were corrected for the effect of neutron collisions in the oven wall, and were extrapolated to zero sample thickness. In the softest spectrum (core 5) a Doppler effect (relative increase in capture rate) of 0.260 {+-} 0.018 was obtained on heating from 343 to 1780 deg K, and in the hardest spectrum (core 3) the corresponding value was 0.030 {+-} 0.003. An appreciable Doppler effect in U-235 fission was obtained only in the softest spectrum, in which the measured increase in fission rate on heating from 320 to 1470 deg K was 0.007 {+-} 0.003.

  16. The Determination of the Half-Life of U{sup 238} by Absolute Counting of {alpha} Particles in a 4 {pi}-Liquid Scintillation Counter; Determination de la periode de l'U{sup 238} au moyen du comptage absolu de particules {alpha} dans un comtpeur 4 {pi} a scintillateur liquide; Opredelenie perioda poluraspadda U{sup 238} posredstvom absolyutnogo scheta {alpha}-chastits v zhidkostnom stsintillyatsionnom schetchike 4 {pi}; Determinacion del periodo del U{sup 238} por recuento absoluto de las particulas {alpha} con un contador 4 {pi} de centelleador liquido

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, J; Strelow, F W. E. [Council of Scientific and Industrial Research, Pretoria (South Africa)

    1960-06-15

    The specific activity of natural uranium was determined by liquid scintillation {alpha}-counting. Uranium was extracted from its decay products by methyl isobutyl ketone extraction and samples of this solution were added directly to the liquid scintillator. A quantitative investigation was made of the separation of uranium from thorium by the extraction method employed. Assuming that U{sup 238} and U{sup 234} were in equilibrium, and correcting for the presence of U{sup 235}, the specific activity and the half-life of the isotope U{sup 238} were calculated. (author) [French] L'activite specifique de l'uranium naturel est determinee au moyen d'un comptage a par scintillateur liquide. L'uranium est separe de ses produits de desintegration par une extraction a la methylisobutylceton e et des echantillons de cette solution sont ajoutes directement au scintillateur liquide. On fait une etude quantitative de la separation de l'uranium et du thorium par le procede d'extraction utilise. En admettant que U{sup 238} et U{sup 234} sont en equilibre et en faisant la correction voulue pour tenir compte de la presence de U{sup 235}, on calcule l'activite specifique et la periode de U{sup 238}. (author) [Spanish] La actividad especifica del uranio natural se determino con un contador {alpha} de centelleador liquido. El uranio se separo de productes de desintegracion por extraccion con metilisobutilcetona, y muestras de esta solucion se anadieron directamente al centelleador liquido. Se estudio cuantitativament e el grado de separacion uranio/torio alcanzado con el metodo de extraccion empleado. Introduciendo correcciones para tener en cuenta la presencia de U{sup 235}, se calculo la actividad especifica y el periodo de semidesintegracio n del U{sup 238} suponiendo que este isotopo se encontraba en equilibrio con el U{sup 234}. (author) [Russian] Spetsificheskaya aktivnost' estestvennogo urana byla opredelena s pomoshch'yu zhidkostnogo stsintillyatsionnog o schetchika {alpha

  17. Application of 234U/238U isotope ratio data for the study of geochemical problems associated with local water sources from Aguas da Prata (SP, Brazil)

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1982-01-01

    The uranium-238, uranium-234 and radon content of spring waters of Aguas da Prata (SP) - Platina, Paiol, Villela, Sao Bento, Prata-Radioativa, Prata-Nova, Boi, Vitoria and Prata-Antiga - was found; the activity ratio AR ( 234 U/ 238 U) was applied to the geochemistry of local water sources. The uranium analysis procedure consisted of the following steps: adition of 232 U- 228 Th spike to the samples, coprecipitation with iron, iron extraction with organic solvent, separation on anion-exchange resin, extraction with TTA, deposition on stainless steel disc and determination of uranium content by alpha spectrometry. The uranium-238 content changed from 0,10 to 11,56 ppb (average value = 2,3 ppb). The higher values were observed for the waters circulating through sandstones and the lower through volcanic rocks. The inverse correlation (r sub(s) =-0,76) between pH and uranium-238 content confirmed the contribution of this factor on its solubility. The significative correlation r sub(s) = 0,76 between dissolved oxygen and uranium-238 content also confirmed the higher uranium on the more oxidizing zones. The AR changed from 2,84 to 11,68 (average value = 6). These values defined the regional aquifer systems as mineralized in uranium. The higher AR were observed for the deep groundwaters and the lower for the shallow one. Because the 238 U→ 234 Th decay, the 234 Th ejection to the solution was confirmed as the most important factor responsible for the extreme observed isotopic fractionation. (Author) [pt

  18. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    Science.gov (United States)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  19. Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins

    International Nuclear Information System (INIS)

    Seko, M.; Kakihana, H.

    1976-01-01

    A method is described of simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures thereof with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is presented as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims

  20. 234U and 238U in the Carrizo Sandstone aquifer of South Texas

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1974-01-01

    The waters of the Carrizo Sand formation of South Texas, United States of America, exhibit a pattern of uranium isotopic disequilibrium, described in terms of 234 U/ 238 U activity ratio ('A.R.') and uranium concentration, which may be a function of geochemical factors and the hydrologic history of the area. In terms of uranium, two regimes seem to exist. The first, including outcrop and near outcrop sample locations, has waters with relatively high concentration and low A.R. Somewhat downdip, the uranium concentration decreases sharply at the downdip limit of the oxidation environment, a zone of uranium precipitation. Recoil of daughter products from the precipitated uranium causes an increase of A.R. of the water. Water of low uranium concentration and high A.R. is found throughout the downdip regime. If a constant input of 234 U through time is assumed, the downdip decrease in A.R. after the initial introduction of 234 U into the water may be ascribed to radioactive decay of 234 U. However, this assumption leads to the calculation of a water flow rate one twentieth that determined by other means. Alternatively, this pattern may be an artifact of a change of climate from 20,000 years to 10,000 years ago. In this case, the decrease in A.R. downdip is a function of a varying input of 234 U as well as decay. (author)

  1. Light nuclides observed in the fission and fragmentation of 238U

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Schmidt, K.H.; Benlliure, J.

    2001-05-01

    Light nuclides produced in collisions of 1 A.GeV 238 U with protons and titanium have been fully identified with a high-resolution forward magnetic spectrometer, the fragment separator (FRS), at GSI, and for each nuclide an extremely precise determination of the velocity has been performed. The so-obtained information on the velocity shows that the very asymmetric fission of uranium, in the 238 U + p reaction, produces neutron-rich isotopes of elements down to around charge 10. New important features of the fragmentation of 238 U, concerning the velocity and the N/Z-ratio of these light fragments, and a peculiar even-odd structure in N=Z nuclei, have also been observed. (orig.)

  2. Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of 236 U at concentration ranges down to 3 x 10 -14 g g -1 and extremely low 236 U/ 238 U isotope ratios in soil samples of 10 -7 . By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg -1 uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH + /U + down to a level of 10 -6 . An abundance sensitivity of 3 x 10 -7 was observed for 236 U/ 238 U isotope ratio measurements at mass resolution 4000. The detection limit for 236 U and the lowest detectable 236 U/ 238 U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the 236 U/ 238 U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the 235 U/ 238 U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of 236 U in the upper 0-10 cm soil layers varied from 2 x 10 -9 g g -1 within radioactive spots close to the Chernobyl NPP to 3 x 10 -13 g g -1 on a sampling site located by >200 km from Chernobyl

  3. Determination of extremely low (236)U/(238)U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction.

    Science.gov (United States)

    Boulyga, Sergei F; Heumann, Klaus G

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.

  4. Certification of a uranium-238 dioxide reference material for neutron dosimetry (EC nuclear reference material 501)

    International Nuclear Information System (INIS)

    Pauwels, J.; Lievens, F.; Ingelbrecht, C.

    1989-01-01

    Uranium-238 oxide of 99.999% isotopic and 99.98% chemical purity was transformed into dioxide spheres of nominal 0.5 and 1.0 mm diameter by gel precipitation and subsequent calcination under carbon dioxide and under argon containing 5% hydrogen at 1 125 K. The spheres were analysed by thermal ionization mass spectrometry, including isotope dilution, by gravimetry and by potentiometric titration. On the basis of these analyses, the uranium mass fraction was certified at 879.4 ± 2.8 g.kg -1 , and the 235 U/U - and 238 U/U abundances at 10.4 ± 0.5 mg.kg -1 and 999.9896 ± 0.0005 g.kg -1 , respectively. The material is intended to be used as a reference material in neutron metrology

  5. Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins

    International Nuclear Information System (INIS)

    Seko, M.; Kakihana, H.

    1976-01-01

    A method is described for simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures of these with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is present as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims, no drawings

  6. 238,234U contents on Lepomis Cyanellus from San Marcos dam located in a uraniferous area

    Science.gov (United States)

    Lares, Magaly Cabral; Luna-Porres, Mayra Y.; Montero-Cabrera, María E.; Renteria-Villalobos, Marusia

    2014-07-01

    Fish species are suitable biomonitors of radioisotopes in aquatic systems. In the present study, it was made the determination of uranium isotopic contents on fish fillet (Lepomis Cyanellus) from San Marcos dam which is located in uranium mineralized zone. Uranium activity concentrations (AC) in fish samples were obtained on wet weight (ww), using liquid scintillation. 238U and 234U AC in fish fillet ranged from 0.0004 to 0.0167 Bq kg-1, and from 0.0013 to 0.0394 Bq kg-1, respectively. The activity ratio (234U/overflow="scroll">238U) in fish fillet ranged from 2.2 to 8.8. Lepomis cyanellus from San Marcos dam shows bioaccumulation factor (FB) of 0.6 L kg-1. The results suggest that the Lepomis Cyanellus in environments with high U contents tends to have a greater bioaccumulation compared to others.

  7. Determination of extremely low {sup 236}U/{sup 238}U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)]. E-mail: sergei.boulyga@univie.ac.at; Heumann, Klaus G. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany)

    2006-07-01

    A method by inductively coupled plasma mass spectrometry (Icp-Ms) was developed which allows the measurement of {sup 236}U at concentration ranges down to 3 x 10{sup -14} g g{sup -1} and extremely low {sup 236}U/{sup 238}U isotope ratios in soil samples of 10{sup -7}. By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5000 counts fg{sup -1} uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH{sup +}/U{sup +} down to a level of 10{sup -6}. An abundance sensitivity of 3 x 10{sup -7} was observed for {sup 236}U/{sup 238}U isotope ratio measurements at mass resolution 4000. The detection limit for {sup 236}U and the lowest detectable {sup 236}U/{sup 238}U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the {sup 236}U/{sup 238}U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the {sup 235}U/{sup 238}U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of {sup 236}U in the upper 0-10 cm soil layers varied from 2 x 10{sup -9} g g{sup -1} within radioactive spots close to the Chernobyl NPP to 3 x 10{sup -13} g g{sup -1} on a sampling site located by >200 km from Chernobyl.

  8. Comparative studies for determining U-235/U-238 relation in solutions of natural and depleted uranium using gamma spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Cassorla F, V.; Valle M, L.; Pena V, L.

    1988-01-01

    Two experimental methods were developed for determining U-235/U-238 ratio in uranium solutions. The isotopic was measured by high resolution ratio gamma-ray spectrometry (G.S.) and neutron activation analysis (N.A.A.). The precision obtained was similar for both methods, but better sensitivity was obtained by N.A.A. The accuracy in both cases was stablished by comparison with samples previously analyzed by mass spectrometry, the results were satisfactory for both techniques. Studies involving the influence of the nitric acid concentration on the isotopic ratio measurement, also were done. In addition, computer programs for faster data reduction were developped, in the case of N.A.A. (author)

  9. Determination of sup 238 U in marine organisms by inductively coupled plasma mass spectrometry. Yudo ketsugo plasma shitsuryo bunsekiho ni yoru kaiyo seibutsuchu no sup 238 U no teiryo

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, T.; Nakahara, M; Matsuda, M.; Ishikawa, M. (National Institute of Radiological Sciences, Ibaraki (Japan))

    1991-05-25

    Since the {sup 238} U concentration in seawater is about 3ng/ml at the element level and the activity concentration is 40 {mu} Bq/ml which are considerably higher that those of other {alpha} radioactive materials, it is necessary to study the concentration levels of many marine organisms. After confirming that the inductively coupled plasma mass spectrometry as a new high sensitive analysis for multi-elements is effective to analyze heavy elements such as rare earth elements or uranium, etc., this method was applied to determine {sup 238} U in 55 species of marine organism. The {sup 238} U concentration in soft tissues of marine animal ranged from 0.076 to 5000ng/g wet weight and large difference of concentration was observed depending on the kind of animal and the tissue. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of {sup 238} U. The concentration factor of branchial heart of Octopus vulgaris which showed the highest value was calculated to be about 10 {sup 3} by comparing it with the concentration of {sup 238} U in Japanese coastal waterseas. The concentration of {sup 238} U in 20 species of algae ranged from 10 to 3700ng/g dry weight. 11 refs., 2 figs., 9 tabs.

  10. Activity disequilibrium between 234U and 238U isotopes in natural environment

    OpenAIRE

    Bory?o, Alicja; Skwarzec, Bogdan

    2014-01-01

    The aim of this work was to calculate the values of the 234U/238U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wi?linka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in th...

  11. Distribution of uranium-238 in environmental samples from a residential area impacted by mining and milling activities

    International Nuclear Information System (INIS)

    McConnell, M.A.; Ramanujam, V.M.S.; Alcock, N.W.; Gabehart, G.J.; Au, W.W.

    1998-01-01

    The northern region of Karnes County, Texas, USA, has been the site of extensive mining/milling of uranium for over 30 years. A previous study in their laboratory indicates that residents living near these facilities have increased chromosomal aberrations and a reduced DNA repair capacity. In this study, the long-lived radionuclides uranium-238 ( 238 U) and thorium-232 ( 232 Th) were measured in order to evaluate the extent of contamination from mining/milling facilities. 232 Th was quantified simultaneously and served as a reference. Soil samples were collected from the yards of previously studied households and adjacent areas near former mining and mining/milling sites at the surface and 30 cm subsurface. Additionally, samples from drinking water wells were collected from selected households. Sites located over 14 km from the study area with no known history of mining/milling served as the control. In the control area, 238 U concentrations in soil were consistent between surface (0.13--0.26 mg/kg) and subsurface samples. Near mining/milling sites, 238 U in surface soil was found to be consistently and statistically higher than corresponding subsurface samples. Near mining-only areas, 238 U in surface soil, however, was not significantly increased over subsurface soil. As expected, 238 U was much higher overall in the mining/milling and mining-only areas compared to the control sites. No trends were detected in the distribution of 232 Th. The concentration of 238 U was up to six times higher in a drinking water well near a former mining/milling operation, indicating possible leaching into the groundwater, while 232 Th concentrations were low and uniform. Furthermore, lead isotope ratio analysis indicates contamination from the interstate shipping of ore by rail to and from a mining/milling facility. These data indicate contamination of the environment by the mining/milling activities in a residential area

  12. 234U/238U activity ratio in groundwater - an indicator of past hydrogeological processes

    International Nuclear Information System (INIS)

    Rasilainen, K.; Suksi, J.; Marcos, N.; Nordman, H.

    2005-01-01

    In this report we describe the long-term behaviour of the uranium isotopes, U-234 and U-238 in groundwater systems. U is a redox sensitive element what for its behaviour is largely controlled by changes in the environmental conditions. A striking feature in U isotope geochemistry is seemingly different behaviour of U-238 and U-234. U isotopes fractionate at the rock-groundwater interface depending on chemical and radiological factors. Changes of the redox conditions in groundwater may thus affect the behaviour of U and its isotopes resulting in variable U concentration and U-234/U-238 activity ratios (AR). We examined the formation of ARs in different groundwater types from a geochemical and a physical/radiological point of view. It was envisaged that AR in groundwater is the consequence of radiological, chemical and hydrological processes. Groundwater condition (redox, flow, etc.) play a very important role in controlling the mass flow of U isotopes. Quantitative α-recoil modelling showed that α-recoil induced flux can be considered insignificant in cases of high-flow. This was an important finding because the exclusion of direct a-recoil means that it is groundwater chemistry and its variations which controls the U-234 mass flow and the formation of AR. Therefore, AR values could be used more confidently to indicate past redox changes and possibly flow paths. (orig.)

  13. Detection limit of 238U by gamma spectrometry

    International Nuclear Information System (INIS)

    Tartaglione, A.; Blostein, J.; Mayer, R

    2004-01-01

    The detection limit of 238 U was determined by gamma spectra measurements of a depleted uranium sample using four NaI(Tl) scintillators in a compact arrangement.The sample was shielded with 5 and 10 cm of lead.Two different methods for data processing were used and compared.It was established that an appropriate array of 40 detectors could establish the presence of 220 g of this material in only 5 minutes [es

  14. Recovery and purification of uranium-234 from aged plutonium-238

    International Nuclear Information System (INIS)

    Keister, P.L.; Figgins, P.W.; Watrous, R.M.

    1978-01-01

    The current production methods used to recover and purify uranium-234 from aged plutonium-238 at Mound Laboratory are presented. The three chemical separation steps are described in detail. In the initial separation step, the bulk of the plutonium is precipitated as the oxalate. Successively lower levels of plutonium are achieved by anion exchange in nitrate media and by anion exchange in chloride media. The procedures used to characterize and analyze the final U 3 O 8 are given

  15. Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115

    International Nuclear Information System (INIS)

    Mathew, K.J.; Singleton, G.L.; Essex, R.M.; Hasozbek, A.; Orlowicz, G.; Soriano, M.

    2013-01-01

    Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235 U/ 238 U 'major' isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the 'minor' 234 U/ 238 U and 236 U/ 238 U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235 U/ 238 U isotope-amount ratios. Characterized values of the 234 U/ 238 U and 236 U/ 238 U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233 U/ 238 U isotope-amount ratio in CRM 115 is estimated to be -9 . The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed. (author)

  16. The metrological activity determination of 238 U and 230 Th by gamma spectrometry to industrial fuel-cycle application

    International Nuclear Information System (INIS)

    Almeida M, M.C. de; Delgado, J.U.; Poledna, R.

    2006-01-01

    This work describes the difficulty for determining the activity of 238 U and 230 Th using gamma spectrometry due to the low gamma-ray emission probabilities of 92 and 67 keV, and, mainly, the associated high uncertainties about 13 and 11%, respectively. 230 Th is a 238 U daughter and it is product from uranium mills and refineries. 230 Th decays to 226 Ra and this decay has to be measured because these radionuclides are not in secular equilibrium with their daughter products, besides the gamma-energies have high uncertainties in the emission probabilities. These radionuclides, mostly 238 U, are important in the nuclear fuel-cycle, since the mining of uranium ore, where the nominal isotopic content of natural uranium is 99.27% of 238 U, until the irradiated fuel reprocessing, where this isotope, a fertile material, is recovered to be used again. The uranium and thorium are considered safeguarded nuclear materials and the metrology tries to calibrate and standardize these materials to improve the activity determination techniques applied in different fuel-cycle scopes. The essential characteristics of the safeguarded materials are low gamma energies (less than 100 keV) and emission probabilities but with high uncertainties. In this way, the metrology can contribute to homeland security defense against illicit nuclear trafficking with the identification and quantification of the safeguarded radionuclides such as uranium and thorium, using specific gamma window energy and high resolution planar or coaxial germanium detector. The efficiency curve is obtained from the reference source spectrum considering the photopeak areas corresponding the standard activities. This curve depends on radiation energy, sample geometry, photon attenuation (sample absorption and material absorption between sample-detector), dead time and sample-detector position. The metrological activity determinations of 238 U solid sources, and of 230 Th, in solution (5 ml flask), were performed using

  17. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Becker, J.S.

    2001-01-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10 -4 and 10 -3 counts per atom were achieved for 238 U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH + /U + was 1.2 x 10 -4 and 1.4 x 10 -4 , respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 μg L -1 NBS U-020 standard solution was 0.11% ( 238 U/ 235 U) and 1.4% ( 236 U/ 238 U) using a MicroMist nebulizer and 0.25% ( 235 U/ 238 U) and 1.9% ( 236 U/ 238 U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . Results obtained with ICP-MS, α- and γ-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  18. Biological availability of 238U, 234U and 226Ra for wild berries and meadow grasses in natural ecosystems of Belarus

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsiannikova, S.V.; Voinikava, K.V.; Ivanova, T.G.; Papenia, M.V.

    2014-01-01

    This work is devoted to investigation of behavior of 234 U, 238 U and 226 Ra by determining the soil to plant transfer under different natural conditions such as forest or swamped areas and meadow lands with different soil types. The paper summarizes the data on investigation of uranium and radium uptake by wild berries and natural meadow grasses in the typical conditions of Belarus. Parameters characterizing the biological availability of 234 U, 238 U and 226 Ra for bilberry (Vaccinium myrtillus), lingonberry (Vaccinium viti-idaea), blueberry (Vaccinium iliginosum) and cranberry (Vaccinium oxycoccus palustris) as well as for widely occurring mixed meadow vegetation, which belongs to the sedge-grass or grass-sedge associations and forbs, have been established. In the sites under investigation, the deposition levels of 238+239+240 Pu were less than 0.37 kBq m −2 and 137 Cs deposition ranged between less than 0.37 and 37 kBq m −2 . It was found that activity concentrations of radionuclides in berries varied in the ranges of 0.037–0.11 for 234 U, 0.036–0.10 for 238 U and 0.11–0.43 Bq kg −1 for 226 Ra, but in the mixed meadow grasses they were 0.32–4.4, 0.24–3.9 and 0.14–6.9 Bq kg −1 accordingly. The 234 U/ 238 U activity ratios were 1.02 ± 0.01 for wild berries, 1.20 ± 0.09 for underground meadow grasses and 1.02 ± 0.02 for proper soils. The concentration ratios (CRs, dry weight basis) of 234 U and 238 U for mixed meadow grasses were 0.036–0.42 and 0.041–0.46 respectively. The correspondent geometric means (GM) were 0.13 and 0.15 with geometric standard deviations (GSD) of 2.4. The CRs of 226 Ra for meadow grasses were 0.031–1.0 with GM 0.20 and GSD 2.6. The CRs of 234 U, 238 U and 226 Ra for wild berries ranged within 0.0018–0.008 (GM is 0.0034, GSD is 1.8), 0.0018–0.008 (GM is 0.0035, GSD is 1.8) and 0.005–0.033 (GM is 0.016, GSD is 2.1) accordingly. The highest CR values of uranium for mixed meadow grasses were found in the sites

  19. Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium; Neutrons produits dans des cibles epaisses de Be et {sup 238}U irradiees par des deutons de 100 MeV/u et dans une cible epaisse de C irradiee par des {sup 36}Ar de 95 MeV/u. Longueurs d'attenuation dans du beton et debit d'equivalent de dose resultant de l'activation de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Mirea, M. [Institute of Physics and Nuclear Engineering, Bucharest (Romania); Belier, G.; Ethvignot, T.; Granier, T. [CEA/DAM-Ile de France, 91 - Bruyeres-Le-Chatel (France). Service de Physique Nucleaire; Liang, C.F. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Bajard, M.; Leroy, R.; Villari, A.C.C. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-09-01

    Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium. The yields of secondary neutrons produced by the interaction of a beam with thick target were determined with activation detectors. Three projectile-target couples have been studied: deuterons (100 MeV/u)+{sup 238}U, deuterons (100 MeV/u)+{sup 9}Be and {sup 36}Ar (95 MeV/u)+{sup 12}C. At 0 deg.. the yields were also measured after a piece of concrete and the corresponding attenuation length evaluated. The dose rate of the uranium target was monitored during several days after the end of the irradiation. (author)

  20. A statistical study of {sup 238}U and {sup 234}U/{sup 238}U distributions in coral samples from the Egyptian shoreline of the north-western Red sea and in fossil mollusk shells from the Atlantic coast of High Atlas in Morocco: implications for {sup 230}Th/{sup 234}U dating

    Energy Technology Data Exchange (ETDEWEB)

    Choukri, A.; Hakam, O.K. [Lab. des Faibles Radioactivites et d' Environnements, UFR: Faibles Radioactivites, Mathematiques physiques et environnement, Kenitra (Morocco); Reyss, J.L. [Lab. des Sciences de Climat et de l' Environnement, Domaine du CNRS, Gif sur Yvette (France); Plaziat, J.C. [Univ. de Paris-Sud, Dept. des Sciences de la Terre, Orsay (France)

    2002-07-01

    In this work, radiochemical analysis results of 126 uncrystallized coral samples from the Egyptian shoreline of northwestern Red Sea and 120 fossil mollusk shell samples from the Atlantic coast of Moroccan High Atlas at the North of Agadir City in Morocco are presented and discussed. The coral samples were collected in Egypt from the emerged coral reef terraces over 500 km from The Ras Gharib-Ras Shukeir depression (28 10') in the north to Wadi Lahami (north of Ras Banas, 24 10') in the south. The fossil mollusk shells were collected in Morocco from Agadir-Harbour in the south to Tamri village in the north extending over about 50 km. The statistical distributions of results ({sup 238}U content, {sup 234}U/{sup 238}U activity ratio and ages) obtained on the dated materials in the two different regions were compared for three fossil sea levels corresponding to three different climatic stages (Holocene, 5e, 7 and/or 9) in the aim to establish methodological criteria for judging validity of the measured ages. For corals, {sup 238}U content varies in narrow interval around the same average value of 3 ppm for the three sea levels, the calculated initial {sup 234}U/{sup 238}U values are in agreement with the actual sea water ratio (1.15) with some values slightly higher than for the older sea levels. The obtained ages are in good agreement with the ages reported previously for the three emerged fossil sea levels on unrecrystallized corals by alpha spectrometry and by mass spectrometry. For mollusk shells, except for Holocene sea level, {sup 238}U and initial {sup 234}U/{sup 238}U activity ratios vary for the older levels in wide intervals, independent of species and calcite contents of samples. The high {sup 238}U contents and {sup 234}U/{sup 238}U activity ratio are due eventually to a post-incorporation of secondary uranium from sea water or from continental waters drained away rivers. This incorporation leads to a rejuvenation of mollusk shell ages and is

  1. Modeling the mobility of uranium from NORM-rich bedrock using multivariate statistical techniques - The mobility of uranium from U-containing bedrock materials as a function of pH: Implications for tunnel construction

    Energy Technology Data Exchange (ETDEWEB)

    Helmers, Tari; Fjermestad, Halldis; Salbu, Brit; Skipperud, Lindis [Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas (Norway); Meland, Sondre; Hagelia, Per [Norwegian Public Roads Administration, P.O. Box 8142, 0033 Oslo (Norway)

    2014-07-01

    According to amendments made to the Norwegian Pollution Control Act in 2011, naturally occurring radioactive material is now to be considered as an environmental contaminant, in addition to organic pollutants and trace metals. Environmental contamination is strongly correlated with the mobility and bioavailability of metals and radionuclides in natural systems. In order to determine the risk of environmental contamination from e.g. uranium (U) in alum shale areas, it is of particular importance to determine the mobility of U and trace metals found in the rock materials and their binding mechanisms. By determining the speciation and mobility of uranium and trace metals, better predictions can be made on the transport of contaminants in the environment from intervention like road and tunnel construction. The substrate media analyzed in this work was collected from a future tunnel construction site that is being built in the Gran municipality on National road Rv4 in Norway. The bedrock in the Gran municipality is rich in U-bearing minerals. Therefore, there is high potential for environmental contamination from the rock material removed for tunnel construction purposes. The present work focuses upon the effects of pH and the contact time (substrate media: solution) on the mobility of uranium. In order to identify the effects of pH and contact time on mobility, sample cores collected from an area rich in alum shale were subjected to an extended leaching experiment. In this experiment, the substrate materials were treated with five different pH solutions and were analyzed for different contact times. In addition, the results were compared to data from a sequential extraction experiment. In the leaching experiment, the mobilization of uranium in all of the substrate material was affected by the pH of solution. All of the samples were capable of quickly buffering pH solutions with a pH as low as 4 to neutral-alkaline conditions, attributed to the carbonate minerals

  2. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers

    Science.gov (United States)

    Swarzenski, P.; Campbell, P.; Porcelli, D.; McKee, B.

    2004-01-01

    Natural concentrations of 238U and ??234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land-sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates. On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0-16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (???1 m) zones of Fe(III) - and, to a lesser degree, Mn(IV) - reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in ??234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the ??234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched ??234U values represent a riverine surface complexation product that is actively involved in Mn-Fe diagenetic cycles and surface

  3. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers

    Science.gov (United States)

    Swarzenski, Peter; Campbell, Pamela; Porcelli, Don; McKee, Brent

    2004-12-01

    Natural concentrations of 238U and δ234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land-sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates. On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0-16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (˜1 m) zones of Fe(III)—and, to a lesser degree, Mn(IV)—reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in δ234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the δ234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched δ234U values represent a riverine surface complexation product that is actively involved in Mn-Fe diagenetic cycles and surface

  4. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.

  5. Investigation of the 234U/238U disequilibrium in the natural waters of the Santa Fe River basin north-central Florida

    International Nuclear Information System (INIS)

    Briel, L.I.

    1976-01-01

    Typical surface water masses in the Santa Fe basin are characterized by a 238 U concentration of 0.224 +- .014 ppB and a 234 U/ 238 U activity ratio of 1.081 +- .038. The Floridan aquifer in this area is represented by at least two distinct regimes of ground water. The effluent from the Poe Springs group has a nominal uranium concentration of 0.938 +- .014 ppB and an activity ratio of 0.900 +- .012, while the effluent from the Ichetucknee Springs group has a nominal uranium concentration of 0.558 +- .018 ppB and an activity ratio of 0.707 +- .022. The effluent from ten additional springs in the Santa Fe system can be represented by hypothetical mixtures of these two ground water regimes and a hypothetical surface water component, which may reflect the extent of local recharge to the aquifer in different parts of the basin

  6. Investigations of the geohydrology of the waters of the Negev Desert using U-234/U-238 disequilibrium

    International Nuclear Information System (INIS)

    Kronfeld, J.

    1977-11-01

    The attempt to use uranium analysis of the ratio 234 U/ 238 U to investigate the flow pattern and the recharge mechanism of the Nubian Sandstone waters in the Negev Desert is reported. 105 water samples were collected from the Nubian Sandstone, the overlying aquifers and from crystalline rocks in Southern Sinai. The latter is supposed to be the recharge area of the Nubian Sandstone waters. Although the uranium value group discretes water bodies no conclusion can be drawn as to the origin of the Nubian Sandstone waters. Due to the results artesian leakage from the Nubian Sandstone into the overlying aquifers probably can be ruled out

  7. 238U, 234U and 232Th in seawater

    International Nuclear Information System (INIS)

    Chen, J.H.; Edwards, R.L.; Wasserburg, G.J.

    1986-01-01

    We have developed techniques to determine 238 U, 234 U and 232 Th concentrations in seawater by isotope dilution mass spectrometry. Using these techniques, we have measured 238 U, 234 U and 232 Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and 238 U and 234 U in vertical profiles from the Pacific. Determinations of 234 U/ 238 U at depths ranging from 0 to 4900 m in the Atlantic (7 0 44'N, 40 0 43'W) and the Pacific (14 0 41'N, 160 0 01'W) Oceans are the same within experimental error (±5per mille, 2σ). The average of these 234 U/ 238 U measurements is 144±2per mille (2σ) higher than the equilibrium ratio of 5.472 x 10 -5 . U concentrations, normalized to 35per mille salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31 0 4'N, 159 0 1'W) is ∝1% higher than that of the Atlantic (7 0 44'N, 40 0 43'W and 31 0 49'N, 64 0 6'W). 232 Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the 234 U/ 238 U ratio is consistent with the predicted range of 234 U/ 238 U using a simple two-box model and the residence time of deep water in the ocean determined from 14 C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought. (orig./WB)

  8. Phosphate fertilizer influence on 238 U content in vegetables

    International Nuclear Information System (INIS)

    Lauria D, C.; Rodrigues S, J.I.; Ribeiro, F.C.A.

    2006-01-01

    Uranium is a naturally radioactive element, which is usually found in soils, superficial and ground water, vegetables and animals. After ingestion by human beings, most is excreted in few days by feces and urine, without reaching the bloodstream. However, a small part circulates through the body, being accumulated in the soft tissues, as kidneys. A minor fraction can remain in bones per some years, being able through the radioactive decay to irradiate adjacent tissues. Phosphate fertilizers used in conventional crop management can present variable amounts of uranium. In accordance with origin and use, the fertilizer can raise the content of this element in vegetables, and consequently to increase the human exposure for radiation due the consumption of vegetables. It is estimated that the use of phosphate fertilizer has at least doubled the prolonged exposure of humans from ingestion of food. This work aims to evaluate the contribution of organic and chemical fertilizer on the concentration of 238 U in vegetable samples. An experiment with black beans (a very important vegetable for Brazilian people) was conducted in a field which soil has never been fertilized with any sort of fertilizer, located near to the Rio de Janeiro city. On the organic management, bovine manure was used, while on conventional management urea, potassium chloride and superphosphate were used. Simultaneously, black bean samples from not fertilized management were collected. In addition, lettuce and carrot samples from organic and conventional managements were collected in Nova Friburgo farms (the most important vegetable supplier of Rio de Janeiro city market). The analyses of 238 U have been carried out by conventional fluorimetric method. The geometric mean of 238 U concentrations in the carrot and lettuce samples from conventional management were similar with those from organic management, while for beans the conventional samples had higher values than those ones found in organic management

  9. The metrological activity determination of {sup 238} U and {sup 230} Th by gamma spectrometry to industrial fuel-cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Almeida M, M.C. de; Delgado, J.U.; Poledna, R. [Instituto de Radioprotecao e Dosimetria- IRD/SEMRA, CNEN, Av. Salvador Allende s/n, Recreio, CEP 22780-160, Rio de Janeiro (Brazil)]. e-mail: marcandida@yahoo.com.br

    2006-07-01

    This work describes the difficulty for determining the activity of {sup 238} U and {sup 230} Th using gamma spectrometry due to the low gamma-ray emission probabilities of 92 and 67 keV, and, mainly, the associated high uncertainties about 13 and 11%, respectively. {sup 230} Th is a {sup 238} U daughter and it is product from uranium mills and refineries. {sup 230} Th decays to {sup 226} Ra and this decay has to be measured because these radionuclides are not in secular equilibrium with their daughter products, besides the gamma-energies have high uncertainties in the emission probabilities. These radionuclides, mostly {sup 238} U, are important in the nuclear fuel-cycle, since the mining of uranium ore, where the nominal isotopic content of natural uranium is 99.27% of {sup 238} U, until the irradiated fuel reprocessing, where this isotope, a fertile material, is recovered to be used again. The uranium and thorium are considered safeguarded nuclear materials and the metrology tries to calibrate and standardize these materials to improve the activity determination techniques applied in different fuel-cycle scopes. The essential characteristics of the safeguarded materials are low gamma energies (less than 100 keV) and emission probabilities but with high uncertainties. In this way, the metrology can contribute to homeland security defense against illicit nuclear trafficking with the identification and quantification of the safeguarded radionuclides such as uranium and thorium, using specific gamma window energy and high resolution planar or coaxial germanium detector. The efficiency curve is obtained from the reference source spectrum considering the photopeak areas corresponding the standard activities. This curve depends on radiation energy, sample geometry, photon attenuation (sample absorption and material absorption between sample-detector), dead time and sample-detector position. The metrological activity determinations of {sup 238} U solid sources, and of

  10. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    Science.gov (United States)

    Capote, R.; Trkov, A.; Sin, M.; Pigni, M. T.; Pronyaev, V. G.; Balibrea, J.; Bernard, D.; Cano-Ott, D.; Danon, Y.; Daskalakis, A.; Goričanec, T.; Herman, M. W.; Kiedrowski, B.; Kopecky, S.; Mendoza, E.; Neudecker, D.; Leal, L.; Noguere, G.; Schillebeeckx, P.; Sirakov, I.; Soukhovitskii, E. S.; Stetcu, I.; Talou, P.

    2018-02-01

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10-5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE-3.2 Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(nth,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good performance in

  11. Behaviour of {sup 238}U, {sup 234}U, {sup 228}Ra and {sup 226}Ra in rock alterations: study of Morungaba granitoids, SP-Brazil and ground water in its fractures; Comportamento de {sup 238}U, {sup 234}U, {sup 228}Ra e {sup 226}Ra na alteracao de rochas: estudo dos granitoides de Morungaba (SP) e aguas subterraneas de suas fraturas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rosana N. dos [Pontificia Univ. Catolica de Sao Paulo, SP (Brazil). Dept. de Fisica]. E-mail: rosana@pucsp.br; Marques, Leila S. [Sao Paulo Univ., SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Geofisica]. E-mail: leila@iag.usp.br

    2005-07-01

    This work presents the first results obtained on the investigation of the behavior of uranium and radium radioisotopes in the processes of weathering and rock-water interaction of Morungaba granitoids belonging to Meridional Pluton (Valinhos Town-SP-Brazil). Specific activities of {sup 238}U, {sup 234}U, {sup 228}Ra and {sup 226}Ra were determined in non altered granitoids (Group A), as well as in those affected by different degrees of weathering (Groups B, C and D). The uranium specific activities were determined by alpha spectrometry method, whereas for the determination of radium isotopes high resolution gamma-ray spectrometry technique was employed. The data indicate that {sup 238}U and {sup 234}U are in radioactive equilibrium in the fresh analyzed granitoids, but show a slight depletion of {sup 234}U in relation to {sup 238}U in the weathered rocks. The ({sup 226}Ra/{sup 238}U) and ({sup 226}Ra/{sup 234}U) activity ratios of all investigated rocks are similar, showing a significant {sup 226}Ra depletion, which is probably caused by its preferential leaching. These results indicate that even samples macroscopically classified as fresh rocks, their systems have been opened for some geochemical changes. The high ({sup 234}U/{sup 238}U) activity ratios of groundwaters which are found in the fractures of these granitoids suggest their prolonged residence times in the aquifer and/or their percolation by other rocks presenting different geochemical properties. (author)

  12. Determination of uranium isotopic composition and {sup 236}U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Central Department for Analytical Chemistry, Research Centre Juelich (Germany)

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10{sup -4} and 10{sup -3} counts per atom were achieved for {sup 238}U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH{sup +}/U{sup +} was 1.2 x 10{sup -4} and 1.4 x 10{sup -4}, respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 {mu}g L{sup -1} NBS U-020 standard solution was 0.11% ({sup 238}U/{sup 235}U) and 1.4% ({sup 236}U/{sup 238}U) using a MicroMist nebulizer and 0.25% ({sup 235}U/{sup 238}U) and 1.9% ({sup 236}U/{sup 238}U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. Results obtained with ICP-MS, {alpha}- and {gamma}-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  13. Search for surviving actinides and superheavy nuclei in damped collisions of 238U with 238U and 248Cm

    International Nuclear Information System (INIS)

    Kratz, J.V.

    1980-03-01

    In the present talk aspects of the reaction mechanism related to the survival probability of the heaviest fragments in 238 U + 238 U collisions are discussed first. This is followed by a description of the experiments that have been performed to search for surviving superheavy fragments in the 238 U + 238 U reaction and by a presentation of the results obtained so far. In a third section our recent first attempts with the 238 U + 248 Cm reaction are described and preliminary results are discussed. (orig.)

  14. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    Lima Medeiros, E. de.

    1978-01-01

    The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt

  15. A review of the behaviour of U-238 series radionuclides in soils and plants

    International Nuclear Information System (INIS)

    Mitchell, N; Pérez-Sánchez, D; Thorne, M C

    2013-01-01

    The U-238 series of radionuclides is of relevance in a variety of environmental contexts ranging from the remediation of former uranium mining and milling facilities to the deep geological disposal of solid radioactive wastes. Herein, we review what is known concerning the behaviour of radionuclides from the U-238 decay chain in soils and plants. This review is intended to provide a single comprehensive source of information to anyone involved in undertaking environmental impact assessment studies relating to this decay chain. Conclusions are drawn relating to values and ranges of distribution coefficients appropriate to uranium, thorium, radium, lead and polonium in different soil types and under various environmental conditions. Similarly, conclusions are drawn relating to plant:soil concentration ratios for these elements for different plant and soil types, and consideration is given to the distribution of these elements within plants following both root uptake and foliar application. (review)

  16. Radioactive Contamination of Alluvial Soils in the Taiga Landscapes of Yakutia with 137Cs, 226Ra, and 238U

    Science.gov (United States)

    Chevychelov, A. P.; Sobakin, P. I.

    2017-12-01

    The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El'kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.

  17. Sorption study of 226Ra(II) et 238U(VI) on to peat organic matter, in mining environment

    International Nuclear Information System (INIS)

    Bordelet, Gabrielle

    2014-01-01

    The environmental footprint of former uranium mining sites is a major concern for society. In order to guarantee the protection of ecosystems and thus a minimal radiological impact on the biosphere, it is important to understand and to be able to model the phenomena controlling the migration of uranium and its decay products, specially radium ( 226 Ra) (AREVA's Envir-at-Mines project). In the environment, among solid phases which can retain 238 U(VI) and 226 Ra(II), peat is known to have relevant affinity for U(VI). Because peat is usually composed at 90% dry weight of organic matter, the aim of this study was to qualify and quantify peat organic matter affinity for 238 U(VI) and 226 Ra(II). Peat samples extracted from Les Sagnes (close to a former uranium mining site in Limousin area, France) was characterised and batch adsorption/desorption experiments were conducted. The results indicate that 226 Ra(II) adsorption onto that peat is higher than 97% for pH ≥ 4-6 (depending on the organic/mineral ratio in dry peat) corresponding to K d values about 4500 ± 500 mL/g and 238 U(VI) adsorption is higher than 80% at pH ≥ 3 with K d maximal values reaching 11000 mL/g around pH 4.5. Only a little desorption was measured after one month. An ion exchange modelling for radium adsorption onto one type of organic matter sorption site was enough to fit the experimental adsorption K d for the peat over the whole range of pH. However, uranium sorption on peat can be modelled on that organic sorption site only from pH 1 to 5. From pH 5 to 10, to explain the experimental uranium adsorption K d values (close to 1500 mL/g), uranium sorption onto mineral phases (such as smectite and iron oxide in this study) has to be considered. An operational data set is given for both 238 U(VI) and 226 Ra(II) sorption onto Les Sagnes peat. Unlike usual peat, peat from Les Sagnes contains more than 10% dry weight of mineral matter. That is why it is necessary to model sorption of those two

  18. CREATING THE KULTUK POLYGON FOR EARTHQUAKE PREDICTION: VARIATIONS OF (234U/238U AND 87SR/86SR IN GROUNDWATER FROM ACTIVE FAULTS AT THE WESTERN SHORE OF LAKE BAIKAL

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov

    2015-01-01

    Full Text Available Introduction. Determinations of (234U/238U in groundwater samples are used for monitoring current deformations in active faults (parentheses denote activity ratio units. The cyclic equilibrium of activity ratio 234U/238U≈≈(234U/238U≈γ≈1 corresponds to the atomic ratio ≈5.47×10–5. This parameter may vary due to higher contents of 234U nuclide in groundwater as a result of rock deformation. This effect discovered by P.I. Chalov and V.V. Cherdyntsev was described in [Cherdyntsev, 1969, 1973; Chalov, 1975; Chalov et al., 1990; Faure, 1989]. In 1970s and 1980s, only quite laborious methods were available for measuring uranium isotopic ratios. Today it is possible to determine concentrations and isotopic ration of uranium by express analytical techniques using inductively coupled plasma mass spectrometry (ICP‐MS [Halicz et al., 2000; Shen et al., 2002; Cizdziel et al., 2005; Chebykin et al., 2007]. Sets of samples canbe efficiently analysed by ICP‐MS, and regularly collected uranium isotope values can be systematized at a new quality level for the purposes of earthquake prediction. In this study of (234U/238U in groundwater at the Kultuk polygon, we selected stations of the highest sensitivity, which can ensure proper monitoring of the tectonic activity of the Obruchev and Main Sayan faults. These two faults that limit the Sharyzhalgai block of the crystalline basement of the Siberian craton in the south are conjugated in the territory of the Kultuk polygon (Fig 1. Forty sets of samples taken from 27 June 2012 to 28 January 2014 were analysed, and data on 170 samples are discussed in this paper.Methods. Isotope compositions of uranium and strontium were determined by methods described in [Chebykin et al., 2007; Pin et al., 1992] with modifications. Analyses of uranium by ISP‐MS technique were performed using an Agilent 7500ce quadrapole mass spectrometer of the Ultramicroanalysis Collective Use Centre; analyses of

  19. Pleistocene apparent ages by U-Pb isotope and U-series methods for uranium ore in Dakota Sandstone near Gallup, New Mexico

    International Nuclear Information System (INIS)

    Ludwig, K.R.; Szabo, B.J.; Granger, H.C.

    1977-01-01

    Radiometric dates of a high-grade uranium ore from the Hogback No. 4 mine in Dakota Sandstone near Gallup, N. Mex., indicate a late Pleistocene age of mineralization. The 206 Pb/ 238 U and 207 Pb/ 235 U apparent ages of about 70,000 y and 100,000 y, respectively, are discordant, but are in broad agreement with the discordant 230 Th/ 238 U and 230 Pa/ 235 U apparent ages of 130,000 y and 78,000 y, respectively. Although it is not clear how the analyzed sample relates to the main period of mineralization at this mine, these dates are consistent with previous age limits suggested for Dakota Sandstone uranium ores

  20. Standard practice for the determination of 237Np, 232Th, 235U and 238U in urine by inductively coupled plasma-Mass spectrometry (ICP-MS) and gamma ray spectrometry.

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This practice covers the separation and preconcentration of neptunium-237 (237Np), thorium-232 (232Th), uranium-235 (235U) and uranium-238 (238U) from urine followed by quantitation using ICP-MS. 1.2 This practice can be used to support routine bioassay programs. The minimum detectable concentrations (MDC) for this method, taking the preconcentration factor into account, are approximately 1E-2Bq for 237Np (0.38ng), 2E-6Bq for 232Th (0.50ng), 4E-5Bq for 235U (0.50ng) and 6E-6Bq for 238U (0.48ng). 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Internal dose assessment of 238U contaminated soils based on in-vitro gastrointestinal protocol

    Science.gov (United States)

    Perama, Yasmin Mohd Idris; Rashid, Nur Shahidah Abdul; Majid, Amran Ab.; Siong, Khoo Kok

    2017-01-01

    Human exposure to natural radioactive uranium has been a great interest as more industrial rapidly growing contributes to radiation risks. The aim of this case study was to determine the internal dose in humans incorporated with ingestion of 238U contaminated soils. A gastrointestinal analogue test was employed to simulate the human digestive tract. In-vitro approach via German DIN 19738 model was developed in order to estimate the internal exposure of 238U due to ingestion of different types of soils. Synthetic gastrointestinal fluids assay via in-vitro method were produced to determine the concentration of 238U in various soils using ICP-MS. Based on the results, concentration of 238U in BRIS, laterite, peat and alluvium soils were in ranged between (0.0061 ± 0.0057 - 0.0488 ± 0.0148) ppm and (0.0005 ± 0.0004 - 0.0046 ± 0.0007) ppm in gastric and gastrointestinal phase respectively. Types of soil compositions and pH medium were some of the factors that influence mobilization and solubility of 238U contaminanted soil into the digestive juices that resembles human gastrointestinal tract. For the purpose of internal dose assessment, the committed efective dose from 238U intake in soils ranged between 1.237 × 10-11 - 9.8993 × 10-11 Sv y-1 for gastric phase and 1.0184 × 10-12 - 9.3294 × 10-12 Sv y-1 for gastric-intestinal phase. The internal dose measurements from this study were much lower from the recommended values. Hence, ingestion of 238U contaminated soils would not be expected to pose major health risk to humans.

  2. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region

    International Nuclear Information System (INIS)

    Asikainen, M.; Kahlos, H.

    1979-01-01

    The concentrations of uranium, 226 Ra and 222 Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km 2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a 'normal' level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222 Rn the maximum concentration was 880,000 pCi/l. The 226 Ra/ 228 Ra and 230 Th/ 232 Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238 U and 234 U was very common in the samples. The 234 U/ 238 U activity ratios varied in the range 1.0 to 4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977. (author)

  3. Heterogeneity in the 238U/235U Ratios of Angrites.

    Science.gov (United States)

    Tissot, F.; Dauphas, N.; Grove, T. L.

    2016-12-01

    Angrites are differentiated meteorites of basaltic composition, of either volcanic or plutonic origin, that display minimal post-crystallization alteration, metamorphism, shock or impact brecciation. Because quenched angrites cooled very rapidly, all radiochronometric systems closed simultaneously in these samples. Quenched angrites are thus often used as anchors for cross-calibrating short-lived dating methods (e.g., 26Al-26Mg) and the absolute dating techniques (e.g, Pb-Pb). Due to the constancy of the 238U/235U ratio in natural samples, Pb-Pb ages have long been calculated using a "consensus" 238U/235U ratio, but the discovery of resolvable variations in the 238U/235U ratio of natural samples, means that the U isotopic composition of the material to date also has to be determined in order to obtain high-precision Pb-Pb ages. We set out (a) to measure at high-precision the 238U/235U ratio of a large array of angrites to correct their Pb-Pb ages, and (b) to identify whether all angrites have a similar U isotopic composition, and, if not, what were the processes responsible for this variability. Recently, Brennecka & Wadhwa (2012) suggested that the angrite-parent body had a homogeneous 238U/235U ratio. They reached this conclusion partly because they propagated the uncertainties of the U isotopic composition of the various U double spikes that they used onto the final 238U/235U ratio the sample. Because this error is systematic (i.e., it affects all samples similarly), differences in the δ238U values of samples corrected by the same double spike are better known than one would be led to believe if uncertainties on the spike composition are propagated. At the conference, we will present the results of the high-precision U isotope analyses for six angrite samples: NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555. We will show that there is some heterogeneity in the δ238U values of the angrites and will discuss the possible processes by

  4. Phosphate fertilizer influence on {sup 238} U content in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Lauria D, C.; Rodrigues S, J.I. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Rio de Janeiro-RJ (Brazil); Ribeiro, F.C.A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN) Av. Prof. Luiz Freire 200 Cidade Universitaria Recife-PE (Brazil)]. e-mail: dejanira@ird.gov.br

    2006-07-01

    Uranium is a naturally radioactive element, which is usually found in soils, superficial and ground water, vegetables and animals. After ingestion by human beings, most is excreted in few days by feces and urine, without reaching the bloodstream. However, a small part circulates through the body, being accumulated in the soft tissues, as kidneys. A minor fraction can remain in bones per some years, being able through the radioactive decay to irradiate adjacent tissues. Phosphate fertilizers used in conventional crop management can present variable amounts of uranium. In accordance with origin and use, the fertilizer can raise the content of this element in vegetables, and consequently to increase the human exposure for radiation due the consumption of vegetables. It is estimated that the use of phosphate fertilizer has at least doubled the prolonged exposure of humans from ingestion of food. This work aims to evaluate the contribution of organic and chemical fertilizer on the concentration of {sup 238} U in vegetable samples. An experiment with black beans (a very important vegetable for Brazilian people) was conducted in a field which soil has never been fertilized with any sort of fertilizer, located near to the Rio de Janeiro city. On the organic management, bovine manure was used, while on conventional management urea, potassium chloride and superphosphate were used. Simultaneously, black bean samples from not fertilized management were collected. In addition, lettuce and carrot samples from organic and conventional managements were collected in Nova Friburgo farms (the most important vegetable supplier of Rio de Janeiro city market). The analyses of {sup 238} U have been carried out by conventional fluorimetric method. The geometric mean of {sup 238} U concentrations in the carrot and lettuce samples from conventional management were similar with those from organic management, while for beans the conventional samples had higher values than those ones found in

  5. Polonium (210Po) and uranium (234U, 238U) in water, phosphogypsum and their bioaccumulation in plants around phosphogypsum waste heap at Wislinka (nothern Poland)

    International Nuclear Information System (INIS)

    Skwarzec, B.; Borylo, A.; Kosinska, A.; Radzajewska, S.

    2010-01-01

    The principal sources of polonium and uranium radionuclides the Wislinka area waste dump are phosphorites and phosphogypsum produced by the Phosphoric Fertilizers Industry of Gdansk. The values of uranium and polonium concentration in water with immediate surroundings of waste heap are considerably higher than in the waters of the Martwa Wisla river. The activity ratio 234 U/ 238 U is approximately about one in the phosphogypsum (0.97±0.06 and 0.99±0.04) and in the water of a retention reservoir and a pumping station (0.92±0.01 and 0.99±0.04), while in the water from the Martwa Wisla river is slightly higher than one (1.00±0.07 and 1.06±0.02). The leaching process of uranium and polonium from the phosphogypsum waste heap is responsible for the maximum uranium concentration (1097±6 μg·dm -3 and 1177±6 μg·dm -3 ) and the high 210 Po concentration (131.4±0.9 mBq·dm -3 and 165.7±1.4 mBq·dm -3 ) in the retention reservoir. The major source of polonium and uranium in plants are wet and dry atmospheric falls gathering soil and air dust from the phosphogypsum waste dump and root system. The highest uranium and polonium concentrations were found in older part of grasses (yellow oatgrass, meadow foxtail, moneywort), exposed to atmospheric falls for a long time. The maximum concentrations of 210 Po were characterized for samples of plant root collected at the retention reservoir (150.50±4.97 and 108.55±3.95 Bq·kg -1 dry mass). Polonium and uranium concentrations in water samples of the Martwa Wisla river are relatively low in comparison with the value in the retention reservoir and pumping station near the phosphogypsum waste heap. This suggests that the radionuclides could be leached from the dumping site to the surrounding environment. (authors)

  6. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  7. (238)U and total radioactivity in drinking waters in Van province, Turkey.

    Science.gov (United States)

    Selçuk Zorer, Özlem; Dağ, Beşir

    2014-06-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.

  8. Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    International Nuclear Information System (INIS)

    Taieb, J.; Tassan-Got, L.; Bernas, M.; Mustapha, B.; Rejmund, F.; Stephan, C.; Schmidt, K.H.; Armbruster, P.; Benlliure, J.; Enqvist, T.; Boudard, A.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Casarejos, E.; Czajkowski, S.; Pravikoff, M.

    2003-02-01

    The production of heavy nuclides from the spallation-evaporation reaction of 238 U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208 Pb and 197 Au reveals the strong influence of fission in the spallation of 238 U. (orig.)

  9. Concentrations of uranium and thorium isotopes in uranium millers' and miners' tissues

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Paschoa, A.S.; Lloyd, R.D.; Saccomanno, G.

    1985-09-01

    The alpha-emitting isotopes of uranium and thorium were determined in the lungs of 14 former uranium miners and in soft tissues and bones of three miners and two millers. These radionuclides were also determined in soft tissues and bones of seven normal controls. The average concentrations in pCi/kg wet weight in 17 former miners' lungs are as follows: 238 U, 75; 234 U, 80; 230 Th, 79. Concentrations of each nuclide ranged from 2 to 325 pCi/kg. The average ratio of 238 U/ 234 U was 0.92, ranging from 0.64 to 1.06. The mean ratio of 230 Th/ 234 U was 1.04, ranging from 0.33 to 3.54. The near equilibrium between 230 Th and /sup 238,234/U indicates that the rate of elimination of uranium and thorium from lungs is the same in former uranium miners. The concentrations of 234 U and 238 U were highest in lung; however, the concentration of 230 Th in bones was either higher than or comparable to its concentration in lung. The concentration ratios of 230 Th/ 234 U in bone of uranium miners and millers measured in our laboratory have been compared with results predicted by ICRP-30 metabolic models. These results indicate that the ICRP metabolic models for thorium and uranium were only marginally successful in predicting the ratio of 230 Th/ 234 U in bones, and that effective release rate of uranium from skeleton may be more rapid than predicted by the ICRP model. 9 figs., 21 tabs

  10. Double spike methodology for uranium determination by thermal ionisation mass spectrometry: separation and purification of 234U

    International Nuclear Information System (INIS)

    Shah, P.M.; Saxena, M.K.; Sanjai Kumar; Aggarwal, S.K.; Jain, H.C.

    1995-01-01

    With an objective to prepare double spike of 233 U+ 234 U for determination of uranium concentration by Isotopic Dilution Thermal Ionisation Mass Spectrometry (ID-TIMS), 234 U was separated and purified from aged 238 Pu sample (15 years old) using several ion exchange and solvent extraction procedures. Final product containing 95% and 5% alpha activities of 234 and 238 Pu, respectively, which translates into 99.998 atom% of 234 U and 0.002 atom% of 238 Pu was found suitable for double spike. (author). 1 ref

  11. Double beta decay of Uranium-238: Proton reactions of 238U in 5--12 MeV range. Final report, April 15, 1987--March 31, 1992

    International Nuclear Information System (INIS)

    Turkevich, A.; Economou, T.E.

    1993-01-01

    This report is in two parts. The first part reports on the experimental work determining the half-life for double beta decay of 238 U to 238 PU to be (2.0 ± 0.6) x 10 21 years. This is the first evidence for a third mode of decay of this heaviest naturally occurring nucleus. This rate is about 10 6 times slower than spontaneous fission, which itself is about 10 6 times slower than alpha decay. The implication of this double beta decay to neutrino masses depends on uncertain theoretical calculations of the rate for such a heavy nucleus. The second part reports on yields of principal fission products from 5.6, 7.3, 9.4, and 11.5 MeV proton interactions with 238 U. The yields at 11.5 MeV are similar to those from 14 MeV neutron fission of 238 U. At the same time, the production cross sections of 238 Np at the same energies are determined. This nuclide is produced as often as fission at the lowest energy but only 3.8% as often at the highest energy

  12. Thallium, uranium, and 235U/238U ratios in the digestive gland of American lobster (Homarus americanus) from an industrialized harbor

    International Nuclear Information System (INIS)

    Chou, C.L.; Uthe, J.F.

    1995-01-01

    Only a few studies have concentrated on elements such as thallium (TI). Uranium (U) has been studied as a radionuclide of concern in food and the environment. Foodstuffs contain 10-100 ng U· -1 with vegetables and cereals contributing most heavily to the daily intake of ca 1.5 ug U. Between 10-30% of ingested U is absorbed, with most being stored in bone. Rainbow trout (onchorynchus mykiss) and longnose sucker (Catostomus catostomus) from a lake with naturally high radioactivity contained -1 in the flesh. Trout bone contained 40 ng U·g -1 . Higher tissue U concentrations occurred in fish from areas receiving U mining wastes. Bioconcentration factors for bone and flesh were estimated to be low, 118 and 14.7, respectively. This paper describes the Inductively coupled plasma-mass spectrometry (ICP-MS) determination of Tl and U in digestive gland tissue from lobsters captured in the vicinity of Belledune Harbor, New Brunswick, Canada. The harbor is the site of a lead smelter, a fertilizer plant, and a coal-fired power station (the latter due to enter production in late 1993) and thus has the potential of adding significant amounts of Tl to the local marine environment. The accumulation of Tl from water by marine shellfish is low, at least for bivalves, and the accumulated Tl is eliminated in a number of days when the animals are transferred to clean water. Bioconcentration factors for U in finfish ranged from 0.4-17 for larger species. However, because of the high concentrations of various trace elements in lobster digestive gland, its desirability as a foodstuff, and its relatively large size (approximately 20% of the edible tissue yield), we have investigated Tl and U concentrations and 235U / 238U ratios in it. 15 refs., 1 fig., 3 tabs

  13. Proposal of new 235U nuclear data to improve keff biases on 235U enrichment and temperature for low enriched uranium fueled lattices moderated by light water

    International Nuclear Information System (INIS)

    Wu, Haicheng; Okumura, Keisuke; Shibata, Keiichi

    2005-06-01

    The under prediction of k eff depending on 235 U enrichment in low enriched uranium fueled systems, which had been a long-standing puzzle especially for slightly enriched ones, was studied in this report. Benchmark testing was carried out with several evaluated nuclear data files, including the new uranium evaluations from preliminary ENDF/B-VII and CENDL-3.1. Another problem reviewed here was k eff underestimation vs. temperature increase, which was observed in the sightly enriched system with recent JENDL and ENDF/B uranium evaluations. Through the substitute analysis of nuclear data of 235 U and 238 U, we propose a new evaluation of 235 U data to solve both of the problems. The new evaluation was tested for various uranium fueled systems including low or highly enriched metal and solution benchmarks in the ICSBEP handbook. As a result, it was found that the combination of the new evaluation of 235 U and the 238 U data from the preliminary ENDF/B-VII gives quite good results for most of benchmark problems. (author)

  14. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  15. Studying of isotope structure of uranium by alpha-spectrometric method

    International Nuclear Information System (INIS)

    Sattarov, G.S.; Muzafarov, A.M.; Petukhov, O.F.; Petrenko, V.Z.

    2004-01-01

    Full text: The knowledge of isotope structure of uranium in waters, in minerals and in finished goods gives the helpful information on the radiation and nuclear-physical processes occurring in natural environments. Besides, customers put a question before uranium producing enterprises on the control of limiting concentration of an isotope 234 U in finished goods (uranium protoxide-oxide). For these reasons studying and development of techniques of definition of isotope structure of uranium is an actual task. In this connection for researches alpha - spectrometers 'PROGRESS-ALPHA' produced by R and D 'DOZE' Russia and firms 'Canberra' the USA were used. The isotope structure of uranium ( 234 U, 235 U, 238 U) was determined on a known ratio 234 U/ 238 U, which is equal to 53,41micrograms/gram. Identification of isotopes carried out by 4198 keV ( 235 U), 4395 keV ( 234 U) and 4773 keV ( 238 U). The technique of radiochemical preparation of samples to the analysis included: clearing of organic chemistry and preventing natural isotopes; drawing by a method electrolytic sedimentation on a metal substrate (d=24mm) an active stain, the area 4,5 cm 2 , with isotropy distribution of ions 234 U, 235 U, 238 U. As standards, the international and All-Russian standards with known contents 234 U were used. The isotope structure of uranium in uranium protoxide-oxide, chemical concentrates, technological solutions is determined. Infringements of isotope balance 234 U/ 238 U on separate sites of fulfilled uranium deposits and in technological products are found out

  16. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    International Nuclear Information System (INIS)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V.; Boulyga, S.F.; Becker, J.S.

    2005-01-01

    An analytical method is described for the estimation of uranium concentrations, of 235 U/ 238 U and 236 U/ 238 U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10 -9 g/g to 2.0 x 10 -6 g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing 235 U/ 238 U and 236 U/ 238 U isotope ratios and the average value amounted to 9.4±0.3 MWd/(kg U). (orig.)

  17. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  18. Radioelement (U,Th,Rn) concentrations in Norwegian bedrock groundwaters

    International Nuclear Information System (INIS)

    Banks, D.; Roeyset, O.; Strand, T.; Skarphagen, H.

    1993-12-01

    Samples of groundwater from bedrock boreholes in three Norwegian geological provinces have been analysed for content of 222 Rn, U and Th. Median values of 290 Bq/l, 7.6 μg/l and 0.02 μg/l were obtained for Rn, U and Th, respectively, while maximum values were 8500 Bq/l, 170 μg/l and 2.2 μg/l. Commonly suggested drinking water limits range from 8 to 1000 Bq/l for radon and 14 to 160 μg/l for uranium. Radioelement content was closely related to lithology, the lowest concentrations being derived from the largely Caledonian rocks of the Troendelag area, and the highest from the Precambrian Iddefjord Granite of South East Norway where median values of 2500 Bq/l, 15 μg/l and 0.38 μg/l, respectively, were obtained. The Iddefjord Granite is not believed to be unique in Norway yielding high dissolved radionuclide contents in groundwaters, and several other granitic aquifers warrant further investigation in this respect. 63 refs., 13 figs., 8 tabs

  19. Influence of soil structure on the "Fv approach" applied to 238U and 226Ra.

    Science.gov (United States)

    Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C

    2017-02-01

    The soil-to-plant transfer factors were determined in a granitic area for the two long-lived uranium series radionuclides 238 U and 226 Ra. With the aim to identify a physical fraction of soil whose concentration correlates linearly with the plant concentration, the soil compartment was analyzed in various stages. An initial study identified the soil compartments as being either bulk soil or its labile fraction. The bulk soil was subsequently divided into three granulometric fractions consisting of: coarse sand, fine sand, and silt and clay. The soil-to-plant transfer of radionuclides for each of these three texture fractions was analyzed. Lastly, the labile fraction was extracted from each textural part, and the activity concentration of the radionuclides 238 U and 226 Ra was measured. In order to assess the influence of soil texture on the soil-to-plant transfer process, we sought to identify possible correlations between the activity concentration in the plant compartment and those found in the different fractions within each soil compartment. The results showed that the soil-to-plant transfer process for uranium and radium depends on soil grain size, where the results for uranium showed a linear relationship between the activity concentration of uranium in the plant and the fine soil fraction. In contrast, a linear relation between the activity concentration of radium in the plant and the soil coarse-sand fraction was observed. Additionally, the presence of phosphate and calcium in the soil of all of the compartments studied affected the soil-to-plant transfer of uranium and radium, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Uranium-series disequilibria as a means to study recent migration of uranium in a sandstone-hosted uranium deposit, NW China

    International Nuclear Information System (INIS)

    Min Maozhong; Peng Xinjian; Wang Jinping; Osmond, J.K.

    2005-01-01

    Uranium concentration and alpha specific activities of uranium decay series nuclides 234 U, 238 U, 230 Th, 232 Th and 226 Ra were measured for 16 oxidized host sandstone samples, 36 oxic-anoxic (mineralized) sandstone samples and three unaltered primary sandstone samples collected from the Shihongtan deposit. The results show that most of the ores and host sandstones have close to secular equilibrium alpha activity ratios for 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 230 Th, indicating that intensive groundwater-rock/ore interaction and uranium migration have not taken place in the deposit during the last 1.0 Ma. However, some of the old uranium ore bodies have locally undergone leaching in the oxidizing environment during the past 300 ka to 1.0 Ma or to the present, and a number of new U ore bodies have grown in the oxic-anoxic transition (mineralized) subzone during the past 1.0 Ma. Locally, uranium leaching has taken place during the past 300 ka to 1.0 Ma, and perhaps is still going on now in some sandstones of the oxidizing subzone. However, uranium accumulation has locally occurred in some sandstones of the oxidizing environment during the past 1 ka to 1.0 Ma, which may be attributed to adsorption of U(VI) by clays contained in oxidized sandstones. A recent accumulation of uranium has locally taken place within the unaltered sandstones of the primary subzone close to the oxic-anoxic transition environment during the past 300 ka to 1.0 Ma. Results from the present study also indicate that uranium-series disequilibrium is an important tool to trace recent migration of uranium occurring in sandstone-hosted U deposits during the past 1.0 Ma and to distinguish the oxidation-reduction boundary

  1. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  2. Uranium isotopes in El hamraween harbour sediments

    International Nuclear Information System (INIS)

    Salahel Din, K.

    2009-01-01

    Isotopes of uranium in marine sediments collected from El Hamraween harbour and Ras El-Bhar areas on the Egyptian coast of the Red Sea have been studied using radiochemical separation procedures and alpha-particle spectrometry. Activity concentrations of 238 U, 235 U, 234 U were calculated. The activities observed indicating the enhancement of radioactivity level in El Hamraween harbor area due to the activities of phosphate shipment operation. Secular equilibrium between 234 U and 238 U was found in the analyzed samples. The average activity ratio of 235 U/ 238 U was close to the value 0.046 for uranium in nature

  3. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...

  4. Study of Uranium Concentrations in Water and Organic Material from Streams in Sweden

    International Nuclear Information System (INIS)

    Ek, J.

    1981-12-01

    The purpose of the investigation has been to study how uranium concentrations in stream water and organic material are related to various geological parameters such as rock types, average uranium content and radioactivity, fracturing, leachability of uranium from the bedrock, occurrence of uranium mineralisations and thickness and type of Quarternary deposits. The investigation has also taken account of the effects of environmental factors such as climate , precipitation, height above sea level and topography. The background concentration of uranium in organic stream sediment varies from 1 ppm to 45 ppm, with a background value of 10 ppm for all 14 areas considered together. The threshold value for organic stream material varies from 3 ppm U to 303 ppm U with a threshold value of 133 ppm U for all 14 areas considered together. For water, the background concentration varies between the 5 areas from 0.2 ppb U to 0.7 ppb U with a background value of 0.4 ppb U for all 5 areas together. The threshold value varies from 0.3 ppb U to 5.2 ppb U with a threshold value of 2.9 ppb U for all 5 areas together. An investigation of the correlation between uranium concentrations in water and organic stream material from one and the same sampling point shows a positive correlation for high concentrations, but the correlation becomes successively less significant with lower concentrations. Uranium concentrations in organic stream material and water are positively correlated with the following geological parameters:1) Background concentrations of uranium in the bedrock. 2) Abundance of fractures in the bedrock. 3) Leachability of uranium from the bedrock. 4) Presence of uranium mineralisations. For organic stream material, this positive correlation is obtained for both high and low uranium concentrations whereas for water it occurs only with high concentrations. In areas of broken topography and high relief, there is a more clearly defined correlation to the bedrock than in areas of

  5. Trace element distribution and 235U/238U ratios in Euphrates waters and in soils and tree barks of Dhi Qar province (southern Iraq)

    International Nuclear Information System (INIS)

    Riccobono, Francesco; Perra, Guido; Pisani, Anastasia; Protano, Giuseppe

    2011-01-01

    To assess the quality of the environment in southern Iraq after the Gulf War II, a geochemical survey was carried out. The survey provided data on the chemistry of Euphrates waters, as well as the trace element contents, U and Pb isotopic composition, and PAH levels in soil and tree bark samples. The trace element concentrations and the 235 U/ 238 U ratio values in the Euphrates waters were within the usual natural range, except for the high contents of Sr due to a widespread presence of gypsum in soils of this area. The trace element contents in soils agreed with the common geochemistry of soils from floodplain sediments. Some exceptions were the high contents of Co, Cr and Ni, which had a natural origin related to ophiolitic outcrops in the upper sector of the Euphrates basin. The high concentrations of S and Sr were linked to the abundance of gypsum in soils. A marked geochemical homogeneity of soil samples was suggested by the similar distribution pattern of rare earth elements, while the 235 U/ 238 U ratio was also fairly homogeneous and within the natural range. The chemistry of the tree bark samples closely reflected that of the soils, with some notable exceptions. Unlike the soils, some tree bark samples had anomalous values of the 235 U/ 238 U ratio due to mixing of depleted uranium (DU) with the natural uranium pool. Moreover, the distribution of some trace elements (such as REEs, Th and Zr) and the isotopic composition of Pb in barks clearly differed from those of the nearby soils. The overall results suggested that significant external inputs occurred implying that once formed the DU-enriched particles could travel over long distances. The polycyclic aromatic hydrocarbon concentrations in tree bark samples showed that phenanthrene, fluoranthene and pyrene were the most abundant components, indicating an important role of automotive traffic. - Highlights: → This is a contribution to the knowledge of the Iraqi environment after Gulf War II. → In

  6. Gastrointestinal absorption of uranium in man

    International Nuclear Information System (INIS)

    Larsen, R.P.; Orlandini, K.A.

    1984-01-01

    A method has been established for determining the fractional absorption of uranium directly in man. Measurements are made of the urinary excretion rates of uranium for individuals whose drinking water has a high 234 U to 238 U activity ratio and is the primary source of 234 U in their diets. For two individuals, the values obtained for the fractional absorption of 234 U were 0.004 and 0.006. The values obtained for the fractional absorption of 238 U, using a literature value for the 238 U intake from food, were 0.008 and 0.015. The present ICRP value is 0.20. 7 references, 1 table

  7. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, M.V.; Armbruster, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Benlliure, J. [Universidad de Santiago de Compostela (ES)] [and others

    2005-09-01

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the fragment separator (FRS) at GSI, Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases. (orig.)

  8. Uranium geochemistry and dating of Pacific island apatite

    Energy Technology Data Exchange (ETDEWEB)

    Roe, K K; Burnett, W C [Florida State Univ., Tallahassee (USA). Dept. of Oceanography

    1985-07-01

    Uranium-series disequilibrium dating of island phosphate deposits is evaluated in terms of known associated coral ages, uranium geochemistry, and stratigraphic sequences as well as the concordance between the geochronometers /sup 234/U//sup 238/U, /sup 230/Th//sup 234/U and /sup 226/Ra//sup 238/U. U(VI) is the predominant oxidation state of uranium in island phosphorites and by analogy to the youngest surficial deposits, most of the uranium initially bound is in the form of U(VI) sorbed by surfaces from seawater. Insular deposits contain more organic matter than even very young ocean floor samples and this leads to a greater probability of reduction of available recoil uranium than occurs in marine deposits. As a consequence, R(VI) <= R(T) <= R(VI), where R represents the /sup 234/U//sup 238/U activity ratio. This situation is completely opposite from that observed for marine-origin phosphorites. We determined that a fraction of U(VI) in ancient insular phosphorites is very labile and lost to alkaline carbonate solutions with a uranium activity ratio even more depleted in /sup 234/U than the bulk R(VI). The results are discussed.

  9. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A.J.

    2009-01-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low (∼10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that 230 Th/ 238 U activity ratios range from 0.005-0.48 and 226 Ra/ 238 U activity ratios range from 0.006-113. 239 Pu/ 238 U mass ratios for the saturated zone are -14 , and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order 238 U∼ 226 Ra > 230 Th∼ 239 Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  10. BetaScint{trademark} fiber-optic sensor for detecting strontium-90 and uranium-238 in soil. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Accurate measurements of radioactivity in soils contaminated with Strontium-90 (Sr-90) or Uranium-238 (U-238) are essential for many DOE site remediation programs. These crucial measurements determine if excavation and soil removal is necessary, where remediation efforts should be focused, and/or if a site has reached closure. Measuring soil contamination by standard EPA laboratory methods typically takes a week (accelerated analytical test turnaround) or a month (standard analytical test turnaround). The time delay extends to operations involving heavy excavation equipment and associated personnel which are the main costs of remediation. This report describes an application of the BetaScint{trademark} fiber-optic sensor that measures Sr-90 or U-238 contamination in soil samples on site in about 20 minutes, at a much lower cost than time-consuming laboratory methods, to greatly facilitate remediation. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned.

  11. BetaScintTM fiber-optic sensor for detecting strontium-90 and uranium-238 in soil. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Accurate measurements of radioactivity in soils contaminated with Strontium-90 (Sr-90) or Uranium-238 (U-238) are essential for many DOE site remediation programs. These crucial measurements determine if excavation and soil removal is necessary, where remediation efforts should be focused, and/or if a site has reached closure. Measuring soil contamination by standard EPA laboratory methods typically takes a week (accelerated analytical test turnaround) or a month (standard analytical test turnaround). The time delay extends to operations involving heavy excavation equipment and associated personnel which are the main costs of remediation. This report describes an application of the BetaScint trademark fiber-optic sensor that measures Sr-90 or U-238 contamination in soil samples on site in about 20 minutes, at a much lower cost than time-consuming laboratory methods, to greatly facilitate remediation. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned

  12. Isotopic separation of 235U and 238U in an atomic beam with selective two-step photo-ionisation

    International Nuclear Information System (INIS)

    Boehm, H.D.V.

    1977-01-01

    The present work gives a report on investigations on isotope separation of 235 U and 238 U by means of selective two-stage photo-ionization on atomic uranium. An atomic beam of sufficient particle density was produced by dissociation of URe 2 in an electron beam heated tungsten furnace at a temperature of 2.500 k. A continuously operated rhodamin-69 dye laser with a maximum output of 120 mW and about 50 mHz band width in one-made operation was used for selective excitation from the ground state. From this state of excitation, ionization resulted achieving a light power of 1.8 W below 3030 A in the reaction volume. The measured separation factors show that the laser method enables the enrichment of uranium to the required valve of three or more percent 235 U for light water reactors in a single separation step. The hyperfine structure could be considerably better resolved compared to earlier investigations, so that it was possible for the first time to identify and measure hitherto unobserved weak components. (orig.) [de

  13. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  14. Hydro geochemistry of uranium in Aguas de Lindoia (Sao Paulo State)

    International Nuclear Information System (INIS)

    Silveira, E.G. da.

    1992-01-01

    A preliminary investigation concerning to the geochemical behaviour of uranium isotopes ( 233 U and 238 U) was performed on spring waters for Aguas de Lindoia city, Sao Paulo State. The reason for this study is because the natural radioactivity of these waters is poorly known, and no uranium content data have been published. Measurements of Uranium-238 contents and 234 U/ 238 U activity ratios in groundwaters were performed on the following springs issuing in the urban area from Aguas de Lindoia: Levissima I, Levissima II, Beleza, Sao Roque, Lindalia and Santa Izabel. (author)

  15. DEVELOPMENT OF ENRICHMENT VERIFICATION ASSAY BASED ON THE AGE AND 235U AND 238U ACTIVITIES OF THE SAMPLES

    International Nuclear Information System (INIS)

    AL-YAMAHI, H.; EL-MONGY, S.A.

    2008-01-01

    Development of the enrichment verification methods is the backbone of the nuclear materials safeguards skeleton. In this study, the 235U percentage of depleted , natural and very slightly enriched uranium samples were estimated based on the sample age and the measured activity of 235U and 238U. The HpGe and NaI spectrometry were used for samples assay. A developed equation was derived to correlate the sample age and 235U and 238U activities with the enrichment percentage (E%). The results of the calculated E% by the deduced equation and the target E% values were found to be similar and within 0.58 -1.75% bias in the case of HpGe measurements. The correlation between them was found to be very sharp. The activity was also calculated based on the measured sample count rate and the efficiency at the gamma energies of interest. The correlation between the E% and the 235U activity was estimated and found to be linearly sharp. The results obtained by NaI was found to be less accurate than these obtained by HpGe. The bias in the case of NaI assay was in the range from 6.398% to 22.8% for E% verification

  16. Investigate the capability of INAA absolute method to determine the concentrations of 238U and 232Th in rock samples

    International Nuclear Information System (INIS)

    Alnour, I.A.

    2014-01-01

    This work aimed to study the capability of INAA absolute method in determining the elemental concentration of 238 U and 232 Th in the rock samples. The INAA absolute method was implemented in PUSPATI TRIGA Mark II research reactor, Malaysian Nuclear Agency (NM). The accuracy of INAA absolute method was performed by analyzing the IAEA certified reference material (CRM) Soil-7. The analytical results showed the deviations between experimental and certified values were mostly less than 10 % with Z-score in most cases less than 1. In general, the results of analysed CRM Soil-7 show a good agreement between certified and experimental results which mean that the INAA absolute method can be used accurately for elemental analysis of uranium and thorium in various types of samples. The concentration of 238 U and 232 Th ranged from 1.77 to 24.25 and 0.88 to 95.50 ppm respectively. The highest value of 238 U and 232 Th was recorded for granite rock sample G17 of 238 U and sample G9 of 232 Th, whereas the lower value was 1.77 ppm of 238 U recorded in sandstone rock and 0.88 ppm of 232 Th for gabbro. Moreover, a comparison of the 238 U and 232 Th results obtained by the INAA absolute method shows an acceptable level of consistency with those obtained by the INAA relative method. (author)

  17. An attempt to explain the uranium 238 resonance integral discrepancy

    International Nuclear Information System (INIS)

    Tellier, H.; Grandotto, M.

    1978-01-01

    Studies on uranium 238 resonance integral discrepancy were carried out for light water reactor physics. It was shown that using recently published resonance parameters and substituting a multilevel formalism to the usual Breit and Wigner formula reduced the well known discrepancy between two values of the uranium 238 effective resonance integral: the value calculated with the nuclear data and the one deduced from critical experiments. Since the cross section computed with these assumptions agrees quite well with the Oak-Ridge transmission data, it was used to obtain the self-shielding effect and the capture rate in light water lattices. The multiplication factor calculated with this method is found very close to the experimental value. Preliminary results for a set of benchmarks relative to several types of thermal neutron reactors lead to very low discrepancies. The reactivity loss is only 130 x 10 -5 instead of 650 x 10 -5 in the case of the usual libraries and the single level formula

  18. Uranium geochemistry on the Amazon shelf: Evidence for uranium release from bottom sediments

    International Nuclear Information System (INIS)

    McKee, B.A.; DeMaster, D.J.; Nittrouer, C.A.

    1987-01-01

    In Amazon-shelf waters, as salinity increases to 36.5 x 10 -3 , dissolved uranium activities increase to a maximum of 4.60 dpm 1 -1 . This value is much higher than the open-ocean value (2.50 dpm 1 -1 ), indicating a source of dissolved uranium to shelf waters in addition to that supplied from open-ocean and riverine waters. Uranium activities are much lower for surface sediments in the Amazon-shelf sea bed (mean: 0.69 ± .09 dpm g -1 ) than for suspended sediments in the Amazon river (1.82 dpm g -1 ). Data suggest that the loss of particulate uranium from riverine sediments is probably the result of uranium desorption from the ferric-oxyhydroxide coatings on sediment particles, and/or uranium release by mobilization of the ferric oxyhydroxides. The total flux of dissolved 238 U from the Amazon shelf (about 1.2 x 10 15 dpm yr -1 ) constitutes about 15% of uranium input to the world ocean, commensurate to the Amazon River's contribution to world river-water discharge. Measurement of only the riverine flux of dissolved 238 U underestimates, by a factor of about 5, the flux of dissolved 238 U from the Amazon shelf to the open ocean

  19. Neutron Induced Capture and Fission Processes on 238U

    Directory of Open Access Journals (Sweden)

    Oprea Cristiana

    2016-01-01

    Full Text Available Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn processes.

  20. Isotopic composition of uranium in U3O8 by neutron induced reactions utilizing thermal neutrons from critical facility and high resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Goel, Lokesh

    2015-01-01

    Uranium in oxide and metal forms is used as fuel material in nuclear power reactors. For chemical quality control, it is necessary to know the isotopic composition (IC) of uranium i.e., 235 U to 238 U atom ratio as well as 235 U atom % in addition to its total concentration. Uranium samples can be directly assayed by passive gamma ray spectrometry for obtaining IC by utilizing 185 keV (γ-ray abundance 57.2%) of 235 U and 1001 keV (γ-ray abundance 0.837%) of 234m Pa (decay product of 238 U). However, due to low abundance of 1001 keV, often it is not practiced to obtain IC by this method as it gives higher uncertainty even if higher mass of sample and counting time are used. IC of uranium can be determined using activity ratio of neutron induced fission product of 235 U to activation product of 238 U ( 239 Np). In the present work, authors have demonstrated methodologies for determination of IC of U as well as 235 U atom% in natural ( 235 U 0.715%) and low enriched uranium (LEU, 3-20 atom % of 235 U) samples of uranium oxide (U 3 O 8 ) by utilizing ratio of counts at 185 keV γ-ray or γ-rays of fission products with respect to 277 keV of 239 Np. Natural and enriched samples (about 25 mg) were neutron irradiated for 4 hours in graphite reflector position of AHWR Critical Facility (CF) using highly thermalized (>99.9% thermal component) neutron flux (∼10 7 cm -2 s -1 )

  1. An attempt to explain the uranium 238 effective capture integral discrepancy

    International Nuclear Information System (INIS)

    Tellier, Henry; Grandotto-Biettoli, Marc; Vanuxeem, Jacqueline

    1979-02-01

    Up to now, there was a discrepancy between the computed value and the measured value of the uranium 238 effective capture integral. The former has been always greater than the latter. For this reason, the reactor physicists have used an adjustment of the computed value. Nowadays the accuracy of the cross sections knowledge is increased and the reactors computation codes are almost exact. Such an adjustment is no more justified. Recently several new measurements of the resonance parameters were carried out and the use of a multilevel formalism was suggested to compute the uranium 238 cross sections. It is shown in this work that the simultaneous use of recent parameters and Reich and Moore formalism explain the discrepancy. For the thermal neutron reactors, two thirds of this discrepancy are explained by the neutron data and the last third by the multilevel formalism [fr

  2. U-Pb isotopic evidence pertaining to the age and genesis of uranium mineralisation in Karoo sediments

    International Nuclear Information System (INIS)

    Allsopp, H.L.; Welke, H.J.; Armstrong, R.A.; Clough, W.; Evans, I.B.

    1984-01-01

    Preliminary investigations have been carried out, using the uranium-lead isotopic method, on the uranium mineralisation that occurs within the Karoo sediments. Two occurences were studied, namely the lower Beaufort sediments (Adelaide Subgroup) in the Beaufort West area and the Molteno Formation sediments in the Ficksburg area. The objective were to determine the age of the mineralisation and to study the mode of formation of the ores. The pattern of U-Pb apparent ages for all the Karoo samples is 207 Pb/ 206 Pb age >> 207 Pb* 235 U age > 206 Pb* 238 U age

  3. Determination of uranium from nuclear fuel in environmental samples using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Becker, J.S.

    2000-01-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on inductively coupled plasma quadrupole mass spectrometry with a hexapole collision cell (HEX-ICP-QMS). The figures of merit of the HEX-ICP-QMS were studied with a plasma-shielded torch using different nebulizers (such as an ultrasonic nebulizer (USN) and Meinhard nebulizer) for solution introduction. A 238 U + ion intensity of up to 27000 MHz/ppm in HEX-ICP-QMS with USN was observed by introducing helium into the hexapole collision cell as the collision gas at a flow rate of 10 ml min -1 . The formation rate of uranium hydride ions UH + /U + of 2 x 10 -6 was obtained by using USN with a membrane desolvator. The limit of 236 U/ 238 U ratio determination in 10 μg 1 -1 uranium solution was 3 x 10 -7 corresponding to the detection limit for 236 U of 3 pg 1 -1 . The precision of uranium isotopic ratio measurements in 10 μg 1 -1 laboratory uranium isotopic standard solution was 0.13% ( 235 U/ 238 U) and 0.33% ( 236 U/ 238 U) using a Meinhard nebulizer and 0.45% ( 235 U/ 238 U) and 0.88% ( 236 U/ 238 U) using a USN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . (orig.)

  4. SIMS Analyses of Aerodynamic Fallout from a Uranium-Fueled Test

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prussin, S. G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kinman, W. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zimmer, M. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x ray spectroscopy. Several samples display distinctive compositional heterogeneity suggestive of incomplete mixing, and exhibit heterogeneity in U isotopes with 0.02 < 235U/ 238U < 11.8 among all five samples and 0.02 < 235U/ 238U < 7.81 within a single sample. In two samples, the 235U/ 238U ratio is correlated with major element composition, consistent with the agglomeration of chemically and isotopically distinct molten precursors. Two samples are quasi-homogeneous with respect to composition and uranium isotopic composition, suggesting extensive mixing possibly due longer residence time in the fireball. Correlated variations between 234U, 235U, 236U and 238U abundances point to mixing of end-members corresponding to uranium derived from the device and natural U ( 238U/ 235U = 0.00725) found in soil.

  5. The distribution of depleted uranium contamination in Colonie, NY, USA

    International Nuclear Information System (INIS)

    Lloyd, N.S.; Chenery, S.R.N.; Parrish, R.R.

    2009-01-01

    Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7-2.1 μg g -1 , with a weighted geometric mean of 1.05 μg g -1 ; the contaminated soil samples comprise uranium up to 500 ± 40 μg g -1 . A plot of 236 U/ 238 U against 235 U/ 238 U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 ± 0.06) x 10 -3235 U/ 238 U, (3.2 ± 0.1) x 10 -5236 U/ 238 U, and (7.1 ± 0.3) x 10 -6234 U/ 238 U. The analytical method is sensitive to as little as 50 ng g -1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

  6. The distribution of depleted uranium contamination in Colonie, NY, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, N.S., E-mail: nsl3@alumni.leicester.ac.uk [Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Chenery, S.R.N. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Parrish, R.R. [Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom)

    2009-12-20

    Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7-2.1 {mu}g g{sup -1}, with a weighted geometric mean of 1.05 {mu}g g{sup -1}; the contaminated soil samples comprise uranium up to 500 {+-} 40 {mu}g g{sup -1}. A plot of {sup 236}U/{sup 238}U against {sup 235}U/{sup 238}U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 {+-} 0.06) x 10{sup -3235}U/{sup 238}U, (3.2 {+-} 0.1) x 10{sup -5236}U/{sup 238}U, and (7.1 {+-} 0.3) x 10{sup -6234}U/{sup 238}U. The analytical method is sensitive to as little as 50 ng g{sup -1} DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

  7. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas

    2015-10-01

    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of

  8. Polonium (²¹⁰Po), uranium (²³⁴U, ²³⁸U) isotopes and trace metals in mosses from Sobieszewo Island, northern Poland.

    Science.gov (United States)

    Boryło, Alicja; Nowicki, Waldemar; Olszewski, Grzegorz; Skwarzec, Bogdan

    2012-01-01

    The activity of polonium (210)Po and uranium (234)U, (238)U radionuclides, as well as trace metals in mosses, collected from Sobieszewo Island area (northern Poland), were determined using the alpha spectrometry, AAS (atomic absorption spectrometry) and OES-ICP (atomic emission spectrometry with inductively coupled plasma). The concentrations of mercury (directly from the solid sample) were determined by the cold vapor technique of CV AAS. The obtained results revealed that the concentrations of (210)Po, (234)U, and (238)U in the two analyzed kinds of mosses: schrebers big red stem moss (Pleurozium schreberi) and broom moss (Dicranum scoparium) were similar. The higher polonium concentrations were found in broom moss (Dicranum scoparium), but uranium concentrations were relatively low for both species of analyzed mosses. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk).

  9. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  10. Influence of soil texture on the distribution and availability of 238U, 230Th, and 226Ra in soils

    International Nuclear Information System (INIS)

    Blanco Rodriguez, P.; Vera Tome, F.; Lozano, J.C.; Perez-Fernandez, M.A.

    2008-01-01

    The influence of soil texture on the distribution and availability of 238 U, 230 Th, and 226 Ra in soils was studied in soil samples collected at a rehabilitated uranium mine located in the Extremadura region in south-west Spain. The activity concentration (Bq kg -1 ) in the soils ranged from 60 to 750 for 238 U, from 60 to 260 for 230 Th, and from 70 to 330 for 226 Ra. The radionuclide distribution was determined in three soil fractions: coarse sand (0.5-2 mm), medium-fine sand (0.067-0.5 mm), and silt and clay ( 238 U, 230 Th, and 226 Ra between the activity concentration per fraction and the total activity concentration in the bulk soil. Thus, from the determination of the activity concentration in the bulk soil, one could estimate the activity concentration in each fraction. Correlations were also found for 238 U and 226 Ra between the labile activity concentration in each fraction and the total activity concentration in bulk soil. Assuming that there is some particle-size fraction that predominates in the process of soil-to-plant transfer, the parameters obtained in this study should be used as correction factors for the transfer factors determined from the bulk soil in previous studies

  11. Uranium concentrations in sediments of the Suez Canal

    International Nuclear Information System (INIS)

    Ibrahiem, N.M.; Pimpl, M.

    1994-01-01

    Suez Canal bottom sediment samples have been analyzed by alpha-spectrometry for the measurement of uranium. This method is based on the extraction of uranium with trioctylphosphine oxide/cyclohexane (TOPO) followed by reextraction and separation on anion exchange resins, and finally electrodeposition. The α-activity of 238 U and 234 U were measured by surface barrier detectors, in Bq/kg dry weight. The obtained results were compared with concentrations determined by γ measurements. The results point to a state of disequilibrium between 238 U and RaeU (radium equivalent uranium) which is attributed to the escape of radon. (author)

  12. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    International Nuclear Information System (INIS)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2016-01-01

    In the case of accidental release of Uranium-238 ( 238 U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the 238 U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). 238 U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of 238 U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of 238 U radionuclide from the consumption of long beans. The concentration of 238 U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of 238 U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of 238 U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of 238 U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of 238 U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that 238 U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population

  13. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok, E-mail: khoo@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2016-01-22

    In the case of accidental release of Uranium-238 ({sup 238}U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the {sup 238}U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). {sup 238}U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of {sup 238}U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of {sup 238}U radionuclide from the consumption of long beans. The concentration of {sup 238}U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of {sup 238}U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of {sup 238}U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of {sup 238}U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of {sup 238}U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that {sup 238}U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population.

  14. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    Science.gov (United States)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2016-01-01

    In the case of accidental release of Uranium-238 (238U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the 238U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). 238U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of 238U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of 238U radionuclide from the consumption of long beans. The concentration of 238U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of 238U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of 238U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of 238U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of 238U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that 238U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population.

  15. Validation of the U-238 inelastic scattering neutron cross section through the EXCALIBUR dedicated experiment

    Directory of Open Access Journals (Sweden)

    Leconte Pierre

    2017-01-01

    Full Text Available EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France. Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5–3% (1σ. The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.

  16. Validation of the U-238 inelastic scattering neutron cross section through the EXCALIBUR dedicated experiment

    Science.gov (United States)

    Leconte, Pierre; Bernard, David

    2017-09-01

    EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France). Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5-3% (1σ). The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.

  17. The Effect of Early Diagenesis on the 238U/235U Ratio of Platform Carbonates.

    Science.gov (United States)

    Tissot, F.; Chen, C.; Go, B. M.; Naziemiec, M.; Healy, G.; Swart, P. K.; Dauphas, N.

    2017-12-01

    In the past 15 years, the so-called non-traditional stable isotopes systems (e.g., Mg, Fe, Mo, U) have emerged as powerful tracers of both high-T and low-T geochemical processes (e.g., [1]). Of particular interest for paleoredox studies is the ratio of "stable" isotopes of U (238U/235U), which has the potential to track the global extent of oceanic anoxia (e.g., [2, 3]). Indeed, in the modern ocean, U exists in two main oxidation states, soluble U6+ and insoluble U4+, and has a mean residence time of 400 kyr ([4]), much longer than the global ocean mixing time (1-2 kyr). As such the salinity-normalized ocean is homogeneous with regards to both U concentrations and isotopes (δ238USW = -0.392±0.005 ‰, [2]). The value of δ238USW at any given time is therefore the balance between U input to the ocean, mainly from rivers, and U removal, mostly into biogenic carbonates, anoxic/euxinic sediments and suboxic/hypoxic sediments (e.g., [2, 5]). Because the 238U/235U ratio of the past ocean cannot be measured directly, it has to be estimated from the measurement of the 238U/235U ratio of a sedimentary rock and assuming a constant fractionation factor. Carbonates appear as a promising record since they span most of Earth's history, and the δ238U values of modern primary carbonate precipitates and well-preserved fossil aragonitic coral up to 600 ka are indistinguishable from that of seawater (e.g., [2, 6, 7]). Yet, the effect of secondary processes on the δ238U values of non-coral carbonates, which represent the bulk of the rock record, has only been studied in a handful of shallow samples (down to 40cm, [6]) and remains poorly understood. To investigate the effect of early diagenesis on the 238U/235U ratio of carbonates on the 30kyr to 1Myr timescale, we measured δ13C, δ18O, and δ238U in samples from a 220m long drill core from the Bahamas carbonate platform. In order to separate lattice bound U from secondary U we developed a leaching protocol applicable to carbonate

  18. Mobilization of uranium isotopes in Brazilian aquifers

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos

    1994-01-01

    The uranium isotopes 234 U and 238 U have been extensively used to study geochemical problems, mainly related to the hydrological medium. Active dissolution of these isotopes is occurring in groundwaters from several aquifers at southeastern region of Brazil. The dissolved uranium concentration showed variability related to the rainwater infiltration with the U content of groundwaters increasing during wet periods. The amount of uranium mobilized during rainwater infiltration showed an inverse correlation with the thickness of unsaturated silty clay at Morro do Ferro area. The experimental data favour the possibility of formation of soluble complexes of U and dissolved organic compounds at Morro do Ferro area, and also some absorption of U by clays during rainwater infiltration. Enhanced 234 U/ 238 U activity ratios for dissolved uranium have been found and explained in terms of combined chemical etch and leach processes for groundwaters of the Pocos de Caldas alkaline complex. These processes are considered responsible for the bulk dissolution of rock matrix rather then alpha-recoil effects. Several direct correlations have been found for groundwaters of Agua da Prata, which supported the effectiveness of etch/lead mechanisms, for example, between 234 U/ 238 U activity ratio and dissolved solids, ionic strength, C O 2 partial pressure, 'traditional' index of base exchange and 'new' index of base exchange (involving the anion fluoride). A higher 234 U/ 238 U activity ratio was found to be directly related to a higher value of dissolution rate and a higher value of 222 Rn content was found to be related with a higher value of specific surface area. These relationships explained a good inverse logarithmic correlation between 234 U/ 238 U activity ratio and 222 Rn content of the spring waters of Aguas da Prata. (author)

  19. Uranium isotopic disequilibrium in ground water as an indicator of anomalies

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.; Ivanovich, M.

    1983-01-01

    Because of the unique elemental and isotopic properties of uranium, ground water surveys are a most appropriate approach to prospecting for surficial and secondary uranium deposits. Uranium4+ is generally immobile, but in oxidising and carbonate bearing waters U 6 + is mobile and conservative. Uranium 234 is the radiogenic daughter of 238 U. The intervening α-decay event causes recoil displacements and radioactive disequilibrium between the two isotopes in open systems such as surficial aquifers. Extreme variations in dissolved uranium composition of ground waters combined with significant variations in the ratio 234 U/ 238 U are indicative of the proximity and stage of evolution of secondary deposits. (author)

  20. Determination of uranium from nuclear fuel in environmental samples using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2000-11-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on inductively coupled plasma quadrupole mass spectrometry with a hexapole collision cell (HEX-ICP-QMS). The figures of merit of the HEX-ICP-QMS were studied with a plasma-shielded torch using different nebulizers (such as an ultrasonic nebulizer (USN) and Meinhard nebulizer) for solution introduction. A {sup 238}U{sup +} ion intensity of up to 27000 MHz/ppm in HEX-ICP-QMS with USN was observed by introducing helium into the hexapole collision cell as the collision gas at a flow rate of 10 ml min{sup -1}. The formation rate of uranium hydride ions UH{sup +}/U{sup +} of 2 x 10{sup -6} was obtained by using USN with a membrane desolvator. The limit of {sup 236}U/{sup 238}U ratio determination in 10 {mu}g 1{sup -1} uranium solution was 3 x 10{sup -7} corresponding to the detection limit for {sup 236}U of 3 pg 1{sup -1}. The precision of uranium isotopic ratio measurements in 10 {mu}g 1{sup -1} laboratory uranium isotopic standard solution was 0.13% ({sup 235}U/{sup 238}U) and 0.33% ({sup 236}U/{sup 238}U) using a Meinhard nebulizer and 0.45% ({sup 235}U/{sup 238}U) and 0.88% ({sup 236}U/{sup 238}U) using a USN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. (orig.)

  1. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  2. Uranium in open ocean: concentration and isotopic composition

    International Nuclear Information System (INIS)

    Ku, T.L.; Knauss, K.G.; Mathieu, G.G.

    1977-01-01

    Uranium concentrations and 234 U/ 238 U activity ratios have been determined in 63 seawater samples (nine vertical profiles) from the Atlantic, and Pacific, and Arctic, and the Antarctic oceans, using the alpha-spectrometric method for their determinations. Correlation between uranium and salinity is well manifested by the data from the Arctic and the Antarctic oceans, but such a relation cannot be clearly defined with the +-(1 to 2)% precision of uranium measurements for the Atlantic and Pacific data. At the 95% confidence level: (1) the uranium/salinity ratio is (9.34 + - 0.56) x 10 -8 g/g for the seawater analyzed with salinity ranging from 30.3 to 36.2 per thousand; the uranium concentration of seawater of 35 per thousand salinity is 3.3 5 + - 0.2 μ g l -1 ; (2) the 234 U/ 238 U activity ratio is 1.14 +- 0.03. Uranium isotopes in interstitial waters of the Pacific surface sediments analyzed do not show large concentration differences across the sediment-water interface as suggested by previous measurements. Current estimations of the average world river uranium concentration (0.3 to 0.6 μ g l -1 ) and 234 U/ 238 U ratio (1.2 to 1.3) and of the diffusional 234 U influx from sediments 0.3 dpm cm -2 10 -3 yr -1 ) are essentially consistent with a model which depicts a steady state distribution of uranium in the ocean. However, the 0.3 to 0.6 μ g l -1 value for river uranium may be an upper limit estimate. (author)

  3. Present status of radiochemical double β decay study (238U)

    International Nuclear Information System (INIS)

    Chevallier, A.; Chevallier, J.; Escoubes, B.; Schulz, N.; Sens, J.C.; Madic, C.; Maillard, C.

    1989-01-01

    The reasons for which the 238 U is a suitable candidate for the β β decay processes are explained. The strategy adopted for the radiochemical separation of the 234 U is given. A chemical system based on extraction chromatography is applied. The Pu IV breakthrough curves obtained at 40C during 238 Pu/ 238 U separation cycles are presented. A short description of the chromatographic facility is given. The solution adopted for the low background α spectrometer is explained

  4. A year-by-year record of 236-U/238-U in coral as a step towards establishing 236-U from nuclear weapons testing fall-out as oceanic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Stephan; Steier, Peter [University of Vienna, Faculty of Physics, Vienna (Austria); Carilli, Jessica [Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia)

    2012-07-01

    Since uranium is known to behave conservatively in ocean waters, 236-U has great potential in application as oceanic tracer. 236-U (t1/2=23.4 Ma) was introduced into the oceans by atmospheric nuclear weapon testing with amount estimates ranging from 700 kg to 1500 kg. Thus a resulting initial average 236-U/238-U ratio of at least 5e-9 is expected for an oceanic mixed layer depth of 100 m. This ratio is already higher than the natural pre-nuclear background, which is expected to be at 10e-14 levels. Even the elevated ratios of global stratospheric fall-out are beyond the capabilities of ICPMS and TIMS methods. However, the exceptional sensitivity and ultra-low background for 236-U of the Vienna Environmental Research Accelerator's Accelerator Mass Spectrometry system allows us to measure down to 10-13 detection limits. We present a year-by-year record of 236-U/238-U for a Caribbean coral core covering years 1944 to 2006, thus allowing to us put constraints on the oceanic input of 236-U by atmospheric testing. Moreover modeling of the results also demonstrates the capabilities of 236-U as oceanic tracer.

  5. Prospects of Using Reprocessed Uranium in CANDU Reactors, in the U.S. GNEP Program

    International Nuclear Information System (INIS)

    Ellis, Ronald James

    2007-01-01

    Current Global Nuclear Energy Partnership (GNEP) plans envision reprocessing spent fuel (SF) with view to minimizing high-level waste (HLW) repository use and recovering actinides (U, Np, Pu, Am, and Cm) for transmutation in reactors as fuel and targets. The reprocessed uranium (RU), however, is to be disposed of. This paper presents a limited-scope analysis of possible reuse of RU in CANDU (Canada Deuterium Uranium) Reactors, within the context of the US GNEP program. Other papers on this topic submitted to this conference discuss the possibility of RU reuse in light-water reactors (LWRs) (with enrichment) and offer an independent economic analysis of RU reuse. A representative RU uranium 'vector', from reprocessed spent LWR fuel, comprises 98.538 wt% 238U, 0.46 wt% 236 U, 0.986 wt% 235 U, and 0.006 wt% 234 U. After multiple recyclings, the concentration of 234 U can approach 0.02 wt%. The presence of 234 U and 236 U in RU reduces the reactivity and fuel lifetime (exit burnup), which is particularly an issue in LWRs. While in PWR analyses, the burnup penalty caused by the concentration of 236 U in RU needs to be offset by additional 235 U enrichment in the amount of ∼25% to 30% of the weight percentage of the 236 U; however, the effect in CANDU is much smaller. Furthermore, since the 235 U content in RU exceeds that of natural uranium, CANDU offers the advantageous option of uranium recycling without reenrichment. The exit burnup of CANDU RU-derived fuel is considerably larger than that for natural uranium-fueled scenario, despite the presence of 234 U and 236 U.

  6. Study of the uranium availability through the research method Th/U

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Zahily Herrero; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Damascena, Kennedy Francys Rodrigues; Medeiros, Nilson Vicente da Silva; Maciel Neto, Jose de Almeida, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: neideden@hotmail.com, E-mail: kennedy.eng.ambiental@gmail.com, E-mail: nvsmedeiros@gmail.com, E-mail: profjosemaciel@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Alvarez, Juan Reinaldo Estevez, E-mail: jestevez@ceaden.cu [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Silva, Alberto Antonio da, E-mail: alberto.silva@barreiros.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Barreiros, PE (Brazil)

    2015-07-01

    The uranium and thorium, precursors of the main natural radioactive series, have different concentrations in the Earth's crust. The ratio Th/U has been used as an indicator of oxidizing and reducing conditions, whose factors suggest availability of uranium to displacement in the environment and incorporations in different matrices. This parameter become essential to determine possible conditions of availability by the chemical form and incorporation in the food chain. The state of Paraiba, in northeastern Brazil, has a uranium deposits located in Sao Jose de Espinharas, where there are agricultural practices in areas surrounding the deposit of natural uranium. The Environmental Monitoring Program and Radioecological, making it an area that offers all the features for research mobility of uranium, chemical form and availability of incorporation, in addition to understanding the kinetics and transport of this natural radionuclide in the environment. Soil samples were collected from agricultural areas, close to the uraniferous occurrences where the samples were analyzed in the Laboratorio de Radioecologia e Controle Ambiental (LARCA) of the Departamento de Energia Nuclear at the Universidade Federal de Pernambuco (UFPE) by High Resolution Gamma Spectrometry, obtaining the experimental activities of {sup 238}U and {sup 232}Th using indirect gamma measures. The obtained findings show that the ratio Th/U varied from 0.11 to 1.33, with an average of 0.69. (author)

  7. Study of the uranium availability through the research method Th/U

    International Nuclear Information System (INIS)

    Fernandez, Zahily Herrero; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Damascena, Kennedy Francys Rodrigues; Medeiros, Nilson Vicente da Silva; Maciel Neto, Jose de Almeida; Silva, Alberto Antonio da

    2015-01-01

    The uranium and thorium, precursors of the main natural radioactive series, have different concentrations in the Earth's crust. The ratio Th/U has been used as an indicator of oxidizing and reducing conditions, whose factors suggest availability of uranium to displacement in the environment and incorporations in different matrices. This parameter become essential to determine possible conditions of availability by the chemical form and incorporation in the food chain. The state of Paraiba, in northeastern Brazil, has a uranium deposits located in Sao Jose de Espinharas, where there are agricultural practices in areas surrounding the deposit of natural uranium. The Environmental Monitoring Program and Radioecological, making it an area that offers all the features for research mobility of uranium, chemical form and availability of incorporation, in addition to understanding the kinetics and transport of this natural radionuclide in the environment. Soil samples were collected from agricultural areas, close to the uraniferous occurrences where the samples were analyzed in the Laboratorio de Radioecologia e Controle Ambiental (LARCA) of the Departamento de Energia Nuclear at the Universidade Federal de Pernambuco (UFPE) by High Resolution Gamma Spectrometry, obtaining the experimental activities of 238 U and 232 Th using indirect gamma measures. The obtained findings show that the ratio Th/U varied from 0.11 to 1.33, with an average of 0.69. (author)

  8. Sub-barrier photofission of 238U

    International Nuclear Information System (INIS)

    Bhandari, B.S.

    Photofission cross section of 238 U below threshold have been calculated using a double humped potential barrier parameterized by smoothly joining four parabolas, and a coulomb potential at and beyond the scission point. Relative strength in the fission channel has been calculated and an attempt has been made to interpret the apparent resonance structures observed recently in photofission experiments of 238 U as excited states of the fission isomer. A set of parameters for a double humped barrier are found which are consistent with known spontaneous fission and isomeric fission half lives. In addition to reproducing satisfactorily the observed resonance structure near threshold, the calculation also predicts several low energy resonances in the cross sections [pt

  9. Multimode approximation for {sup 238}U photofission at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Demekhina, N. A., E-mail: demekhina@lnr.jinr.ru [Yerevan Physics Institute (Armenia); Karapetyan, G. S. [Yerevan State University (Armenia)

    2008-01-15

    The yields of products originating from {sup 238}U photofission are measured at the bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.

  10. The Chemistry and Toxicology of Depleted Uranium

    OpenAIRE

    Sidney A. Katz

    2014-01-01

    Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU) is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U) down to reactor grade uranium (~5% 235U), and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles....

  11. The Amster concept: a configuration generating its own uranium with a mixed thorium and uranium support

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.; Delpech, M.

    2001-01-01

    AMSTER is a continuously reloaded, graphite-moderated molten salt critical reactor, using a 238 U or 232 Th fuel support, slightly enriched with 235 U if necessary. Using this concept, one can define a large number of configurations according to the products loaded and recycled. The choice of thorium fuel support leads to two configurations requiring no additional 235 U as fissile material: a configuration with one moderating zone, incinerating Transuranium elements (TRU); a configuration with 2 moderating zones self-consuming TRU and regenerating the fissile uranium ( 233 U). In this configuration, it is even possible to burn 238 U (from depleted uranium) by adding it to the thorium support. These configurations use a minimum amount of fuel (100 kg of 232 Th or 100 kg of a 232 Th- 238 U mix per TWh) and produce very little TRU (a few tens of grams per TWh). (author)

  12. 235U and 238U (n,xn gamma) cross-sections

    International Nuclear Information System (INIS)

    Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Rudolf, G.; Thiry, J.C.; Borcea, C.; Negret, A.L.; Drohe, J.C.; Nankov, N.; Nyman, M.; Plompen, A.; Rouki, C.; Stanoiu, M.

    2014-01-01

    The (n,n') and (n,2n) are important processes in the energy domain of fission neutrons, but the cross-sections suffer from large uncertainties, not compatible with the objectives fixed for future and advanced nuclear reactors. This paper presents our experimental effort to improve 235 U and 238 U (n,xnγ) cross-section data. The experiments were performed at the GELINA facility (Belgium), which provides a pulsed (800 Hz) neutron beam covering a wide energy spectrum (from a few eV to about 20 MeV). The GRAPhEME set-up is designed for prompt gamma spectroscopy and time-of-flight measurement. The analysis methods are presented. Already published results on 235 U are shown, as well as results on 238 U. The interpretation and discussion rely on the comparison with TALYS and EMPIRE predictions. (authors)

  13. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    Science.gov (United States)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    2017-08-01

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ˜0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40-100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.

  14. Simple and selective method for determination of microgram quantities of uranium-238 in urine

    International Nuclear Information System (INIS)

    Pavlovskaya, N.A.; Martakova, P.I.

    1977-01-01

    A technique has been developed and described to determine microgram quantities of uranium-238 in urea. The subject of the technique is as follows: urea (50-500 ml) is acidified with hydrochloric acid, and uranium(6) is quantitatively isolated by its coprecipitation with methylviolet rhodanide; the precipitate is separated by centrifuging and mineralized in the presence of nitric and chloric acids; then uranium (6) is reduced into uranium(4) and its amount is determined photoelectrocolorimetrically using the ''arsenazo 3'' reagent. The limiting amount of uranium in a sample being determined is 10 -6 . For a sample volume of 500 ml sensitivity of the technique of uranium determination is 2x10 -9 g/ml. Titanium, thorium and niobium do not interfere with determination of uranium

  15. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  16. 226Ra/238U disequilibrium in an upland organic soil exhibiting elevated natural radioactivity

    International Nuclear Information System (INIS)

    Dowdall, M.; O'Dea, J.

    2002-01-01

    This paper presents the results of a study into the anomalous 226 Ra/ 238 U disequilibrium ( 226 Ra/ 238 U of 0.5-9) exhibited by an upland organic soil in Co. Donegal, Ireland. Radiochemical speciation of 226 Ra, 238 U and 228 Ra indicates that in this organic soil the high 226 Ra/ 238 U ratio is due to loss of 238 U relative to 226 Ra via oxidation and mobilisation of 238 U in the upper layers of the soil and subsequent loss in solution. At the lower, more reducing depths of the soil profile, 238 U and 226 Ra are essentially in equilibrium. Loss of 238 U appears to occur primarily from the easily oxidised organic and iron oxide fractions of the soil, samples exhibiting high 226 Ra/ 238 U ratios displaying significantly lower 238 U levels in these fractions than samples whose ratio is below the average value for the soil of the valley. Selective enrichment of 226 Ra by plants or preferential leaching of 226 Ra from the underlying rock is not supported by the results of this study

  17. Uranium analysis in urine by inductively coupled plasma dynamic reaction cell mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ejnik, John W. [Northern Michigan University, Chemistry Department, Marquette, MI (United States); Todorov, Todor I.; Mullick, Florabel G.; Centeno, Jose A. [Armed Forces Institute of Pathology (AFIP), Division of Biophysical Toxicology, Washington, DC (United States); Squibb, Katherine; McDiarmid, Melissa A. [University of Maryland, School of Medicine, Baltimore, MD (United States)

    2005-05-01

    Urine uranium concentrations are the best biological indicator for identifying exposure to depleted uranium (DU). Internal exposure to DU causes an increased amount of urine uranium and a decreased ratio of {sup 235}U/{sup 238}U in urine samples, resulting in measurements that vary between 0.00725 and 0.002 (i.e., natural and depleted uranium's {sup 235}U/{sup 238}U ratios, respectively). A method based on inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) was utilized to identify DU in urine by measuring the quantity of total U and the {sup 235}U/{sup 238}U ratio. The quantitative analysis was achieved using {sup 233}U as an internal standard. The analysis was performed both with and without the reaction gas oxygen. The reaction gas converted ionized {sup 235}U{sup +} and {sup 238}U{sup +} into {sup 235}UO{sub 2}{sup +} (m/z=267) and {sup 238}UO{sub 2}{sup +} (m/z=270). This conversion was determined to be over 90% efficient. A polyatomic interference at m/z 234.8 was successfully removed from the {sup 235}U signal under either DRC operating conditions (with or without oxygen as a reaction gas). The method was validated with 15 urine samples of known uranium compositions. The method detection limit for quantification was determined to be 0.1 pg U mL{sup -1} urine and an average coefficient of variation (CV) of 1-2% within the sample measurements. The method detection limit for determining {sup 235}U/{sup 238}U ratio was 3.0 pg U mL{sup -1} urine. An additional 21 patient samples were analyzed with no information about medical history. The measured {sup 235}U/{sup 238}U ratio within the urine samples correctly identified the presence or absence of internal DU exposure in all 21 patients. (orig.)

  18. Comparison of uranium and radium isotopes activities in some wells and thermal springs samples in Morroco

    International Nuclear Information System (INIS)

    Hakam, O.K.; Choukri, A.; Reyss, J.L.; Lferde, M.

    2000-01-01

    Activities and activity ratios of uranium and radium isotopes ( 234 U, 238 U, 226 Ra, 228 Ra, 234 U/ 238 U, 226 Ra/ 238 U, 228 Ra/ 226 Ra) have been determined, for the first time in Morocco, for 15 well water samples and 12 spring water samples. The obtained results show that, unlike well waters, the thermal spring waters present relatively low 238 U activities and elevated 226 Ra activities and 234 U/ 238 U activity ratios. Uranium and radium activities are similar to those published for other non polluting regions of the world, they are inferior to the Maximum Contaminant Levels and don't present any risk for public health in Morocco. (author) [fr

  19. Statistical analysis of parameters of the uranium -238 resonances

    International Nuclear Information System (INIS)

    Nikolaev, M.N.; Abagyan, L.P.

    1976-01-01

    It has been shown that the distribution for 238 U p - levels can be in agreement with the theoretical one (Porter - Thomas distribution) only if the significant lack of p - levels in the experiments would be supposed. That means that density of 238 U levels with spin 1/2 is parity dependent, and therefore the whole number of p - resonances is 4.8 (instead of 3) times greater than the number of s - resonances in the same energy internal. With the assumption about spin dependence of strength function it is impossible to agree the experimental distribution with the theoretical one

  20. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    International Nuclear Information System (INIS)

    Borole, D.V.; Krishnaswami, S.; Somayajulu, B.L.K.

    1982-01-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 234 U/ 238 U activity ratios. The 238 U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, and with the HCO 3 - ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. In the estuaries, both 238 U and its great-grand daughter 234 U behave conservatively beyond chlorosities 0.14 g/l. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238 U concentration of 0.22 μg/l with a 234 U/ 238 U activity ratio of 1.20 +-0.06. The residence time of uranium isotopes in the oceans estimated from the 238 U concentration and the 234 U/ 238 U A.R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234 U flux of about 0.25 dpm/cm 2 .10 3 yr into the oceans is necessitated. (author)

  1. Natural radionuclides in the environment and problems of uranium mining

    International Nuclear Information System (INIS)

    Bowie, S.H.U.

    1981-01-01

    The subject is discussed under the headings: introduction (U-238, U-235, Th-232, K-40, and their decay products); distribution of radionuclides; α, β and γ radiation; uranium in rocks; uranium in soil and water; uranium mining (hazards of uranium and radon during mining and in tailings); assessment of risk. (U.K.)

  2. Determination of uranium isotopes (235U, 238U) and trace elements (Cd, Pb, Cu and As) in bottled drinking water by Icp-SFMS

    International Nuclear Information System (INIS)

    Lara A, N.; Hernandez M, H.; Romero G, E. T.; Kuri de la C, A.; Perez B, M. A.

    2016-09-01

    In the present work we propose an optimized method for the quantification of uranium isotopes ( 235 U, 2 38 U) and the elements Cd, Pb, Cu and As in bottled water for drinking at trace levels of concentration. Based on the multi-element detection capability, the high sensitivity and resolution that the Mass Spectrometry with Magnetic Sector with Inductively Coupled Plasma Source (Icp-SFMS) technique offers; the high, medium and low resolution analysis conditions for the elements under study were established and optimized using and Element 2/Xr equipment and the 23 multi-elemental Certified Reference Material (CRM). The analysis method was validated using the standard reference material Nist 1643d and CRM mono-elemental s as external standards for the quantification of the analytes. Samples, targets and CRM were acidified with 2% of HNO 3 and analyzed without pretreatment under the established analysis conditions. The results obtained show concentrations of 235 U, 238 U, 111 Cd, 208 Pb, 63 Cu and 75 As in the range of μg L -1 , the linearity obtained from the calibration curves for each element has correlation coefficients < 0.99 in all cases, the accuracy of the method in terms of percent relative standard deviation (RSD %) was less than 5%, the mean recovery rate of Nist 1643d ranged from 96.46% to 101.12%. The optimization of the method guarantees the stability and calibration of the equipment throughout the analysis, as well as the ability to resolve interferences. In conclusion, the method proposed using Icp-SFMS offers the advantages of being fast and simple for the multi-elemental analysis in water at trace levels, with low limits of quantification and detection, with good linearity, accuracy, precision and reproducibility to a degree of reliability of 95%. (Author)

  3. Electromagnetic fission of 238U at 600 and 1000 MeV per nucleon

    International Nuclear Information System (INIS)

    Rubehn, T.; Mueller, W.F.J.; Bassini, R.; Begemann-Blaich, M.; Blaich, T.; Gross, C.; Imme, G.; Iori, I.; Kunde, G.J.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlemkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-05-01

    Electromagnetic fission of 238 U projectiles at E/A=600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsaecker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium. (orig.)

  4. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium. (author)

  5. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium.

  6. Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area

    International Nuclear Information System (INIS)

    Blanco Rodriguez, P.; Vera Tome, F.; Lozano, J.C.; Perez Fernandez, M.A.

    2010-01-01

    The soil-to-plant transfer factors of natural uranium isotopes ( 238 U and 234 U), 230 Th, 226 Ra, and 210 Pb were studied in a disused uranium mine located in the Extremadura region in the south-west of Spain. The plant samples included trees (Quercus ilex, Quercus suber, and Eucalyptus cameldulensis) and one shrub (Cytisus multiflorus). All of them are characteristic of Mediterranean environments. The activity concentrations in leaves and fruit were determined for the tree species at different stages of growth. For the shrub, the total above-ground fraction was considered in three seasons. For old leaves and fruit, the highest activity concentrations were found in Eucalyptus cameldulensis for all the radionuclides studied, except in the case of 230 Th that presented similar activity concentrations in all of the tree species studied. In every case, the transfer to fruit was less than the transfer to leaves. In the shrub, the results depended on the season of sampling, with the highest value obtained in spring and the lowest in autumn. Important correlations were obtained for 238 U and 226 Ra between the activity ratio in soils with that in leaves or fruit.

  7. Uranium in surficial deposits and waters at Palmottu

    International Nuclear Information System (INIS)

    Ahonen, L.; Blomqvist, R.; Ervanne, H.; Suksi, J.; Jaakkola, T.

    1994-01-01

    Occurrence of uranium in surficial formations in the vicinity of an underground U deposit was studied. Several water samples from the Lake Palmottu and nearby springs, three lake sediment cores and three peat cores were collected for the study. Uranium concentrations in the water samples varied from 1.4 to 6.9 mBq/l, reflecting the average concentration of near-surface waters in Finland. In some samples, however, the 234 U/ 238 U activity ratio and water chemistry suggest a partial mixing with deeper groundwaters. In the lake sediments, uranium concentrations increases from 53 Bq/kg in surface layer to five fold in the bottom layers deposited 9000 years ago. In peat cores large variations in uranium concentrations can be observed: from tens of Bq/kg to over 20 kBq/kg of peat ash. The large variation also in the 234 U/ 238 U activity ratio, from 0.79 to l.91, tends to indicate uranium migration to the peat from more than one uranium source. (orig.) (19 refs., 5 figs., 1 tab.)

  8. Determination of uranium, thorium and radium isotope ratio

    International Nuclear Information System (INIS)

    Sokolova, Z.A.

    1983-01-01

    The problems connected with the study of isotope composition of natural radioactive elements in natural objects are considered. It is pointed out that for minerals, ores and rocks the following ratios are usually determined: 234 U/ 238 U, 230 Th/ 238 U, 226 Ra/ 238 U, 228 Th/ 230 Th, 228 Th/ 232 Th and lead isotopes; for natural waters, besides the enumerated - 226 Ra/ 228 Ra. General content of uranium and thorium in the course of isotope investigations is determined from separate samples, most frequently by the X-ray spectral method, radium content - by usual radiochemical method, uranium and radium content in waters -respectively by calorimetric and emanation methods. Radiochemical preparation of geologic powder and aqueous samples for isotope analysis is described in detail. The technique of measuring and calculating isotope ratios (α-spectrometry for determining isotope composition of uranium and thorium and emanation method for determining 226 Ra/ 228 Ra) is presented

  9. Long-term criticality control in radioactive waste disposal facilities using depleted uranium

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth's geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include 235 U, 233 U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth's geochemistry suggests that isotopic dilution of fissile materials in waste with 238 U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the 238 U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with- 238 U to 1 wt % 235 U equivalent

  10. Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia.

    Science.gov (United States)

    Ramli, A Termizi; Hussein, A Wahab M A; Wood, A Khalik

    2005-01-01

    Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.

  11. Characterization of bauxite residue (red mud) for 235U, 238U, 232Th and 40K using neutron activation analysis and the radiation dose levels as modeled by MCNP.

    Science.gov (United States)

    Landsberger, S; Sharp, A; Wang, S; Pontikes, Y; Tkaczyk, A H

    2017-07-01

    This study employs thermal and epithermal neutron activation analysis (NAA) to quantitatively and specifically determine absorption dose rates to various body parts from uranium, thorium and potassium. Specifically, a case study of bauxite residue (red mud) from an industrial facility was used to demonstrate the feasibility of the NAA approach for radiological safety assessment, using small sample sizes to ascertain the activities of 235 U, 238 U, 232 Th and 40 K. This proof-of-concept was shown to produce reliable results and a similar approach could be used for quantitative assessment of other samples with possible radiological significance. 238 U and 232 Th were determined by epithermal and thermal neutron activation analysis, respectively. 235 U was determined based on the known isotopic ratio of 238 U/ 235 U. 40 K was also determined using epithermal neutron activation analysis to measure total potassium content and then subtracting its isotopic contribution. Furthermore, the work demonstrates the application of Monte Carlo Neutral-Particle (MCNP) simulations to estimate the radiation dose from large quantities of red mud, to assure the safety of humans and the surrounding environment. Phantoms were employed to observe the dose distribution throughout the human body demonstrating radiation effects on each individual organ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Uranium isotopes in groundwater: their use in prospecting for sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1977-01-01

    The relative abundances of dissolved 238 U and its daughter 234 U appear to be greatly affected as the uranium is transported downdip in sandstone aquifers. In an actively forming uranium accumulation at a reducing barrier, an input of 234 U occurs in proximity to the isotopically non-selective precipitation of uranium from the water. The result is a downdip water much lower in uranium concentration but relatively enriched in 234 U. The measurement of isotopic as well as concentration changes may increase the effectiveness of hydrogeochemical exploration of uranium. The investigation includes the uranium isotopic patterns in aquifers associated with known uranium orebodies in the Powder River and Shirley Basins, Wyoming, and Karnes County, Texas, USA. In addition, the Carrizo sandstone aquifer of Texas was studied in detail and the presence of an uranium accumulation inferred

  13. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive (234U/238U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin

    International Nuclear Information System (INIS)

    Deschamps, P.

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the 234 U/ 238 U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ( 234 U/ 238 U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  14. 238U + n resolved resonance energies

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1978-01-01

    Neutron transmission measurements from 100 eV to 170 keV at 150 m through four 238 U samples are reported. The energy calibration is described, and the resultant 233 U resolved resonance energies are found to be intermediate between those from other workers. In addition, some energies for sharp resonances in 23 Na, 27 Al, 32 S, and 206 Pb are given

  15. U.S. uranium supply outlook

    International Nuclear Information System (INIS)

    Hogerton, J.F.

    1977-01-01

    The subject is analysed in the light of figures and forecasts contained in the following diagrams: forecasts of U.S. uranium production, 1977 to 1990; indicated relationship between annual U.S. uranium supply and demand, 1977 to 1986; presently indicated cumulative U.S. uranium supply/demand balance, 1977 to 1990; indicated cumulative U.S. supply/demand balance (shortage or surpluses) 1976 to 1990; presently indicated balance between outstanding U.S. utility procurement needs and uncommitted domestic supply capability 1977 to 1986; projected U.S. uranium requirements in relation to existing supply base and presently indicated additional domestic resource potential, 1977 to 2000. (U.K.)

  16. Determination of uranium in plutonium--238 metal and oxide by differential pulse polarography

    International Nuclear Information System (INIS)

    Fawcett, N.C.

    1976-01-01

    A differential pulse polarographic method was developed for the determination of total uranium in 238 Pu metal and oxides. A supporting electrolyte of 0.5 M ascorbic acid in 0.15 N H 2 SO 4 was found satisfactory for the determination of 500 ppM or more of uranium in 10 mg or less of plutonium. A relative standard deviation of 0.27 to 4.3 percent was obtained in the analysis of samples ranging in uranium content from 0.65 to 2.79 percent. The limit of detection was 0.18 μg ml -1 . Peak current was a linear function of uranium concentration up to at least 100 μg ml -1 . Amounts of neptunium equal to the uranium content were tolerated. The possible interference of a number of other cations and anions were investigated

  17. Uranium half-lives: a critical review

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    The experimental data are evaluated and values for the spontaneous fission half-life of 238 U and the total half-lives for 232 U, 233 U, 234 U, 235 U, 236 U, and 238 U are recommended. Also the variation of the isotopic abundance of 234 U in nature and the error involved in the assumption of secular equilibrium between 234 U and 238 U in the determination of the specific activity of natural uranium samples are discussed. The recommended half-life values and 95% confidence limits are: 238 U spontaneous fission: 8.09 +- 0.26 x 10 15 years; 232 U total: 69.8 +- 1.0 years; 233 U total: 1.592 +- 0.002 x 10 5 years; 234 U total: 2.454 +- 0.006 x 10 5 years; 235 U total: 7.037 +- 0.011 x 10 8 years; 236 U total: 2.342 +- 0.003 x 10 7 years 238 U total: 4.468 +- 0.005 x 10 9 years

  18. Determination of 238U in marine organisms by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Nakahara, Motokazu; Matsuba, Mitsue; Ishikawa, Masafumi

    1991-01-01

    Determination of 238 U in fifty-five species of marine organisms was carried out by inductively coupled plasma mass spectrometry which showed some advantages such as high sensitivity, wide dynamic range and small interferences from matrices for the analysis of high mass elements. The concentrations of 238 U in soft tissues of marine animals ranged from 0.076 to 5000 ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of 238 U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10 3 by comparing it with the concentration of 238 U (3.2±0.2 ng/ml) in coastal seawaters of Japan. The concentrations of 238 U in hard tissues of marine invertebrates were similar to those in soft tissues. In contrast, hard tissues like bone, scale, fin, etc. of fishes showed much higher concentrations of 238 U than soft tissues like muscle and liver. The concentrations of 238 U of twenty species of algae ranged from 10 to 3700 ng/g dry wt. (author)

  19. 238U (n,f) measurements below 30 keV

    International Nuclear Information System (INIS)

    Slovacek, R.E.; Cramer, D.S.; Bean, E.B.; Hockenbury, R.W.; Valentine, J.R.; Block, R.C.

    1975-01-01

    The 238 U (n,f) cross section has been measured from 3 eV to about 30 keV with the lead slowing down spectrometer at the RPI Linac. Four fission ionization chambers containing a total of about 0.8 gm of 238 U (4.1 ppm 235 U) were used for the measurements. The fission widths of the 6.67, 20.9, and the 36.8 eV resonances were measured as (10 +- 1), (58 +- 9), and (12 +- 2) nanoelectron-volts respectively. The fission cross section integrated over the two subthreshold groups at 720 and 1210 eV and the average fission cross section from 10 to 30 keV are in agreement with a previous time of flight measurement. The fission width at 6.67 eV is 20 times smaller than an upper limit set by the only reported measurement in this energy region; the fission widths obtained in the present investigation are consistent with the (30 +- 50) nanoelectronvolt average width previously obtained for the resonances between 37 and 327 eV in a time of flight measurement using a nuclear device. From the measured fission widths, the 238 U thermal fission cross section was determined to be 2.7 +- 0.3 μ barns. The resonance fission integral was also obtained from the data as 1.33 +- 0.15 mbarns for 238 U. (4 figures, 4 tables) (U.S.)

  20. 230Th/U-dating of a late Holocene low uranium speleothem from Cuba

    International Nuclear Information System (INIS)

    Fensterer, Claudia; Mangini, Augusta; Scholz, Denis; Hoffmann, Derik; Pajon, Jesus M

    2010-01-01

    We present 22 U-series ages for a stalagmite from north-western Cuba based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). Our results reveal that the stalagmite continuously grew within the last ∼1400a. Low uranium content of the sample and thus, extremely low 230 Th concentrations limit the precision and accuracy of 230 Th/U-dating by TIMS. Samples measured by MC-ICPMS show a high variability of 232 Th content along the growth axis with some sections significantly affected by initial 230 Th from a detrital phase. An a-priori bulk earth ratio for ( 238 U/ 232 Th) cannot be used to accurately account for this initial 230 Th. Using an age model based on the 230 Th/U ages determined on samples with low or negligible 232 Th concentration, we find that the ( 238 U/ 232 Th) activity ratio of the detrital phase is an order of magnitude larger than the bulk earth value, indicating the importance of an accurately determined correction factor.

  1. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, P

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ({sup 234}U/{sup 238}U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  2. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, P

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ({sup 234}U/{sup 238}U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  3. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    Science.gov (United States)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by

  4. Uranium-Series Disequilibria in the Groundwater of the Shihongtan Sandstone-Hosted Uranium Deposit, NW China

    Directory of Open Access Journals (Sweden)

    Xinjian Peng

    2015-12-01

    Full Text Available Uranium (U concentration and the activities of 238U, 234U, and 230Th were determined for groundwaters, spring waters, and lake water collected from the Shihongtan sandstone-hosted U ore district and in the surrounding area, NW China. The results show that the groundwaters from the oxidizing aquifer with high dissolved oxygen concentration (O2 and oxidation-reduction potential (Eh are enriched in U. The high U concentration of groundwaters may be due to the interaction between these oxidizing groundwaters and U ore bodies, which would result in U that is not in secular equilibrium. Uranium is re-precipitated as uraninite on weathered surfaces and organic material, forming localized ore bodies in the sandstone-hosted aquifer. The 234U/238U, 230Th/234U, and 230Th/238U activity ratios (ARs for most water samples show obvious deviations from secular equilibrium (0.27–2.86, indicating the presence of water-rock/ore interactions during the last 1.7 Ma and probably longer. The 234U/238U AR generally increases with decreasing U concentrations in the groundwaters, suggesting that mixing of two water sources may occur in the aquifer. This is consistent with the fact that most of the U ore bodies in the deposit have a tabular shape originati from mixing between a relatively saline fluid and a more rapidly flowing U-bearing meteoric water.

  5. Practical issues in discriminating between environmental and occupational sources in a uranium urinalysis bioassay program

    International Nuclear Information System (INIS)

    Long, M.P.; Carbaugh, E.H.; Fairrow, N.L.

    1994-11-01

    Workers at two Department of Energy facilities, the Pantex Plant in Texas and the Hanford Site in Washington, are potentially exposed to class Y depleted or natural uranium. Since trace amounts of uranium are naturally present in urine excretion, site bioassay programs must be able to discern occupational exposure from naturally occurring uranium exposure. In 1985 Hanford established a 0.2-μg/d environmental screening level for elemental uranium in urine; the protocol was based on log-normal probability analysis of unexposed workers. A second study of background uranium levels commenced in 1990, and experiences in the field indicated that there seemed to be an excessive number of urine samples with uranium above the screening level and that the environmental screening level should be reviewed. Due to unforeseen problems, that second study was terminated before the complete data could be obtained. Natural uranium in rock (by weight, 99.27% 288 U, 0.72% 235 U, and 0.006% 234 U) has approximately equal activity concentrations of 238 U and 234 U. Earlier studies, summarized by the U.S. Environmental Protection Agency in 51 FR 32068, have indicated that 234 U (via 234 Th) has a greater environmental mobility than 238 U and may well have a higher concentration in ground water. By assuming that the 238 U-to 234 U ratio in the urine of nonoccupationally exposed persons should reflect the ratio of environmental levels, significant occupational exposure to depleted uranium would shift that ratio in favor of 238 U, allowing use of the ratio as a co-indicator of occupational exposure in addition to the isotope-specific screening levels. This approach has been adopted by Pantex. The Pacific Northwest Laboratory is studying the feasibility of applying this method to the natural and recycled uranium mixtures encountered at Hanford. The Hanford data included in this report represent work-in-progress

  6. 238U-series radionuclides in Finnish groundwater-based drinking water and effective doses

    International Nuclear Information System (INIS)

    Vesterbacka, P.

    2005-09-01

    The thesis deals with the occurrence of 238 U-series radionuclides and particle-bound 210 Pb and 210 Po in Finnish groundwater-based drinking water, methods used for removing 234 U, 238 U, 210 Pb and 210 Po, and the annual effective doses caused by 238 U-series radionuclides in drinking water. In order to reduce radiation exposure and avoid high doses, it is important to examine the activity levels of natural radionuclides in groundwater. In this work, the activity concentrations of radon ( 222 Rn), radium ( 226 Ra), uranium ( 238 U and 234 U), lead ( 210 Pb) and polonium ( 210 Po) were determined from 472 private wells, which were selected randomly from across Finland. On the basis of the results, the activity concentrations in groundwater and the radiation exposure from drinking water of people living outside the public water supply in Finland was specified. The efficiency of 238 U, 234 U, 210 Pb and 210 Po removal from drinking water was examined at ten private homes. In order to obtain accurate results and correct estimates of effective doses, attention was paid to the sampling of 222 Rn and 210 Pb, and the determination of 210 Pb. The results revealed that the median activity concentrations of natural radionuclides were as much as ten times higher in drilled wells than in wells dug in soil. The average activity concentration of 222 Rn in drilled wells was 460 Bq/l and in dug wells 50 Bq/l. The highest activity concentrations were found in Southern Finland. In addition, occasional high activity concentrations were found all over Finland. The average activity concentrations of 234 U and 238 U in drilled wells were 0.35 and 0.26 Bq/l and in dug wells 0.020 and 0.015 Bq/l, respectively. The spatial distribution of 234 U, 238 U, 210 Pb and 210 Po was essentially similar to that of 222 Rn. In contrast to other natural radionuclides, the highest 226 Ra activity concentrations were found in coastal areas, since drilled well water near the sea has a higher salinity

  7. Development of sequential analytical method for the determination of U-238, U-234, Th-232, Th-230, Th-228, Ra-226 and Ra-228 and its application in mineral waters

    International Nuclear Information System (INIS)

    Costa Lauria, D. da.

    1986-01-01

    A sequential analytical method for the determination of U-238, U-234, Th-232, Th-230, Th-228, Ra-226 and Ra-228 in environmental samples and applied to the analysis of mineral waters is studied. Thorium isotopes are coprecipitated with lanthanium fluoride before counting in alpha spectrometer, the uranium isotopes are determined by alpha spectrometry following extraction with TOPO onto a polymenic membrane. Radium-226 is determined with the radom emanation technique. (M.J.C.) [pt

  8. Assessment of the concentrations of U and Th in PM2.5 from Mexico City and their potential human health risk

    International Nuclear Information System (INIS)

    Mendez-Garcia, Carmen Grisel; Solis-Rosales, Corina; Rafael Chavez-Lomeli, Efrain

    2017-01-01

    This is one of the first studies in small particulate matter (PM 2.5 ) by inductively coupled plasma sector field mass spectrometry to measure the activity concentrations of isotopic uranium ( 234 , 235 and 238 U) and thorium ( 232 Th) in these fine particulates, to know their origin and their impact on human health in Mexico City. A different isotopic composition from the natural uranium composition was found. The 235 U/ 238 U atom ratio values are considered as low enrichment uranium, around 2% of 235 U enrichment. Both 235 U/ 238 U and 234 U/ 238 U ratios suggested anthropological rather natural source is impacting the composition of uranium in PM 2.5 . (author)

  9. Analyses of uranium series nuclides by alpha spectrometer on the uranium deposit

    International Nuclear Information System (INIS)

    Wismawati, T.

    2000-01-01

    The research is one of the program which was planned by PNC (Power Reactor and Nuclear Fuel Development Corporation). In this research the analyses of the uranium series nuclide of rock samples from uranium Tono deposit, Japan have been carried out. The 17 samples were collected from Tsukiyoshi Fault, at Gallery X on Shaft 2 consist of granite, sedimentary rocks and fault area. The aim of the research is to determine the area of U accumulation, equilibrium and leaching. The samples were treated by chemical reagent, separated by ion exchange resin and extracted by organic compounds. The uranium and thorium were deposited on the stainless steel plate surface by the electrolysis process. The activity of uranium and thorium was determined by alpha spectrometer. From the analyses data have been obtained that shows that the maximum activity of 238 U is 3.6798±0.1873 Bq/g, activity 234 U is 3.5450±0.1805 Bq/g and activity 230 Th is 3.6720±0.1868 Bq/g. The ratio figure 234 U/ 238 U versus 2 34 U / 2 30 T h has been drawn. As the conclusion, 6 samples point (No.3, 5, 8, 11, 13 and 16) lied in or on the boundary of the uranium accumulation area, 7 samples (No. 4, 6, 9, 10, 12, 15 and 17) are very close to the equilibrium position, 4 points (No. 1, 2, 7, and 14) in the leaching process. (author)

  10. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Alameda, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero Sujo, L.; Montero Cabrera, M.E. E-mail: elena.montero@cimav.edu.mx; Villalba, L.; Renteria Villalobos, M.; Torres Moye, E.; Garcia Leon, M.; Garcia-Tenorio, R.; Mireles Garcia, F.; Herrera Peraza, E.F.; Sanchez Aroche, D

    2004-07-01

    High-resolution gamma spectrometry was used to determine the concentration of {sup 40}K, {sup 238}U and {sup 232}Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m{sup 3}; the radon concentrations detected exceeded 148 Bq/m{sup 3} in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m{sup 3}. The high activity of {sup 238}U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  11. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    Science.gov (United States)

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  12. Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-01-01

    Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu

  13. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  14. Analogue studies in the alligator rivers region. In-situ measurement of uranium series nuclides with SHRIMP

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Tetsushi; Yanase, Nobuyuki; Ohnuki, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Tsutomu; Isobe, Hiroshi; Williams, I.S.; Zaw, M.; Payne, T.E.; Airey, P.L.

    1999-03-01

    The SHRIMP analyses have been conducted for rock samples from the Koongarra secondary ore deposit to obtain activity ratios of {sup 234}U/{sup 238}U and isotopic ratios of {sup 207}Pb/{sup 206}Pb and {sup 204}Pb/{sup 206}Pb. Target minerals for the analyses were iron minerals and kaolinite, which are the main weathering products in this area. The activity ratios of {sup 234}U/{sup 238}U were obtained based on counts at masses of uranium metal. The {sup 234}U/{sup 238}U activity ratios based on counts of uranium oxides were not appropriate, because count rates of {sup 234}U{sup 16}O were interfered by those of {sup 238}U{sup 12}C molecule. The activity ratios of {sup 234}U/{sup 238}U were approximately unity for crystalline iron nodules. This fact suggested that the mean residence time of uranium within the iron nodules was at least 1 million years. On the other hand, slightly higher values than unity were obtained for kaolinite. Lead isotopes were investigated and a positive relationship was recognized between {sup 207}Pb/{sup 206}Pb and {sup 204}Pb/{sup 206}Pb isotope ratios. (author)

  15. Radioactively induced noise in gas-sampling uranium calorimeters

    International Nuclear Information System (INIS)

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U 238 absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the α-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters

  16. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  17. 230Th, 232Th and 238U determinations in phosphoric acid fertilizer and process products by ICP-MS

    International Nuclear Information System (INIS)

    Nascimento, Marcos R.L. do; Guerreiro, Luisa M.R.; Bonifacio, Rodrigo L.; Taddei, Maria H.T.

    2015-01-01

    Through processing of Santa Quiteria-CE mine phosphate rock, Brazil has established a project for production of phosphoric acid fertilizer and uranium as a by-product. Under leaching conditions of phosphate rock with sulfuric acid, which is the common route for preparing phosphoric acid fertilizer, a large part of uranium, thorium and their decay products naturally present in the rock are solubilized. In order to assess the contamination potential in phosphoric acid and others process products, this paper describes a previous precipitation and direct methods for routine analysis of thorium and uranium isotopes by ICP-MS. In all samples, 230 Th, 232 Th and 238 U were directly determined after dilution, except 230 Th in phosphoric acid loaded with uranium sample, which to overcome equipment contamination effect, was determined after its separation by oxalate precipitation using lanthanum as a carrier. The results obtained by the proposed method by ICP-MS, were in good agreement when compared to alpha spectrometry for 230 Th, and ICP-OES and spectrophotometry with arsenazo III for elementary uranium and thorium determinations. (author)

  18. Uranium, plutonium, and thorium isotopes in the atmosphere and the lithosphere

    International Nuclear Information System (INIS)

    Essien, I.O.

    1983-01-01

    Concentration of 238 U in rain and snow collected at Fayetteville (36 0 N, 94 0 W), Arkansas, showed a marked increase during the summer months of 1980, while Mount St. Helens remained active. This observed increase of 238 U can be explained as due to the fallout of natural uranium from the eruption of Mount St. Helens. Large increases in the concentration of thorium isotopes detected in rain and snow samples during the last months of 1982 and early months of 1983 probably originated from the eruption of El Chichon volcano, which occurred on 28 March 1982. About 450 Ci of 232 Th is estimated to have been injected into the atmosphere by this eruption. Isotopic anomalies were observed in atmospheric samples such as rain and snow. These anomalies can be attributed to various natural as well as man-made sources: nuclear weapon tests, nuclear accidents involving the burn-up of nuclear powered satellites, and volcanic eruptions. The variation of 234 U/ 238 U ratios in radioactive minerals when leached with nitric acid were also noticed and this variation, while 235 U/ 238 U remained fairly constant, can be explained in terms of the α-recoil effect and changes in oxidation state of uranium. Difference found in 239 Pu/ 238 U ratios in terrestrial samples and uranium minerals can be explained as due to fallout contamination

  19. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  20. Determination of uranium in phosphorite by radiometric measurements and activation analysis

    International Nuclear Information System (INIS)

    Santos Amaral, R. dos.

    1987-01-01

    Uranium was determined by passive gamma ray counting in phosphate rocks in the range from 50 to 400 ppm U 3 O 8 . The measurements were carried out focusing on the 186 KeV gamma ray from the 235 U nuclide. The radioactive equilibrium of the 226 Ra in the uranium decay chain was investigated due its contribution in the 186 KeV compound 226 Ra 235 U photopeak. Therefore a simulataneous uranium determination through the 234 Th radionuclide demonstrate the equilibrium conditions. The results of the uranium analysis by the following methods: spectrophotometry, XRF and delayed neutrons from three independent laboratories were compared to evaluate the accuracy of the radioanalytical results. The uranium content was also determined by neutron activation analysis, followed by gamma measurement of the 239 Np formed by the 238 U (n,γ) 239 U reaction and 239 U beta decay and the fission products of 235 U. By the correlation of 239 Np, 99 Mo, 143 Ce, 131 I, and 133 I photopeak was measured the 238 U/ 235 U isotopic ratio. (author) [pt

  1. Detection of uranium mining activities

    International Nuclear Information System (INIS)

    Maiorov, V.; Ryjinski, M.; Bragin, V.

    2001-01-01

    In undisturbed natural uranium ore the 238 U decay chain isotopes appear in secular decay equilibrium with activity ratios equal to one. In the course of ore processing the bulk of the uranium decay products is separated from the uranium product and concentrated in the tails. Therefore the disturbed activity ratios of short-lived daughters to long-lived parents can be indicators of ore processing. Using 234 Th and 238 U activities (the short-lived daughter with T 1/2 =24.1 days and the long- lived parent respectively) one can roughly estimate how much time has elapsed since ore processing occurred. Equilibrium is reached in about three months after processing and the 234 Th and 238 U activity levels are approximately equal (taking into account the error of measurements). Higher or lower 234 Th activity levels, relative to 238 U, indicate the material has been recently processed. Assuming the product is depleted in Th and the tails are enriched, the activity of 234 Th in fresh product should be lower than 238 U and higher in fresh tails. The 234 Th/ 230 Th activity ratio can also be used for age estimations ( 230 Th is a long-lived nuclide). Five samples were taken from the Ranger Uranium Mine and Concentration Plant in Australia, and one sample was taken from the Jabiluka mine (10 km far from the Ranger Mine). The samples included non-processed ore, coarse ore from the stockpile, final crushed ore, fresh and old tails, and fresh product (U 3 O 8 ). All the samples were analyzed by HRGS to measure the activities of gamma emitting nuclides. XRF and IDMS were used to measure uranium content and isotopic composition. The 238 U activity was calculated from these measurement results. The 234 Th activity was measured by HRGS with a planar HPGe detector and a calibrated low activity 241 Am solution as an internal standard. The 234 Th/ 230 Th activity ratio was measured using the 60 keV energy region where both isotopes have gamma lines. Use of gamma lines with close

  2. Determination of irradiated uranium in far-field contaminated areas of Belarus

    International Nuclear Information System (INIS)

    Mironov, V.; Pribylev, S.; Hotchkis, M.; Child, D.

    2006-01-01

    The possibility of using U 236 as an indicator for irradiated uranium is shown. The sensitivity of AMS is high enough for measurements of 236 U/ 238 U ratios down to 10 -9 on micrograms of uranium and therefore for the detection of Chernobyl originated uranium in the remote regions of radioactive fallout. (authors)

  3. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  4. Mass spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein

    International Nuclear Information System (INIS)

    Ludwig, K.R.; Simmons, K.R.; Szabo, B.J.; Riggs, A.C.; Winograd, I.J.; Landwehr, J.M.; Hoffman, R.J.

    1992-01-01

    The Devils Hole calcite vein contains a long-term climatic record, but requires accurate chronologic control for its interpretation. Mass-spectrometric U-series ages for samples from core DH-11 yielding 230 Th ages with precisions ranging from less than 1,000 years (2σ) for samples younger than ∼140 ka (thousands of years ago) to less than 50,000 years for the oldest samples (∼566 ka). The 234 U/ 238 U ages could be determined to a precision of ∼20,000 years for all ages. Calcite accumulated continuously from 566 ka until ∼60 ka at an average rate of 0.7 millimeter per 10 3 years. The precise agreement between replicate analyses and the concordance of the 230 Th/ 238 U and 234 U/ 238 U ages for the oldest samples indicate that the DH-11 samples were closed systems and validate the dating technique in general

  5. Estimation of uranium and cobalt-60 distribution coefficients and uranium-235 enrichment at the Combustion Engineering Company site in Windsor, Connecticut

    International Nuclear Information System (INIS)

    Wang, Y.; Orlandini, K.A.; Yu, C.

    1996-05-01

    Site-specific distribution coefficients for uranium isotopes and cobalt-60 (Co-60) and the fraction of uranium-235 (U-235) enrichment by mass were estimated for environmental samples collected from the Combustion Engineering Company site in Windsor, CT. This site has been identified for remedial action under the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program. The authority of DOE at the Combustion Engineering site is limited to (1) Building 3; (2) other activities or areas associated exclusively with Building 3 (such as sewer lines); or (3) contamination that is exclusively highly enriched uranium. In this study, 16 samples were collected from the Combustion Engineering site, including 8 soil, 4 sediment, 3 water, and 1 water plus sludge sample. These samples were analyzed for isotopic uranium by alpha spectrometry and for Co-60 by gamma spectrometry. The site-specific distribution coefficient for each isotope was estimated as the ratio of extractable radionuclide activity in the solid phase to the activity in the contact solution following a 19-day equilibration. The uranium activity measurements indicate that uranium-234 (U-234) and uranium-238 (U-238) were in secular equilibrium in two soil samples and that soil and sediment samples collected from other sampling locations had higher U-234 activity than U-238 activity in both the solid and solution phases. The site-specific distribution coefficient (Kd) ranged from 82 to 44,600 mL/g for U-238 and from 102 to 65,900 mL/g for U-234. Calculation of U-235 enrichment by mass indicated that four soil samples had values greater than 0.20; these values were 0.37, 0.38, 0.46, and 0.68. Cobalt-60 activity was detected in only three sediment samples. The measured Co-60 activity in the solid phase ranged from 0.15 to 0.45 pCi/g and that in the water phase of all three samples combined was 4 pCi/L. The Kd value for Co-60 in the site brook sediment was calculated to be 70 mL/g

  6. Utilisation of prompt fission neutron technology in Greenfields uranium exploration

    International Nuclear Information System (INIS)

    Mutz, P.R.

    2007-01-01

    Conventionally, gamma detection technology has been used in uranium exploration programs for the initial detection of uranium as well as for a determination of uranium concentration. Geophysical logging companies use wireline gamma probes to measure uranium within boreholes, and field technicians utilise hand held gamma meters to detect uranium in rock samples, drill cuttings and cores. Borehole geophysical logging equipment typically records the uranium concentration as %eU 3 O8, where e represents an equivalent determination of uranium concentration as opposed to a laboratory assay. This method of uranium determination is an indirect method, as it measures gamma radiation from uranium-238 (U-238) isotope decay chain progeny; principally the bismuth-214 (Bi-214) isotope. Consequently, the uranium determination can be inaccurate due to natural disequilibrium between the U-238 parent and the decay chain progeny. This is especially true in sedimentary hosted uranium deposits, where the uranium and daughter progeny may have been geochemically separated. The gamma detection method for uranium can also be rendered inaccurate by detecting the gamma signature from potassium in clays as well as from thorium; both of which can provide a false (enhanced) eU 3 O8 determination. Prompt Fission Neutron (PFN) technology is a geophysical wireline logging technology used in the same manner as conventional gamma logging. The difference is that PFN provides a direct determination of uranium within a borehole, irrespective of natural disequilibrium or the presence of other radioactive elements. This paper provides a brief description of natural uranium and radioactivity as a basis for explaining the conventional use of gamma radiation detectors for the detection and determination of uranium concentration in exploration boreholes, including the potential pitfalls of this technology. A detailed description of prompt fission neutron technology is also presented, along with a discussion

  7. A comparative study of 232Th and 238U activity estimation in soil samples by gamma spectrometry and Neutron Activation Analysis (NAA) technique

    International Nuclear Information System (INIS)

    Rekha, A.K.; Anilkumar, S.; Narayani, K.; Babu, D.A.R.

    2012-01-01

    Radioactivity in the environment is mainly due to the naturally occurring radionuclides like uranium, thorium with their daughter products and potassium. Even though Gamma spectrometry is the most commonly used non destructive method for the quantification of these naturally occurring radionuclides, Neutron Activation Analysis (NAA), a well established analytical technique, can also be used. But the NAA technique is a time consuming process and needs proper standards, proper sample preparation etc. In this paper, the 232 Th and 238 U activity estimated using gamma ray spectrometry and NAA technique are compared. In the case of direct gamma spectrometry method, the samples were analysed after sealing in a 250 ml container. Whereas for the NAA, about 300 mg of each sample, after irradiation were subjected to gamma spectrometry. The 238 U and 232 Th activities (in Bq/kg) in samples were estimated after the proper efficiency correction and were compared. The estimated activities by these two methods are in good agreement. The variation in 238 U and 232 Th activity values are within ± 15% which are acceptable for environmental samples

  8. Natural radioactivity of bedrock bath instruments and hot spring instruments in Japan

    International Nuclear Information System (INIS)

    Kazuki Iwaoka; Hiroyuki Tabe; Hidenori Yonehara

    2013-01-01

    In Japan, bedrock bath instruments and hot spring instruments that contain natural radioactive nuclides are commercially available. In this study, such instruments containing natural radioactive nuclides, currently distributed in Japan, were collected and the radioactivity concentration of 238 U series, 232 Th series, and 40 K in them was determined by gamma ray spectrum analyses. Effective doses to workers and general consumers handling the materials were estimated, revealing the radioactivity concentration of 238 U series, 232 Th series, and 40 K to be lower than critical values given in the IAEA Safety Guide. The maximum effective doses to workers and general consumers were 210 and 6.1 μSv y -1 , respectively. These values are lower than the intervention exemption level (1,000 μSv y -1 ) given in ICRP Publ. 82. (author)

  9. On the migration of uranium isotopes in sandstone aquifers

    International Nuclear Information System (INIS)

    Froehlich, K.; Gellermann, R.

    1982-01-01

    Measurements of natural 238 U and 234 U activity in groundwater of sandstone aquifers have been used to study the migration of these uranium isotopes. Regarding the uranium exchange between liquid phase and rock surface during migration, two different models were applied for evaluating the experimental results. Values of corresponding parameters (retardation factor K, removal rate R) reflecting different behaviour concerning this exchange were determined. For example, the values obtained for 238 U in a Triassic sandstone aquifer of the GDR are K = 8.6 x 10 6 and R = 1.3 x 10 -3 a -1 , respectively. It was found that, under the conditions of the sandstone aquifer concerned, the removal rate model is better suited for calculating uranium-isotope migration in groundwater. (author)

  10. The uranium behaviour during rock-water interaction in the granites from the Itu complex (Sao Paulo, Brazil): a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helen S.B. da; Marques, Leila S.; Kawauchi, Roberto K., E-mail: leila@iag.usp.br, E-mail: keiji@iag.usp.br [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas. Universidade de Sao Paulo (USP), SP (Brazil)

    2011-07-01

    In order to elucidate the mechanisms involved in the process of uranium leaching due to the rock-water interaction in the granitic rocks from Itu Complex (Sao Paulo, Brazil), an experimental arrangement was developed and built. About 2.5kg of crushed rock fragments from Cabreuva and Indaiatuba Intrusions were maintained at room temperature within a glass flask filled with circulating water. The percolating water was removed periodically (from 10 to 30 days) for uranium analysis and then replaced by an equal volume of fresh water. Alpha spectrometry was used to determine the activity concentrations of {sup 234}U and {sup 238}U, and {sup 234}U/{sup 238}U activity ratios, of the waters as well as of the granites. The results for both samples showed that most of the uranium is leached in the first days after the contact between rock and water. The {sup 234}U/{sup 238}U activity ratios were significantly greater than unity, indicating radioactive disequilibrium between those isotopes, probably due to alpha recoil. Although the uranium activity concentrations in the water samples diminished with the increasing of time, it was not observed considerable variations of the {sup 234}U/{sup 238}U activity ratios. It was also noticed that, the amount of leached uranium as well as the {sup 234}U/{sup 238}U activity ratios are characteristics of each sample submitted to leaching, reflecting the differences of the granite facies mineralogy.(author)

  11. Potential human health risk by 234,238U and 210Po due to consumption of fish from the "Luis L. Leon" reservoir (Northern Mexico)

    Science.gov (United States)

    Luna-Porres, M. Y.; Rodríguez-Villa, M. A.; Herrera-Peraza, E.; Cabral-Lares, M.; Renteria-Villalobos, M.; Montero-Cabrera, M. E.

    2014-07-01

    The Conchos River is one of the most important in northern Mexico and the main surface waterway in the arid state of Chihuahua. The Luis L. Leon dam produces the Luis L. Leon Reservoir, which is the last major reservoir before the Conchos River enters the Rio Grande at the Texas-Chihuahua border. Activity concentrations (AC) of 234,238U and 210Po in fillet and liver of three stocked fish species (Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus), as well as in water from the Luis L. Leon reservoir were determined. 238U and 234U ACs in fillet samples showed values of 0.007-0.014 and 0.01-0.02 Bq kg-1 wet weight (ww), respectively. Liver samples for Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus species, present 210Po AC of 1.16-3.26 0.70-1.13 and 0.93-1.37 Bqṡkg-1 ww. The elemental Bioaccumulation Factor (BAF) for fish tissues respect to their concentrations in water was determined. Lepomis cyanellus species showed the highest BAF for total uranium in fillet, with value 1.5. The annual effective dose for uranium in adults by fish consumption in this work ranged from 4.46×10-3 to 3.68×10-2 μSvṡyear-1. The difference in concentrations of uranium in fillet among the studied species is likely primarily due to their differences in diet and habitat.

  12. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  13. Development of AN Active 238UF6 Gas Target

    Science.gov (United States)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  14. Analysis for the radionuclides of the natural uranium and thorium decay chains with special reference to uranium mine tailings

    International Nuclear Information System (INIS)

    Lowson, R.T.; Short, S.A.

    1986-08-01

    A detailed review is made of the experimental techniques that are available, or are in the process of development, for the determination of 238 U, 235 U, 234 U, 231 Pa, 232 Th, 230 Th, 228 Th, 228 Ra, 226 Ra, 223 Ra, 210 Po and 210 Pb. These products of the uranium and thorium decay chains are found in uranium mine tailings. Reference is also made to a procedure for the selective phase extraction of mineral phases from uranium mine tailings

  15. Determination of uranium and its isotopic ratios in environmental samples

    International Nuclear Information System (INIS)

    Flues Szeles, M.S.M.

    1990-01-01

    A method for the determination of uranium and its isotopic ratios ( sup(235)U/ sup(238)U and sup(234U/ sup(238)U) is established in the present work. The method can be applied in environmental monitoring programs of uranium enrichment facilities. The proposed method is based on the alpha spectrometry technique which is applied after a purification of the sample by using an ionic exchange resin. The total yield achieved was (91 + 5)% with a precision of 5%, an accuracy of 8% and a lower limit of detection of 7,9 x 10 sup(-4)Bq. The uranium determination in samples containing high concentration of iron, which is an interfering element present in environmental samples, particularly in soil and sediment, was also studied. The results obtained by using artificial samples containing iron and uranium in the ratio 1000:1, were considered satisfactory. (author)

  16. {sup 238}U and {sup 232}Th concentrations in various foodstuffs in Morocco and resulting radiation doses to the members of the public; Concentrations en {sup 238}U et {sup 232}Th dans differents aliments au Maroc et doses de radiations en resultant pour les membres du public

    Energy Technology Data Exchange (ETDEWEB)

    Misdaq, M.A.; Elamyn, H.; Erramli, H. [Cadi Ayyad Univ., Nuclear Physics and Techniques Lab., Faculty of Sciences Semlalia, Marrakech (Morocco)

    2008-04-15

    Uranium ({sup 238}U) and thorium ({sup 232}Th) concentrations were measured in different foods widely consumed in Morocco by using C.R.-39 and L.R.-115 type II solid state nuclear track detectors (S.S.N.T.D.). Data obtained were compared to those obtained by using isotope dilution mass spectrometry (I.D.M.S.). Total daily intakes of {sup 238}U and {sup 232}Th for a typical food basket were estimated to be 1.3 {+-} 0.1 mBq d{sup -1} and 0.98 {+-} 0.08 mBq d{sup -1}, 1.4 {+-} 0.1 mBq d{sup -1} and 1.06 {+-} 0.08 mBq d{sup -1}, 1.7 {+-} 0.1 mBq d{sup -1} and 1.26 {+-} 0.08 mBq d{sup -1} and 2.0 {+-} 0.1 mBq d{sup -1} and 1.5 {+-} 0.1 Bq d{sup -1} for the 2-7 years, 7-12 years, 12-17 years and adult's age groups, respectively. Alpha-activities due to annual {sup 238}U and {sup 232}Th intakes from the ingestion of the studied foodstuffs were determined in different organs and tissues of the human body of members of the public by using the ICRP gastrointestinal tract and systemic part models for these radionuclides. Committed equivalent doses due to annual intakes of {sup 238}U and {sup 232}Th were evaluated in the human body organs and tissues for different age groups of the Moroccan population by exploiting data obtained for alpha-doses deposited by 1 Bq of {sup 238}U and 1 Bq of {sup 232}Th in the considered human organs and tissues. The influence of the mass of the target tissue and activities due to {sup 238}U and {sup 232}Th on the committed equivalent doses due to annual intakes of these radionuclides in the organs and tissues of the human body was studied. (authors)

  17. Uranium isotopes in carbonate aquifers of arid region setting

    International Nuclear Information System (INIS)

    Alshamsi, D.M.; Murad, A.A.

    2013-01-01

    Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238 U and 235 U in groundwater of four selected locations in the southern Arabian peninsula, namely at two locations within the United Arab Emirates (UAE) and two locations in Oman are discussed. The analyses of the uranium isotopes were performed using ICP-MS and the results indicated a range of concentrations for 235 U and 238 U at 3-39 ng L -1 (average: 18 ng L -1 ) and 429-5,293 ng L -1 (average: 2,508 ng L -1 ) respectively. These uranium concentrations are below the higher permissible WHO limit for drinking water and also comparable to averages found in groundwater from similar aquifers in Florida and Tunisia. Negative correlation between rainfall and uranium concentrations suggests that in lithologically comparable aquifers, climate may influence the concentration of uranium in subtropical to arid regions. (author)

  18. Uranium isotopes in groundwaters from Tubarao Group, Parana Basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.; Caprioglio, L.

    1999-01-01

    The purpose of this work is to characterize the uranium isotopes 238-U and 234-U in some important deep tubular wells drilled at Tubarao Group, with the aim of verifying if the dissolution processes that are taking place within the aquifer can generate enhanced 234-U/238-U activity ratios like those found at the Botucatu-Piramboia aquifer. (author)

  19. 238U photonuclear studies with 5-10 MeV photons

    International Nuclear Information System (INIS)

    Hawkes, N.P.

    1986-02-01

    The 238 U photofission and photoneutron cross sections, and the mean number -ν of prompt neutrons per fission, have been measured between 5 and 10 MeV. The experiment was carried out using bremsstrahlung from the electron linear accelerator HELIOS at Harwell. Neutrons from (γ,f) and (γ,n) reactions on 238 U were detected, and neutron multiplicity distributions recorded. Photoneutron events were separated from photofission events by means of their different multiplicities. (author)

  20. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Abramovich, S.N.; Zvenigorodskii, A.G. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    There were presented results of cross-section measurements for nuclear reactions {sup 238}U(p,n){sup 238}Np, {sup 238}U(d,2n){sup 238}Np, {sup 238}U(d,t){sup 237}U, {sup 238}U(d,p){sup 239}U, and {sup 238}U(d,n){sup 239}Np. Interval of projectile energy was 10-14 MeV. For measurements of cross-sections it was used the activatio methods. The registration of {beta}- and {gamma}-activity was made with using of plastic scintillation detector and Ge(Li)-detector.

  1. Depleted and enriched uranium exposure quantified in former factory workers and local residents of NL Industries, Colonie, NY USA

    International Nuclear Information System (INIS)

    Arnason, John G.; Pellegri, Christine N.; Moore, June L.; Lewis-Michl, Elizabeth L.; Parsons, Patrick J.

    2016-01-01

    Background: Between 1958 and 1982, NL Industries manufactured components of enriched (EU) and depleted uranium (DU) at a factory in Colonie NY, USA. More than 5 metric tons of DU was deposited as microscopic DU oxide particles on the plant site and surrounding residential community. A prior study involving a small number of individuals (n=23) indicated some residents were exposed to DU and former workers to both DU and EU, most probably through inhalation of aerosol particles. Objectives: Our aim was to measure total uranium [U] and the uranium isotope ratios: 234 U/ 238 U; 235 U/ 238 U; and 236 U/ 238 U, in the urine of a cohort of former workers and nearby residents of the NLI factory, to characterize individual exposure to natural uranium (NU), DU, and EU more than 3 decades after production ceased. Methods: We conducted a biomonitoring study in a larger cohort of 32 former workers and 99 residents, who may have been exposed during its period of operation, by measuring Total U, NU, DU, and EU in urine using Sector Field Inductively Coupled Plasma - Mass Spectrometry (SF-ICP-MS). Results: Among workers, 84% were exposed to DU, 9% to EU and DU, and 6% to natural uranium (NU) only. For those exposed to DU, urinary isotopic and [U] compositions result from binary mixing of NU and the DU plant feedstock. Among residents, 8% show evidence of DU exposure, whereas none shows evidence of EU exposure. For residents, the [U] geometric mean is significantly below the value reported for NHANES. There is no significant difference in [U] between exposed and unexposed residents, suggesting that [U] alone is not a reliable indicator of exposure to DU in this group. Conclusions: Ninety four percent of workers tested showed evidence of exposure to DU, EU or both, and were still excreting DU and EU decades after leaving the workforce. The study demonstrates the advantage of measuring multiple isotopic ratios (e.g., 236 U/ 238 U and 235 U/ 238 U) over a single ratio ( 235 U/ 238 U

  2. Uranium content in soils, vegetables, cereals and fruits

    International Nuclear Information System (INIS)

    Frindik, O.

    1988-01-01

    As compared to other vegetable samples, parsley leaves showed a much higher uranium content, presumably due to tightly adhering dust which could not be removed by washing. Uranium transfer factors from the soil to the plants were calculated; these factors always include the total uranium concentration and not only the 'soluble' uranium. As compared to U-238 the activity of U-234 is nearly always higher in vegetable samples, but lower in soil samples. (orig./HP) [de

  3. Alternative repository criticality-control strategies for fissile uranium wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1998-01-01

    Methods to prevent long term, disposal site nuclear criticality from fissile uranium isotopes in wastes were investigated. Long term refers to the time period after waste package (WP) failure and the subsequent loss of geometry and chemistry control within the WP. The preferred method of control was found to be the addition of sufficient depleted uranium to each WP so that the uranium enrichment is reduced to 235 U and 233 U in 238 U

  4. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Uptake of uranium from drinking water

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1987-01-01

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234 U and 238 U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion the subjects collected 24 hour total output of both urine and feces for seven days prior to drinking water. During the next day they drank, at their normal rate of drinking water intake, 900 ml of water containing approximately 90 pCi 238 U and 90 pCi 234 U (274 μg U) and continued to collect their urine and feces for seven additional days. Utilizing one technique for analyzing data, the G.I. absorption of 234 U ranged from -0.07% to 1.88% with an average of 0.51% and G.I. absorption of 238 U ranged from -0.07% to 1.79% with an average of 0.50%. Employing another technique for analyzing the data, the G.I. absorption ranged from -0.04 to 1.46% with a mean of 0.53% for 234 U and from 0.03% to 1.43% with a mean of 0.52 for 238 U. The dietary intake of U was also estimated from measurements of urinary and fecal excretion of U in eight subjects prior to drinking water containing U. The estimated average dietary intake of U for these subjects is 3.30 +/- 0.65 or 4.22 +/- 0.65 μg/day. These averages are two to four times higher than the values reported in the literature for dietary intake

  6. Evaluation of neutron-induced reactions in 48Ti and 238U

    International Nuclear Information System (INIS)

    Carlson, B.V.; Fiorentino, J.; Frederico, T.; Isidro Filho, M.P.; Mastroleo, R.C.; Rego, R.A.

    1984-05-01

    Preliminary results of the evaluation of neutron-induced reactions in 48 Ti and 238 U are presented. Calculated cross sections for the reactions (n,γ), (n,n'), (n, 2n) and (n,p) as well as for (n,f) in 238 U are given. Comparisons with available experimental data are made and possible changes in the parameters are discussed. (Author) [pt

  7. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    Science.gov (United States)

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  8. A method of uranium isotopes concentration analysis

    International Nuclear Information System (INIS)

    Lin Yuangen; Jiang Meng; Wu Changli; Duan Zhanyuan; Guo Chunying

    2010-01-01

    A basic method of uranium isotopes concentration is described in this paper. The iteration method is used to calculate the relative efficiency curve, by analyzing the characteristic γ energy spectrum of 235 U, 232 U and the daughter nuclide of 238 U, then the relative activity can be calculated, at last the uranium isotopes concentration can be worked out, and the result is validated by the experimentation. (authors)

  9. Charge-state distribution measurements of ^{238}U and ^{136}Xe at 11  MeV/nucleon using gas charge stripper

    Directory of Open Access Journals (Sweden)

    H. Kuboki

    2010-09-01

    Full Text Available The charge-state distributions and equilibrium charge states of uranium (^{238}U and xenon (^{136}Xe ions at 11  MeV/nucleon were determined using a gas charge stripper. A differential pumping system facilitated the increase of the nitrogen gas thickness up to 1.3  mg/cm^{2}, which is sufficient for the most probable charge state to attain equilibrium. The charge states of ^{238}U attain equilibrium at 56.0, 56.6, and 55.7 in N_{2}, Ar, and CO_{2} media with thicknesses of 125, 79, and 126  μg/cm^{2}, respectively, while those of ^{136}Xe attain equilibrium at 40.5, 40.1, and 40.3 in N_{2}, Ar, and CO_{2} media with thicknesses of 163, 95, and 139  μg/cm^{2}, respectively. The equilibrium charge states of ^{136}Xe are acceptable for acceleration by the subsequent cyclotron. The measured data of ^{238}U were used to devise an empirical formula for the prediction of the equilibrium charge state in gaseous media over the energy region of 0.01–60  MeV/nucleon. The equilibrium charge state of ^{136}Xe as predicted by the devised formula is in good agreement with the data.

  10. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  11. Multilevel effect in uranium-238 and thorium-232 effective neutron capture resonance integrals

    International Nuclear Information System (INIS)

    Tellier, H.

    1981-01-01

    Until now, there has been a discrepancy between the computed and the measured values of the /sup 238/U effective capture integral. Recently, several new measurements of the resonance parameters were carried out and the use of a multilevel formalism was suggested to compute the /sup 238/U cross sections. This paper shows that the simultaneous use of recent parameters and the Reich-Moore formalism explain the discrepancy. 31 refs

  12. 230Th-238U disequilibria in historical lavas from Iceland

    International Nuclear Information System (INIS)

    Condomines, M.; Morand, P.; Alleegre, C.J.; Sigvaldason, G.

    1981-01-01

    The 230 Th- 238 U disequilibrium studies on historical lavas from Iceland show a relative homogeneity for Th/U ratios and also a variation for ( 230 Th/ 232 Th) activity ratios at the scale of the island. The ( 230 Th/ 238 U) disequilibrium ratio is always greater than 1 which indicates that partial melting produces magmas with Th/U ratios greater than those of the mantle source. Furthermore, there seems to be a correlation between the variations of ( 230 Th/ 232 Th) (and delta 18 O) ratios and the geographical location of the samples along the active zones of Iceland. We develop and discuss several models in order to explain these variations. (orig.)

  13. {sup 230}Th/U-dating of a late Holocene low uranium speleothem from Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Fensterer, Claudia; Mangini, Augusta [Forschungsstelle Radiometrie, Heidelberg Academy of Sciences, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Scholz, Denis; Hoffmann, Derik [School of Geographical Sciences, University of Bristol, University Road, BS8 1SS, Bristol (United Kingdom); Pajon, Jesus M, E-mail: Claudia.Fensterer@iup.uni-heidelberg.d [Department of Archaeology, Cuban Institute of Anthropology, Amargura No. 203, e/n Habana y Aguiar, Ciudad de La Habana, CP: 10 100 (Cuba)

    2010-03-15

    We present 22 U-series ages for a stalagmite from north-western Cuba based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). Our results reveal that the stalagmite continuously grew within the last {approx}1400a. Low uranium content of the sample and thus, extremely low {sup 230}Th concentrations limit the precision and accuracy of {sup 230}Th/U-dating by TIMS. Samples measured by MC-ICPMS show a high variability of {sup 232}Th content along the growth axis with some sections significantly affected by initial {sup 230}Th from a detrital phase. An a-priori bulk earth ratio for ({sup 238}U/{sup 232}Th) cannot be used to accurately account for this initial {sup 230}Th. Using an age model based on the {sup 230}Th/U ages determined on samples with low or negligible {sup 232}Th concentration, we find that the ({sup 238}U/{sup 232}Th) activity ratio of the detrital phase is an order of magnitude larger than the bulk earth value, indicating the importance of an accurately determined correction factor.

  14. Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-09-01

    Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.

  15. 238U-230Th radioactive disequilibria in the volcanic products from Izu arc volcanoes, Japan

    International Nuclear Information System (INIS)

    Kurihara, Yuichi; Takahashi, Masaomi; Sato, Jun

    2007-01-01

    The timescale of magmatic processes of Izu arc volcanoes, Japan, was estimated by the 238 U- 230 Th disequilibria in the volcanic products from the volcanoes. The majority of the 230 Th/ 238 U activity ratios of the products were less than unity, being enriched in 238 U relative to 230 Th. The ( 230 Th/ 232 Th)-( 238 U/ 232 Th)diagram for younger Fuji and Izu-Oshima volcanoes formed a whole rock isochrons, and the ages were 1x10 4 and 2x10 4 years, respectively. The ( 230 Th/ 232 Th) - ( 238 U/ 232 Th) data set for younger Fuji volcano formed a cluster on the diagram, while those of Izu-Oshima formed another cluster apparently apart from each other, suggesting that the concentration of U and Th may possibly be un-uniform in the mantle beneath Izu arc. (author)

  16. Uranium uptake history, open-system behaviour and uranium-series ages of fossil Tridacna gigas from Huon Peninsula, Papua New Guinea

    Science.gov (United States)

    Ayling, Bridget F.; Eggins, Stephen; McCulloch, Malcolm T.; Chappell, John; Grün, Rainer; Mortimer, Graham

    2017-09-01

    Molluscs incorporate negligible uranium into their skeleton while they are living, with any uranium uptake occurring post-mortem. As such, closed-system U-series dating of molluscs is unlikely to provide reliable age constraints for marine deposits. Even the application of open-system U-series modelling is challenging, because uranium uptake and loss histories can affect time-integrated uranium distributions and are difficult to constrain. We investigate the chemical and isotopic distribution of uranium in fossil Tridacna gigas (giant clams) from Marine Isotope Stage (MIS) 5e (128-116 ka) and MIS 11 (424-374 ka) reefs at Huon Peninsula in Papua New Guinea. The large size of the clams enables detailed chemical and isotopic mapping of uranium using LA-ICPMS and LA-MC-ICPMS techniques. Within each fossil Tridacna specimen, marked differences in uranium concentrations are observed across the three Tridacna growth zones (outer, inner, hinge), with the outer and hinge zones being relatively enriched. In MIS 5e and MIS 11 Tridacna, the outer and hinge zones contain approximately 1 ppm and 5 ppm uranium respectively. In addition to uptake of uranium, loss of uranium appears prevalent, especially in the MIS 11 specimens. The effect of uranium loss is to elevate measured [230Th/238U] values with little effect on [234U/238U] values. Closed-system age estimates are on average 50% too young for the MIS 5e Tridacna, and 25% too young for the MIS 11 Tridacna. A complex, multi-stage uptake and loss history is interpreted for the fossil Tridacna and we demonstrate that they cannot provide independent, reliable geochronological controls on the timing of past reef growth at Huon Peninsula.

  17. Methods for obtaining sorption data from uranium-series disequilibria

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Bryant, E.A.

    1987-12-01

    Two possible methods have been identified for obtaining in situ retardation factors from measurements of uranium-series disequilibria at Yucca Mountain. The first method would make use of the enhanced 234 U/ 238 U ratio in groundwater to derive a signature for exchangeable uranium sorbed on the rock; the exchangeable uranium would be leached and assayed. The second method would use the ratio of 222 Rn to 234 U in solution, corrected for weathering, to infer the retardation factor for uranium. Similar methods could be applied to thorium and radium

  18. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  19. Uranium and radium-226 in the environment of the post-uranium mining areas in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kardas, M.; Suplinska, M.; Ciupek, K. [Central Laboratory for Radiological Protection (Poland)

    2014-07-01

    The work carried out under the project NCBiR - 'Technologies Supporting Development of Safe Nuclear Power Engineering'; Task 3: Meeting the Polish nuclear power engineering's demand for fuel - fundamental aspects. Depending on location, environmental components may have different concentration levels of radionuclides. Main source of uranium and radium in the natural environment is atmospheric precipitation of the material resulting weathering and erosion of older rocks, enhanced due to human activity by fertilizers used in agriculture and fossil fuel combustion. The waste heaps and dumps, especially derived from post-uranium mining and phosphate fertilizer industry are the another source of uranium and radium in the environment. Our studies include post-uranium mining areas (inactive mines and waste dumps) and those adjacent meadows and grassland at the area of the Giant Mountains (Karkonosze Mountains) in the south-west Poland. Samples of soil and mineral material from mine shafts, water samples from ponds, streams and small rivers and vegetation samples (grass, alfalfa, birch leaves) were analyzed. Also, similar samples from agricultural regions of Poland were examined as a reference level. Uranium isotopes were determined by radiochemical method (ion exchange and extraction) and activity measurement using alpha spectrometry. Concentration of {sup 226}Ra was determined radiochemically using emanation method. For the validation of the method, determinations of uranium isotopes and radium-226 in reference samples were performed. Depending on location, the different levels of activity concentration of analyzed radionuclides were detected. Samples from the mine shafts and dumps, both water and soil, were characterized by the activity concentrations of {sup 238}U and {sup 226}Ra even by several orders higher than outside of those areas. The concentrations of the radionuclides in the areas located in further distances from mine and dumps are similar to

  20. Inclusive quasifree electrofission cross section for 238U

    International Nuclear Information System (INIS)

    Likhachev, V.P.; Carvalho, W.R. Jr.; Deppman, A.; Hussein, M.S.; Macedo, L.F.R.; Mesa, J.; Vaudeluci, M.S.; Arruda-Neto, J.D.T.; Evseev, I.G.; Pashchuk, S.A.; Schelin, H.R.; Garcia, F.; Rodriguez, O.; Margaryan, A.; Nesterenko, V.O.

    2003-01-01

    We present results from a joint theoretical and experimental study of inclusive quasifree electrofission of 238 U. The off-shell cross sections for the quasifree reaction stage have been calculated within the plane wave impulse approximation with distortion corrections included in the effective momentum approximation. Proton and neutron single-particle momentum distributions were calculated in the macroscopic-microscopic approach. The fissility for proton and neutron single hole excited states of the residual nuclei 237 Pa and 237,238 U was calculated within the compound nucleus model. Final state interaction corrections to residual nucleus excitation energy were calculated using the imaginary part of the optical potential. The total inclusive electrofission cross section was measured with high absolute precision, and all principal partial contributions are analyzed, in particular, the quasifree one

  1. Depleted and enriched uranium exposure quantified in former factory workers and local residents of NL Industries, Colonie, NY USA

    Energy Technology Data Exchange (ETDEWEB)

    Arnason, John G. [Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States); Department of Environmental Health Sciences, School of Public Health, The University at Albany, P.O. Box 509, Albany, NY 12201-0509 (United States); Pellegri, Christine N. [Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States); Moore, June L.; Lewis-Michl, Elizabeth L. [Bureau of Environmental and Occupational Epidemiology, Center for Environmental Health, New York State Department of Health, Albany, NY (United States); Parsons, Patrick J., E-mail: patrick.parsons@health.ny.gov [Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States); Department of Environmental Health Sciences, School of Public Health, The University at Albany, P.O. Box 509, Albany, NY 12201-0509 (United States)

    2016-10-15

    Background: Between 1958 and 1982, NL Industries manufactured components of enriched (EU) and depleted uranium (DU) at a factory in Colonie NY, USA. More than 5 metric tons of DU was deposited as microscopic DU oxide particles on the plant site and surrounding residential community. A prior study involving a small number of individuals (n=23) indicated some residents were exposed to DU and former workers to both DU and EU, most probably through inhalation of aerosol particles. Objectives: Our aim was to measure total uranium [U] and the uranium isotope ratios: {sup 234}U/{sup 238}U; {sup 235}U/{sup 238}U; and {sup 236}U/{sup 238}U, in the urine of a cohort of former workers and nearby residents of the NLI factory, to characterize individual exposure to natural uranium (NU), DU, and EU more than 3 decades after production ceased. Methods: We conducted a biomonitoring study in a larger cohort of 32 former workers and 99 residents, who may have been exposed during its period of operation, by measuring Total U, NU, DU, and EU in urine using Sector Field Inductively Coupled Plasma - Mass Spectrometry (SF-ICP-MS). Results: Among workers, 84% were exposed to DU, 9% to EU and DU, and 6% to natural uranium (NU) only. For those exposed to DU, urinary isotopic and [U] compositions result from binary mixing of NU and the DU plant feedstock. Among residents, 8% show evidence of DU exposure, whereas none shows evidence of EU exposure. For residents, the [U] geometric mean is significantly below the value reported for NHANES. There is no significant difference in [U] between exposed and unexposed residents, suggesting that [U] alone is not a reliable indicator of exposure to DU in this group. Conclusions: Ninety four percent of workers tested showed evidence of exposure to DU, EU or both, and were still excreting DU and EU decades after leaving the workforce. The study demonstrates the advantage of measuring multiple isotopic ratios (e.g., {sup 236}U/{sup 238}U and {sup 235}U

  2. The use of environmental uranium isotopes in the study of the hydrology of the Burdekin Delta

    International Nuclear Information System (INIS)

    Campbell, B.L.

    1977-03-01

    Analyses of bore water samples from the Burdekin Delta, Queensland, show considerable variation in both the uranium concentration and the 234 U/ 238 U activity ratio. In many cases, the uranium concentration was closely correlated with the bicarbonate concentration, but not for waters with a very low uranium concentration. Mechanisms by which uranium can be removed from solution are discussed. They provide a basis for explaining the low uranium concentrations and, in some areas, the apparent lack of response of the aquifer to the input of uranium by recharge. The 234 U/ 238 U activity ratio is interpreted as a reflection of the extent of local interaction of infiltrating ground water with soil constituents. Measurement of the isotope activity ratio has confirmed the location of an area with significant recharge from the river into the aquifer system. The isotopic and supporting chemical data illustrate the complexity of the aquifer system. (author)

  3. The U238 antineutrino spectrum in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils; Oberauer, Lothar; Potzel, Walter; Schreckenbach, Klaus [Technische Universitaet, Muenchen (Germany); Lachenmaier, Tobias [Eberhard Karls Universitaet, Tuebingen (Germany)

    2011-07-01

    The DoubleChooz experiment aims at the determination of the unknown neutrino mixing parameter {Theta}{sub 13}. Two liquid scintillator detectors will measure an electron antineutrino disappearance at the Chooz site in the French ardennes. In order to improve the sensitivity, the antineutrino spectrum emitted by the Chooz reactor cores has to be determined with high accuracy. This talk focusses on the U238 spectrum, which is the only contributing spectrum, that was not measured until now. The final U238 beta spectrum is presented, and its implementation into the analysis framework is shown.

  4. Present status of radiochemical double beta decay study (238U)

    International Nuclear Information System (INIS)

    Madic, C.; Maillard, C.; Chevallier, A.; Chevallier, J.; Escoubes, B.; Schulz, N.; Sens, J.C.

    1989-01-01

    A sensitive experiment has been designed that will be able to measure an assumed half-life of 1.9x10 22 yr. This double beta corresponds to the activity of 27000 238 Pu nuclei formed during a year, in a 200 m deep mine, from 300 kg of 238 U, giving 210 alpha decays per year. Plutonium 238 et 239 will be determined by alpha spectroscopy after extraction chromatography. Experimental studies were undertaken to select the best conditions for running the extraction chromatography cycles

  5. Transfer of {sup 238}U, {sup 230}Th, {sup 226}Ra, and {sup 210}Pb from soils to tree and shrub species in a Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Rodriguez, P. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain); Vera Tome, F. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain)], E-mail: fvt@unex.es; Lozano, J.C. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain); Laboratorio de Radiaciones Ionizantes, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca (Spain); Perez Fernandez, M.A. [Natural Radioactivity Group, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain); Area de Ecologia, Universidad Pablo Olavide, Carretera de Utrera km. 1, 41013 Sevilla (Spain)

    2010-06-15

    The soil-to-plant transfer factors of natural uranium isotopes ({sup 238}U and {sup 234}U), {sup 230}Th, {sup 226}Ra, and {sup 210}Pb were studied in a disused uranium mine located in the Extremadura region in the south-west of Spain. The plant samples included trees (Quercus ilex, Quercus suber, and Eucalyptus cameldulensis) and one shrub (Cytisus multiflorus). All of them are characteristic of Mediterranean environments. The activity concentrations in leaves and fruit were determined for the tree species at different stages of growth. For the shrub, the total above-ground fraction was considered in three seasons. For old leaves and fruit, the highest activity concentrations were found in Eucalyptus cameldulensis for all the radionuclides studied, except in the case of {sup 230}Th that presented similar activity concentrations in all of the tree species studied. In every case, the transfer to fruit was less than the transfer to leaves. In the shrub, the results depended on the season of sampling, with the highest value obtained in spring and the lowest in autumn. Important correlations were obtained for {sup 238}U and {sup 226}Ra between the activity ratio in soils with that in leaves or fruit.

  6. Energy distribution of neutrons from the (n,2n) reaction in 238U

    International Nuclear Information System (INIS)

    Misulovin, A.

    1978-12-01

    Energy distribution of the first and second neutrons from (n,2n) scattering event in 238 U was evaluated according to the consistent compound nucleus model recently proposed by Segev. The law for deriving the energy distribution of secondary neutrons from a (n,2n) scattering event, depends on whether the reaction is considered as a simultaneous emission of two neutrons from one compound nucleus, or a successive emission of neutrons from different compound nuclei. Segev has presented a means of calculating the energy distribution assuming the latter model. The laws presented in the ENDF/B data files suggest the former model. The evaluation was based on inelastic level excitation and evaporation data for 238 U and 237 U. Data was retrieved from ENDF/B files. The evaporation data for 237 U was based on (γ,n) reaction 238 U. The inelastic level excitation data for 237 U was evaluated at the Soreq Nuclear Research Centre. It is concluded from the application of Segev's model to 238 U, that the energetic spectrum of secondary neutrons, is harder in the high range of energy than the one predicted by the use of the distribution law presented in ENDF/B data files. The spectrum of secondary (n,2n) neutrons, resulting from the interaction of 14 MeV neutrons in 238 U calculated with Segev's model, is compared with the corresponding spectrum of the LLL library, ENDF/B library and the recent evaluation of BNWL. It is found that the spectrum evaluated by LLL and BNWL is harder than that evaluated with Segev's model

  7. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    Science.gov (United States)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> accelerated through 3 MV accelerator, will collide beam 240 MeV --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  8. Behavior studies of natural uranium radioactive families descendants in organic rich sediments: the sapropels

    International Nuclear Information System (INIS)

    Gourgiotis, A.

    2008-06-01

    The element uranium with the particular oxido-reducing properties is often associated with environments rich in organic matter; this is why several authors have proposed to use it as tracer of paleo-productivity in marine sediments. This work describes the distribution of the uranium natural families' radionuclides in organic rich Mediterranean sediments: the sapropels. Several techniques of measurements were used such as mass spectrometry (TIMS, ICP-QMS), alpha and gamma spectrometry. Activity ratios 234 U/ 238 U as well as the ages U-Th of the sapropels present irregular profiles which do not correspond to the assumptions which had been made to explain their formation. Using an 1D diffusion model we have showed that these profiles result from the migration of the radionuclides out of the sapropels. We validated these observations by analyzing several levels of sapropels presenting a spatio-temporal variability. Our study confirms the migration of radiogenic uranium 234 U rad , which is produced in situ by his father the 238 U, as well as the migration of the 226 Ra. However the mobility of radiogenic uranium ( 234 U rad ) is not sufficient to explain the drift of the 230 Th/ 238 U and 231 Pa/ 235 U activity ratios in the S5 sapropel. An important result is that authigenic uranium also migrates, but with lower effective diffusion coefficients than those of the 234 U rad . Because of this mobility, the use of U authigenic of the sediments as an indicator of paleo-productivity must thus be used with precaution. (author)

  9. Non Destructive Analysis of Uranium by Radiometry

    International Nuclear Information System (INIS)

    Yusuf Nampira

    2007-01-01

    Uranium used in nuclear fuel development activity. the Substance use incurred by regulation safeguard. On that account in uranium acceptance conducted by verification of according to document by the specification of goods. Verification done by analysing performed uranium. The activity require by analyse method which simple and rapid analyses and has accurate result of analyses, is hence done by validation of non destructive uranium analysis that is with count gamma radiation from 235 U and product decay from 238 U. Quantitative analysis of uranium in substance determined by through count radiation-g at energy 185.72 keV and the use assess ratio of gamma radiation count from 235 U to 234 Pa to determine isotope content 235 U in substance. The result of analyses were given result of analysis with above correctness storey level 95% and have limit detect equivalent by 0.0174 mg U in U 3 O 8 . This method use at isotope uranium-235 analysis through count gamma radiation comparing method 235 U/ 234 Pa giving accuracy level 95% at sample equivalent uranium its content in 1 g uranium with isotope 235 U smaller than 75 weight percent. (author)

  10. Isotopic characterization of uranium in soils of the Ipanema National Forest (FLONA-Ipanema)

    International Nuclear Information System (INIS)

    Silva, F.B.; Marques, F.H.; Enzweiler, J.; Ladeira, F.S.B.

    2015-01-01

    The National Forest of Ipanema (FLONA) is situated on a geological anomaly, known as 'Domo de Aracoiaba'. The soils of the area include Oxisols, Inceptsols and Alfisols. The amount of uranium and respective isotope activities in a soil depend on the parental rock and on the pedologic processes. The aim of this study was to investigate the activities for uranium isotopes ("2"3"8U, "2"3"4U, "2"3"5U) and the activity ratio (AR) "2"3"4U/ "2"3"8U or secular equilibrium for different soil types of the area collected at horizons A and B. The amount of uranium showed no significant differences for soils generated from alkaline intrusive rocks and sandstone, however, secular equilibrium was observed for Oxisol (RA = 1), while Inceptsol presented RA> 1 and the other soils, Alfisols, presented RA values <1. (author)

  11. Behaviour of radiotoxic pollutants from tailings of uranium mining activities, measured data to serve as a basis for the development of concepts for mine site rehabilitation. Final report

    International Nuclear Information System (INIS)

    Geipel, G.; Bernhard, G.; Thieme, M.; Grambole, G.; Neubert, H.

    1994-01-01

    Dependencies of the activity ratios U-234/U-238, Th-230/U-238, and especially Ra-226/U-238 on the depth of the mill tailing pile were found. Seepage waters show that U-234 has a preferential solubility compared with U-238. Because of sorption effects and incorporation into weathering products, Th and Ra show lower activity concentrations in seepage waters than uranium. Leaching experiments allow to distinguish between uranium coming from desorption and weathering processes. The distribution ratio of uranium between rock the material and the solution shows a maximum at pH∝7. For rock materials from the Schelma mining area, distribution ratios of uranium up to 10 3 depending on grain size and pH were found. About 2.5% of the uranium inventory of the mill tailing are bonded to the rock surface and that leaching of this uranium is very easy. The balance of weathering processes in the mill tailing pile shows that about 0.8 mg U/l in the seepage water originated from weathering processes. It was found that every year about 30 t of the rock material in a mill tailing pile underlie weathering processes. For the remediation of mill tailing piles, the seepage waters must be collected and cleaned. (orig./HP) [de

  12. Uranium isotopic determination by alpha spectroscopy

    International Nuclear Information System (INIS)

    Acena, M.; Garcoa-Torano, E.

    1979-01-01

    A method for alpha-spectrometry determinations of uranium isotopes, using surface barrier detectors, is described. This method is based in the shape similarity of the most intense line groups for the nuclides 234 U, 235 U, 236 U and 238 U. The method yields analytical results sufficiently accurate in samples with 235 U contents lower than 25% in atoms. (author)

  13. The U.S. uranium industry

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1987-01-01

    This presentation concentrates on the future of the U.S. uranium industry in light of potential embargo legislation and the uranium producers' lawsuit. The author discusses several possible resolutions which would lead to a more certain and possibly stable uranium market. The probability of one or more Six possible actions which would effect the uranium industry are addressed

  14. EXCALIBUR-at-CALIBAN: a neutron transmission experiment for {sup 238}U(n,n'{sub continuum}γ) nuclear data validation

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Leconte, Pierre; Destouches, Christophe [CEA, DEN, DER, SPRC et SPEX, Cadarache F-13108 SAINT-PAUL-LEZ-DURANCE (France); Casoli, Pierre; Chambru, Laurent; Chanussot, Didier; Chateauvieux, Herve; Gevrey, Gaetan; Guilbert, Frederique; Lereuil, Hugues; Rousseau, Guillaume; Schaub, Muriel [CEA, DAM, Valduc F-21120 IS-SUR-TILLE (France); Heusch, Murielle; Meplan, Olivier; Ramdhane, Mourad [CNRS/IN2P3, 53 rue des Martyrs, F-38026 Grenoble, Cedex (France)

    2015-07-01

    Two recent papers justified a new experimental program to give a new basis for the validation of {sup 238}U nuclear data, namely neutron induced inelastic scattering and transport codes at neutron fission energies. The general idea is to perform a neutron transmission experiment through natural uranium material. As shown by Hans Bethe, neutron transmissions measured by dosimetric responses are linked to inelastic cross sections. This paper describes the principle and the results of such an experience called EXCALIBUR performed recently (January and October 2014) at the CALIBAN reactor facility. (authors)

  15. Current U.S. uranium production costs

    International Nuclear Information System (INIS)

    Steyn, J.J.; Douglas, R.F.

    1989-01-01

    The U.S. uranium industry has undergone significant changes in the 1980s. These changes have come about largely as a result of the much slower growth of nuclear power than that initially anticipated and the deployment of an excess uranium supply capacity by 1979. The demand and supply imbalance has led to a substantial build-up in excess inventories which will not be remedied until well into the 1990s. At the same time as domestic inventories were building, large low cost uranium deposits were being discovered and developed in Canada and Australia. Additionally, in the past year or so it has become apparent that low cost uranium from the Soviet Union and the Peoples Republic of China will increasingly become a factor in the marketplace. The soft demand, large inventories, and competitive imports, stimulated by the recently ratified U.S.-Canada Free Trade Agreement, have caused the U.S. uranium industry to contract to one-tenth of its size ten years ago, if employment is taken at the gage. In light of the foregoing, this paper examines the current U.S. uranium production cost outlook for the 1990s. It is based on a direct cost analysis of all identifiable uranium deposits, mines, and production centers

  16. The U.S. uranium market

    International Nuclear Information System (INIS)

    White, G. Jr.

    1978-01-01

    A brief analysis is presented of factors influencing buyers and sellers in the U.S. uranium market. Factors suggesting a reduction in uranium demand, increased supply and reduced uncertainty are set against factors suggesting the reverse of these trends. Prices and economic factors are considered, as well as political and business aspects. (U.K.)

  17. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Brian J. [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States); Workman, Stephen M. [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)

    2013-07-01

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (μg/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will

  18. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    International Nuclear Information System (INIS)

    Tucker, Brian J.; Workman, Stephen M.

    2013-01-01

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (μg/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will

  19. Uranium series disequilibrium studies at the Broubster analogue site

    International Nuclear Information System (INIS)

    Longworth, G.; Ivanovich, M.; Wilkins, M.A.

    1990-11-01

    Uranium series measurements at a natural analogue site at Broubster, Caithness have been used to investigate radionuclide migration over periods ranging from several hundred to 10 6 years. The measured values for the uranium concentration and activity values 234 U/ 238 U and 230 Th/ 234 U indicate that the geochemical system is more complicated than that originally proposed of uranium dispersion and water transport into a peat bog. There appears to be little thorium mobility although there is evidence for an appreciable fraction of thorium on the colloidal phase. (author)

  20. Uranium series disequilibrium studies at the Broubster analogue site

    International Nuclear Information System (INIS)

    Longworth, G.; Ivanovich, M.; Wilkins, M.A.

    1989-09-01

    Uranium series measurements at a natural analogue site at Broubster, Caithness have been used to investigate radionuclide migration over a period of several hundred to 10 6 years. The measured values for the uranium concentration and activity ratios 234 U/ 238 U and 230 Th/ 234 U indicate that the geochemical system is more complicated than that originally proposed of uranium dispersion and water transport into a peat bog. There appears to be little thorium mobility although there is evidence for an appreciable fraction of thorium on the colloidal phases. (author)

  1. 31 CFR 540.315 - Uranium-235 (U235).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...

  2. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  3. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  4. Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers.

  5. Direct dating of fossils by the helium-uranium method

    International Nuclear Information System (INIS)

    Schaeffer, O.A.

    1967-01-01

    The He-U method has been found to be applicable to the dating of fossil carbonates. This method furnishes a new dating technique particularly applicable to the Pleistocene and the Tertiary periods, especially the Late Tertiary, for which other methods of age dating either fail or are difficult to correlate with the fossil record. The method has been checked for possible losses of helium and uranium from or to the surroundings. It has been found that, while a calcite lattice does not appear to retain helium, if the lattice is aragonite there is good evidence that helium leakage is not a problem. This is true at least for times up to 20 m. y. For corals where the uranium is apparently uniformly distributed within the lattice as a trace element, the uranium does not exchange or undergo concentration changes. As a result aragonite corals yield reliable He-U ages. On the other hand, the uranium in mollusc fossils is apparently mainly in the grain boundaries and is not always a tight system as far as uranium exchange or concentration changes are concerned. To obtain a reliable age for a mollusc one needs additional evidence to ensure lack of changes in uranium concentration. If the measurement of U and He is combined with 238 U, 234 U and 230 Th determinations, it appears that many mollusc shells will also be datable by the method. The resulting evidence for secular equilibrium in the 238 U chain is good evidence for a closed system as far as U concentration changes are concerned. (author)

  6. Lichens as biomonitors of uranium in the Balkan area

    International Nuclear Information System (INIS)

    Loppi, S.; Riccobono, F.; Zhang, Z.H.; Savic, S.; Ivanov, D.; Pirintsos, S.A.

    2003-01-01

    Widespread contamination by depleted uranium was not detected in the Balkan area. - The contribution of the conflict of 1999 to the environmental levels of uranium in the Balkan area was evaluated by means of lichens used as biomonitors. The average U concentration found in lichens in the present study was in line with the values reported for lichens from other countries and well below the levels found in lichens collected in areas with natural or anthropogenic sources of U. Measurement of isotopic ratios 235 U/ 238 U allowed to exclude the presence of depleted uranium. According to these results, we could not detect widespread environmental contamination by depleted uranium in the Balkan area

  7. Lichens as biomonitors of uranium in the Balkan area

    Energy Technology Data Exchange (ETDEWEB)

    Loppi, S.; Riccobono, F.; Zhang, Z.H.; Savic, S.; Ivanov, D.; Pirintsos, S.A

    2003-09-01

    Widespread contamination by depleted uranium was not detected in the Balkan area. - The contribution of the conflict of 1999 to the environmental levels of uranium in the Balkan area was evaluated by means of lichens used as biomonitors. The average U concentration found in lichens in the present study was in line with the values reported for lichens from other countries and well below the levels found in lichens collected in areas with natural or anthropogenic sources of U. Measurement of isotopic ratios {sup 235}U/{sup 238}U allowed to exclude the presence of depleted uranium. According to these results, we could not detect widespread environmental contamination by depleted uranium in the Balkan area.

  8. Uranium enrichment measurement task with a connectionist architecture

    International Nuclear Information System (INIS)

    Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.

    1995-01-01

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ration 235 U/( 235 U+ 236 U+ 238 U). The usual methods consider a limited number of γ-ray and X-ray peaks, and requires previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above conventional methods is to reduce the region of interest: this is possible by focusing on the region called K α X where the three elementary components are present. The measurement of these components in mixtures leads to the desired ratio. Real data are used to study its performance. Training is done with a Maximum Likelihood method. We show the encoding of data by Neural Networks is a promising method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 7 refs., 2 figs., 1 tab

  9. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    Science.gov (United States)

    Sarin, M. M.; Krishnaswami, S.; somayajulu, B. L. K.; Moore, W. S.

    1990-05-01

    The most comprehensive data set on uranium, thorium, and radium isotopes in the Ganga-Brahmaputra, one of the major river systems of the world, is reported here. The dissolved 238U concentration in these river waters ranges between 0.44 and 8.32 μ/1, and it exhibits a positive correlation with major cations (Na + K + Mg + Ca). The 238U /∑Cations ratio in waters is very similar to that measured in the suspended sediments, indicating congruent weathering of uranium and major cations. The regional variations observed in the [ 234U /238U ] activity ratio are consistent with the lithology of the drainage basins. The lowland tributaries (Chambal, Betwa, Ken, and Son), draining through the igneous and metamorphic rocks of the Deccan Traps and the Vindhyan-Bundelkhand Plateau, have [ 234U /238U ] ratio in the range 1.16 to 1.84. This range is significantly higher than the near equilibrium ratio (~1.05) observed in the highland rivers which drain through sedimentary terrains. The dissolved 226Ra concentration ranges between 0.03 and 0.22 dpm/1. The striking feature of the radium isotopes data is the distinct difference in the 228Ra and 226Ra abundances between the highland and lowland rivers. The lowland waters are enriched in 228Ra while the highland waters contain more 226Ra. This difference mainly results from the differences in their weathering regimes. The discharge-weighted mean concentration of dissolved 238U in the Ganga (at Patna) and in the Brahmaputra (at Goalpara) are 1.81 and 0.63 μ/1, respectively. The Ganga-Brahmaputra river system constitutes the major source of dissolved uranium to the Bay of Bengal. These rivers transport annually about 1000 tons of uranium to their estuaries, about 10% of the estimated global supply of dissolved uranium to the oceans via rivers. The transport of uranium by these rivers far exceeds that of the Amazon, although their water discharge is only about 20% of that of the Amazon. The high intensity of weathering of uranium in

  10. Accumulations and sources of uranium, of its daughters and of metallic trace elements in wetlands located around old uranium mining sites

    International Nuclear Information System (INIS)

    Cuvier, Alicia

    2015-01-01

    Uranium mining and uranium ore processing increase the environmental activity of U and Th decay products and trace elements, in particular in case of releases to the adjacent rivers. Contaminants accumulate then preferentially in sedimentation areas (such as ponds or lakes) or in wetlands (peat lands, marshes or riverbanks) located downstream to the mine. Wetlands - generally located at the head of watershed - are particularly sensitive to environmental changes and anthropogenic pressure. This poses a risk of release of contaminants from these accumulation areas. The objective of the present study is to propose an easily reproducible methodology - in particular for the orphan mining sites - to identify and characterize accumulation areas. This study also aims to improve our understanding of the mechanisms of accumulation and release, in these areas. This study was performed around the former mining site of Bertholene (France). Standing and mobile in situ gamma spectrometry is used to accurately locate the accumulation areas. Soils, sediments, vegetation, water and peat are also sampled upstream and downstream of the mine, in order to (a) characterize the activities and the disequilibria of the U-Th decay chains and the associated trace elements according to the scale of observation, (b) understand the mechanisms of accumulation and release and (c) identify the potential sources using geochemical proxies and isotopic analyses. The results obtained show that radionuclides are mainly accumulated in a flooding area located downstream the mine. Strong U-238 activities (≥ 20000 Bq.kg"-"1) and strong Ra-226/U-238 and Th-230/Ra-226 activity ratios are recorded, involving preferential inputs of U-238 and Th-230 during flooding events. Trace element contamination is low, except for Mn, Ba and S. Such contaminations are potentially explained by the geochemical composition of the uranium ore and by the past and current processes of ore and water mine. Sequential extractions

  11. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  12. First data on the uranium content in water of the Yenisei River basin in the area affected by the operation of Rosatom plants

    Science.gov (United States)

    Bolsunovskii, A. Ya.; Zhizhaev, A. M.; Saprykin, A. I.; Degermendzhi, A. G.; Rubailo, A. I.

    2011-07-01

    This study is devoted to investigating the content of uranium isotopes in water of the Yenisei River and its tributaries within the territories affected by the operation of Rosatom plants (mining chemical combine, and electrochemical plant). Long-term monitoring of the 238U content by mass spectrometry carried out in two institutes of the Siberian Branch of the Russian Academy of Sciences first revealed the multiple excess of 238U over the background content in different areas of the Yenisei River basin, such as the region of the Yenisei River near the effluents of the mining and chemical combine (MCC), and the territories of the Bol'shaya Tel' and Kan rivers. In these regions, the 238U content in water reaches 2.1-4.0 μg/l, which exceeds its content upstream from the MCC (0.3-0.6 μg/l) by almost an order of magnitude. The studies of the isotopic composition of uranium in water samples, which were carried out at the Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, showed the presence of a technogenic isotope of uranium 236U in the samples from the Bolshaya Tel' River and revealed the deviation of the isotope ratio 238U/235U (167 ± 3 and 177 ± 3) from the equilibrium natural ratio (238U/235U = 138). These facts attest to the technogenic origin of part of the uranium in water of the Bol'shaya Tel' River connected with the activity of MCC. The excess uranium content in the Kan River requires additional studies to ascertain the fraction of uranium of technogenic origin connected with the activity of the electrochemical plant (ECP) (Fig. 1, Table 4).

  13. A survey for elevated levels of uranium north of the 300 Area on the Hanford Site

    International Nuclear Information System (INIS)

    Poston, T.M.

    1990-04-01

    A comprehensive survey of soil uranium (U) concentrations in a study area due north of the 300 Area on the Hanford site has been conducted by Pacific Northwest Laboratory (PNL). The objective of the study was to determine the spatial distribution of uranium in the study area and to ascertain if background levels of uranium have been increased by Hanford operations. Based on the spatial distribution of 238 U, the highest concentrations of uranium are located in the southern portion of the study area adjacent to the 300 Area complex and in the most eastern zone of the study site bordering the Columbia River. Uranium-236, an isotopic marker of fuel processing activities in the 300 Area, was detected in all eight samples selected from the study. A significant and positive regression was demonstrated between the ratios of 236 U/ 238 U in these eight samples and proximity to the 300 Area. 9 refs., 18 figs., 9 tabs

  14. U-Th series nuclides in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Scott, M.R.

    1981-01-01

    A study of U and Th series nuclides is being conducted on sediments from the Gulf of Mexico. Uranium concentrations as a function of depth have been determined, as well as changes in the 234 U/ 238 U activity ratio. The geochemical behavior of uranium in shelf sediments is discussed

  15. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    International Nuclear Information System (INIS)

    Laul, J.C.

    1994-01-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from 2 (CO 3 ) 2 2- , because of the predominant bicarbonate medium

  16. The issue of separation of uranium from drinking water in the Czech Republic

    International Nuclear Information System (INIS)

    Krmela, Jan

    2013-01-01

    Natural ground water used for the preparation of drinking water contains a number of cations, anions, elements and other substances depending on the bedrock composition (Ca, Mg, Fe, Mn, heavy metals, radioactive elements, arsenic, chromium, carbonates, sulfates, phosphates, silicates, fulvic and humic acids etc.). Information about composition of drinking water is important to comply with all the requirements on sanitary of drinking water. The elements that affect the quality of drinking water mainly from groundwater, also includes radioactive elements contained in bedrock sections where water is extracted. These are the elements with long half-lives, mainly alpha emitters (U, Ra, Rn, Th, and elements of the decay series). Uranium and its decay products are found in all environmental compartments. Radionuclides come to the environment both naturally - weathering and leaching of the rocks, and as a consequence of human activities in connection with the use of raw materials. Uranium occurs naturally in four oxidation states. The most mobility has hexa-valent state (uranyl ion). Uranyl is highly soluble form of uranium in water. Mobility of uranium in soil and water is affected by many factors. Complex processes in soil and rock lead to redox reactions forming both insoluble compounds (lower valence forms of uranium) and soluble form of U (VI) (forming by reoxidation), which is again leachable into groundwater. The content of uranium in groundwater depends on the geological composition of the ground, and can reach up to hundreds of μg/L. At present the issue associated with removing uranium from drinking water is solved in the Czech Republic. New limit for the concentration of natural uranium ( 234 U, 235 U and 238 U) was recommended at a level of 15 μg/L as the highest limit based on the World Health Organization (WHO). Advice of the Chief Health Officer of the Czech Republic came into force on 1st January 2010, which decreased the limit for uranium in drinking

  17. Radium and uranium in phosphate fertilizers and their impact on the radioactivity of waters

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Miletic, P.

    1992-01-01

    The study of radioactivity in the phosphate fertilizers and water ways of the Kanovci area was performed in order to determine the influence of the application of phosphate fertilizers on the radioactive pollution of these waters. The activity of 226 Ra, 228 Ra, 235 U and 238 U was measured in different types of phosphate fertilizers and waters by means of γ-ray spectrometry. Surface water, water from drainage channels, shallow groundwater and deep groundwater samples were collected from the Kanovci agricultural and well field area in Eastern Slavonia, where phosphate fertilizers have been used for the past 15 years. 137 Cs was also measured in water samples. The typical phosphate fertilizer used in the Kanovci area contains 75 Bq kg -1 of 226 Ra, 9 Bq kg -1 of 228 Ra, 52 Bq kg -1 of 235 U and 1120 Bq kg -1 of 238 U. The estimated annual deposition of uranium and radium in soils of the agricultural and well field area in Kanovci is: 4.5 Bq m -2 for 226 Ra, 0.5 Bq m -2 for 228 Ra, 3.1 Bq m -2 for 235 U and 67 Bq m -2 for 238 U. The greatest concentrations of both uranium isotopes are measured in water from drainage channels with a mean value of 120 Bq m -3 for 238 U and 5.5 Bq m -3 for 235 U. The concentrations of both radium isotopes generally increase with depth of water as distinct from uranium, whose concentrations in deep groundwater are much lower. The highest concentrations of 137 Cs were measured in water from drainage channels; it was not detected in deep groundwater. The 238 U/ 226 Ra activity ratio (AR) is the highest in water from drainage channels and the Bosut River, while in deep groundwater the ratio is only 1.6. Results indicate that high uranium concentrations in surface water, shallow groundwater and water from drainage channels are caused by phosphate fertilizer application in agriculture on the Kanovci area. (author)

  18. Electron scattering from the octupole band in 238U

    International Nuclear Information System (INIS)

    Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.

    1978-01-01

    A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup π/= 0 - intrinsic octupole vibration in 238 U

  19. Resonance Region Covariance Analysis Method and New Covariance Data for Th-232, U-233, U-235, U-238, and Pu-239

    International Nuclear Information System (INIS)

    Leal, Luiz C.; Arbanas, Goran; Derrien, Herve; Wiarda, Dorothea

    2008-01-01

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance region were done for 232Th, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U, 235U. RPCMs for 232Th, 238U and 239Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM with SAMMY.

  20. Uranium isotopes in tree bark as a spatial tracer of environmental contamination near former uranium processing facilities in southwest Ohio.

    Science.gov (United States)

    Conte, Elise; Widom, Elisabeth; Kuentz, David

    2017-11-01

    HHM transects exhibit increasing U concentrations within ∼5 and ∼10 km, respectively of the FFMPC. The 236 U/ 238 U isotopic ratios in tree bark from both transects increase progressively towards the FFMPC with values as high as 2.00 × 10 -4  at the FFMPC. Tree bark sampled within 1 km of the FFMPC exhibits clear evidence for both enriched and depleted uranium with 235 U/ 238 U values from 0.00461 to 0.00736, with 234 U/ 238 U activity ratio ranging from 0.53 to 0.96, and 236 U/ 238 U from 6.05 × 10 -5 to 1.05 × 10 -4 . Tree bark from transect #1 between 1 and 30 km from the FFMPC exhibits depleted and natural 235 U/ 238 U values ranging from 0.00552 to 0.00726 [ 234 U/ 238 U activity ratio: 0.69-1.04; 236 U/ 238 U: 2.49 × 10 -6 - 2.00 × 10 -4 ]. Tree bark from transect #2 sampled between 1 and ∼20 km away from the FFMPC exhibits evidence of enriched and depleted U in the environment with 235 U/ 238 U ranging from 0.00635 to 0.00738 [ 234 U/ 238 U activity ratio: 0.83-0.98; 236 U/ 238 U: 1.43 × 10 -5 - 2.00 × 10 -4 ]. Results from scanning electron microscopy with energy dispersive spectrometry provides evidence for U-rich particles as the source of contamination found in tree bark growing within 1-3 km of the former FFMPC. Such observations are consistent with the previously observed 14 μm U-rich particle identified in tree bark sampled within 1 km of the FFMPC (Conte et al., 2015). Overall, this study shows the usefulness of a tree bark sample transect to assess the areal extent of atmospheric contaminant U stemming from nuclear facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  2. Determination of uranium isotopes ({sup 235}U, {sup 238}U) and trace elements (Cd, Pb, Cu and As) in bottled drinking water by Icp-SFMS; Determinacion de isotopos de uranio ({sup 235}U, {sup 238}U) y elementos traza (Cd, Pb, Cu y As) en agua embotellada para beber por ICP-SFMS

    Energy Technology Data Exchange (ETDEWEB)

    Lara A, N.; Hernandez M, H.; Romero G, E. T.; Kuri de la C, A.; Perez B, M. A., E-mail: nancy.lara@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In the present work we propose an optimized method for the quantification of uranium isotopes ({sup 235}U, 2{sup 38}U) and the elements Cd, Pb, Cu and As in bottled water for drinking at trace levels of concentration. Based on the multi-element detection capability, the high sensitivity and resolution that the Mass Spectrometry with Magnetic Sector with Inductively Coupled Plasma Source (Icp-SFMS) technique offers; the high, medium and low resolution analysis conditions for the elements under study were established and optimized using and Element 2/Xr equipment and the 23 multi-elemental Certified Reference Material (CRM). The analysis method was validated using the standard reference material Nist 1643d and CRM mono-elemental s as external standards for the quantification of the analytes. Samples, targets and CRM were acidified with 2% of HNO{sub 3} and analyzed without pretreatment under the established analysis conditions. The results obtained show concentrations of {sup 235}U, {sup 238}U, {sup 111}Cd, {sup 208}Pb, {sup 63}Cu and {sup 75}As in the range of μg L{sup -1}, the linearity obtained from the calibration curves for each element has correlation coefficients < 0.99 in all cases, the accuracy of the method in terms of percent relative standard deviation (RSD %) was less than 5%, the mean recovery rate of Nist 1643d ranged from 96.46% to 101.12%. The optimization of the method guarantees the stability and calibration of the equipment throughout the analysis, as well as the ability to resolve interferences. In conclusion, the method proposed using Icp-SFMS offers the advantages of being fast and simple for the multi-elemental analysis in water at trace levels, with low limits of quantification and detection, with good linearity, accuracy, precision and reproducibility to a degree of reliability of 95%. (Author)

  3. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  4. Feasibility study of the single particle analysis of uranium by laser ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Han, Sun Ho; Pyo, Hyung Yeol; Park, Yong Joon; Song, Kyu Seok

    2004-01-01

    The control of activities in nuclear facilities worldwide is one of the most important tasks of nuclear safeguard. To meet the needs for nuclear safeguard, International Atomic Energy Agency (IAEA) strengthened the control of nuclear activities to detect these activities earlier. Thus, it is very important to develop analytical techniques to determine the isotopic composition of hot particles from swipe samples. The precise measurement of the 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U ratios is important because it provides information about the initial enrichment of reactor uranium, core history, and post accident story. Because conventional α-spectrometry is not sufficiently sensitive for the determination of long-lived radionuclides in environmental samples, several analytical techniques, such as SNMS (Sputtered Neutral Mass Spectrometry), RIMS (Resonance Ionization Mass Spectrometry), AMS (Accelerator Mass Spectrometry) etc., have been proposed for uranium isotope measurements. In case of microparticles, analytical techniques such as SIMS (Secondary Ion Mass Spectrometry) have been applied for the isotopic characterization. The aim of this work was the development of a sensitive analytical technique for determination of isotopic ratio of uranium in swipe samples. In this work, feasibility of LIMS (Laser Ionization Mass Spectrometry) for the determination of such particles has been evaluated using a reference material of natural uranium

  5. Binary and ternary fission yields induced by 12C and 20Ne ions on 238U targets

    International Nuclear Information System (INIS)

    Otto, R.J.

    1974-01-01

    Evidence for ternary fission of 250 Cf* and 258 No* compound nuclei has been found. Relative cross section data for nuclides with masses between 24 Na and 161 Tb have been determined for 12 C bombardments of natural uranium at laboratory energies of 122 MeV, 113 MeV and 105 MeV. Relative cross section data for 8 nuclides between 24 Na and 66 Ni were sought for 20 Ne bombardments of natural uranium at 150 MeV laboratory energies. The binary fission fragment mass distribution for 238 U( 12 C,f) was determined by analysis of fission fragment recoil collection foils using radiochemical techniques and high resolution gamma ray spectroscopy. The results indicated the existence of a ternary fission branch similar to mass distributions obtained for He induced fission of Th, U, and Pu nuclei at intermediate energies. Comparison of the data with He induced ternary fission data obtained previously in this laboratory indicated an increase in the ternary fission probability with increasing Z 2 /A of the compound nucleus and with excitation energy. A shift of the binary-ternary fission product intersection point to lower mass numbers with increasing Z 2 /A and excitation energy of the compound nucleus was also observed. (Diss. Abstr. Int., B)

  6. Intake of 238U and 232Th through the consumption of foodstuffs by tribal populations practicing slash and burn agriculture in an extremely high rainfall area

    International Nuclear Information System (INIS)

    Jha, S.K.; Gothankar, S.; Iongwai, P.S.; Kharbuli, B.; War, S.A.; Puranik, V.D.

    2012-01-01

    The concentration of naturally occurring radionuclides 232 Th, 238 U was determined using Instrumental Neutron Activation Analysis (INAA) in different food groups namely cereals, vegetables, leafy vegetables, roots and tubers cultivated and consumed by tribal population residing around the proposed uranium mine. The study area is a part of rural area K. P. Mawthabah (Domiasiat) in the west Khasi Hills District of Meghalaya, India located in the tropical region of high rainfall that remains steeped in tribal tradition without much outside influence. Agriculture by Jhum (slash and burn) cultivation and animal husbandry are the main occupation of the tribal populations. A total of 89 samples from locally grown food products were analyzed. The concentration of 238 U and 232 Th in the soil of the study area was found to vary 1.6–15.5 and 2.0–5.0 times respectively to the average mean value observed in India. The estimated daily dietary intake of 238 U and 232 Th were 2.0 μg d −1 (25 mBq d −1 ) and 3.4 μg d −1 (14 mBq d −1 ) is comparable with reported range 0.5–5.0 μg d −1 and 0.15–3.5 μg d −1 respectively for the Asian population. - Highlights: ► 232 Th, 238 U were determined using Instrumental Neutron Activation Analysis (INAA). ► Study area located in the tropical region of high rainfall that remains steeped in tribal tradition. ► Agriculture by Jhum (slash and burn) cultivation and animal husbandry are the main occupation of the tribal populations. ► The estimated daily intake of 232 Th and 238 U in high rainfall area was found to be 3.4 and 2.0 μg respectively.

  7. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  8. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235 U/ 238 U, 236 U/ 238 U, 145 Nd/ 143 Nd, 146 Nd/ 143 Nd, 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred μm to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146 Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235 U/ 238 U and 236 U/ 238 U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus

  9. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    Science.gov (United States)

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  10. Experimental determination of the antineutrino spectrum of the fission products of 238U

    International Nuclear Information System (INIS)

    Haag, Nils-Holger

    2013-01-01

    Fission of 238 U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of 238 U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  11. 238U and 237Np nuclear fission by 90-270 MeV electrons

    International Nuclear Information System (INIS)

    Kuznetsov, V.L.; Nedorezov, V.G.; Nikitina, N.V.; Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Smirnov, A.N.; Ehjsmont, V.P.

    1981-01-01

    A technique for measuring cross sections of 238 U and 237 Np nuclei fission caused by 90-270 MeV electrons is described. Measurement results are given. The results obtained are discussed on the basis of the virtual photon method. It is shown that the difference in cross sections of 238 U and 237 Np electrofission is due to the different contribution of the giant resonance [ru

  12. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  13. Determination of uranium and thorium isotopes by solid phase extraction and alpha spectrometry

    International Nuclear Information System (INIS)

    Kuruc, J.; Kovacova, M.; Strisovska, J.; Galanda, D.

    2013-01-01

    The aim of this work was to test the modified method suitable for the separation of isotopes of uranium and thorium samples of rocks, including gold ore and gold concentrate using of extraction chromatography method, after digestion of the sample, concentrating, separate the isotopes of uranium and thorium isotopes to prepare sources for the measurement of alpha spectra. Samples of rocks, gold ore and gold concentrate were digered in microwave decomposition in the environment of hydrogen peroxide and concentrated nitric acid. For the separation of uranium and thorium the vacuum box with cartridges DGA Resin and Resin(R) UTEVA (Triskem International, France) was used. Both sorbents allow separation of uranium from thorium. The results confirmed that the both sorbents give the same results within expanded uncertainty. The mass activity of monitored uranium and thorium radioisotopes was determined by alpha spectrometry method. The yields of separation were determined using uranium-232 as a tracer radionuclide; the activity of 232 U was 0.1438 Bq. Alpha spectra were measured on the Alpha spectrometer EG and G ORTEC 576A with the software MAESTRO, MCA Emulator and Gamma Vision-32 for Windows, USA. Mass activities of radionuclides were converted to mass concentration of isotopes 238 U, 234 U, 232 Th, 230 Th and 228 Th. The highest concentration of 238 U was sampled in granodiorite (Tunnel S-XIV-2, southwards, mining of Cu ore, not working there since 1990), where m( 238 U) = (0.81 ± 0.09) mg kg -1 (DGA Resin) and m( 238 U) = (0.90 ± 0.09) mg kg -1 (UTEVA(R) Resin), as well as m( 232 Th) = (18.8 ± 1.7) mg kg -1 (DGA Resin) and m( 232 Th) = (17.8 ± 1.5) mg kg -1 (UTEVA(R) Resin). In other samples of rocks, gold ore and gold concentrates have specific masses of isotopes of uranium and thorium two-to ten-folds lower. It can be concluded that the rocks, gold ores and concentrates of gold from the 'Rozalia' mine contain lower concentrations of uranium several times against

  14. Estimation of uranium migration parameters in sandstone aquifers.

    Science.gov (United States)

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  15. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  16. Extreme fractionation of 234U 238U and 230Th 234U in spring waters, sediments, and fossils at the Pomme de Terre Valley, southwestern Missouri

    Science.gov (United States)

    Szabo, B. J.

    1982-01-01

    Isotopic fractionation as great as 1600% exists between 234U and 238U in spring waters, sediments, and fossils in the Pomme de Terre Valley, southwestern Missouri. The activity ratios of 234U 238U in five springs range from 7.2 to 16 in water which has been discharged for at least the past 30,000 years. The anomalies in 234U 238U ratio in deep water have potential usefulness in hydrologic investigations in southern Missouri. Clayey units overlying the spring bog sediments of Trolinger Spring are enriched in 230Th relative to their parent 234U by as much as 720%. The results indicate that both preferential displacement via alpha recoil ejection and the preferential emplacement via recoiling and physical entrapment are significant processes that are occurring in the geologic environment. ?? 1982.

  17. Sensitivity of 238U resonance absorption to library multigroup structure as calculated by WIMS-AECL

    International Nuclear Information System (INIS)

    Laughton, P.J.; Donnelly, J.V.

    1995-01-01

    In simulations of the TRX-1 experimental lattice, WIMS-AECL overpredicts, relative to MCNP, resonance absorption in neutron-energy groups containing the three large, low-lying resonances of 238 U when a standard ENDF/B-V-based library is used. A total excess in these groups of 4.0 neutron captures by 238 U per thousand fission neutrons has been observed. Similar comparisons are made in this work for the MIT-4 experimental lattice and simplified CANDU lattice cells containing 37-element fuel, with and without heavy-water coolant. Eleven different 89-group cross-section libraries were constructed for WIMS-AECL from ENDF/B-V data: only the neutron-energy-group boundaries used in generating multigroup cross sections and the Goldstein-Cohen correction factors differ from one library to the next. The first library uses the original 89-group structure, and the other ten involve energy groups of varying widths centred on the three large, low-lying resonances of 238 U. For TRX-1, some reduction in total discrepancy in 238 U capture can be achieved by using a new structure, although the improvement is small. The discrepancies in 238 U capture are of the same order for the MIT-4 case as those observed for TRX-1 for both the original group structure and the ten new structures. The WIMS-AECL calculation of 238 U resonance absorption in the same ranges of energy for the simplified CANDU 37-element lattice are in better agreement with MCNP than they are for TRX-1 and MIT-4: when the original structure is used, WIMS-AECL underpredicts total capture rate by 238 U in the energy range of interest by only 0.56 per thousand fission neutrons (coolant present) and 0.88 per thousand fission neutrons (voided coolant channel). The discrepancies are reduced when some of the new structures are used. For almost all of the cases considered here-TRX-1, MIT-4 and CANDU with coolant-better group-by-group agreement of 238 U capture around the 6.67-eV resonance is achieved by using a new library

  18. 230Th-238U disequilibrium and the melting processes beneath ridge axes

    International Nuclear Information System (INIS)

    McKenzie, D.

    1985-01-01

    The activity ratio ( 230 Th/ 238 U) is calculated for a simple model of melting, for which the melt fraction in chemical and radioactive equilibrium with the solid residium remains constant as melting proceeds. The activity ratio in the melt is only significantly different from unity if the melting is slow compared with the half-life of 230 Th and if the melt fraction present at any time does not exceed a few percent. The observation that ( 230 Th/ 238 U) is about 1.25 for many ocean ridge basalts is therefore most easily explained if the melt fraction in the source region is less than 2% and if the melting occurs in a broad region more than 100 km wide beneath the ridge axis. These results are compatible with other geophysical observations. Measurements of ( 226 Ra/ 238 U) might provide useful constraints on the time required to reach chemical equilibrium between the melt and the matrix. (orig.)

  19. Content of Natural Radionuclides in Sediments in the Vicinity of a Former Uranium Mine

    International Nuclear Information System (INIS)

    Strok, M.; Planinsek, P.; Smodis, B.

    2011-01-01

    Former Slovenian uranium mine Zirovski vrh lies in the subalpine environment with relative high rainfall and population density. As a legacy of uranium mining, Jazbec and Borst waste piles were constructed in the vicinity of a former uranium mine. On the Jazbec waste pile, about 2.5 millions of tons of spoil, and 0.05 millions of tons of red mud were deposited. Average activity concentrations in spoil are 750 Bq/kg for 238U, 226Ra and 230Th, and in red mud 495 Bq/kg for 238U, 190 Bq/kg for 226Ra and 65100 Bq/kg for 230Th. On the Borst waste pile, about 0.6 millions of tons of uranium mill tailings (UMT) were deposited. Average activity concentrations in UMT are 995 Bq/kg for 238U, 8630 Bq/kg for 226Ra and 3930 Bq/kg for 230Th. Seepage waters with elevated radionuclide concentrations from both waste piles flow in the nearby streams Brebovscica and Todrascica. Todrascica outfalls into the Brebovscica and Brebovscica into the Poljanska Sora River. Due to the different biogeochemical processes, natural radionuclides from both waste piles can be transferred to the sediments of the affected streams. These processes are mainly driven by the sorption onto the particles and particles settling or by the direct diffusion to sediments. Therefore the aim of this work was to find out at which extent these processes occur in the specific case by comparing activity concentrations in sediments before and after inflow of seepage waters from both waste piles. In sediment samples, 238U, 234U, 230Th, 226Ra, 210Pb and 210Po activity concentrations were determined, using radiochemical separations followed by either alpha spectrometry or proportional counting. Results of the content of natural radionuclides in sediments in the vicinity of a former uranium mine showed that activity concentrations of all analyzed radionuclides were higher in sediments after the inflow of seepage waters from waste piles in Brebovscica and Todrascica stream. This was not the case for Poljanska Sora River

  20. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  1. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 ± 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 ± 0.0006 wt. % 234 U, 19.8336 ± 0.0059 wt. % 235 U, 0.1337 ± 0.0006 wt. % 236 U, and 79.9171 ± 0.0057 wt. % 238 U

  2. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  3. Depth profiling of residual activity of ^{237}U fragments as a range verification technique for ^{238}U primary ion beam

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2012-07-01

    Full Text Available Experimental and simulation data concerning fragmentation of ^{238}U ion beam in aluminum, copper, and stainless-steel targets with the initial energy 500 and 950  MeV/u are collected in the paper. A range-verification technique based on depth profiling of residual activity is presented. The irradiated targets were constructed in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. One of the purposes of these experiments was depth profiling of residual activity of induced nuclides and projectile fragments. Among the projectile fragments, special attention is paid to the ^{237}U isotope that has a range very close to the range of the primary ^{238}U ions. Therefore, the depth profiling of the ^{237}U isotope can be utilized for experimental verification of the ^{238}U primary-beam range, which is demonstrated and discussed in the paper. The experimental data are compared with computer simulations by FLUKA, SRIM, and ATIMA, as well as with complementary experiments.

  4. α spectrum analysis technology research on uranium in environmental water

    International Nuclear Information System (INIS)

    Qiu, Yongmei; Yang, Yong; Ma, Junge

    2009-04-01

    In order to measure the nuclide abundance ratio of uranium in environmental water, the method of '717 anion exchanging resin' is discussed. The dis- traction circuit is determined by 717 anion exchange leaching curve, recovery ratio of anion exchaging, recovery ratio of former disposal and recovery ratio of electrodeposit. The circuit has good result in distracting and enriching uranium by using '717 anion exchanging resin', the resolution of uranium in the spectrum is perfect. The activities and the nuclide abundance ratios of 238 U, 235 U, 234 U in the different reach of some location of INPC have been gained. (authors)

  5. Determination of uranium isotopes in urine

    International Nuclear Information System (INIS)

    Lellis, I.R.; Silva, D.V.F.M. Rey; Taddei, M.H.T.

    2017-01-01

    Variable concentrations of uranium occur naturally in waters, plant products and soils. Small amounts of this element are routinely incorporated by man. Occupationally exposed individuals (IOEs) are subject to the incorporation of higher amounts of uranium into their work routines. The effects on human health resulting from the incorporation of uranium in environmental doses are not very well established and are currently recognized as of little relevance. The incorporation resulting from occupational activities, where higher doses can be found, represents a health risk resulting from chemical damages to the kidneys. Considering that uranium is eliminated from the human body through urine and feces, and that the concentration in the urine can be obtained by means of radiochemical analyzes, this can be considered an efficient indirect method to verify the incorporation of this element. In the work the isotopes of 234 U, 235 U and 238 U were analyzed in urine samples of IOEs and the rate of uranium present in them was verified

  6. Uranium enrichment measurement task with a connectionist architecture

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V; Martinez, J M [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J; Lepy, M C [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1996-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ration {sup 235} U/({sup 235} U+{sup 236} U+{sup 238} U). The usual methods consider a limited number of {gamma}-ray and X-ray peaks, and requires previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above conventional methods is to reduce the region of interest: this is possible by focusing on the region called K{sub {alpha}}X where the three elementary components are present. The measurement of these components in mixtures leads to the desired ratio. Real data are used to study its performance. Training is done with a Maximum Likelihood method. We show the encoding of data by Neural Networks is a promising method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 7 refs., 2 figs., 1 tab.

  7. Studies on 232Th and 238U levels in marine algae collected from the coast of Niigata Prefecture

    International Nuclear Information System (INIS)

    Kato, Kenji; Tonouchi, Shigemasa; Maruta, Fumiyuki; Ebata, Hidekazu

    2001-01-01

    To evaluate the properties of algae to concentrate radioactive elements, 14 species of algae like Sargassum were collected in the Prefecture and analyzed for their 232 Th and 238 U levels with Yokogawa HP4500 ICP-MS apparatus. The places of collection included those near the water discharge of an atomic power station. Mean 232 Th and 238 U levels were found to be 120 and 260 ng/g dry wt, respectively, and Phaeophyta showed more than several times higher 238 U level than Chlorophyta and Rhodophyta. There was no clear difference in 232 Th levels. No difference between places of collection was observed in Sargassum 232 Th or 238 U level. Adsorption of 232 Th particle to and incorporation of soluble 238 U into algae body were suggested. Mean 232 Th and 238 U radioactivities were found 73 and 510 μBq/g wet wt, respectively, and the respective annual committed effective doses, 0.2 and 0.3 μSv, calculated from those values were confirmed to be enough lower than the annual public dose limit, 1 mSv. (K.H.)

  8. Effect of 222Rn emanation from crystals on their 206Pb/238U age dating

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.

    2009-01-01

    The escape of radon from certain minerals with high uranium is of particular interest to those concerned with the determination of ages of rocks, minerals and tectonic events. To the extent that radon escapes, these minerals are not closed systems from the thermodynamic point of view and, more particularly, from the geochronological point of view. This investigation aimed to determine the radon escape from zircon crystals and how this fit into the severe isotopic constraints of the concordia dating model. To evaluate the consequences of radon loss on 238 U/ 206 Pb age dating methods, 20 zircon concentrates were analyzed. The observed range of relative percentage of radon loss was of 0.2-12 % and correlations with weathering of the crystals with natural alpha dose and with U-Pb age discordances were found. These correlations indicate relationships between the amount of lattice damage by radiation, the radon leakage out of the crystal and Pb mobility. Some of the stochastic complexities in specific age determinations are also discussed. (author)

  9. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite

    International Nuclear Information System (INIS)

    Beattie, P.

    1993-01-01

    The abundances of isotopes in the 238 U decay series can be used as both tracers and chronometers of magmatic processes. In the subsolidus asthenosphere, the activity of each daughter isotope (defined as the product of its concentration and decay constant, and denoted by parentheses) is assumed to be equal to that of its parent. By contrast, ( 230 Th/ 238 U) is greater than unity in most recent mid-ocean-ridge and ocean-island basalts, implying that thorium is more incompatible (that is, it is partitioned into the melt phase more strongly) than uranium. Melting of spinel peridotite cannot produce the ( 230 Th) excesses, because measured partition coefficients for pyroxenes and olivine demonstrate that uranium is more incompatible than thorium for this rock. Here I report garnet-melt partitioning data which show that for this mineral-melt pair thorium does behave more incompatibility than uranium, thus supporting the suggestion that mid-ocean-ridge basalts (MORB) are produced by melting initiated at depths where garnet is stable. Using these data, I show that the observed ( 230 Th/ 238 U) ratios of MORB and most ocean-island basalts can be explained by slow, near-fractional melting initiated in the garnet stability field. (author)

  10. Depleted uranium internal contamination of US soldiers deployed in Samawah, Iraq during operation Iraqi freedom

    International Nuclear Information System (INIS)

    Asaf Durakovic; Isaac Zimmerman; Axel Gerdes

    2004-01-01

    Purpose: The purpose of this study was to analyze the concentration and precise isotopic composition and ratios of four uranium isotopes ( 234 U, 235 U, 236 U, and 238 U) in the urine of United States soldiers deployed in Samawah, Iraq during the second Gulf War. Methods: Seven active duty US soldiers deployed as military police unit 442 presenting with non-specific symptoms of intractable headaches, excessive fatigue, intermittent fevers, musculoskeletal pains, respiratory impairment, affect changes, urinary tract symptoms, and neurological alterations were clinically evaluated. Each soldier signed a consent form to participate in our study. The collection of 24-hour urine samples of each subject was performed under controlled conditions. The urine samples were personally carried to the laboratory of the Institute of Geochemistry, JW Goethe University, Frankfurt, Germany. Each sample was analyzed in duplicate by multicollector inductively coupled plasma ionization mass spectrometry (MC-ICP-MS). Control samples consisting of an internal urine standard were also analyzed by the same procedure. The analytical methodology included pre-concentration of the urine samples using evaporation, oxidation of organic matter, uranium purification by ion-exchange chromatography, and analysis by mass spectrometry. The final analysis of the specimens was performed by using a double-focusing Thermo Finnigan Neptune multicollector ICP-MS equipped with retarding potential quadrupole lens and a secondary electron multiplier for ion counting. Results: The mean concentration of total uranium was 3.6±1.3 ng/L. The average 238 U/ 235 U ratio was 146.2±10.2. The ratio of 238 U/ 235 U, being considered as the single most important parameter in determining the quantitative state of depletion of the natural uranium ratio, demonstrates a significant internal contamination with depleted uranium in four soldiers. The 234 U/ 238 U ratio was 6.5 x 10 -5 ±5.7 x 10 -6 . The 236 U/ 238 U ratio was

  11. Fracture-filling minerals as uranium sinks and sources, a natural analogue study at Palmottu, Finland

    International Nuclear Information System (INIS)

    Cui, D.; Eriksen, T.

    2000-01-01

    The nucleation of a mineral crystal and its growth in groundwater carrying fractures 300 m above the Palmottu uranium deposit provide an impressive example of geochemical selectivity of uranium. Fracture-filling material was collected from a 3 mm thick fracture at depth 74.8-75 m (drillcore R348). SEM and EDS analyses on a thin section of the original fracture-filling show that the fracture filling is heterogeneous, composing mineral crystal particles and very porous clay-rich aggregates. The results of INAA on millimetre-sized single mineral crystals and aggregates selected from grinded fracture-filling show that porous aggregates (composed of clays and micrometer sized mineral particles) contain up to 1000 ppm U, which is higher than the average of the whole fracture-filling (400 ppm) and host rock related millimetre sized mineral particles (18-100 ppm). 233 U/ 238 U isotope exchange proves that a large fraction of the uranium in the fracture-filling is not easily exchanged with uranium in the solution. The amount of 238 U released in the isotope exchange experiment is too high to be explained by reversible U(VI) sorption. Oxidation state analyses show that 30% of the uranium exists as U(IV). Laboratory batch experiment at anoxic conditions proved that pyrite can immobilise U(VI). (orig.)

  12. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  13. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  14. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  15. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  16. Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Dorda, J.; Przylibski, T.A.

    2007-01-01

    Radioactivity content in commercially bottled mineral waters from Outer Carpathians was investigated on the basis of 28 samples. Activity concentration results for radium isotopes 226,228 Ra, uranium isotopes 234,238 U and isotopic ratios 234 U/ 238 U were determined. The correlations between investigated isotopes and calculated potassium 40 K ions dissolved in water were carried out. The results show a correlation between TDS (total dissolved solids) values and dissolved radionuclides. High correlation coefficients were observed between total radium content and 40 K. The isotopic ratio of 234 U/ 238 U varies in the range from 1.6 to 7 in all investigated waters which means that there is no radioactive equilibrium between the parent nuclide 238 U and its daughter 234 U. The effective radiation dose coming from studied radium and uranium radionuclides consumed with mineral water from the Outer Carpathians obtained by a statistical Pole is equal to 4.3μSv/year (58 l/year water consumption) and do not exceed the permissible limit equal to 100μSv/year. Assuming 0.5 l consumption per day, i.e. 182.5 l/year, the effective dose is equal to 13.4μSv/year, what is still below the unit

  17. Anomalous behaviour of uranium isotopes in backwater sediments of Zuari river

    Digital Repository Service at National Institute of Oceanography (India)

    Joshi, L.U; Zingde, M.D.; Abidi, S

    The surface leaching of the labile component of uranium has been carried out in estuarine sediments of Zuari River in Goa, India The measurements of alpha activities of sup(238) U, sup(235) U and sup(234) U in the leachates indicated a remarkable...

  18. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1978-01-01

    The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt

  19. Toxicity of uranium and plutonium to the developing embryos of fish

    International Nuclear Information System (INIS)

    Till, J.E.; Kaye, S.V.; Trabalka, J.R.

    1976-07-01

    The radiological and chemical toxicity of plutonium and uranium to the developing embryos of fish was investigated using eggs from carp, Cyprinus carpio, and fathead minnows, Pimephales promelas. Freshly fertilized eggs were developed in solutions containing high specific activity 238 Pu or 232 U or low specific activity 244 Pu, 235 U, or 238 U. Quantitative tests to determine the penetration of these elements through the chorion indicated that plutonium accumulated in the contents of carp eggs reaching a maximum concentration factor of approximately 3.0 at hatching. Autoradiographs of 16 μ egg sections showed that plutonium was uniformly distributed in the egg volume. Uranium localized in the yolk material, and the concentration factor in the yolk sac remained constant during development at approximately 3.3. Doses from 238 Pu which affected hatchability of the eggs were estimated to be 1.6 x 10 4 rads and 9.7 x 10 3 rads for C. carpio and P. promelas, respectively; doses from 232 U were 1.3 x 10 4 rads for C. carpio and 2.7 x 10 3 rads for P. promelas. A greater number of abnormal larvae than in control groups was produced by 238 Pu doses of 4.3 x 10 3 rads to carp and 5.7 x 10 2 rads to fathead minnows; 3.2 x 10 3 rads and 2.7 x 10 2 rads were estimated from 232 U. Eggs that were incubated in 20 ppM 244 Pu did not hatch. This mortality may have been the result of chemical toxicity of plutonium. Concentrations of 60 ppM of 235 U and 238 U did not affect egg hatching. Based on these data, concentrations in fish eggs were calculated for representative concentrations of uranium and plutonium in natural waters and the corresponding dose levels are below those levels at which observable effects begin to occur

  20. Toxicity of uranium and plutonium to the developing embryos of fish

    International Nuclear Information System (INIS)

    Till, J.E.

    1976-01-01

    The radiological and chemical toxicity of plutonium and uranium to the developing embryos of fish was investigated using eggs from carp, Cyprinus carpio, and fathead minnows, Pimephales promelas. Freshly fertilized eggs were developed in solutions containing high specific activity 238 Pu or 232 U or low specific activity 244 Pu, 235 U, or 238 U. Quantitative tests to determine the penetration of these elements through the chorion indicated that plutonium accumulated in the contents of carp eggs reached a maximum concentration factor of approximately 3.0 at hatching. Autoradiographs of 16 μ egg sections showed that plutonium was uniformly distributed in the egg volume. Uranium localized in the yolk material, and the concentration factor in the yolk sac remained constant during development at approximately 3.3. Doses from 238 Pu which affected hatchability of the eggs were estimated to be 1.6 x 10 4 rads and 9.7 x 10 3 rads for C. carpio and P. promelas, respectively; doses from 232 U were 1.3 x 10 4 rads for C. carpio and 2.7 x 10 3 rads for P. promelas. A greater number of abnormal larvae than in control groups was produced by 238 Pu doses of 4.3 x 10 3 rads to carp and 5.7 x 10 2 rads to fathead minnows; 3.2 x 10 3 rads and 2.7 x 10 2 rads were estimated from 232 U. Eggs that were incubated in 20 ppM 244 Pu did not hatch. This mortality may have been the result of chemical toxicity of plutonium. Concentrations of 60 ppM of 235 U and 238 U did not affect egg hatching. Based on these data, concentrations in fish eggs were calculated for representative concentrations of uranium and plutonium in waste waters and the corresponding dose levels are below those levels at which observable effects begin to occur

  1. 238 U, 232 Th and 40 K in wheat flour samples of Iraq markets

    Directory of Open Access Journals (Sweden)

    Ali Abid Abojassim

    2015-05-01

    Full Text Available Introduction. Wheat flour is a nutritious type of food that is widely consumed by various age groups in Iraq. This study investigates the presence of long-lived gamma emitters in different type of wheat flour in Iraqi market. Materials and methods. Uranium (238 U, Thorium (232 Th and Potassium (40 K specific activity in (Bq/kg were measured in (12 different types of wheat flours that are available in Iraqi markets. The gamma spectrometry method with a NaI(Tl detector has been used for radiometric measurements. Also in this study we have calculated the internal hazard index, radium equivalent and absorbed dose rate in all samples. Results and discussion. It is found that the specific activity in wheat flour samples were varied from (1.086±0.0866 Bq/kg to (12.532±2.026 Bq/kg with an average (6.6025 Bq/kg for 238 U, For 232 Th From (0.126±0.066 Bq/kg to (4.298±0.388 Bq/kg with an average (1.9465Bq/kg and for 40 K from (41.842±5.875 Bq/kg to (264.729±3.843 Bq/kg with an average (133.097 Bq/kg. Also, it is found that the radium equivalent and the internal hazard index in wheat flour samples ranged from (3.4031 Bq/kg to (35.1523 Bq/kg with an average (19.6346 Bq/kg and from (0.0091 to (0.1219 with an average (0.0708 respectively. Conclusion. This study prove that the natural radioactivity and radiation hazard indices were lower than the safe.

  2. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian.

    Science.gov (United States)

    Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A

    2013-10-15

    Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.

  3. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F.; Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2008-01-15

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the {sup 235}U/{sup 238}U, {sup 236}U/{sup 238}U, {sup 145}Nd/{sup 143}Nd, {sup 146}Nd/{sup 143}Nd, {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred {mu}m to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in {sup 146}Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously

  4. Environmental control of U concentration and 234U/238U in speleothems at subannual resolution

    Science.gov (United States)

    Hu, C.; Henderson, G. M.

    2003-12-01

    Trace element and isotope variability in speleothems encodes a range of information about the past environment, although its interpretation is often problematic. U concentration and isotopes have frequently been analysed in speleothems in order to provide chronology, but their use as environmental proxies in their own right has not been comprehensively investigated. In this study, we have investigated the environmental controls of U in a stalagmite from the Central Yangtze Valley in China. This stalagmite grew rapidly throughout the Holocone and contains visible annual layers about 300microns thick. Analysis of a portion of the stalagmite corresponding to the 1970s by electron probe, LA-ICP-MS, and by physical subsampling indicate clear annual cycles in Sr/Ca, Mg/Ca, and Ba/Ca. The reasonably open cave structure and the correlation of Sr/Ca with Mg/Ca suggest that temperature exerts considerable control over these trace element variations. U/Ca also varies seasonally by up to 42 % and shows a clear anti-correlation with Mg/Ca (correlation coefficient -0.64). Based on the inverse relationship between U/Ca and temperature exhibited in other carbonates (e.g. corals) the speleothem U/Ca is suggested to be controlled primarily by temperature and may provide a paleo cave thermometer with less rainfall influence than Mg/Ca. Ongoing monitoring of the cave temperature and humidity will assess the robustness of this conclusion and the sensitivity of speleothem U/Ca to temperature. (234U/238U) in this stalagmite range from 1.733 to 1.872 during the Holocene. The U concentration is high enough (typically 0.48 ppm) and growth rate fast enough, that (234U/238U) can also be measured at a subannual resolution. The expected alpha-recoil control of excess 234U supply suggests that these measurements may provide a measure of the transit time of recharge waters to the stalagmite during the seasonal cycle. Such a proxy would enable deconvolution of temperature and recharge-rate control

  5. Health and environmental effects of depleted uranium

    International Nuclear Information System (INIS)

    Millar, W.A.

    2001-01-01

    Knowledge accumulated till the end of the 20th century is mentioned briefly. More attention is paid to recent findings. Recent studies of uranium contamination of the Persian Gulf and Balkan War veterans have been conducted in the U.S. and Canada by studying distribution of isotopes of DU in the veterans of the NATO and Allied forces who were accidentally contaminated with DU either in the form of imbedded shrapnel or inhalation of uranium contaminating dust. The studies of the U.S. armed forces Research Institute in Bethesda Maryland on the shrapnel wounded veteran's demonstrated increased concentration of the isotopes of DU in the urine eight years after the Persian Gulf War. In contrast non-governmental uranium research groups such as Uranium Medical Centre reported increased urinary excretion of four isotopes of DU in the Allied forces veterans exposed to DU containing dust ten years after the exposure. These studies were confirmed by two methods. Neutron activation analysis confirmed presence of DU in the urine of seven Persian Gulf veterans with ratios significantly different from the natural uranium and in the range of DU, ten years after exposure from inhalation. The veterans of the Allied forces contaminated by inhalation in the Persian Gulf War were also analyzed for the uranium presence for their body fluids, tissues and urine by the method of mass spectrometry. These results presented at the International Conferences in Dublin Ireland, Paris France and New York U.S.A. indicate significant presence of four uranium isotopes in over 60% of contaminated veterans being in the range of DU. The ratio of the uranium isotopes 235/238 is in the range of DU if higher than 137.8. It was found to be in the DU ratio 62% examined by the mass spectrometry analysis. Isotopic composition of natural enriched and DU should be for U 238 /99.3, U 235 /0.7 and U 234 /0.006 and for enriched uranium 99.01, 2.96 and 0.03, while for DU respective ratios are 99.75, 0.25 and 0

  6. Relative probabilities of the uranium isotopes for thorium x-ray emission and fluorescence of uranium x-rays

    International Nuclear Information System (INIS)

    Parker, J.L.

    1991-01-01

    Both thorium x-rays from decaying uranium isotopes and self-fluoresced uranium x-rays are prominent in high-resolution gamma-ray spectra of uranium-bearing materials. Useful application of the information carried by those x-rays has been curtailed because the probabilities of the uranium isotopes for thorium x-ray emission and for uranium x-ray fluorescence have not been known. By analyzing enrichment-meter geometry spectra from uranium oxide standards whose enrichments ranged from 0.7% to 91%, relative values, primarily, have been obtained for the probabilities of both processes. Thorium x-ray emission is very heavily dominated by 235 U. In all ordinarily occurring uranium isotopic distributions, thorium x-rays may be used as a valid 235 U signature. The probability for a thorium K α1 x-ray to be emitted in the decay of a 235 U atom is 0.048 ±0.002. In infinitely thick uranium oxide materials, the relative ratios of effectiveness for self-fluorescence, on a per unit mass basis, are approximately 234 U : 235 U : 236 U : 238 U = 1.13 : 1.00 : 0.52 : 0.028. on a per decay basis, the approximate ratios are 0.00039 : 1.00 : 0.017 : 0.18. These results imply that, contrary to what has often been stated, gamma rays are far more important than alpha particles in the self-fluorescence of uranium. Because of the importance of gamma-ray self-fluorescence, the uranium x-ray yield will be somewhat influenced by the size, shape, and composition of the materials. 4 refs., 1 fig

  7. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U 235 /U 238 ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U 234 and U 236 isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given

  8. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    International Nuclear Information System (INIS)

    Crancon, P.; Pili, E.; Charlet, L.

    2010-01-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the 238 U initially present in the soil column and 233 U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  9. Radium and uranium levels in vegetables grown using different farming management systems

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, D.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)], E-mail: dejanira@ird.gov.br; Ribeiro, F.C.A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN), Av. Prof. Luiz Freire 200, Cidade Universitaria Recife, PE, CEP 50740-540 (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Loureiro, F.A. [Estacao Experimental de Nova Friburgo, Empresa de Pesquisa Agropecuaria do Estado do Rio de Janeiro, Pesagro (Brazil)

    2009-02-15

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of {sup 238}U, {sup 226}Ra and {sup 228}Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for {sup 226}Ra, 0.55 for {sup 228}Ra and 0.24 for {sup 238}U (Bq kg{sup -1} dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10{sup -4} to 10{sup -2} for {sup 238}U and from 10{sup -2} to 10{sup -1} for {sup 228}Ra.

  10. Radium and uranium levels in vegetables grown using different farming management systems

    International Nuclear Information System (INIS)

    Lauria, D.C.; Ribeiro, F.C.A.; Conti, C.C.; Loureiro, F.A.

    2009-01-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of 238 U, 226 Ra and 228 Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for 226 Ra, 0.55 for 228 Ra and 0.24 for 238 U (Bq kg -1 dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10 -4 to 10 -2 for 238 U and from 10 -2 to 10 -1 for 228 Ra

  11. Radium and uranium levels in vegetables grown using different farming management systems.

    Science.gov (United States)

    Lauria, D C; Ribeiro, F C A; Conti, C C; Loureiro, F A

    2009-02-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of (238)U, (226)Ra and (228)Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for (226)Ra, 0.55 for (228)Ra and 0.24 for (238)U (Bq kg(-1) dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10(-4) to 10(-2) for (238)U and from 10(-2) to 10(-1) for (228)Ra.

  12. The combined measurement of uranium by alpha spectrometry and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Harvan, D.

    2009-01-01

    The aim of thesis was to found the dependence between radiometric method - alpha spectrometry and surface sensitive method - Secondary Ion Mass Spectrometry (SIMS). Uranium or naturally occurring uranium isotopes were studied. Samples (high polished stainless steel discs) with uranium isotopes were prepared by electrodeposition. Samples were measured by alpha spectrometry after electrodeposition and treatment. It gives surface activities. Weights, as well as surface's weights of uranium isotopes were calculated from their activities, After alpha spectrometry samples were analyzed by TOF-SIMS IV instrument in International Laser Centre in Bratislava. By the SIMS analysis intensities of uranium-238 were obtained. The interpretation of SIMS intensities vs. surface activity, or surface's weights of uranium isotopes indicates the possibility to use SIMS in quantitative analysis of surface contamination by uranium isotopes, especially 238 U. (author)

  13. Improved Technique for the Determination of Uranium Minor Isotopes Concentrations in Microparticles by Using Secondary Ion Mass-Spectrometer in Multicollection Mode

    International Nuclear Information System (INIS)

    Aleshin, M.; Elantyev, I.; Stebelkov, Y.

    2015-01-01

    Traditional method of the analysis implies simultaneous measuring of secondary ion currents of isotopes 234U + , 235U + , 238U + , ions with mass 236 amu (236U + and 235UH + ) and hydride ions 238UH + by using mass-spectrometer Cameca IMS1280 in multicollection mode. Calculating of uranium isotopic composition is performed using the results of 40 successive measurements of those currents (cycles). Duration of each measurement is 8 s. Small amounts of uranium minor isotopes are limitation for precise determination of their concentrations. To prevent the damage of the secondary ions detector the intensity of ion current should be no more than 5 x 10 5 s -1 . This limitation does not allow setting a higher primary ion current for the increasing of minor uranium isotopes ions emission because of the signal of ions 238U + gets too high. New technique is developed to improve the accuracy of determination of uranium minor isotopes concentrations. Process of measurement is divided on two steps. First step is a measurement of ion currents during 20 cycles by five detectors. The second step implies the elimination of ions 238U + hitting to the detector and 10 times increasing of primary ion current. The ratio 235U/238U is calculated from the first step results, so uncertainty of determination of this value is 1.4 times bigger than with duration of 40 cycles of the measurement. The ratios 234U/235U and 236U/235U are calculated during the second step. This technique allows to determine content of 234U and 236U with 3 and 5 times less uncertainties respectively, but with different degree of the sputtering particles. Moreover the duration of each cycle was set less (1 second) to use data more efficient. The technique accordingly with every second counting provides uncertainty of determination 236U concentration 4 times less than traditional method at the same degree of sputtering particles. (author)

  14. Bioassay for uranium mill tailings

    International Nuclear Information System (INIS)

    Tschaeche, A.N.

    1986-01-01

    Uranium mill tailings are composed of fine sand that contains, among other things, some uranium (U/sup 238/ primarily), and all of the uranium daughters starting with /sup 230/Th that are left behind after the usable uranium is removed in the milling process. Millions of pounds of tailings are and continue to be generated at uranium mills around the United States. Discrete uranium mill tailings piles exist near the mills. In addition, the tailings materials were used in communities situated near mill sites for such purposes as building materials, foundations for buildings, pipe runs, sand boxes, gardens, etc. The Uranium Mill Tailings Remedial Action Project (UMTRAP) is a U.S. Department of Energy Program designed with the intention of removing or stabilizing the mill tailings piles and the tailings used to communities so that individuals are not exposed above the EPA limits established for such tailings materials. This paper discusses the bioassay programs that are established for workers who remove tailings from the communities in which they are placed

  15. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    Science.gov (United States)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  16. Solubility of airborne uranium compounds at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Heffernan, T.E.; Lodwick, J.C.; Spitz, H.; Neton, J.; Soldano, M.

    2000-01-01

    The in vitro volubility of airborne uranium dusts collected at a former uranium processing facility now undergoing safe shutdown, decontamination and dismantling was evaluated by immersing air filters from high volume samplers in simulated lung fluid and measuring the 238 U in sequential dissolution fractions using specific radiochemical analysis for uranium. X rays and photons from the decay of uranium and thorium remaining on the filter after each dissolution period were also directly measured using a planar germanium detector as a means for rapidly evaluating the volubility of the uranium bearing dusts. Results of these analyses demonstrate that two -distinct types of uranium bearing dusts were collected on the filters depending upon the location of the air samplers. The first material exhibited a dissolution half-time much less than one day and was most likely UO 3 . The dissolution rate of the second material, which was most likely U 3 O 8 , exhibited two components. Approximately one-third of this material dissolved with a halftime much less than one day. The remaining two-thirds of the material dissolved with half times between 230 ± 16 d and 1350 ± 202 d. The dissolution rates for uranium determined by radiochemical analysis and by gamma spectrometry were similar. However, gamma spectrometry analysis suggested a difference between the half times of 238 U and its daughter 234 Th which may have important implications for in vivo monitoring of uranium

  17. Isotope composition and uranium content in the rivers Naryn and Mailuu-Suu

    International Nuclear Information System (INIS)

    Vasiliev, I. A.; Alekhina, V. M.; Orozobakov, T.; Mamatibraimov, S.

    2002-01-01

    To solve the atomic problem, including the creation of an atomic weapon, one must embark on an intensive exploration and mining of radioactive raw materials, first among which uranium, together with other materials and metals. The acquisition of all these materials has thus been accompanied by the creation of a great deal of production and storage wastes and other refuse from plants, leading to many problems of protecting the environment from radioactive and other hazardous metals and materials. And so, as a result of the extensive mining and processing of radioactive and other raw materials that had been necessary for the atomic industry, in locations like Kara-Balty, Mailuu-Suu, Kavak, Kadamzhay and other places, a series of radioactive and hazardous tailings and dumps has been generated in the Kyrgyz Republic. The toxic ingredients from the dumps migrate and mix together with the ground waters that leach the tailings. However, how these waters migrate both in space and time have not been sufficiently studied; and, so, in general, we cannot forecast the propagation of these hazards. In the usual estimation of the scale of migration from uranium plants, only the total uranium content in the ground water is used. But this does not show natural or technogenic components; and it is obvious that the danger from the plants need only be characterized by the technogenic components. To solve this problem, one can employ the phenomenon where there is a natural separation in the fraction of 234 U and 238 U present in nature and as a result of technological processes. The essence of this understanding is that, as uranium transitions from solid form into a liquid, such as its dissolution in ground water, it undergoes isotope enrichment, i.e. hydrogenic uranium is enriched with 234 U compared to 238 U.The essence of this understanding is that, as uranium transitions from solid form into a liquid, such as its dissolution in ground water, it undergoes isotope enrichment, i

  18. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  19. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  20. Gamma-Dose rate above uranium mineralization areas in western sudan

    International Nuclear Information System (INIS)

    Sam, A.K; Sirelkhatim, D.A; Hassona, R.K.

    2003-01-01

    Absorbed dose rate received from natural external irradiation in uranium mineralisation areas at Uro, Kurun and Jebel Mun was evaluated from the measured activity concentrations of 238 U, 232 Th and 40 K in rock samples.The analyses were performed using alpha-spectrometry and high-resolution gamma-ray spectrometry. A great spatial variability was observed in activity concentration of the primordial radionuclides indicating complexity in geological features. Converses to Jebel Mun, Uro and Kurun deposits exhibit very high U:Th mass ratio. The resulting absorbed dose rate in air as estimated using DRCF's fall within the range of 70-522 (Mun), 569-349 (Uro) and 84-320 n Gy/h (Kurun). At maximum, they correspond to annual effective dose of 0.64, 7.78 and 0.39 mSv, respectively. Uranium is the principal producer of the surface radioactivity at Uro and Kurun as it contributes 99.6% and 95% of the total absorbed dose whereas, in Jebel Mun the cause of radioactive anomaly is due to 40 K and 232 Th. In Uro and Kurun deposits, daughter/parent activity ratios along uranium series, Viz. 234 U: 238 U, 230 Th:U, 210 Po:U, are not differ from the equilibrium value of unity.(Author)

  1. Charge-pickup of 238U at relativistic energies

    International Nuclear Information System (INIS)

    Rubehn, T.; Bassini, R.; Blaich, T.; Imme, G.; Iori, I.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlenkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-10-01

    Cross sections for the charge-pickup of 238 U projectiles were measured at E/A=600 and 1000 MeV for seven different targets (Be, C, Al, Cu, In, Au and U). Events with two fission fragments with a sum charge of 93 in the exit channel were selected. Due to the significant excitation energy, the dominant part of produced Np nuclei fission instead of decaying to the ground state by evaporation. The observed cross sections can be well reproduced by intranuclear-cascade-plus-evaporation calculations and, therefore, confirm recent results that no exotic processes are needed to explain charge-pickup processes. (orig.)

  2. Delayed fission of the 238U muonic atom

    International Nuclear Information System (INIS)

    Ganzorig, Dz.; Krogulski, T.; Kuznetsov, V.D.; Polikanov, S.M.; Sabirov, B.M.

    1975-01-01

    The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238 U atom and conversion of muons from the fission fragments

  3. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    Science.gov (United States)

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    well field suggest that the paleochannel persists at least 900 m to the north of the heap leach and pond sites. Contamination of groundwater beneath the stream terraces may extend at least that far. Fry Creek surface water (six samples), seeps and springs (six samples), and wells (eight samples) were collected during a dry period of April 16-19, 2007. The most uranium-rich (18.7 milligrams per liter) well water on the site displays distinctive Ca-Mg-SO4-dominant chemistry indicating the legacy of heap leaching copper-uranium ores with sulfuric acid. This same water has strongly negative d34S of sulfate (-13.3 per mil) compared to most local waters of -2.4 to -5.4 per mil. Dissolved uranium species in all sampled waters are dominantly U(VI)-carbonate complexes. All waters are undersaturated with respect to U(VI) minerals. The average 234U/238U activity ratio (AR) in four well waters from the site (0.939 + or ? 0.011) is different from that of seven upstream waters (1.235 + or ? 0.069). This isotopic contrast permits quantitative estimates of mixing of site-derived uranium with natural uranium in waters collected downstream. At the time of sampling, uranium in downstream surface water was mostly (about 67 percent) site-derived and subject to further concentration by evaporation. Three monitoring wells located approximately 0.4 kilometer downstream contained dominantly (78-87 percent) site-derived uranium. Distinctive particles of chalcopyrite (CuFeS) and variably weathered pyrite (FeS2) are present in tailings at the stream edge on the site and are identified in stream sediments 1.3 kilometers downstream, based on inspection of polished grain mounts of magnetic mineral separates.

  4. Effect of U-238 and U-235 cross sections on nuclear characteristics of fast and thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1997-03-01

    Benchmark calculation has been made for fast and thermal reactors by using ENDF/B-VI release 2(ENDF/B-VI.2) and JENDL-3.2 nuclear data. Effective multiplication factors (k{sub eff}s) calculated for fast reactors calculated with ENDF/B-VI.2 becomes about 1% larger than the results with JENDL-3.2. The difference in k{sub eff} is caused mainly from the difference in inelastic scattering cross section of U-238. In all thermal benchmark cores, ENDF/B-VI.2 gives smaller multiplication factors than JENDL-3.2. In U-235 cores, the difference is about 0.3%dk and it becomes about 0.6% in TCA U cores. The difference in U-238 data is also important in thermal reactors, while there are found 0.1-0.3% different v values of U isotopes in thermal energy between ENDF/B-VI.2 and JENDL-3.2. (author)

  5. Determination of natural and depleted uranium in urine at the ppt level: an interlaboratory analytical exercise

    International Nuclear Information System (INIS)

    D'Agostino, P.A.; Ough, E.A.; Glover, S.E.; Vallerand, A.L.

    2002-10-01

    An analytical exercise was initiated in order to determine those analytical procedures with the capacity to measure uranium isotope ratios ( 238 U/ 235 U) in urine samples containing less that 1μ uranium /L urine. A host laboratory was tasked with the preparation of six sets (12 samples per set) of synthetic urine samples spiked with varying amounts of natural and depleted (0.2% 235 U) uranium. The sets of samples contained total uranium in the range 25 ng U/L urine to 770 ng U/L urine, with isotope ratios ( 238 U/ 235 U) from 137.9 (natural uranium) to 215 (∼50% depleted uranium). Sets of samples were shipped to five testing laboratories (four Canadian and one European) for total and isotopic assay. The techniques employed in the analyses included sector field inductively coupled plasma mass spectrometry (ICP-SF-MS), quadrupole inductively coupled plasma mass spectrometry (ICP-Q-MS), thermal ionization mass spectrometry (TIMS) and neutron activation analysis (NAA). Full results were obtained from three testing labs (ICP-SF-MS, ICP-Q-MS and TIMS). Their results, plus partial results from the NAA lab, have been included in this report. Total uranium and isotope ratio results obtained from ICP-SF-MS and ICP-Q-MS were in good agreement with the host lab values. Neutron activation analysis and TIMS reported total uranium concentrations that differed from the host lab. An incomplete set of isotopic ratios was obtained from the NAA lab with some results reporting enriched uranium (% 235 U > 0.7). Based on the reported results, the four analytical procedures were ranked: ICP-SF-MS (1), ICP-Q-MS (2), TIMS (3) and NAA (4). (author)

  6. Solubility of 238U radionuclide from various types of soil in synthetic gastrointestinal fluids using "US in vitro" digestion method

    Science.gov (United States)

    Rashid, Nur Shahidah Abdul; Sarmani, Sukiman; Majid, Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2015-04-01

    238U radionuclide is a naturally occuring radioactive material that can be found in soil. In this study, the solubility of 238U radionuclide obtained from various types of soil in synthetic gastrointestinal fluids was analysed by "US P in vitro" digestion method. The synthetic gastrointestinal fluids were added to the samples with well-ordered, mixed throughly and incubated according to the human physiology digestive system. The concentration of 238U radionuclide in the solutions extracted from the soil was measured using Induced Coupling Plasma Mass Spectrometer (ICP-MS). The concentration of 238U radionuclide from the soil samples in synthetic gastrointestinal fluids showed different values due to different homogenity of soil types and chemical reaction of 238U radionuclide. In general, the solubility of 238U radionuclide in gastric fluid was higher (0.050 - 0.209 ppm) than gastrointestinal fluids (0.024 - 0.050 ppm). It could be concluded that the US P in vitro digestion method is practicle for estimating the solubility of 238U radionuclide from soil materials and could be useful for monitoring and risk assessment purposes applying to environmental, health and contaminated soil samples.

  7. A discussion about maximum uranium concentration in digestion solution of U3O8 type uranium ore concentrate

    International Nuclear Information System (INIS)

    Xia Dechang; Liu Chao

    2012-01-01

    On the basis of discussing the influence of single factor on maximum uranium concentration in digestion solution,the influence degree of some factors such as U content, H 2 O content, mass ratio of P and U was compared and analyzed. The results indicate that the relationship between U content and maximum uranium concentration in digestion solution was direct ratio, while the U content increases by 1%, the maximum uranium concentration in digestion solution increases by 4.8%-5.7%. The relationship between H 2 O content and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 46.1-55.2 g/L while H 2 O content increases by 1%. The relationship between mass ratio of P and U and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 116.0-181.0 g/L while the mass ratio of P and U increase 0.1%. When U content equals 62.5% and the influence of mass ratio of P and U is no considered, the maximum uranium concentration in digestion solution equals 1 578 g/L; while mass ratio of P and U equals 0.35%, the maximum uranium concentration decreases to 716 g/L, the decreased rate is 54.6%, so the mass ratio of P and U in U 3 O 8 type uranium ore concentrate is the main controlling factor. (authors)

  8. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    Science.gov (United States)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  9. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Méndez-García, C.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.; García-Tenorio, R.

    2014-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232 Th-series, 238 U-series, 40 K and 137 Cs activity concentrations (AC, Bq kg −1 ) were determined by gamma spectrometry with a high purity Ge detector. 238 U and 234 U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210 Pb activities. Results were verified by 137 Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238 U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234 U/ 238 U and 238 U/ 226 Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232 Th/ 238 U, 228 Ra/ 226 Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs

  10. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  11. Evolution of Uranium Isotopic Compositions of the Groundwater and Rock in a Sandy-Clayey Aquifer

    Directory of Open Access Journals (Sweden)

    Alexander I. Malov

    2017-11-01

    Full Text Available Uranium isotopes have been used as mechanistic or time scale tracers of natural processes. This paper describes the occurrence and redistribution of U in the Vendian aquifer of a paleo-valley in NW Russia. Forty-four rock samples were collected from nine boreholes with depths up to 160 m, and 25 groundwater samples were collected from 23 boreholes with depths up to 300 m. The U, Fe concentration, and 234U/238U activity ratio were determined in the samples. Estimations were made of the 14C and 234U-238U residence time of groundwater in the aquifer. It has been established that the processes of chemical weathering of Vendian deposits led to the formation of a strong oxidation zone, developed above 250 m.b.s.l. The inverse correlation between the concentrations of uranium and iron is a result of removal of U from paleo-valley slopes in oxidizing conditions, accumulation of U at the bottom of the paleo-valley in reducing conditions, and accumulation of Fe on the slopes and removal from the bottom of the paleo-valley. Almost all U on the slopes has been replaced by a newly formed hydrogenic U with a higher 234U/238U activity ratio. After, dissolution and desorption of hydrogenic U occurred from the slopes during periods with no glaciations and marine transgressions. Elevated concentrations of U are preserved in reduced lenses at the paleo-valley bottom. In these areas, the most dangerous aspect is the flow of groundwater from the underlying horizons, since during the operation of water supply wells it can lead to the creation of local zones of oxidizing conditions in the perforated screens zone and the transition of uranium into solution. For groundwater under oxidizing conditions, an increase in the concentration of uranium is characteristic of an increase in the residence time (age of water in the aquifer. Also, the 234U/238U activity ratio increases with increasing radioactivity of groundwater. Therefore, the most rational approach is to use

  12. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-01-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bq kg -1 for 238 U, 0.48-93.9 Bq kg -1 for 234 U and 0.02-12.2 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, 236 U was detectable in some of the samples. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 μBq m -3 for 238 U, 0.96-38.0 μBq m -3 for 234 U, and 0.05-1.83 μBq m -3 for 235 U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBq l -1 for 238 U, 0.27-28.1 mBq l -1 for 234 U, and 0.01-0.88 mBq l -1 for 235 U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of

  13. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    Science.gov (United States)

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  14. Computer simulation of the natural U 238 and U 235 radioactive series decay

    International Nuclear Information System (INIS)

    Barna, A.; Oncescu, M.

    1980-01-01

    The principles of the computer simulation of a radionuclide decay - its decay scheme adoption and codification -, and the adoption principle of a radionuclide chain in a series are applied to the natural U 238 and U 235 series radionuclide decay computer simulation. Using the computer simulation data of these two series adopted chains, the decay characteristic quantities of the series radionuclides, the gamma spectra and the basic characteristics of each of these series are determined and compared with the experimental values given in the literature. (author)

  15. (e,e'f) coincidence experiments for fission decay of giant resonances in 235,238U

    International Nuclear Information System (INIS)

    Weber, T.; Heil, R.D.; Kneissl, U.; Pecho, W.; Wilke, W.; Emrich, H.J.; Kihm, T.; Knoepfle, K.T.

    1988-01-01

    Extending previous work on 238 U, 235 U(e,e'f) coincidence data were taken at 4 momentum transfers yielding both E1, E2/E0 and E3 form factors and the respective multipole strength distributions in the giant resonance region of 238 U (4 x x /Γ a is obtained as a function of excitation energy for separated multipoles. The giant E2 resonance exhibits an increased symmetric fission contribution compared to E1 and E3 resonances. (orig.)

  16. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Štrok, Marko, E-mail: Marko.Strok@ijs.si; Smodiš, Borut, E-mail: Borut.Smodis@ijs.si

    2013-08-15

    Highlights: • Soil and grass samples were collected from sites at the uranium mill tailings pile. • {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb activity concentrations were determined. • Soil-to-plant transfer factors were determined and are comparable with literature. • Potential use of grass as a monitor of radionuclide migration was evaluated. • Grass has potential in predicting {sup 238}U and {sup 226}Ra migration. -- Abstract: The activity concentrations of {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb were determined in soil and grass samples collected from sites at the uranium mill tailings waste pile, which lies near the former uranium mine at Žirovski vrh in Slovenia. Soil-to-plant transfer factors were determined and the potential use of grass as a monitor of radionuclide migration from the waste pile was evaluated. It was found that grass was not suitable for monitoring {sup 230}Th and {sup 210}Pb migration (no linear correlation between soil and grass activity concentrations) but has potential in predicting {sup 238}U and {sup 226}Ra migration (linear correlation between soil and grass activity concentrations). Soil-to-plant transfer factors for grass were in the range from 0.0014 to 0.015 kg/kg DM for {sup 238}U, 0.0039 to 0.012 kg/kg DM for {sup 230}Th, 0.035 to 0.46 kg/kg DM for {sup 226}Ra and 0.098 to 1.5 kg/kg DM for {sup 210}Pb.

  17. Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    S.J. Goldstein; M.T. Murrell; A.M. Simmons

    2005-01-01

    The Nopal I uranium deposit in Chihuahua, Mexico, is an excellent analogue for evaluating the fate of spent fuel, associated actinides, and fission products over long time scales for the proposed Yucca Mountain high-level nuclear waste repository. In 2003, three groundwater wells were drilled directly adjacent to (PB-1) and 50 m on either side of the uranium deposit (PB-2 and PB-3) in order to evaluate uranium-series transport in three dimensions. After drilling, uranium concentrations were elevated in all of the three wells (0.1-18 ppm) due to drilling activities and subsequently decreased to ∼5-20% of initial values over the next several months. The 234 U/ 238 U activity ratios were similar for PB-1 and PB-2 (1.005 to 1.079) but distinct for PB-3 (1.36 to 1.83) over this time period, suggesting limited mixing between groundwater from these wells over these short time and length scales. Regional groundwater wells located up to several km from the deposit also have distinct uranium isotopic characteristics and constrain mixing over larger length and time scales. We model the decreasing uranium concentrations in the newly drilled wells with a simple one-dimensional advection-dispersion model, assuming uranium is introduced as a slug to each of the wells and transported as a conservative tracer. Using this model for our data, the relative uranium concentrations are dependent on both the longitudinal dispersion as well as the mean groundwater flow velocity. These parameters have been found to be correlated in both laboratory and field studies of groundwater velocity and dispersion (Klotz et al., 1980). Using typical relationships between velocity and dispersion for field and laboratory studies along with the relationship observed from our uranium data, both velocity (1-10 n/yr) and dispersion coefficient (1E-5 to 1E-2 cm 2 /s) can be derived from the modeling. As discussed above, these relatively small flow velocities and dispersivities agree with mixing

  18. Determination of uranium in urine by 2-spectrometry

    International Nuclear Information System (INIS)

    Duarte, C.L.; Szeles, M.S.-M.F.

    1989-07-01

    A comparative study is presented for two technics of preparation sources for the determination of uranium isotopes by α - spectrometry: electrodeposition and chemical stripping with polymeric membrane containing trioctylphosphine oxide (TOPO). A method is described for separation of uranium from urine with an ion-exchange column Dowex 1x8 (chloride form). The mean yield obtained for electrodeposition and TOPO deposition was 74% and 8,5% respectively. The TOPO deposition presented better resolution for 238 U and 234 U than electrodeposition. The global yield of the method obtained was 50%. (author) [pt

  19. Measurement of radionuclide activities of uranium-238 series in soil samples by gamma spectrometry: case of Vinaninkarena

    International Nuclear Information System (INIS)

    Randrianantenaina, F.R.

    2017-01-01

    The aim of this work is to determine the activity level of radionuclides of uranium-238 series. Eight soil samples are collected at Rural Commune of Vinaninkarena. After obtaining secular equilibrium, these samples have been measured using gamma spectrometry system in the Nuclear Analyses and Techniques Department of INSTN-Madagascar, with HPGe detector (30 % relative efficiency) and a Genie 2000 software. Activities obtained vary from (78±2)Bq.kg -1 to (49 231 ± 415)Bq.kg -1 . Among these eight samples, three activity levels are shown. Low activity is an activity which has value lower or equal to (89±3)Bq.kg -1 . Average activity is an activity which has value between (186± 1)Bq.kg -1 and (1049 ±7)Bq.kg -1 . And high activity is an activity which has value higher or equal to (14501±209)Bq.kg -1 . According to UNSCEAR 2000, these value are all higher than the world average value which is 35 Bq.kg -1 .It is due to the localities of sampling points. The variation of the activity level depends on radionuclide concentration of uranium-238 series in the soil. [fr

  20. Assay of low-enriched uranium using spontaneous fission neutrons

    International Nuclear Information System (INIS)

    Zucker, M.S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238 U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238 U is of intrinsic interest

  1. Differential geochemical behaviour of natural isotopes of U and Th in an aquifer in humid tropical terrain

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1989-01-01

    Uranium and thorium isotopic analyses were performed on spoil samples from the saturated zone of a borehole drilled in the main ore body of a high grade thorium/rare earth ore, and on groundwaters from a borehole drilled in the zone. The deposit is located at Morro do Ferro, a hill near the centre of the Pocos de Caldas Plateau (MG), where an aquifer system developed in the weathered mantle due to in situ intense alteration. For extraction of uranium and thorium a long chemical process was applied to the samples; activities of Th-228 and Th-232 isotopes (4n series) and also of U-238, U-234 and Th-230 isotopes (4n+2 series) were determined by the alpha spectrometry method. U-234/U-238 activity ratios in groundwaters were between 1 and 2 but Th-228/Th-232 activity ratios showed marked isotopic fractionation between these nuclides. The mechanism of mobilization of uranium by complexation with humic substances is considered. U-234/U-238, Th-228/Th-232 and Th-230/U-234 activity ratios in soil samples allowed consider action of other possible mechanisms related to the mobilization of uranium, such as, ion-exchange reaction and adsorption by Fe and Mn oxides. (author) [pt

  2. New data on the Hyrkkoelae U-Cu mineralization: the behaviour of native copper in a natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, N. [Helsinki Univ. of Technology, Espoo (Finland); Ahonen, L. [Geological Survey of Finland, Helsinki (Finland)

    1999-05-01

    The Hyrkkoelae Cu-U mineralisation (SW Finland) is studied as an analogue to the behaviour of copper canister in crystalline bedrock. Uranium-native copper and uranium-copper corrosion products interactions are also addressed in this study. The integration of uranium series disequilibrium (USD) studies gives an estimate of the time-scales of the corrosion processes. The mineral assemblages native copper-copper sulfide, copper sulfides - copper iron sulfides, and native copper-copper oxide (cuprite) occur in open fractures at several depth intervals within granite pegmatites (GP). The surfaces of these open fractures have accumulations of uranophane crystals and other unidentified uranyl compounds. The secondary uranium minerals are mainly distributed around copper sulfide grains. Microscopic intergrowths of copper sulfides and uranyl compounds also have been observed. The surface of the fracture where native copper and cuprite occur is covered with uranium-rich smectite. The very low {sup 234}U/{sup 238}U activity ratio (0.29 - 0.39) in the main uranium fraction in smectite indicates chemical stable conditions (e.g., oxidising) during at least a time period comparable to the half-life of the {sup 234}U isotope (T{sub 1/2} = 2.44 x 10{sup 5} a). Groundwater samples were collected from intervals where copper minerals occur within open fractures. The Eh and pH conditions were measured during long-term pumping (2-4 weeks per sample). Eh was measured both in situ and an the surface using three electrodes (Pt, Au, C). The actual groundwater conditions are oxidising and would not allow the sulfidization of native copper. Sulfidization may be considered as on old phenomenon, older than the precipitation of uranyl phases in the samples. The end of sulfidization may be earlier than the precipitation and/or remobilisation of U(VI) phases in a time span from about 2 x 10{sup 5} years (precipitation of uranophane) to 2.44 x 10{sup 5} (remobilisation of U from smectite). (orig.)

  3. New data on the Hyrkkoelae U-Cu mineralization: the behaviour of native copper in a natural environment

    International Nuclear Information System (INIS)

    Marcos, N.; Ahonen, L.

    1999-05-01

    The Hyrkkoelae Cu-U mineralisation (SW Finland) is studied as an analogue to the behaviour of copper canister in crystalline bedrock. Uranium-native copper and uranium-copper corrosion products interactions are also addressed in this study. The integration of uranium series disequilibrium (USD) studies gives an estimate of the time-scales of the corrosion processes. The mineral assemblages native copper-copper sulfide, copper sulfides - copper iron sulfides, and native copper-copper oxide (cuprite) occur in open fractures at several depth intervals within granite pegmatites (GP). The surfaces of these open fractures have accumulations of uranophane crystals and other unidentified uranyl compounds. The secondary uranium minerals are mainly distributed around copper sulfide grains. Microscopic intergrowths of copper sulfides and uranyl compounds also have been observed. The surface of the fracture where native copper and cuprite occur is covered with uranium-rich smectite. The very low 234 U/ 238 U activity ratio (0.29 - 0.39) in the main uranium fraction in smectite indicates chemical stable conditions (e.g., oxidising) during at least a time period comparable to the half-life of the 234 U isotope (T 1/2 = 2.44 x 10 5 a). Groundwater samples were collected from intervals where copper minerals occur within open fractures. The Eh and pH conditions were measured during long-term pumping (2-4 weeks per sample). Eh was measured both in situ and an the surface using three electrodes (Pt, Au, C). The actual groundwater conditions are oxidising and would not allow the sulfidization of native copper. Sulfidization may be considered as on old phenomenon, older than the precipitation of uranyl phases in the samples. The end of sulfidization may be earlier than the precipitation and/or remobilisation of U(VI) phases in a time span from about 2 x 10 5 years (precipitation of uranophane) to 2.44 x 10 5 (remobilisation of U from smectite). (orig.)

  4. Development of complex electrokinetic decontamination method for soil contaminated with uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Hye-Min; Kim, Wan-Suk; Moon, Jei-Kwon; Hyeon, Jay-Hyeok

    2012-01-01

    520L complex electrokinetic soil decontamination equipment was manufactured to clean up uranium contaminated soils from Korean nuclear facilities. To remove uranium at more than 95% from the radioactive soil through soil washing and electrokinetic technology, decontamination experiments were carried out. To reduce the generation of large quantities of metal oxides in cathode, a pH controller is used to control the pH of the electrolyte waste solution between 0.5 and 1 for the formation of UO 2+ . More than 80% metal oxides were removed through pre-washing, an electrolyte waste solution was circulated by a pump, and a metal oxide separator filtered the metal oxide particles. 80–85% of the uranium was removed from the soil by soil washing as part of the pre-treatment. When the initial uranium concentration of the soil was 21.7 Bq/g, the required electrokinetic decontamination time was 25 days. When the initial concentration of 238 U in the soil was higher, a longer decontamination time was needed, but the removal rate of 238 U from the soil was higher.

  5. Equilibria determination in uranium ores by alpha spectrometry

    International Nuclear Information System (INIS)

    Tormo Ferrero, M.J.

    1976-01-01

    A method for the measurement of the U-234/U-238 activities is described. The separation of the uranium from the interferring elements is carried out by ionic change with anionic resine, in chlorhydric-metanol-ascorbic acid medium. The method has been applied to different spanish ores in which the equilibrium state has been determined (author)

  6. Concentration of uranium in the drinking and surface water around the WIPP site

    International Nuclear Information System (INIS)

    Khaing, H.; Lemons, B.G.; Thakur, P.

    2016-01-01

    Activity concentration of uranium isotopes ( 238 U, 234 U and 235 U) were analyzed in drinking and surface water samples collected in the vicinity of the WIPP site using alpha spectroscopy. The purpose of this study was to investigate the changes in uranium concentrations (if any) in the vicinity of the WIPP site and whether the February 14, 2014 radiation release event at the WIPP had any detectable impact on the water bodies around the WIPP. (author)

  7. Depleted uranium in the environment - an issue of concern?

    International Nuclear Information System (INIS)

    Stegnar, P.; Benedik, Lj.

    2002-01-01

    Natural uranium (U) occurs in soils in typical concentrations of a few parts per milion. U-238 is the most abundant isotope in natural uranium (fraction by weight in natural uranium is 99.28%) and decays into other radioactive elements. A radioactive waste product of uranium enrichment is known as 'depleted uranium' (DU) which is basically natural uranium in which the fissionable U-235 isotopic content has been reduced from 0.71% to 0.2-0.3%. It is practically pure alpha emitter, only selected (in=growth) daughter products are gammaand beta emitters. Comparison of radioactivity shows that the total activity in 1mg of natural uranium is 25.28 Bq and in1 mg of DU is 14.80 Bq. The radioactivity of DU is 60% of that of natural uranium. Currently in the USA alone, there are about 600.000 tonnes of DU in storage. DU is cheap and it is available in large quantities. It is widely used as ballast or counterbalances in ships and aircrafts, as radiation shielding and in non-nuclear civil applications requiring hugh density material. (author)

  8. Precise measurement and calculation of 238U neutron transmissions

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Silver, E.G.; Perez, R.B.

    1975-01-01

    The total neutron cross section of 238 U has been measured above 0.5 eV in precise transmission experiments and results are compared with ENDF/B-IV. Emphasis has been on measuring transmissions through thick samples in order to obtain accurate total cross sections in the potential-resonance interference regions between resonances. 4 figures, 1 table

  9. On the Use of 233U-236U Double-Spike for TIMS Measurements of Uranium Isotopes: A Simulation Study

    International Nuclear Information System (INIS)

    Williams, R W

    2004-01-01

    Synthetic ion beams with instantaneous and temporal characteristics appropriate to thermal ionization mass spectrometry (TIMS) were mathematically generated and analyzed to determine the effects of using a mixed 233 U- 236 U spike (double-spike) in the analysis of uranium isotopes. The instantaneous beam characteristics are the intensities (e.g., counts per second) modeled with a Poisson distribution plus a component of random noise that simulates the detection processes. Several beam intensity and mass fractionation vs. time functions were modeled to simulate a range of sample sizes and the commonly employed methods of data collection. These beam profiles were also generated with different noise levels, and signal-to-noise vs. analytical precision diagrams are presented. Modeling focused on natural uranium, where 238 U/ 235 U = 137.88, and on the ability of a given method to determine precisely and accurately small variations in this ratio. Practical limits on precision were determined to be 20-30 ppm, which is consistent with precision seen for other elements by state-of-the-art TIMS. The TIMS total evaporation method was compared directly with the double-spike method. While similar analytical precisions are obtained with either method, the double-spike method of correcting for analytical bias gives more accurate results. The results of a total evaporation analysis will deviate from true by more than the analytical precision if as little as 0.05% of the signal is not integrated, whereas the accuracy and precision of the double-spiked analyses are always linked

  10. Characteristics of the natural uranium ingots developed in IPEN - CNEN/SP

    International Nuclear Information System (INIS)

    Soares, M.C.B.; Koshimizu, S.

    1990-01-01

    The natural uranium consists of two primary isotopes, the U sup(235) (0,7%) and the U sup(238) (99,3%). The isotopic separation carried out in order to obtain enriched uranium, generates a by-product called depleted uranium, which can be applied for industrial uses. The most singular property, from engineering standpoint, is its high density. When the density is the only important factor, the uranium has great advantage over other heavy metals related to economic and technical considerations. Among some applications of uranium are aircraft and missile counterweights, kinetics energy penetrators, radiation shielding, gyro rotors and oil-well sinker bars. The uranium ingot fabrication is done by direct reduction of UF, with magnesium, without remelting. The microstructure of as-cast uranium is, as in the other as-cast, formed by coarse and. (author)

  11. Gastrointestinal absorption of soluble uranium from drinking water. Published paper

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Ruth, H.; Burleigh, D.

    1988-04-01

    This manuscript describes results of an experiment to determine the gastrointestinal absorption of uranium from drinking water in 12 health adults. Most of the uranium ingested was excreted in feces in the first 2 days following ingestion of the water. The absorption was the same for (234)U and (238)U for each subject. Absorption varied among subjects from -0.02% to 2.6%, with a mean of 0.6%. Low absorption may be due to concurrent ingestion of food

  12. Solubility of 238U radionuclide from various types of soil in synthetic gastrointestinal fluids using “US in vitro” digestion method

    International Nuclear Information System (INIS)

    Rashid, Nur Shahidah Abdul; Sarmani, Sukiman; Majid, Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2015-01-01

    238U radionuclide is a naturally occuring radioactive material that can be found in soil. In this study, the solubility of 238U radionuclide obtained from various types of soil in synthetic gastrointestinal fluids was analysed by “US P in vitro” digestion method. The synthetic gastrointestinal fluids were added to the samples with well-ordered, mixed throughly and incubated according to the human physiology digestive system. The concentration of 238U radionuclide in the solutions extracted from the soil was measured using Induced Coupling Plasma Mass Spectrometer (ICP-MS). The concentration of 238U radionuclide from the soil samples in synthetic gastrointestinal fluids showed different values due to different homogenity of soil types and chemical reaction of 238U radionuclide. In general, the solubility of 238U radionuclide in gastric fluid was higher (0.050 – 0.209 ppm) than gastrointestinal fluids (0.024 – 0.050 ppm). It could be concluded that the US P in vitro digestion method is practicle for estimating the solubility of 238U radionuclide from soil materials and could be useful for monitoring and risk assessment purposes applying to environmental, health and contaminated soil samples

  13. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    Science.gov (United States)

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios uranium ore potential of the granites in the Zhuguangshan complex. The geochemical variations of U-bearing and barren granites can serve as a potential detector for granite-hosted uranium deposits.

  14. Increasing the Accuracy in the Measurement of the Minor Isotopes of Uranium: Care in Selection of Reference Materials, Baselines and Detector Calibration

    Science.gov (United States)

    Poths, J.; Koepf, A.; Boulyga, S. F.

    2008-12-01

    The minor isotopes of uranium (U-233, U-234, U-236) are increasingly useful for tracing a variety of processes: movement of anthropogenic nuclides in the environment (ref 1), sources of uranium ores (ref 2), and nuclear material attribution (ref 3). We report on improved accuracy for U-234/238 and U-236/238 by supplementing total evaporation protocol TIMS measurement on Faraday detectors (ref 4)with multiplier measurement for the minor isotopes. Measurement of small signals on Faraday detectors alone is limited by noise floors of the amplifiers and accurate measurement of the baseline offsets. The combined detector approach improves the reproducibility to better than ±1% (relative) for the U-234/238 at natural abundance, and yields a detection limit for U-236/U-238 of <0.2 ppm. We have quantified contribution of different factors to the uncertainties associated with these peak jumping measurement on a single detector, with an aim of further improvement. The uncertainties in the certified values for U-234 and U-236 in the uranium standard NBS U005, if used for mass bias correction, dominates the uncertainty in their isotopic ratio measurements. Software limitations in baseline measurement drives the detection limit for the U-236/U-238 ratio. This is a topic for discussion with the instrument manufacturers. Finally, deviation from linearity of the response of the electron multiplier with count rate limits the accuracy and reproducibility of these minor isotope measurements. References: (1) P. Steier et al(2008) Nuc Inst Meth(B), 266, 2246-2250. (2) E. Keegan et al (2008) Appl Geochem 23, 765-777. (3) K. Mayer et al (1998) IAEA-CN-98/11, in Advances in Destructive and Non-destructive Analysis for Environmental Monitoring and Nuclear Forensics. (4) S. Richter and S. Goldberg(2003) Int J Mass Spectrom, 229, 181-197.

  15. Measurement and resonance analysis of neutron transmissions through four samples of 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1977-01-01

    Accurate total and partial cross sections for 238 U are important for nuclear reactor design. In the resolved resonance region, energies below 4.0 keV, these cross sections are described in terms of individual resonance parameters of which the neutron widths in the 1.5 to 4.0 keV region from various workers appear discrepant. In order to determine these widths, (0.880 to 100.0 keV) neutron transmissions through 0.076, 0.254, 1.080, and 3.620 cm thick enriched 238 U samples were measured, and (0.880 to 100.0 keV) range transmissions were analyzed

  16. Preparation of small uranium hexafluoride samples in view of mass spectrometry analysis; Preparation de petits echantillons d'hexafluorure d'uranium en vue d'analyse spectrometrique de masse

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Michel

    1958-07-01

    We have studied the preparation of uranium hexafluoride for the determination of the isotopic ratio {sup 235}U/{sup 238}U by means of a mass spectrometer. UF{sub 6} should be produced from an amount of raw material (metallic uranium or oxide) that should not exceed 0,1 g. Our method has a good yield (we have studied the rate of transformation) and gives samples which present a content of impurities (HF and SiF{sub 4}) low enough to enable correct isotopic measurements. The method which seemed the best uses the cobalt trifluoride as a fluorining agent. It is now in current use in the laboratories of mass spectrometry. (author) [French] Nous avons etudie la preparation de l'hexafluorure d'uranium en vue de la determination au spectrometre de masse du rapport isotopique {sup 235}U/{sup 238}U. L'hexafluorure d'uranium devait etre produit a partir d'une quantite de matiere premiere (uranium metallique ou oxyde) ne devant pas exceder 0,1 g. Nous avons mis au point une methode de preparation presentant un rendement eleve (etude du taux de transformation) et donnant des echantillons dont le taux d'impuretes (HF et SiF{sub 4}) est suffisamment faible pour permettre des mesures isotopiques correctes. La methode ayant donne le plus de satisfaction utilise le trifluorure de cobalt comme agent fluorant. Ce procede est maintenant couramment employe dans les laboratoires de spectrometrie de masse. (auteur)

  17. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  18. Method and apparatus for separating uranium isotopes

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-01-01

    A uranium compound in the solid phase (uranium borohydride four) is subjected to radiation of a first predetermined frequency that excites the uranium-235 isotope-bearing molecules but not the uranium-238 isotope-bearing molecules. The compound is simultaneously subjected to radiation of a second predetermined frequency which causes the excited uranium-235 isotope-bearing molecules to chemically decompose but which does not affect the uranium-238 isotope-bearing molecules. Sufficient heat is then applied to the irradiated compound in the solid phase to vaporize the non-decomposed uranium-238 isotope-bearing molecules but not the decomposed uranium-235 isotope-bearing molecules, thereby physically separating the uranium-235 isotope-bearing molecules from the uranium-238 isotope-bearing molecules. The uranium compound sample in the solid phase is deposited or grown in an elongated tube supported within a dewar vessel having a clear optical path tail section surrounded by a coolant. Two sources of radiation are focused on the uranium compound sample. A heating element is attached to the elongated tube to vaporize the irradiated compound

  19. An exploration systems approach to the Copper Mountain uranium deposits, Wyoming, USA

    International Nuclear Information System (INIS)

    Babcock, L.L.; Sayala, D.

    1982-01-01

    This study of Copper Mountain uranium deposits entailed the examination, interpretation, and synthesis of geological, geochemical, geophysical, and emanometric results. Regional, structural, and metallogenic syntheses yielded criteria concerning the occurrence of anomalously radioactive granites and associated uranium deposits. Geochemical surveys indicated various pathfinder elements for uranium deposits and defined the extent of the anomalous granites. Subsurface spectral radiometrics outlined high K-Th zones which contain secondary uranium deposits. Aerial spectral radiometric and magnetic surveys delineated the Copper Mountain uranium district. Ground water helium and U-234/U-238 activity ratios are the most effective emanometric and isotopic techniques. Based on the systems approach employed and logistical considerations, a five-phase exploration strategy is suggested for Copper Mountain-type deposits

  20. Uranium-series disequilibrium data for tooth fragments from the fossil hominid site at Ternifine, Algeria

    International Nuclear Information System (INIS)

    Szabo, B.J.

    1982-01-01

    Uranium-series dating ussumes that fossil bones rapidly takes up uranium, although no thorium or protactinium, soon after burial, and that the bone neither gains nor loses uranium and 230 Th, and 231 Pa. The report analyses elephant molar-tooth fragments for uranium series dating. Three samples were heated for eight hours, the concentrations were determined on a solid-source mass spectrometer, and the 234 U/ 238 U, 230 Th/ 234 U and 231 Pa/ 235 U activivy ratios were determined by alpha spectrometric analyses using chemical and instrumental procedures. There is no firm radiometric age estimate of the prehistoric site of Ternifine, Algeria but is believe to be between 200 000 and 1 100 000 years

  1. Availability of U-238 and Th-232 present in phosphogypsum used in agriculture: precision and accuracy of the methodology

    International Nuclear Information System (INIS)

    Malheiro, Luciano H.; Saueia, Catia H.R.; Mazzilli, Barbara P.

    2013-01-01

    Phosphogypsum (PG) can be classified as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM), and it is obtained as a residue of the phosphate fertilizer industry. PG presents in its composition radionuclides of the natural U and Th series: mainly Ra-226, Ra-228, Th-232, Pb-210 and Po-210. The Brazilian producers stock the PG in dry stacks, posing risks to the surrounding environment. A possible solution to this problem is to reuse PG in agriculture; however, it is necessary to ensure that the radionuclides present in the PG will not be available to the agricultural products. This study is part of a research project sponsored by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP - 2010-10587-0) entitled 'Availability of metals and radionuclides in tropical soils amended with phosphogypsum', and its objective is to evaluate the reliability of an optimal methodology to determine U-238 and Th-232 in samples of soils amended with PG through percolation with water. The methodology comprises a sequential radiochemical separation of the radionuclides present in the leachate. The UTEVA resin was used for the purification and separation of U-238 and Th-232, and the final activity concentrations were determined by alpha spectrometry. The precision and accuracy of the methodology were checked by measuring standard reference material. The results obtained for the relative error and relative standard deviation varied respectively from 2.34 % to 5.92 % and 6.10 % to 6.21 % for uranium, and from 0.42 % to 3.13 % and 9.68 % to 10.97 % for thorium. (author)

  2. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    International Nuclear Information System (INIS)

    Ovaskainen, R.

    1999-01-01

    The mass spectrometric determination of minor abundant isotopes, 234 U and 236 U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n( 234 U)/n( 238 U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n( 234 U)/n( 235 U) and n( 236 U)/n( 235 U) ratios were determined using ion counting in combination with the decelerating device. The n( 235 U)/n( 238 U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n( 234 U)/n( 235 U) ratios and 5-25 percent for the n( 236 U)/n( 235 U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International Atomic Energy Agency (IAEA) from uranium milling and mining

  3. Semiempirical method to determine the uranium isotopic compositions

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2008-01-01

    In a nuclear reactor design calculation, some variations of U 235 enrichment are commonly needed. This will affect the isotopic compositions of the 3 main uranium isotopes i.e. U 234 , U 235 and U 238 for the respective enrichment. Due to the limited compositions data available, it is urgent to make an approximate way that can be used to determine the compositions of the 3 isotopes, for the desired enrichments. This paper presents the theoretical background used for constructing a semi empirical formula to estimate the composition of the 3 uranium isotopes as a function of U 235 enrichment, obtained based on the measurement data available. Based on the available data, and the lack of compositions data within the enrichment range between 3.5 % and around 12 %, it is concluded that 2 separate linear equations i.e. for ≤ 3.5 % and ≥ 3.5 % might be needed for U 235 isotope. For the U 234 isotope, a polynomial equation of 4 th order is well suited to be used for the whole range of enrichment between 0.711 % and 20 %, whilst for higher enrichment (> 20 %), a power function seems to give a better approach. The composition of U 238 can then be determined from the U 235 and U 234 composition at the desired enrichment of U 235 . (author)

  4. Anomalous thermal property behaviour of uranium at low temperatures

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1975-01-01

    Low temperature heat capacity curves are presented for polycrystalline 235 U and 238 U metals in different microstructural states and of different purities. Thermal conductivity versus temperature curves are shown for low-purity, polycrystalline 238 U in the temperature range between approximately 80 and 373 0 K for metal having undergone varied fabrication procedures. Published information suggests that there will be no structural modification in very pure uranium below room temperature. The influence of impurities on low temperature transitions may be through their effects on dislocation formation. Thermal conductivity and heat capacity runs started at approximately 80 0 K, after holding specimens at the temperature of boiling liquid nitrogen, do not give results which match up with runs started below 36 to 43 0 K. Result of measurements started at approximately 80 0 K indicate that an ordering mechanism is predominating, with microstructure rather than purity being the important factor. This can be explained if ordering at approximately 80 0 K is through lattice imperfections remaining from prior specimen processing. The drop off in heat capacity appearing above 36 0 K in the C/sub p/ versus T curves of 235 U and 238 U suggest the possibility of: (1) heat evolution from a developing antiphase structure or (2) heat evolution similar to that noted with a quenched martensite. Physical property changes in 238 U at 250 to 270 0 K and at 325 to 350 0 K seem to be related to the heat evolution which starts at 36 0 K during adiabatic heat capacity measurements. The data from heat capacity and thermal conductivity measurements are analyzed to help explain the significance of the sometimes very slight physical property changes observed at 36 to 43, approximately 80, 250 to 270 and 325 to 350 0 K in uranium metal. (U.S.)

  5. The distribution of {sup 236}U/{sup 238}U in the North Atlantic and adjacent oceans; Die Verteilung von {sup 236}U/{sup 238}U im Nordatlantik und den angrenzenden Ozeanen

    Energy Technology Data Exchange (ETDEWEB)

    Christl, Marcus; Casacuberta, Nuria; Lachner, Johannes; Maxeiner, Sascha; Vockenhuber, Christof; Synal, Hans-Arno [Labor fuer Ionenstrahlphysik, ETH Zuerich (Switzerland); Herrmann, Juergen [Bundesamt fuer Seeschifffahrt und Hydroghraphie, Hamburg (Germany); Castrillejo, Maxi; Masque, Pere [Universitat Autonoma de Barcelona (Spain); Rutgers van der Loeff, Michiel [Alfred-Wegener-Institut, Bremerhaven (Germany)

    2015-07-01

    The technical developments of recent years, such as the introduction of helium as a stripping gas, make compact AMS systems probably among the most sensitive analyzers available for ultra-trace analyzes of actinides in the environment. Such systems are particularly suitable for the trace analysis of {sup 236}U since conventional mass spectrometry does not provide the necessary suppression of the substrate caused by molecules or neighboring masses. Over the past few years, unique data sets of {sup 236}U/{sup 238}U have been produced at the AMS System Tandy of the ETH Zurich in the Atlantic and Arctic Ocean as well as in the Mediterranean and the North Sea. This lecture will provide a brief overview of the latest technical developments in the field of heavy ion analysis at compact AMS plants at ETH Zurich. In the second part, the produced data sets are then assembled and the current understanding of this new ocean tracer discussed. [German] Die technischen Entwicklungen der letzten Jahre, wie zum Beispiel die Einfuehrung von Helium als stripper Gas, machen kompakte AMS Systeme wahrscheinlich zu den sensitivsten verfuegbaren Analysegeraeten fuer Ultra-Spurenstoffanalysen von Aktiniden in der Umwelt. Solche Systeme eignen sich im Besonderen zur Spurenanalyse von {sup 236}U, da konventionelle Massenspektrometrie hier nicht die erforderliche Unterdrueckung des durch Molekuele oder Nachbarmassen verursachten Untergrundes bietet. Am AMS System Tandy der ETH Zuerich wurden waehrend der letzten Jahre einzigartige Datensaetze von {sup 236}U/{sup 238}U im Atlantischen und Arktischen Ozean, sowie im Mittelmeer und der Nordsee produziert. In diesem Vortrag soll zunaechst ein kurzer Ueberblick ueber die neuesten technischen Entwicklungen im Bezug auf Schwerionen Analysen an kompakten AMS Anlagen der ETH Zuerich gegeben werden. Im zweiten Teil werden dann die produzierten Datensaetze zusammengefuegt und das gegenwaertige Verstaendnis dieses neuen Ozean-Tracers diskutiert.

  6. Studies on {sup 232}Th and {sup 238}U levels in marine algae collected from the coast of Niigata Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kenji; Tonouchi, Shigemasa; Maruta, Fumiyuki; Ebata, Hidekazu [Niigata Prefectural Inst. of Public Health and Environmental Sciences (Japan)

    2001-12-01

    To evaluate the properties of algae to concentrate radioactive elements, 14 species of algae like Sargassum were collected in the Prefecture and analyzed for their {sup 232}Th and {sup 238}U levels with Yokogawa HP4500 ICP-MS apparatus. The places of collection included those near the water discharge of an atomic power station. Mean {sup 232}Th and {sup 238}U levels were found to be 120 and 260 ng/g dry wt, respectively, and Phaeophyta showed more than several times higher {sup 238}U level than Chlorophyta and Rhodophyta. There was no clear difference in {sup 232}Th levels. No difference between places of collection was observed in Sargassum {sup 232}Th or {sup 238}U level. Adsorption of {sup 232}Th particle to and incorporation of soluble {sup 238}U into algae body were suggested. Mean {sup 232}Th and {sup 238}U radioactivities were found 73 and 510 {mu}Bq/g wet wt, respectively, and the respective annual committed effective doses, 0.2 and 0.3 {mu}Sv, calculated from those values were confirmed to be enough lower than the annual public dose limit, 1 mSv. (K.H.)

  7. Uranium isotopes in carbonate aquifers of arid region setting

    DEFF Research Database (Denmark)

    Alshamsi, Dalal M.; Murad, Ahmed A.; Aldahan, Ala

    2013-01-01

    in the southern Arabian peninsula, namely at two locations within the United Arab Emirates (UAE) and two locations in Oman are discussed. The analyses of the uranium isotopes were performed using ICP-MS and the results indicated a range of concentrations for 235U and 238 U at 3–39 ng L-1 (average: 18 ng L-1...

  8. Correlation of the activity of the {sup 238} U in soil and {sup 222} Rn in domiciles, with the rocks of cities of the Estado de Chihuahua; Correlacion de la actividad del {sup 238} U en suelo y {sup 222} Rn en domicilios, con las rocas de ciudades del Estado de Chihuahua

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero S, L.; Villalba, L.; Montero C, M.E. [Centro de Investigacion en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes 120 C.P. 31109 Chihuahua (Mexico)]. e-mail: luis.colmenero@cimav.edu.mx

    2004-07-01

    The state of Chihuahua has numerous locations of uranium, being Pena Blanca the great and more important location of the country. Diverse rock types with important quantities of uranium are distributed by the whole state. The igneous extrusive acid rocks are those that have bigger quantity of uranium, like they are the rhyolites and dacites and these rocks are located in enough proportion by the whole state. Some of the main cities of the state are near to locations or uraniferous rocks, as Aldama, Nuevo Casas Grandes, Chihuahua, Jimenez and Bocoyna, other important cities are not near important locations. It was determined specific activity by gamma spectroscopy of the series of the {sup 238} U in soils and determination of the radon concentration in domiciles of the main cities of the state. They were found high specific activity values in soil in eight of the thirteen analyzed cities and important radon concentrations in three cities. It was found relationship among the specific activity in soil in near cities to uraniferous locations. (Author)

  9. Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry

    Science.gov (United States)

    Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim

    2010-01-01

    Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.

  10. Gastrointestinal absorption of soluble uranium from drinking water by man

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Ruth, H.; Rallison, M.L.; Burleigh, D.P.

    1989-01-01

    The gastrointestinal absorption of uranium has been measured in ten normal healthy adult volunteers of both sexes by feeding them one litre of water containing 200 to 300 μg of uranium per litre. The water was consumed during normal daytime activities while food was also ingested at its normal rate. Complete collections of urine and faeces were made and compounded on a daily basis over a period of two weeks, one week being prior to the consumption of the uranium-containing water. Uranium was measured by radiochemical separation followed by alpha spectrometry. Both 234 U and 238 U were determined. The results on these people showed that the uptake of uranium under these conditions averaged 0.6%, well below the f 1 of 5% assumed by the ICRP. (author)

  11. Determination of uranium and thorium in complex matrices by two solvent extraction separation techniques and photon electron rejecting alpha liquid spectrometry

    International Nuclear Information System (INIS)

    Ayranov, M.; Wacker, L.; Kraehenbuehl, U.

    2001-01-01

    The separation of uranium and thorium from complex matrixes such as marine sediments using solvent extraction and determination by means of photon-electron rejecting liquid alpha spectrometry (PERALS trademark) has successfully been performed. Two extraction schemes, using TOPO and HDEHP, respectively, were compared for the separation of uranium and thorium from the matrix components. The results show recoveries between 73 and 92% for 234 U, 238 U, 232 Th, 230 Th and 238 Th with an accuracy of the methods ±12%. Minimum detectable activities for counting time up to 500 000 seconds for 0.5 g sample material were between 0.34-1.15 Bq/kg for uranium and 0.31-1.66 Bq/kg for thorium. (orig.)

  12. Origin of uranium isotope variations in early solar nebula condensates.

    Science.gov (United States)

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  13. Adsorption of Cs-137 and U-238 in semi-arid soils; Adsorcion de Cs-137 y U-238 en suelos semiaridos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez T, U. O. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico); Monroy G, F.; Anguiano A, J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez R, E., E-mail: uohtrejo@gmail.com [Universidad Politecnica del Valle de Toluca, Carretera Toluca-Almoloya de Juarez Km. 5.6, Santiaguito Tlalcilalcali, Estado de Mexico (Mexico)

    2013-10-15

    Is of great importance to determine the adsorption properties of the soils where radioactive wastes are stored, fundamentally of the radioisotopes contained in these wastes, with the purpose of knowing like will be their behavior in the event of happening radionuclide migration toward the surrounding means. Therefore, in this work the adsorption properties of {sup 137}Cs{sup +} and {sup 238}UO{sub 2}{sup 2+} in soils coming from the Storage Center of Radioactive Wastes are studied. Was studied the effect of the soil type and the particle size of the soil in the adsorption properties of Cs (I) and U (Vi). 13 soil samples and six different particle sizes were analyzed. The adsorption studies were carried out by the radiotracers technique in static way. The results indicate an important adsorption affinity toward the Cs-137 and a very vulnerable affinity for the {sup 238}UO{sub 2}{sup 2+}. (author)

  14. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  15. Uranium content of petroleum by Fission track technique

    International Nuclear Information System (INIS)

    Paschaa, A.S.; Mafra, O.Y.; Oliveira, C.A.N.; Pinto, L.R.

    1982-01-01

    This paper examines the feasibility of the fission track registration technique to investigate the natural uranium concentration in petroleum. The application is briefly described and the results obtained indicate the presence of uranium concentrations in samples of Brazilian petroleum which are over the detection limit of the fission track technique. The irradiations were performed by using fluxes with predominance of thermal neutrons, which have a fission cross-section for U 235 equal to 579 barns. Since the neutron fluxes were not comp sed exclusively of thermal neutrons, fissions from fast neutrons would also be taken into account for U 238 and Th 232

  16. Solubility of {sup 238}U radionuclide from various types of soil in synthetic gastrointestinal fluids using “US in vitro” digestion method

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Shahidah Abdul; Sarmani, Sukiman; Majid, Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok, E-mail: khoo@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-04-29

    238U radionuclide is a naturally occuring radioactive material that can be found in soil. In this study, the solubility of 238U radionuclide obtained from various types of soil in synthetic gastrointestinal fluids was analysed by “US P in vitro” digestion method. The synthetic gastrointestinal fluids were added to the samples with well-ordered, mixed throughly and incubated according to the human physiology digestive system. The concentration of 238U radionuclide in the solutions extracted from the soil was measured using Induced Coupling Plasma Mass Spectrometer (ICP-MS). The concentration of 238U radionuclide from the soil samples in synthetic gastrointestinal fluids showed different values due to different homogenity of soil types and chemical reaction of 238U radionuclide. In general, the solubility of 238U radionuclide in gastric fluid was higher (0.050 – 0.209 ppm) than gastrointestinal fluids (0.024 – 0.050 ppm). It could be concluded that the US P in vitro digestion method is practicle for estimating the solubility of 238U radionuclide from soil materials and could be useful for monitoring and risk assessment purposes applying to environmental, health and contaminated soil samples.

  17. Resolved resonance parameters for uranium 238 from 4 to 6 keV

    International Nuclear Information System (INIS)

    Olsen, D.K.; Meszaros, P.S.

    1982-01-01

    Neutron widths for 145 resonances from 4 to 6 keV are reported from a least-squares shape analysis of the ORELA 150-m, 4-sample 238 U transmission data. The resultant s-wave strength function from 4 to 6 keV is found to be substantially smaller than that from 0 to 4 keV

  18. Quasifree electrofission of 238U

    International Nuclear Information System (INIS)

    Likhachev, V.P.; Deppman, A.; Hussein, M.S.; Mesa, J.; Arruda-Neto, J.D.T.; Carlson, B.V.; Nesterenko, V.O.; Garcia, F.; Rodriguez, O.

    2002-01-01

    We present the result of a theoretical study of the quasifree electrofission of 238 U. The exclusive differential cross sections for the quasifree scattering reaction stage have been calculated in plane wave impulse approximation, using a macroscopic-microscopic approach for the description of the proton bound states. The nuclear shape was parametrized in terms of Cassinian ovoids. The equilibrium deformation parameters have been calculated by minimizing the total nuclear energy. In the calculation the axially deformed Woods-Saxon single-particle potential was used. The obtained single-particle momentum distributions were averaged over the nuclear symmetry axis direction. The occupation numbers were calculated in the BCS approach. The fissility for the single-hole excited states of the residual nucleus 237 Pa was calculated on the statistical theory grounds, both without taking into account the preequilibrium emission of the particle and with preequilibrium emission in the framework of the exciton model

  19. Doppler-free two-photon excitation of 238U

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Wort, D.J.H.

    1981-04-01

    A theory of resonantly enhanced two-photon absorption is presented and tested in a number of experiments in which 238 U vapour is excited by two continuous wave dye lasers. Good quantitative agreement between theory and experiment is found. In particular the central prediction of the theory, that antiparallel laser beams of modest intensity can pump an appreciable fraction of the Maxwell velocity distribution, has been checked directly by measuring the spectral width of the fluorescence from the two-photon excited level. (author)

  20. The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO2

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Wang, Zheming; Boily, Jean F.; Qafoku, Odeta; Rosso, Kevin M.; Smith, Steven C.

    2012-01-01

    The effect of pH and contact time on uranium extractability from quartz surfaces was investigated using either acidic or carbonate (CARB) extraction solutions, time-delayed spikes of different U isotopes (i.e., 238U and 233U), and liquid helium temperature time-resolved laser-induced fluorescence spectroscopy (LHeT TRLFS). Quartz powders were reacted with 238U(VI) bearing solutions that were equilibrated with atmospheric CO2 at pH 6, 7, and 8. After a 42 day equilibration period with 238U(VI), the suspensions were spiked with 233U(VI) and reacted for an additional 7 days. Sorbed U was then extracted with either dilute nitric acid or CARB. For the CARB extraction there was a systematic decrease in extraction efficiency for both isotopes from pH 6 to 8. This was mimicked by less desorption of 238U, after the 233U spike, from pH 6 to 8. Further, the efficiency of 233U extraction was consistently greater than that of 238U, indicating a strong temporal component to the strength of U association with the surface that was accentuated with increasing pH. LHeT TRLFS revealed a strong correlation between carbonate extraction efficiency and differences in sorbed U speciation as a function of pH. In contrast, the acid extraction was consistently more efficient than the CARB extraction, with a smaller dependence on both pH and aging time. Collectively, the observations show that aging and pH are critical factors in determining the form and strength of uranium-silica interactions.

  1. Isotope ratio measurements of uranium by LA-HR-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Rafael C.; Sarkis, Jorge E.S., E-mail: rafael.marin@usp.b, E-mail: jesarkis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the utilization of Laser Ablation High Resolution Inductively Mass Spectrometry (LA-HR-ICP-MS) technique for the determination of uranium isotope composition in a UO{sub 2} pellet (CRM -125A) supplied and certified by the New Brunswick Laboratory (NBL). To carry out the adjustments of the parameters was used a glass standard NIST 610, supplied and certified by National Institute of Standards and Technology (NIST). The precision of the measurements were improved by adjusting the following parameters: RF power, laser beam diameter, defocusing of laser beam, laser energy, laser energy-density, auxiliary gas and sample gas. The measurements were performed on a continuous ablation with low energy density and defocusing, which demonstrated to be the optimum to reach the best signal stability. Isotope ratios, {sup 234}U/{sup 238}U, {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U were measured, reaching relative standard deviations (RSD) from 1.55% to 7.60%. The parameters which caused the greatest impact in order to improve the signal stability were RF power, defocusing and laser beam diameter. The results presented by the measurements revealed that the Laser ablation ICP-MS technique offers a rapid and accurate way to perform uranium isotope ratios without any sample preparation, since it allows carrying out the measurements straight on the sample, besides to preserve the testimony that is very important for safeguards and nuclear forensics purposes. (author)

  2. Studies of projectile-like fragments in the 16O + 238U reaction at 20 MeV/u

    International Nuclear Information System (INIS)

    Dyer, P.; Awes, T.C.; Gelbke, C.K.; Back, B.B.; Mignerey, A.C.; Wolf, K.L.; Breuer, H.; Viola, V.E.; Meyer, W.G.

    1979-01-01

    Projectile residues were studied in coincidence with angle-correlated fission fragments resulting from reactions of 20-MeV/u 16 O ions on 238 U. Distributions of the missing parallel momentum are shown for different projectile residues, and the dependence of the average parallel recoil momentum on the average parallel momentum of the projectile residue is plotted. 2 figures

  3. Research on the reliability of measurement of natural radioactive nuclide concentration of U-238

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seok Ki; Kim, Gee Hyun [Dept. of Nuclear engineering, Univ. of SeJong, Seoul (Korea, Republic of); Joo, Sun Dong; Lee, Hoon [KoFONS, Seongnam (Korea, Republic of)

    2016-12-15

    Naturally occurred radioactive materials (NORM) can be found all around us and people are exposed to this no matter what they do or where they live. In this study, two indirect measurement methods of NORM U-238 has been reviewed; one that has used HPGe on the basis of the maintenance, and the other is disequilibrium theory of radioactive equilibrium relationships of mother and daughter nuclide at Decay-chain of NORM U-238. For this review, complicated pre-processing process (Breaking->Fusion->Chromatography->Electron deposit) has been used , and then carried out a comparative research with direct measurement method that makes use of and measures Alpha spectrometer. Through the experiment as above, we could infer the daughter nuclide whose radioactive equilibrium has been maintained with U-238. Therefore, we could find out that the daughter nuclide suitable to be applied to Gamma indirect measurement method was Th-234. Due to Pearson Correlation statistics, we could find out the reliability of the result value that has been analyzed by using Th-234.

  4. The relationship of uranium isotopes to oxidation/reduction in the Edwards carbonate aquifer of Texas

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The concentration of dissolved uranium and 234 U/ 238 U alpha activity ratio ( A.R. ) were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. (orig./ME)

  5. A confirmatory measurement technique for highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  6. Release of U, Th, and REE from granitic rock: A mineralogical approach

    International Nuclear Information System (INIS)

    Markovaara-Koivisto, M.

    2006-01-01

    Finland plans to dispose of its spent nuclear fuel deep in the bedrock, and comprehensive assessment of the potential risks is required. One risk is glaciations induced by climate change, which might eventually cause malfunction of the engineered barrier system and breakdown of the copper-iron canisters containing the spent fuel. The fuel might then come into contact with groundwater. This groundwater might be acidic rain water, or oxygenated glacial melt water, which intrudes into the bedrock with hydrostatic pressure under the ice sheet. In this study, behaviour of uranium and rare earth elements was investigated in the Palmottu uranium deposit. Studies in the Palmottu deposit provide an indication of how uranium and other harmful elements could migrate from the repository to the surrounding bedrock in the event the canisters were breached. The spent fuel contains uranium and other actinides. The possible release of these elements and their behaviour after release in bedrock and groundwater were studied by means of chemical analogues occurring in nature, namely uranium (U), thorium (Th) and rare earth elements (REE). The study was focused on the mode of occurrence of these elements in granitic rocks. The chemistry of the mineral phases was explored by scanning electron microscopy and wavelength dispersive spectrometry, while the release of the elements was investigated with leaching experiments. In the first phase the samples were leached with artificial groundwater. In the second phase a HNO 3 solution of pH 5 was used, and in the final step a solution of pH 3. The U, Th and REE phases after each leaching were studied by fieldemission scanning electron microscopy and energy dispersive XRay microanalysis (EDAX), and the leachates were analysed by mass spectrometry (ICPMS and ICPAES). The aim of this study was to clarify how U, Th and REEs behave in the leaching processes associated with solutions simulating possible natural water conditions in the bedrock and to

  7. Measurement of the Lamb shift in heliumlike uranium (U90+)

    International Nuclear Information System (INIS)

    Gould, H.; Munger, C.T.

    1987-01-01

    The production in 1983 of a beam of bare U 92+ at the Lawrence Berkeley Laboratory's Bevalac, the Bevatron and Super-HILAC operating in tandem, demonstrated the feasibility of experiments using few-electron uranium. In 1984 x rays from radiative electron capture into the K shell of uranium was observed by Anholt et. al., and in the same year x rays from n = 2 → n = 1 transitions in hydrogenlike uranium (U 91+ ) and heliumlike uranium (U 90+ ) were observed by Munger and Gould. In this article the authors discuss their recent measurement of the Lamb shift in heliumlike uranium. Their value of 70.4 (8.1) eV for the one-electron Lamb shift in uranium is in agreement with the theoretical value of 75.3 (0.4) eV. 20 refs.; 5 figs

  8. Evaluation of the uranium double spike technique for environmental monitoring

    International Nuclear Information System (INIS)

    Hemberger, P.H.; Rokop, D.J.; Efurd, D.W.; Roensch, F.R.; Smith, D.H.; Turner, M.L.; Barshick, C.M.; Bayne, C.K.

    1998-01-01

    Use of a uranium double spike in analysis of environmental samples showed that a 235 U enrichment of 1% ( 235 U/ 238 U = 0.00732) can be distinguished from natural ( 235 U/ 238 U = 0.00725). Experiments performed jointly at Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) used a carefully calibrated double spike of 233 U and 236 U to obtain much better precision than is possible using conventional analytical techniques. A variety of different sampling media (vegetation and swipes) showed that, provided sufficient care is exercised in choice of sample type, relative standard deviations of less than ± 0.5% can be routinely obtained. This ability, unavailable without use of the double spike, has enormous potential significance in the detection of undeclared nuclear facilities

  9. Application of isotope techniques to groundwater pollution research for Xiangshan uranium ore field, China

    International Nuclear Information System (INIS)

    Liu Fulin; Liu Peilun; Zhu Chuande; Wu Xiaowei; Zeng Yinsheng

    1998-01-01

    The investigation of groundwater pollution due to uranium deposits focused on the most important uranium metallogenic area-Zhoujiashan district of Xiangshan uranium ore field, China. Groundwater collected from five completed exploration boreholes in the area is regarded as the pollution source and is traced and analysed by using isotope as well as radio-hydrochemical techniques. In addition, the pollution situation of a small uranium ore pile for heap-leaching and a big uranium ore open pit are monitored by the same techniques. It has been experimentally proven that the uranium concentration and the uranium isotope ratio 234 U/ 238 U in natural waters are two sensitive indicators of radioactive pollution in natural waters. It was concluded that under present conditions, exploration of uranium deposits may not cause serious groundwater pollution of radioactive elements (U, Ra, Rn and Th), however, it is difficult to avoid the serious surface water pollution coming from the exploitation of uranium ore by a big open pit. (author)

  10. Variation of uranium isotopes in some carbonate aquifers

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The 234 U/ 238 U alpha activity ratio (AR) and uranium concentrations are reported for 83 springs that issue from carbonate aquifers in Florida, Texas, Nevada-California, and Israel. Data for each aquifer fall within more or less mutually exclusive fields. In general, the spring in a humid climate have AR's approaching secular equilibrium, whereas those in more arid climates have AR's differing greatly from equilibrium

  11. Medical effects of internal contamination with uranium.

    Science.gov (United States)

    Duraković, A

    1999-03-01

    The purpose of this work is to present an outline of the metabolic pathways of uranium isotopes and compounds, medical consequences of uranium poisoning, and an evaluation of the therapeutic alternatives in uranium internal contamination. The chemical toxicity of uranium has been recognized for more than two centuries. Animal experiments and human studies are conclusive about metabolic adverse affects and nephro- toxicity of uranium compounds. Radiation toxicity of uranium isotopes has been recognized since the beginning of the nuclear era, with well documented evidence of reproductive and developmental toxicity, as well as mutagenic and carcinogenic consequences of uranium internal contamination. Natural uranium (238U), an alpha emitter with a half-life of 4.5x10(9) years, is one of the primordial substances of the universe. It is found in the earth's crust, combined with 235U and 234U, alpha, beta, and gamma emitters with respective half-lives of 7.1x10(8) and 2.5x10(5) years. A special emphasis of this paper concerns depleted uranium. The legacy of radioactive waste, environmental and health hazards in the nuclear industry, and, more recently, the military use of depleted uranium in the tactical battlefield necessitates further insight into the toxicology of depleted uranium. The present controversy over the radiological and chemical toxicity of depleted uranium used in the Gulf War warrants further experimental and clinical investigations of its effects on the biosphere and human organisms.

  12. Uranium Elemental and Isotopic Constraints on Groundwater Flow Beneath the Nopal I Uranium Deposit, Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Goldstein; M.T. Murrell; A.M. Simmons

    2005-07-11

    The Nopal I uranium deposit in Chihuahua, Mexico, is an excellent analogue for evaluating the fate of spent fuel, associated actinides, and fission products over long time scales for the proposed Yucca Mountain high-level nuclear waste repository. In 2003, three groundwater wells were drilled directly adjacent to (PB-1) and 50 m on either side of the uranium deposit (PB-2 and PB-3) in order to evaluate uranium-series transport in three dimensions. After drilling, uranium concentrations were elevated in all of the three wells (0.1-18 ppm) due to drilling activities and subsequently decreased to {approx}5-20% of initial values over the next several months. The {sup 234}U/{sup 238}U activity ratios were similar for PB-1 and PB-2 (1.005 to 1.079) but distinct for PB-3 (1.36 to 1.83) over this time period, suggesting limited mixing between groundwater from these wells over these short time and length scales. Regional groundwater wells located up to several km from the deposit also have distinct uranium isotopic characteristics and constrain mixing over larger length and time scales. We model the decreasing uranium concentrations in the newly drilled wells with a simple one-dimensional advection-dispersion model, assuming uranium is introduced as a slug to each of the wells and transported as a conservative tracer. Using this model for our data, the relative uranium concentrations are dependent on both the longitudinal dispersion as well as the mean groundwater flow velocity. These parameters have been found to be correlated in both laboratory and field studies of groundwater velocity and dispersion (Klotz et al., 1980). Using typical relationships between velocity and dispersion for field and laboratory studies along with the relationship observed from our uranium data, both velocity (1-10 n/yr) and dispersion coefficient (1E-5 to 1E-2 cm{sup 2}/s) can be derived from the modeling. As discussed above, these relatively small flow velocities and dispersivities agree with

  13. Seawater 234U/238U recorded by modern and fossil corals

    Science.gov (United States)

    Chutcharavan, Peter M.; Dutton, Andrea; Ellwood, Michael J.

    2018-03-01

    U-series dating of corals is a crucial tool for generating absolute chronologies of Late Quaternary sea-level change and calibrating the radiocarbon timescale. Unfortunately, coralline aragonite is susceptible to post-depositional alteration of its primary geochemistry. One screening technique used to identify unaltered corals relies on the back-calculation of initial 234U/238U activity (δ234Ui) at the time of coral growth and implicitly assumes that seawater δ234U has remained constant during the Late Quaternary. Here, we test this assumption using the most comprehensive compilation to date of coral U-series measurements. Unlike previous compilations, this study normalizes U-series measurements to the same decay constants and corrects for offsets in interlaboratory calibrations, thus reducing systematic biases between reported δ234U values. Using this approach, we reassess (a) the value of modern seawater δ234U, and (b) the evolution of seawater δ234U over the last deglaciation. Modern coral δ234U values (145.0 ± 1.5‰) agree with previous measurements of seawater and modern corals only once the data have been normalized. Additionally, fossil corals in the surface ocean display δ234Ui values that are ∼5-7‰ lower during the last glacial maximum regardless of site, taxon, or diagenetic setting. We conclude that physical weathering of U-bearing minerals exposed during ice sheet retreat drives the increase in δ234U observed in the oceans, a mechanism that is consistent with the interpretation of the seawater Pb-isotope signal over the same timescale.

  14. 234Th/238U disequilibrium in near-shore sediment: particle reworking and diagenetic time scales

    International Nuclear Information System (INIS)

    Aller, R.C.; Cochran, J.K.

    1976-01-01

    The distribution of 234 Th (tsub(1.2)=24.1 days) in excess of its parent 238 U in the upper layers of near-shore sediment makes possible the evaluation of short-term sediment reworking and diagenetic rates. 234 Th has a maximum residence time in Long Island Sound water of 1.4 days. Seasonal measurement of 234 Th/ 238 U disequilibrium in sediment at a single station in central Long Island Sound demonstrates rapid particle reworking and high 234 Thsub(XS)(>1 dpm/g) in the upper 4 cm of sediment with slower, irregular reworking and low 234 Thsub(XS) to at least 12 cm. The rate of rapid particle reworking varies seasonally and is highest in the fall. The rapidly mixed zone is characterized by steep gradients in sediment chemistry implying fast reactions spanned by 234 Th decay time scales. 238 U is depleted in the upper mixed zone and shows addition in reducing sediment at depth. (Auth.)

  15. Sensitivity analysis of U238 cross sections in fast nuclear systems-SENSEAV-R computer code

    International Nuclear Information System (INIS)

    Amorim, E.S. de; D'Oliveira, A.B.; Oliveira, E.C. de

    1981-01-01

    For many performance parameters of reactors the tabulated ratio calculation/experiment indicate that some potential problems may exist either in the cross section data or in the calculation models used to investigate the critical experimental data. A first step toward drawing a more definite conclusion is to perform a selective analysis of sensitivity profiles and covariance data files for the cross section data used in the calculation. Many works in the current literature show that some of these uncertainties come from uncertainties in 238 U(n,γ), 238 U(n,f) 239 Pu(n,f). Perturbation methods were developed to analyze the effects of finite changes in a large number of cross sections and summarize the investigation by a group dependent sensitivity coefficient. As an application, the results of this investigation indicates that improvements should be done only on the medium and low energy ranges of 238 U(n,γ) based on an analysis of cost and economic benefits. (Author) [pt

  16. Temporal behavior of 222Radon, 226Radium and 238Uranium in deep water wells which provide Valle de Toluca with drinking water

    International Nuclear Information System (INIS)

    Pena, P.; Tamez, E.; Iturbe, J.L.; Acosta, A.; Segovia, N.; Carrillo, J.; Armienta, M.

    1994-01-01

    The presence of radionuclides in underground waters may be an indication of its origin and also the sign of the hydraulic properties of the aquifers layers where circulate. Additionally, the ingestion by human beings of water with radioactive elements (Radon 222, Radium 226, Uranium 238) can give as a result the accumulation of such elements in several organs of the body producing then health damages. In this work, the concentrations of Radon 222, Radium 226 and Uranium 238, in waters coming from deep wells which provide with drinking water the Toluca Valley, were determined. For this purpose, during a year (june 1991 to August 1992) ten wells were sampled with a tracking of the radionuclides concentration as well as the physical-chemical components of water; it was established the relationship presented by the analyzed waters with the local geology and the local and regional systems. (Author)

  17. Isotopic characterization of uranium in soils of the Ipanema National Forest (FLONA-Ipanema); Caracterizacao isotopica de uranio em solos da Floresta Nacional de Ipanema (FLONA-Ipanema)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.B.; Marques, F.H., E-mail: fernandobaliani@yahoo.com.br, E-mail: fernando_henrique06@hotmail.com [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Enzweiler, J.; Ladeira, F.S.B., E-mail: Jacinta@ige.unicamp.br, E-mail: fsbladeira@ige.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Geociencias

    2015-07-01

    The National Forest of Ipanema (FLONA) is situated on a geological anomaly, known as 'Domo de Aracoiaba'. The soils of the area include Oxisols, Inceptsols and Alfisols. The amount of uranium and respective isotope activities in a soil depend on the parental rock and on the pedologic processes. The aim of this study was to investigate the activities for uranium isotopes ({sup 238}U, {sup 234}U, {sup 235}U) and the activity ratio (AR) {sup 234}U/ {sup 238}U or secular equilibrium for different soil types of the area collected at horizons A and B. The amount of uranium showed no significant differences for soils generated from alkaline intrusive rocks and sandstone, however, secular equilibrium was observed for Oxisol (RA = 1), while Inceptsol presented RA> 1 and the other soils, Alfisols, presented RA values <1. (author)

  18. Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU)

    International Nuclear Information System (INIS)

    Oeh, U.; Priest, N.D.; Roth, P.; Ragnarsdottir, K.V.; Li, W.B.; Hoellriegl, V.; Thirlwall, M.F.; Michalke, B.; Giussani, A.; Schramel, P.; Paretzke, H.G.

    2007-01-01

    Following the end of the Kosovo conflict, in June 1999, a study was instigated to evaluate whether there was a cause for concern of health risk from depleted uranium (DU) to German peacekeeping personnel serving in the Balkans. In addition, the investigations were extended to residents of Kosovo and southern Serbia, who lived in areas where DU ammunitions were deployed. In order to assess a possible DU intake, both the urinary uranium excretion of volunteer residents and water samples were collected and analysed using inductively coupled plasma-mass spectrometry (ICP-MS). More than 1300 urine samples from peacekeeping personnel and unexposed controls of different genders and age were analysed to determine uranium excretion parameters. The urine measurements for 113 unexposed subjects revealed a daily uranium excretion rate with a geometric mean of 13.9 ng/d (geometric standard deviation (GSD) = 2.17). The analysis of 1228 urine samples from the peacekeeping personnel resulted in a geometric mean of 12.8 ng/d (GSD = 2.60). It follows that both unexposed controls and peacekeeping personnel excreted similar amounts of uranium. Inter-subject variation in uranium excretion was high and no significant age-specific differences were found. The second part of the study monitored 24 h urine samples provided by selected residents of Kosovo and adjacent regions of Serbia compared to controls from Munich, Germany. Total uranium and isotope ratios were measured in order to determine DU content. 235 U/ 238 U ratios were within ± 0.3% of the natural value, and 236 U/ 238 U was less than 2 x 10 -7 , indicating no significant DU in any of the urine samples provided, despite total uranium excretion being relatively high in some cases. Measurements of ground and tap water samples from regions where DU munitions were deployed did not show any contamination with DU, except in one sample. It is concluded that both peacekeeping personnel and residents serving or living in the Balkans

  19. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ovaskainen, R

    1999-11-01

    The mass spectrometric determination of minor abundant isotopes, {sup 234}U and {sup 236}U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n({sup 234}U)/n({sup 238}U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n({sup 234}U)/n({sup 235}U) and n({sup 236}U)/n({sup 235}U) ratios were determined using ion counting in combination with the decelerating device. The n({sup 235}U)/n({sup 238}U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n({sup 234}U)/n({sup 235}U) ratios and 5-25 percent for the n({sup 236}U)/n({sup 235}U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International

  20. Evaluation of daily intake of 238U and 232Th in a Korean mixed diet sample using RNAA

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Park, Kwang Won; Kang, Sang Hoon; Cho, Seung Yeon

    2000-01-01

    To estimate the degree of intake of 238 U and 232 Th through daily diet, a Korean mixed diet sample was prepared after the investigation of the amount of consumption of the daily diet which corresponds to the age of 20 to 60 years. For the analysis of U and Th, the RNAA method was applied. Two standard reference materials were used for quality control and assurance and the analytical results were compared with a certified value. The determination of U and Th in the Korean mixed diet sample was carried out under the same analytical conditions and procedures with SRM. It is found that the concentration of U and Th in a Korean mixed diet was about 35.4 ppb and 3.4 ppb. From these results, the daily intake of 238 U and 232 Th by diet is evaluated to be 6.98 and 0.67 μg per day, respectively. Radioactivities related to the intake of 238 U and 232 Th were estimated to be about 86 mBq per person per day and the annual dose equivalents from 238 U and 232 Th revealed as 3.18 μSv and 0.29 μSv per person, respectively

  1. Correlation of the activity of the 238 U in soil and 222 Rn in domiciles, with the rocks of cities of the Estado de Chihuahua

    International Nuclear Information System (INIS)

    Colmenero S, L.; Villalba, L.; Montero C, M.E.

    2004-01-01

    The state of Chihuahua has numerous locations of uranium, being Pena Blanca the great and more important location of the country. Diverse rock types with important quantities of uranium are distributed by the whole state. The igneous extrusive acid rocks are those that have bigger quantity of uranium, like they are the rhyolites and dacites and these rocks are located in enough proportion by the whole state. Some of the main cities of the state are near to locations or uraniferous rocks, as Aldama, Nuevo Casas Grandes, Chihuahua, Jimenez and Bocoyna, other important cities are not near important locations. It was determined specific activity by gamma spectroscopy of the series of the 238 U in soils and determination of the radon concentration in domiciles of the main cities of the state. They were found high specific activity values in soil in eight of the thirteen analyzed cities and important radon concentrations in three cities. It was found relationship among the specific activity in soil in near cities to uraniferous locations. (Author)

  2. Determination of the isotopic composition of natural and slightly enriched uranium by alpha-spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar

    1968-01-01

    Determinations of the isotope contents of 238U, 235U and 234U in five uranium samples containing 0–5 at% 235U were carried out on the basis of a least-squares fit of the α-spectra from the samples, measured with a semiconductor detector, to the theoretically expected α-spectra. With a simple source...

  3. Comparison of alkali fusion and acid digestion methods for radiochemical separation of Uranium from dietary samples

    International Nuclear Information System (INIS)

    Kamesh Viswanathan, B.; Arunachalam, Kantha D.; Sathesh Kumar, A.; Jayakrishana, K.; Shanmugamsundaram, H.; Rao, D.D.

    2014-01-01

    Several methods exist for separation and measurement of uranium in dietary samples such as neutron activation analysis (NAA), alpha spectrometric determination, inductively coupled plasma mass spectrometry (ICP-MS) and fluorimetry. For qualitative determination of activity, NAA and alpha spectrometry are said to be superior to evaluate the isotopes of uranium ( 238 U, 234 U and 235 U). In case of alpha spectrometry, the samples have to undergo radiochemical analysis for separation from other elements for uranium detection. In our studies, uranium was determined in food matrices by acid digestion (AD) and alkali fusion (AF) methods. The recovery yield of uranium in food matrices was compared in order to get consistent yield. The average activity levels of 238 U and 234 U in food samples were calculated based on recovery yield of 232 U in the samples. The average recovery of 232 U in AD method was 22 ± 8% and in AF method, it was 14.9 ± 1.3%. The spread is more in AD method than the AF method from their mean. The lowest recovery of 232 U was found in AF method. This is due to the interference of other elements in the sample during electroplating. Experimental results showed that the uranium separation by AD method has better recovery than the AF method. The consistency in recovery of 232 U was better for AF method, which was lower than the AD method. However, overall for both the methods, the recovery can be termed as poor and need rigorous follow up studies for consistently higher recoveries (>50%) in these type of biological samples. There are reports indicating satisfactory recoveries of around 80% with 232 U as tracer in the food matrices

  4. Elemental hydrochemistry and hydro geochemistry of the uranium isotopes in Alter do Chao formation, Manaus (Amazon - Brazil)

    International Nuclear Information System (INIS)

    Silva, Marcio Luiz da; Bonotto, Daniel Marcos

    2006-01-01

    The water exploitation at Manaus city, Amazonas State, Brazil, takes place from Negro River and tubular wells, being performed by a private company. This paper evaluates the hydrochemistry and geochemical behavior of uranium isotopes ( 238 U and 234 U) in groundwaters from Manaus city, with the aim to characterize the contaminants or pollutants that possibly are affecting the quality of the underground hydrological resources, as well as to evaluate the potential use of the natural U-isotopes as hydrological tracers in the aquifer studied. The U-isotopes analysis allowed to determine 234 U/ 238 U activity ratios of 1.2-4.4, and dissolved uranium concentration of 0.003-1.1 μg.L -1 (ppb). These results and those concerning the others parameters indicated that the waters are appropriate for human consumption, permitting to classify the hydrological system as acid-reducing, and to say that the waters leach minerals in strata containing low U content.(author)

  5. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  6. Solubility classification of airborne products from uranium ores and tailings piles

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1979-01-01

    Airborne products generated at uranium mills were assigned solubility classifications for use in the ICRP Task Group Lung Model. No significant difference was seen between the dissolution behavior of airborne samples and sieved ground samples of the same product. If the product contained radionuclides that dissolved at different rates, composite classifications were assigned to show the solubility class of each component. If the dissolution data indicated that a radionuclide was present in two chemical forms that dissolved at different rates, a mixed classification was assigned to show the percentage of radionuclide in each solubility class. Uranium-ore dust was assigned the composite classification: ( 235 U, 238 U) W; ( 226 Ra) 10% D, 90% Y; ( 230 Th, 210 Pb, 210 Po) Y. Tailings-pile dust was classified: ( 226 Ra) 10% D, 90% Y; ( 230 Th, 210 Pb, 210 Po) Y. Uranium octoxide was classified Y, uranium tetrafluoride was also classified Y, ammonium diuranate was classified D, and yellow-cake dust was classified ( 235 U, 238 U) 60% D, 40% W. The term yellow cake, however, covers a variety of materials which differ significantly in dissolution rate. Solubility classifications based on the dissolution half-times of particular yellow-cake products should, thus, be used when available. The D, W, and Y classifications refer to biological half-times for clearance from the human respiratory tract of 0 to 10 days, 11 to 100 days, and > 100 days, respectively

  7. Voltametric determination of O:U relation in uranium oxide

    International Nuclear Information System (INIS)

    Carvalho, F.M.S. de; Abrao, A.

    1988-07-01

    Uranium oxide samples are dissolved in hot concentrated H 3 PO 4 - H 2 SO 4 mixture and the solution diluted with 1M H 2 SO 4 . One aliquot of such solution (A) is used to record the first voltamogram which gives the U(VI) content. To a second aliquot HNO 3 and H 2 O 2 is added to oxidise uranium to the hexavalent state (B) and the second voltamogram is recorded from 0.0 to 0.4 V X SCE. The O:U ratio in the original sample is calculated by the expression: O/U = 2.000 + [U (VI) soln.A/% U(VI) soln. B]. The method provides an accurate means for determining O to U ratios in high-purity uranium dioxide, fuel pellets and a variety of oxides prepared for developmental work on ceramic fuel materials. (author) [pt

  8. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.

    2009-01-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  9. Ore-forming environment identification and uranium metallogenic features in Manite depression

    International Nuclear Information System (INIS)

    Liu Zhengyi; Liu Wusheng; Jia Licheng; Shi Qingping; Peng Cong; Chen Hua

    2014-01-01

    By using limonitization, the important indicator of uranium ore-forming identification as the product of acid water transportation from the reducing environment to the oxidation environment, based on the specimen examination naked eye, microscopic identification, electron microscopy, electron microprobe were used to study the major elements, trace elements, organic carbon, total sulfur, uranium valence and uranium, thorium isotope "2"3"4U/"2"3"8U, "2"3"0Th/"2"3"2Th ratio, hydrocarbons especially clay mineral species and the total amount, V/(V + Ni) water stratification and bottom hydrodynamic environment and other factors, which can indicate the microphase environment of all types of rocks in Manite depression, and uranium ore-forming factors were identified and evaluation are discussed and some suggestions were submitted. (authors)

  10. Westinghouse says cartel rigged U.S. uranium market

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    On Oct. 15, 1976, Westinghouse filed a complaint in Federal court in Chicago charging that 29 U.S. and foreign uranium producers damaged Westinghouse by illegally rigging the uranium market; they also link the Atomic Industrial Forum to the U.S. activities of this cartel. Background information is presented for the charge, which has become the focal point of Westinghouse's defense against the uranium supply breach of contract suits filed against the firm by 27 electric utilities (3 filed in county court in Pittsburgh, 24 jointly in Federal court in Virginia). Westinghouse attorneys say that most of the evidence they have shows the existence of a cartel in the past, but they hope to show it is still operating in the U.S

  11. Uranium isotopes in groundwater occurring at Amazonas State, Brazil

    International Nuclear Information System (INIS)

    Luiz da Silva, Márcio; Bonotto, Daniel Marcos

    2015-01-01

    This paper reports the behavior of the dissolved U-isotopes 238 U and 234 U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and 234 U/ 238 U activity ratio (AR) data, 0.01–1.4 µg L −1 and 1.0–3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW–NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes. - Highlights: • U-isotopes data in important aquifer systems in Amazon area. • Application of the U-isotopes data to investigate the groundwater flow direction. • Evaluation of the drinking-water quality in terms of dissolved uranium

  12. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    International Nuclear Information System (INIS)

    Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.

    1997-01-01

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from open-quotes soluteclose quotes uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 μm-filtered Kalix River water samples increased by a factor of 3 from near the headwaters in the Caledonides to the river mouth while major cation concentrations were relatively constant. 234 U 238 U ratios were high (δ 234 U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of 234 U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil 234 U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small 234 U/ 238 U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs. groundwater. 63 refs., 8 figs., 3 tabs

  13. Contamination level of natural 238U and 232Th radionuclides in offshore of coal power plant (assessment at offshore of Panjang Island and Lada Bay, Banten)

    International Nuclear Information System (INIS)

    Sabam Parsaoran Situmorang; Harpasis Selamet Sanusi; June Mellawati

    2011-01-01

    This study had been carried out by collecting sample of the surficial sediments, sea water, seaweeds, anchovies (Stolephorus and Anchoa) and mussels (Codakia) from 4 locations in waters of Pulau Panjang and coastal of Lada Bay (as control/comparison site), Banten in June - July 2010. Natural radionuclides (Th) concentration in samples was measured using neutron activation analysis (NAA) method. The results showed that the total radionuclides concentration in sediment ( 238 U: 18.6160 - 35.0013 Bq/kg; 232 Th: 11.2020 - 35.6685 Bq/kg), seawater ( 238 U: undetected; 232 Th: 0.0790 - 0.1299 Bq/l), cultivation seaweeds ( 238 U: undetected; 232 Th: 3.6735 - 4.8345 Bq/kg), natural seaweeds ( 238 U: 3.6851 - 48.0430 Bq/kg; 232 Th: 3.9941 - 9.0788 Bq/kg), Stolephorus ( 238 U: undetected; 232 Th: 3.3078 Bq/kg) and Codakia ( 238 U: 6.8903 Bq/kg; 232 Th: 3.6023 Bq/kg) in Pulau Panjang, Banten around Suralaya coal power plant higher than control site that were around the Labuan coal power plant, namely in sediments ( 238 U: 10.4253 Bq/kg; 232 Th: 16.5952 Bq/kg), seawater( 238 U: undetected; 232 Th: 0.0671 Bq/l), cultivation seaweeds ( 238 U: undetected; 232 Th: 2.3005 Bq/kg), natural seaweeds ( 238 U: 19.5367 Bq/kg; 232 Th: 2.6729 Bq/kg) and Anchoa ( 238 U: undetected; 232 Th: 2.0603 Bq/kg). (author)

  14. Precise Monitoring of Depleted Uranium in human and environment of South Iraq using Multi-collector ICP-MS

    International Nuclear Information System (INIS)

    Gerdes, A.; Weyer, S.; Brey, G.; Zimmermann, I.; Durakovic, A.

    2004-01-01

    tracer of well-known composition and leached in hot aqua regia over more than 12 hours at about 100 deg C. For the uranium-in-urine method about 500 ml were weighted, acidified with nitric acid to a pH 3 (PO 4 )2 and the precipitate rinsed several time with ultra pure water, centrifuged and redissolved in 3:1 HNO 3 :H 2 O 2 mixture and heated to about 120 deg C for more than 12 hours in Teflon vessels in order to destroy remaining organic material. A 233 U tracer were added either during weighing of the total urine volume or to a 2 g aliquot, precisely weight to +/- 0.5 mg. To minimize sample contamination we used only double-distilled acids, 18 Ohm MQ H 2 O and reagents and beakers, which were thoroughly pre-cleaned before use. A beaker containing MQ H 2 O instead of urine and an in-house urine standard were always processed alongside with the samples as procedural blank and reference monitor, respectively. Uranium fractions of all samples were purified by ion-exchange chromatography using UTEVA resin before analyzing with a double-focusing MC-ICPMS Neptune equipped with a retarding potential quadrupole lens and a secondary electron multiplier for ion counting. A Cetac auto-sampler and Aridus de-solvating nebuliser were used for sample introduction. Reproducibility of the 235 U/ 238 U, 234 U/ 238 U and 236 U/ 238 U (= 4.5 x 10 -8 ) for a 8 ppb NBS950a solution (n=14) over two days were about 0.1, 0.4 and 5%, respectively. The recovery of U after chemical purification was usually better than 80% and analytical blanks for the entire soil and the urine method were below 1 and 6 pico-gram 238 U, respectively. Signal sensitivity of 0.3 V ng -1 ml, negligible 235 U 1 H + formation and 238 U tailing below 3 x 10 -8 at m/z 236 enables precise detection of 236 U below 0.5 fg/g at 236 U/ 238 U ratios of below 3 x 10 -8 . Using an enrichment factor of about 500 for urine the limit of detection for 236 U is about 2 x10 -19 g/ml (0.2 ag/ml) and for 238 U about 1 x10 -14 g/ml urine

  15. Risk due assessment of the intake of uranium isotopes in mineral spring waters

    International Nuclear Information System (INIS)

    Camargo, Iara M.C.; Mazzilli, Barbara

    1998-01-01

    To complement the data of a previous research concerning the evaluation of the lifetime risk of radiation-induced cancer due to the injection of 226 Ra, 228 Ra and 222 Rn in mineral spring waters from a natural highly radioactive region of Brazil. The study was performed to evaluate the lifetime risk of radiation-induced cancer due to the ingestion of 238 U and 234 U in the same spring waters. It is assumed that the risk coefficient for natural U isotopes is the same as for the 226 Ra-induced bone sarcomas and that the equilibrium for skeletal content is 25 times the daily ingestion of 226 Ra, but 11 times the daily ingestion of long-lived uranium isotopes. Waters samples were collected seasonally over a period of one year at all the spring sites used by the local population of Aguas da Prata, Sao Paulo State, Brazil. Concentrations ranging from 2.0 to 28.4 mBq/L and from 4.7 to 143 mBq/L were observed for 238 U and 234 U, respectively. Based upon the measured concentrations the lifetime risk due to the ingestion of uranium isotopes was estimated. A total of 0.3 uranium-induced cancers for 10 6 exposed persons was predicted, suggesting that chronic ingestion of uranium at the levels observed at these springs will result in an incremental increase of fatal cancers of 0.1%. (author)

  16. Nonradiative excitation of the muonic atom 238U as an inverse conversion process

    International Nuclear Information System (INIS)

    Karpeshin, F.F.; Nesterenko, V.U.

    1982-01-01

    The probabilities of nonradiation nuclear excitation are calculated for different muon transitions in the muonic atom 238 U. Microscopic nuclear wave functions, obtained within the quasiparticle-phonon nuclear model and the muonic conversion coefficients have been used. The probability of nonradiation nuclear excitation for the muonic transitions 2p → 1s and 3p → 1s has been found to be equal to 0.3. It is predicted that nonradiative E3 transitions 3d → 2p can take place with the probability 0.08-0.10. The dynamic effect of nuclear structure on the probability of nonradiative nuclear excitation is taken into account. The estimates of 238 U fissility fission branching at nonradiation transitions are also obtained

  17. Natural Radioactivity in Soil and Water from Likuyu Village in the Neighborhood of Mkuju Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Najat K. Mohammed

    2013-01-01

    Full Text Available The discovery of high concentration uranium deposit at Mkuju, southern part of Tanzania, has brought concern about the levels of natural radioactivity at villages in the neighborhood of the deposit. This study determined the radioactivity levels of 30 soil samples and 20 water samples from Likuyu village which is 54 km east of the uranium deposit. The concentrations of the natural radionuclides 238U, 232Th, and 40K were determined using low level gamma spectrometry of the Tanzania Atomic Energy Commission (TAEC Laboratory in Arusha. The average radioactivity concentrations obtained in soil samples for 238U (51.7 Bq/kg, 232Th (36.4 Bq/kg, and 40K (564.3 Bq/kg were higher than the worldwide average concentrations value of these radionuclides reported by UNSCEAR, 2000. The average activity concentration value of 238U (2.35 Bq/L and 232Th (1.85 Bq/L in water samples was similar and comparable to their mean concentrations in the control sample collected from Nduluma River in Arusha.

  18. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    Science.gov (United States)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  19. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  20. Two types of adakites revealed by 238U-230Th disequilibrium from Daisen volcano, southwestern Japan

    International Nuclear Information System (INIS)

    Tokunaga, Saimi; Nakai, Shun'ichi; Orihashi, Yuji

    2010-01-01

    Daisen volcano is located on the Quaternary volcanic front in southwestern Japan. The volcano is composed mainly of andesite and dacite, which chemically resemble adakites, with high Al 2 O 3 and Sr/Y, steep REE patterns, and no negative Eu anomaly. ( 238 U/ 230 Th) disequilibrium (herein, a ratio in parentheses denotes the activity ratio) and trace element analyses of adakites from two volcanic domes, Karasugasen and Misen, indicate two adakite types. Adakite from Karasugasen is characterized by excess ( 230 Th) over ( 238 U), typical of most adakites, whereas adakite from Misen is characterized by excess ( 238 U) over ( 230 Th). The latter is consistent with enrichment in fluid-mobile elements relative to fluid immobile elements compared to rocks from Karasugasen. The values of ( 230 Th/ 232 Th) of adakites from Karasugasen and Misen are, respectively, around 0.75 and 0.81. These low ( 230 Th/ 232 Th) ratios result from the incorporation of subducted sedimentary material. The ratios, nevertheless, are higher than that for the estimate of lower crustal material suggesting significant incorporation of lower crust is unlikely. As adakites from Misen have ( 238 U) excess over ( 230 Th), adakite magma must have interacted with wedge mantle metasomatized by a slab-derived fluid, confirming the presence of a fluid-metasomatized mantle beneath Daisen volcano. (author)

  1. Natural and depleted uranium in the topsoil of Qatar: Is it something to worry about?

    International Nuclear Information System (INIS)

    Shomar, Basem; Amr, Mohamed; Al-Saad, Khalid; Mohieldeen, Yasir

    2013-01-01

    Highlights: • Scientific studies on Uranium in the arid environment are almost absent. • Qatar is closed to Iraq and Iran where the two countries were exposed to long wars. • The paper introduces baseline study integrates chemistry, instrumentation and GIS mapping. • The study opens new horizons for similar studies on the field using similar approach. - Abstract: This study examines uranium in soils of Qatar to investigate whether there is any detectable traces of depleted uranium (DU). 409 soil samples were collected using a 10 km grid system throughout the State of Qatar. The U concentrations and isotopic compositions ( 235 U/ 238 U) were determined using an ICP-MS. The U concentrations range from 0.05 to 4.7 mg/kg and the 235 U/ 238 U isotopic signatures are in the range 0.007–0.008, i.e. comparable to the isotopic ratio in natural uranium (NU). The distribution of these concentrations in the topsoil were used to see correlations with locations of pollution point sources and environmentally hot areas associated with human activity: industrial estates, solid waste dumping sites, wastewater treatment plants, sea harbors, airports, and public transport network. New thematic maps were built using Geographic Information System (GIS) software. The results showed that there is no linkage between the occurrence, distribution, concentrations and isotopic ratios of U and these hotspots. More importantly, due to the low concentration of organic matter (OM) in soils of Qatar, very limited P-fertilization, the alkaline nature of soil (pH 8) and low Fe/Mn contents make soil uranium concentrations very low. The residential areas, including the capital Doha, had the lowest total concentrations of uranium and isotopic ratios of the country while the northern and western parts showed the highest values

  2. Isotopic analysis of uranium by thermoionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1979-01-01

    Uranium isotopic ratio measurements by thermoionic spectrometry are presented. Emphasis is given upon the investigation of the parameters that directly affect the precision and accuracy of the results. Optimized procedures, namely, chemical processing, sample loading on the filaments, vaporization, ionization and measurements of ionic currents, are established. Adequate statistical analysis of the data for the calculation of the internal and external variances and mean standard deviation are presented. These procedures are applied to natural and NBS isotopic standard uranium samples. The results obtained agree with the certified values within specified limits. 235 U/ 238 U isotopic ratios values determined for NBS-U500, and a series of standard samples with variable isotopic compositon, are used to calculate mass discrimination factor [pt

  3. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  4. Uranium Age Determination by Measuring the 230Th / 234U Ratio

    International Nuclear Information System (INIS)

    LAMONT, STEPHEN P.

    2004-01-01

    A radiochemical isotope dilution mass spectrometry method has been developed to determine the age of uranium materials. The amount of 230Th activity, the first progeny of 234U, that had grown into a small uranium metal sample was used to determine the elapsed time since the material was last radiochemically purified. To preserve the sample, only a small amount of oxidized uranium was removed from the surface of the sample and dissolved. Aliquots of the dissolved sample were spiked with 233U tracer and radiochemically purified by anion-exchange chromatography. The 234U isotopic concentration was then determined by thermal ionization mass spectrometry. Additional aliquots of the sample were spiked with 229Th tracer, and the thorium was purified using two sequential anion-exchange chromatography separations. The isotopic concentrations of 230Th and 232Th were determined by TIMS. The lack of any 232Th confirmed the assumption that all thorium was removed from the uranium sample at the time of purification. The 230Th and 234U mass concentrations were converted to activities and the 230Th/234U ratio for the sample was calculated. The experimental 230Th/234U ratio showed the uranium in this sample was radiochemically purified in about 1945. Isotope dilution thermal ionization mass spectrometry has sufficient sensitivity to determine the age of 100 samples of uranium. This method could certainly be employed as a nuclear forensic method to determine the age of small quantities of uranium metal or salts. Accurate determination of the ultra-trace 230Th radiochemically separated from the uranium is possible due to the use of 229Th as an isotope dilution tracer. The precision in the experimental age of the uranium could be improved by making additional replicate measurements of the 230Th/234U isotopic ratio or using a larger initial sample

  5. Analysis of radon, uranium 238 and thorium 232 in potable waters: Dose to adult members of the Moroccan urban population

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Ouabi, H.; Merzouki, A.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations as well as radon ( 222 Rn) and thoron ( 220 Rn) alpha-activities per unit volume have been measured inside various potable water samples collected from nineteen cities in Morocco by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). Measured radon alpha-activities ranged from (0.37 ± 0.02) Bq l -1 to (13.6 ± 1.10) Bq l -1 for the potable water samples studied. Alpha-activities due to radon from the ingestion of the studied potable water samples were determined in different compartments of the gastrointestinal system by using the ICRP compartmental model for radon. Annual committed equivalent doses due to radon were evaluated in the gastrointestinal compartments from the ingestion of the potable water samples studied. The influence of the target tissue mass, radon intake and alpha-activity integral due to radon on the annual committed equivalent doses in the gastrointestinal compartments was investigated

  6. Possible pitfalls in the search for uranium deposits using lake sediments and lake waters

    International Nuclear Information System (INIS)

    Levinson, A.A.; Bland, C.J.

    1978-01-01

    The organic-rich sediments from the centres of Canadian lakes are a valuable sampling medium in the search for uranium. However, because of the young age of hydromorphically transported uranium in these sediments, which must post-date the last period of glaciation, there has been insufficient time for the isotope 214 Bi to reach equilibrium with its ancestor 238 U. This results in equivalent uranium (eU) values significantly lower than actual uranium values determined by fluorometry or delayed neutron activation analysis. Radiometric ( 226 Ra) analyses of 12 centre-lake sediments from Seahorse Lake, Saskatchewan illustrate the potential pitfalls which may be encountered using gamma-ray spectrometry, as only 3-8% of the actual uranium present in most of the samples would have been detected. (author)

  7. Uranium concentration by Crustacea: a structural, ultrastructural and microanalytical study by secondary ion emission and electron probe X ray microanalysis

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, Colette

    1982-01-01

    Experimental intoxications were performed on the Crayfish Pontastacus leptodactylus using hydrosoluble uranium nitrate. Investigations demonstrate that Crustacea are able to concentrate both uranium main radioactive isotopes 238 U and 235 U within the cuticle, gill epithelium, midgut gland (=hepatopancreas) and macrophagic hemocytes. The storage occurs within nucleus and lysosomal system where uranium is precipitated in the form of an unsoluble phosphate. The proposed hypothesis for the metal extrusion is the following: residual bodies containing the uranium precipitates are extruded into the extracellular space where they are absorbed by phagocytosis, by the macrophagic hemocytes [fr

  8. Inverse break-through investigation on uranium isotope separation in the system Fe(III) water-glycerine solution-U(IV) cathionic resin

    International Nuclear Information System (INIS)

    Murgulescu, Sanda; Calusaru, A.

    1977-01-01

    When a solution containing ferric ions passes on cationic resin in U(IV) form, the substitution of uranium by iron is preceded by oxydation of U(IV) to U(VI). During the contact of U(VI) in solution with U(IV) in resin, an exchange reaction occurs, in which 235 U is slightly concentrated in solution and 238 U in resin phase. Since increase of temperature accelerates the exchange reaction, the apparent thermodynamic values of the exchange reaction were calculated, by taking into account the variation of the apparent equilibrium constant as a function of the reciprocal value of the temperature. The corresponding thermodynamic values in both pure aqueous and water-glycerine solution are: ΔH 0 =6.45 cal.mol -1 and ΔS 0 =21.6x10 -3 cal. 0 K -1 . The use of glycerine containing solutions offers the important advantage to increase the stability versus hydrolysis of the ferric ions even at higher temperature

  9. On uncertainties and fluctuations of averaged neutron cross sections in unresolved resonance energy region for 235U, 238U, 239Pu

    International Nuclear Information System (INIS)

    Van'kov, A.A.; Blokhin, A.I.; Manokhin, V.N.; Kravchenko, I.V.

    1985-01-01

    This paper analyses the reasons for the differences which exist between group-averaged evaluated cross-section data from different evaluated data files for U235, U238 and Pu239 in the unresolved resonance energy region. (author)

  10. Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu

    International Nuclear Information System (INIS)

    Mac Innes, M.; Chadwick, M.B.; Kawano, T.

    2011-01-01

    We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235 U, 238 U and 239 Pu. The results are from historical measurements made in the 1950s–1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235 U and 238 U, but our FPYs are generally higher for 239 Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239 Pu fission cross section is now known to be 15–20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.

  11. Real-Time Speciation of Uranium During Active Bioremediation and U(IV) Reoxidation

    International Nuclear Information System (INIS)

    Komlos, J.; Mishra, B.; Lanzirotti, A.; Myneni, S.; Jaffe, P.

    2008-01-01

    The biological reduction of uranium from soluble U(VI) to insoluble U(IV) has shown potential to prevent uranium migration in groundwater. To gain insight into the extent of uranium reduction that can occur during biostimulation and to what degree U(IV) reoxidation will occur under field relevant conditions after biostimulation is terminated, X-ray absorption near edge structure (XANES) spectroscopy was used to monitor: (1) uranium speciation in situ in a flowing column while active reduction was occurring; and (2) in situ postbiostimulation uranium stability and speciation when exposed to incoming oxic water. Results show that after 70 days of bioreduction in a high (30 mM) bicarbonate solution, the majority (>90%) of the uranium in the column was immobilized as U(IV). After acetate addition was terminated and oxic water entered the column, in situ real-time XANES analysis showed that U(IV) reoxidation to U(VI) (and subsequent remobilization) occurred rapidly (on the order of minutes) within the reach of the oxygen front and the spatial and temporal XANES spectra captured during reoxidation allowed for real-time uranium reoxidation rates to be calculated.

  12. A device for uranium series leaching from glass fiber in HEPA filter

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Hye-Min Park; Wang-Kyu Choi; Jei-Kwon Moon

    2012-01-01

    For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO 3 -0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution, chemical consecutive chemical leaching by a 4.0 M HNO 3 solution, and repeated chemical leaching by a 4.0 M HNO 3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 5 h by the 4.0 M HNO 3 -0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 36 h by 4.0 M HNO 3 -0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 8 h by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after consecutive leaching for 8 h by the 4.0 M HNO 3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO 3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238 U, 235 U, 226 Ra, and 234 Th from the waste solution after its precipitation-filtration treatment with NaOH and alum for reuse of the 4.0 M HNO 3 waste solution were 100, 100, 93.3, and 100%. (author)

  13. Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2006-01-01

    During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg -1 for 238 U, 0.24-16.8 Bq kg -1 for 234 U, and 0.02-1.11 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the 236 U in some of the samples was detectable. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 mBq l -1 for 238 U, 0.41-15.6 mBq l -1 for 234 U and 0.012-0.695 mBq l -1 for 235 U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants

  14. A remarkable systemic error in calibration methods of γ spectrometer used for determining activity of 238U

    International Nuclear Information System (INIS)

    Su Qiong; Cheng Jianping; Diao Lijun; Li Guiqun

    2006-01-01

    A remarkable systemic error which was unknown in past long time has been indicated. The error appears in the calibration methods of determining activity of 238 U is used with γ-spectrometer with high resolution. When the γ-ray of 92.6 keV as the characteristic radiation from 238 U is used to determine the activity of 238 U in natural environment samples, the disturbing radiation produced by external excitation (or called outer sourcing X-ray radiation) is the main problem. Because the X-ray intensity is changed with many indefinite factors, it is advised that the calibration methods should be put away. As the influence of the systemic errors has been left in some past research papers, the authors suggest that the data from those papers should be cited carefully and if possible the data ought to be re-determined. (authors)

  15. Plutonium-236 traces determination in plutonium-238 by α spectrometry

    International Nuclear Information System (INIS)

    Acena, M.L.; Pottier, R.; Berger, R.

    1969-01-01

    Two methods are described in this report for the determination of plutonium-236 traces in plutonium-238 by a spectrometry using semi-conductor detectors. The first method involves a direct comparison of the areas under the peaks of the α spectra of plutonium-236 and plutonium-238. The electrolytic preparation of the sources is carried out after preliminary purification of the plutonium. The second method makes it possible to determine the 236 Pu/ 238 Pu ratio by comparing the areas of the α peaks of uranium-232 and uranium-234, which are the decay products of the two plutonium isotopes respectively. The uranium in the source, also deposited by electrolysis, is separated from a 1 mg amount of plutonium either by a T.L.A. extraction, or by the use of ion-exchange resins. The report ends with a discussion of the results obtained with plutonium of two different origins. (authors) [fr

  16. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    International Nuclear Information System (INIS)

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-01-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 (micro)g total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes

  17. Alpha spectrometry Analysis of radioisotopes of thorium and uranium in the soil (IAEA soil reference ground 375 and the natural region of Utique (Bizerte))

    International Nuclear Information System (INIS)

    Mejri, Mouna

    2008-01-01

    Since the formation of the terrestrial crust, the primordial radionuclides are present in the minerals. The main are the radioactive elemnts of the Uranium 238, of Uranium 235, of the Thorium 232 chains, Potassium 40 and the Ribidium 87. In this survey, we will present the methodology of analysis of the natural radioisotopes of uranium ( 238 U, 235 U and 234 U) and those of the thorium ( 232 Th, 230 Th and 228 Th) presents to the state of tracers in the natural soils. The method of measurement used is the alpha spectrometry. This technique is very important in the radiometric analysis, especially for the pure alpha emitters or for the low levels of radioactivity analysis. The results if analysis of the Thorium are compared to those gotten by the ICP - AES ( t he Atomic Emission Spectrometry Coupled to an inductive Plasma ) . (Author)

  18. Preparation and melting of uranium from U3O8

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Choi, In-Kyu; Cho, Soo-Haeng; Jeong, Sang-Mun; Seo, Chung-Seok

    2008-01-01

    In this paper, we report on the preparation and melting of uranium in association with a spent nuclear fuel conditioning process. U 3 O 8 powder was electrochemically reduced in a mixture of molten LiCl-Li 2 O (∼3 wt.% of Li 2 O in LiCl) at 650 deg. C resulting in the formation of uranium and Li 2 O with a yield of >99%. When the powder of uranium with a residual LiCl-Li 2 O salt was heated in order to melt the metal, the uranium oxidation to UO 2 due to the reaction with Li 2 O was observed. We were able to synthesize FeU 6 by using a Fe based cathode during the U 3 O 8 reduction procedure. FeU 6 could be melted to below the temperatures where the oxidation of uranium by Li 2 O occurred. The idea of compound formation and melting is applicable to the melting and casting of a spent nuclear fuel which contains oxidative residual salts due to its conditioning in a molten salt

  19. Precise Monitoring of Depleted Uranium in human and environment of South Iraq using Multi-collector ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, A.; Weyer, S.; Brey, G. [Frankfurt Univ., Dept. of Mineralogy (Germany); Zimmermann, I.; Durakovic, A. [Uranium Medical Research Centre, Toronto (Italy)

    2004-07-01

    micrometers), dust and evaporated water samples were spiked with an {sup 233}U tracer of well-known composition and leached in hot aqua regia over more than 12 hours at about 100 deg C. For the uranium-in-urine method about 500 ml were weighted, acidified with nitric acid to a pH < 2, and stirred at about 80 deg C on a hot plate. Uranium was co-precipitated with Ca{sub 3}(PO{sub 4})2 and the precipitate rinsed several time with ultra pure water, centrifuged and redissolved in 3:1 HNO{sub 3}:H{sub 2}O{sub 2} mixture and heated to about 120 deg C for more than 12 hours in Teflon vessels in order to destroy remaining organic material. A {sup 233}U tracer were added either during weighing of the total urine volume or to a 2 g aliquot, precisely weight to +/- 0.5 mg. To minimize sample contamination we used only double-distilled acids, 18 Ohm MQ H{sub 2}O and reagents and beakers, which were thoroughly pre-cleaned before use. A beaker containing MQ H{sub 2}O instead of urine and an in-house urine standard were always processed alongside with the samples as procedural blank and reference monitor, respectively. Uranium fractions of all samples were purified by ion-exchange chromatography using UTEVA resin before analyzing with a double-focusing MC-ICPMS Neptune equipped with a retarding potential quadrupole lens and a secondary electron multiplier for ion counting. A Cetac auto-sampler and Aridus de-solvating nebuliser were used for sample introduction. Reproducibility of the {sup 235}U/{sup 238}U, {sup 234}U/{sup 238}U and {sup 236}U/{sup 238}U (= 4.5 x 10{sup -8}) for a 8 ppb NBS950a solution (n=14) over two days were about 0.1, 0.4 and 5%, respectively. The recovery of U after chemical purification was usually better than 80% and analytical blanks for the entire soil and the urine method were below 1 and 6 pico-gram {sup 238}U, respectively. Signal sensitivity of 0.3 V ng{sup -1}ml, negligible {sup 235}U{sup 1}H{sup +} formation and {sup 238}U tailing below 3 x 10{sup -8} at m

  20. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. High energy resolution measurement of the 238U neutron capture yield in the energy region between 1 and 100 keV

    International Nuclear Information System (INIS)

    Machlin, R.L.; Perez, R.B.; de Saussure, G.; Ingle, R.W.

    1988-01-01

    A measurement of the 238 U neutron capture yield was performed at the 150 meter flight-path of the ORELA facility on two 238 U samples (0.01224 and 0.0031 atomsbarn). The capture yeild data were normalized by Moxon's small resonance method. The energy resolution achieved in this measurement frequently resulted in doublet and triplet splittings of what appeared to be single resonance in previous measurements. This resolution should allow extension of the resolved resonance energy region in 238 U from the present 4-keV limit up to 15 or 20 keV incident neutron energy. Some 200 small resonances of the ( 238 U /plus/ n) compound nucleus have been observed which had not been detected in transmission measurement, in the energy range from 250 eV to 10 keV

  2. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  3. Biokinetics aand dosimetry of inhaled 238PuO2 in the beagle dog: An update

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Griffith, W.C.; Diel, J.H.

    1994-01-01

    The temporal and spatial distributions of 238 Pu have been measured during the course of a dose-response study of the biological effects of inhaled 238 PuO 2 in Beagle dogs. These measurements were done on the dose-response study animals, as well as a separate group of dogs exposed to similar aerosols and killed serially out to 4 y after exposure. The data from this latter group provided the basis for the development of a biokinetic/dosimetric model for 238 PuO 2 in dogs. Since the publication of this model, several important findings have been made that affected the dosimetric evaluations. The first involved the discovery of significant quantities of natural uranium (U) in the feces samples. The U was measured with the plutonium (Pu), which inflated the values for purported Pu in feces. The second finding involved the addition of Pu biokinetics data from the dose-response dogs, which increased the period of observation from 4 y to 15 y; these later data were not consistent with the earlier model predictions. The purpose of this investigation was (1) to remove the analytical bias in the 238 Pu radiochemical data due to the U and (2) to modify the original model of Mewhinney and Diel, taking into account all data from both studies

  4. Uranium and plutonium in marine sediments

    International Nuclear Information System (INIS)

    Ordonez R, E.; Almazan T, M. G.; Ruiz F, A. C.

    2011-11-01

    The marine sediments contain uranium concentrations that are considered normal, since the seawater contains dissolved natural uranium that is deposited in the bed sea in form of sediments by physical-chemistry and bio-genetics processes. Since the natural uranium is constituted of several isotopes, the analysis of the isotopic relationship 234 U/ 238 U are an indicator of the oceanic activity that goes accumulating slowly leaving a historical registration of the marine events through the profile of the marine soil. But the uranium is not the only radioelement present in the marine sediments. In the most superficial strata the presence of the 239+140 Pu has been detected that it is an alpha emitter and that recently it has been detected with more frequency in some coasts of the world. The Mexican coast has not been the exception to this phenomenon and in this work the presence of 239-140 Pu is shown in the more superficial layers of an exploring coming from the Gulf of Tehuantepec. (Author)

  5. Accelerator based production of fissile nuclides, threshold uranium price and perspectives

    International Nuclear Information System (INIS)

    Djordjevic, D.; Knapp, V.

    1988-01-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  6. The carrying out of a radiometric analysis method applicable to Moroccan phosphates. Study of the uranium amounts, of the U/Ra equilibrium ratio and of 222-radon emanation rates

    International Nuclear Information System (INIS)

    Choukri, A.

    1987-01-01

    A radiometric analysis method for the determination of the uranium and the radium amounts in Moroccan phosphate has been carried out, using NaI(Tl) scintillator to detect gamma radiation of 238-U and 235-U radioactive daughters. The analysis results permit to calculate the U/Ra equilibrium ratio and the emanation rates of 222-Rn versus temperature. The U/Ra disequilibria permit to detect the secondary contribution of a recent uranium. The 222-Rn emanation rates are useful in the evaluation of the radiological hazards related to the phosphate radioactivity. This method was applied to study the phosphate Ganntour deposit and showed that the uranium content ranges from 25ppm to 350ppm, that the U/Ra ratio ranges from 0.6 to 2.2 with an exceptional value of 4.5. The emanation rate of natural radon is between 0% and 27%. The radon forced emanation by heating or by adding different acids has also been studied. The phosphate attack with H 2 SO 4 and HNO 3 , using the analysis method, showed that a maximum degassing appears at 0.9cc/g for H 2 SO 4 and 1.1cc/g for HNO 3 . By adding H 2 SO 4 , 30% of uranium (without radium) passed in the solution and by adding HNO 3 uranium and radium are divided among the solid and the liquid phases. 22 refs., 49 figs., 25 tabs. (author)

  7. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  8. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan

    International Nuclear Information System (INIS)

    Al-Kharouf, Samer J.; Al-Hamarneh, Ibrahim F.; Dababneh, Munir

    2008-01-01

    Khan Al-Zabeeb, an irrigated cultivated area lies above a superficial uranium deposits, is regularly used to produce vegetables and fruits consumed by the public. Both soil and plant samples collected from the study area were investigated for their natural radioactivity to determine the uranium uptake by crops and hence to estimate the effective dose equivalent to human consumption. Concentrations of 238 U, 235 U, 232 Th, 226 Ra, 222 Rn, 137 Cs and 40 K in nine soil profiles were measured by gamma-ray spectrometry whereas watermelon and zucchini crops were analyzed for their uranium content by means of alpha spectrometry after radiochemical separation. Correlations between measured radionuclides were made and their activity ratios were determined to evaluate their geochemical behavior in the soil profiles. Calculated soil-plant transfer factors indicate that the green parts (leaves, stems and roots) of the studied crops tend to accumulate uranium about two orders of magnitude higher than the fruits. The maximum dose from ingestion of 1 kg of watermelon pulp was estimated to be 3.1 and 4.7 nSv y -1 for 238 U and 234 U, respectively. Estimations of the annual effective dose equivalent due to external exposure showed extremely low values. Radium equivalent activity and external hazard index were seen to exceed the permissible limits of 370 Bq kg -1 and 1, respectively

  9. A mixed-valent uranium phosphonate framework containing U{sup IV}, U{sup V}, and U{sup VI}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lanhua; Zheng, Tao; Wang, Yaxing; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou (China); Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Suzhou (China); Bao, Songsong; Zheng, Limin [State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University (China); Zhang, Linjuan; Wang, Jianqiang [Shanghai Institute of Applied Physics and, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai (China); Liu, Hsin-Kuan [Department of Chemistry, National Central University, Jhongli (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States)

    2016-08-16

    It is shown that U{sup V}O{sub 2}{sup +} ions can reside at U{sup VI}O{sub 2}{sup 2+} lattice sites during mild reduction and crystallization process under solvothermal conditions, yielding a complicated and rare mixed-valent uranium phosphonate compound that simultaneously contains U{sup IV}, U{sup V}, and U{sup VI}. The presence of uranium with three oxidation states was confirmed by various characterization techniques, including X-ray crystallography, X-ray photoelectron, electron paramagnetic resonance, FTIR, UV/Vis-NIR absorption, and synchrotron radiation X-ray absorption spectroscopy, and magnetism measurements. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Sensitivity coefficients for the 238U neutron-capture shielded-group cross sections

    International Nuclear Information System (INIS)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1981-01-01

    In the unresolved resonance region cross sections are represented with statistical resonance parameters. The average values of these parameters are chosen in order to fit evaluated infinitely dilute group cross sections. The sensitivity of the shielded group cross sections to the choice of mean resonance data has recently been investigated for the case of 235 U and 239 Pu by Ganesan and by Antsipov et al; similar sensitivity studies for 238 U are reported

  11. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  12. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS

    Science.gov (United States)

    Grün, Rainer; Aubert, Maxime; Joannes-Boyau, Renaud; Moncel, Marie-Hélène

    2008-11-01

    We have mapped U ( 238U) and Th ( 232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found. The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.

  13. Forage uptake of uranium series radionuclides in the vicinity of the anaconda uranium mill

    International Nuclear Information System (INIS)

    Rayno, D.R.; Momeni, M.H.; Sabau, C.

    1980-01-01

    Radiochemical analysis was performed on samples of soil and eight species of common vegetation growing on the Anaconda uranium mill site, located in New Mexico. The concentrations of the long-lived radionuclides U-238, U-234, Th-230, Ra-226, and Pb-210 in these forage plants were determined. The sampling procedures and analytical laboratory methods used are described. The highest radionuclide concentration found in a forage species was 130 pCi of Ra-226 per gram dry weight for grass growing on the main tailings pile at Anaconda, where the surface soil activity of Ra-226 was 236 pCi/g. A comparison of shoots activity with that of roots and soil was used to determine a distribution index and uptake coefficient for each species. The distribution index, the ratio of root activity to shoot activity, ranged from 0.30 (Th-230) in galleta grass (Hilaria jamesii) to 38.0 (Ra-226) in Indian ricegrass (Oryzopsis hymenoides). In nearly all instances, the roots contained higher radionuclide concentrations. The uptake coefficient, the ratio of vegetation activity to soil activity, ranged from 0.69 (U-238) in Indian ricegrass roots to 0.01 (U-238) in four-wing saltbush (Atriplex canescans) shoots. The range of radionuclide concentrations in plants growing on the Anaconda mill site is compared to that in vegetation from a control site 20 km away

  14. Environmental fate of depleted uranium at three sites contaminated during the balkan conflict

    International Nuclear Information System (INIS)

    Radenkovic, M.; Joksic, J.; Todorovic, D.; Kovacevic, M.

    2006-01-01

    A study on depleted uranium fate in the sites contaminated during the 1999 war conflict in Serbia was conducted in phases until the clean up activities were completed. The ammunition remains found at the locations in the surface soil were collected in the first phase during the radiation survey of the affected areas. The most of depleted uranium penetrators left buried deep into the ground exposed to the weathering and corrosion processes. The contamination level in the air, water, soil and bio -indicators was controlled all the time by routine gamma and alpha spectrometry measurements. Depleted uranium migration was studied through the soil profile surrounding the penetrator during the 2001 at the Bratoselce location showing the contamination level fall to the 1% of its value at approximately 15 cm distance to the source. The samples taken from the soil layers at different distances in the profile are subjected to a modified Tessiers five-step sequential extraction procedure. The uranium and heavy metals contents were determined in the obtained fractions. Results have specified carbonates and iron hydrous-oxides as the most probable substrates for uranium physical/chemical associations formed in the soil for the time elapsed. A very strong dependence of substrate onto contamination level was found. The correlation of uranium and other heavy metals was obtained. The 234 U/ 238 U and 235 U/ 238 U ratios are determined in extracts by alpha spectrometry after appropriate radiochemical separation procedure and thin alpha sources electroplating. The analysis has shown the share of depleted in total uranium content in exchangeable, carbonate, hydrous or crystalline iron/manganese, organic and residue phases indicating the bioavailability of depleted uranium present in the soil. The results are discussed related to detailed geochemical analysis of the particular soil type common for this region. Depleted uranium content in soil samples taken at the locations after the

  15. Dietary intake and body content of natural uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The members of the uranium series found in the body that arise primarily from dietary intake are 238 U, 234 U, 226 Ra and 210 Pb. Lead 210, the predominant series radionuclide in the body, decays to the alpha emitter 210 Po, while the others are alpha emitters themselves. While 210 Pb primarily enters the body through diet, inhalation must also be considered, especially in smokers. The primary site of deposition for these nuclides is the skeleton and the dose to bone is the critical factor. In this section, the average background, elevated natural and enhanced dietary intakes of the uranium series radionuclides are discussed. Human skeletal levels and consequent alpha doses are summarized

  16. Monitoring of uranium isotopes in the environment of ABB ATOM, Vaesteraas

    International Nuclear Information System (INIS)

    Pettersson, H.; Holm, E.

    1991-01-01

    Detailed investigations of the aerial dispersion of radionuclides from a Swedish nuclear fuel fabrication facility have been carried out. Spatial distributions of uranium isotopes and their origin (fuel fabrication operations versus natural background radiation) have been studied. Air concentrations and combined dry/wet depositions of radionuclides were investigated during a one year period along a 6 km transect using high-volume air filter samplers and funnel collectors. Biological samples such as moss, grass, wheat and spruce needles were also occasionally investigated to study their potentiality as indicators of airborne radionuclides. The data demonstrate clearly enhanced activity ratios (AR) of 234 U/ 238 U (3-4) and 235 U/ 238 U (0.15-0.20) for both air (1 m above the ground) and ground level deposition close to the discharge point (100-300 m) and thereafter a monotonic decrease to natural activity ratios. Analysis of biological samples shows that wheat and spruce needles reproduce the activity ratio distributions and are excellent indicators of the airborne uranium release. Source-related concentrations of 234 U and 235 U exceed natural concentrations up to 3 km from the discharge point, but the dose contributions to members of the public compared to doses from the natural background radiation are small (less than 1%). (au)

  17. Monte Carlo analyses of TRX slightly enriched uranium-H2O critical experiments with ENDF/B-IV and related data sets (AWBA Development Program)

    International Nuclear Information System (INIS)

    Hardy, J. Jr.

    1977-12-01

    Four H 2 O-moderated, slightly-enriched-uranium critical experiments were analyzed by Monte Carlo methods with ENDF/B-IV data. These were simple metal-rod lattices comprising Cross Section Evaluation Working Group thermal reactor benchmarks TRX-1 through TRX-4. Generally good agreement with experiment was obtained for calculated integral parameters: the epi-thermal/thermal ratio of U238 capture (rho 28 ) and of U235 fission (delta 25 ), the ratio of U238 capture to U235 fission (CR*), and the ratio of U238 fission to U235 fission (delta 28 ). Full-core Monte Carlo calculations for two lattices showed good agreement with cell Monte Carlo-plus-multigroup P/sub l/ leakage corrections. Newly measured parameters for the low energy resonances of U238 significantly improved rho 28 . In comparison with other CSEWG analyses, the strong correlation between K/sub eff/ and rho 28 suggests that U238 resonance capture is the major problem encountered in analyzing these lattices

  18. Gamma-spectrometric determination of {sup 232}U in uranium-bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Zsigrai, Jozsef [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), 76125 Karlsruhe, P.O. Box 2340 (Germany); Nguyen, Tam Cong [Centre for Energy Research of the Hungarian Academy of Sciences (EK), 1525 Budapest 114, P.O. Box 49 (Hungary); Berlizov, Andrey [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), 76125 Karlsruhe, P.O. Box 2340 (Germany)

    2015-09-15

    The {sup 232}U content of various uranium-bearing items was measured using low-background gamma spectrometry. The method is independent of the measurement geometry, sample form and chemical composition. Since {sup 232}U is an artificially produced isotope, it carries information about previous irradiation of the material, which is relevant for nuclear forensics, nuclear safeguards and for nuclear reactor operations. A correlation between the {sup 232}U content and {sup 235}U enrichment of the investigated samples has been established, which is consistent with theoretical predictions. It is also shown how the correlation of the mass ratio {sup 232}U/{sup 235}U vs. {sup 235}U content can be used to distinguish materials contaminated with reprocessed uranium from materials made of reprocessed uranium.

  19. Database for 238U inelastic scattering cross section evaluation

    International Nuclear Information System (INIS)

    Kanda, Yukinori; Fujikawa, Noboru; Kawano, Toshihiko

    1993-10-01

    There are discrepancies among evaluated neutron inelastic scattering cross sections for 238 U in the evaluated nuclear data files, JENDL-3, ENDF/B-VI, JEF-2, BROND-2 and CENDL-2. Re-evaluating them is internationally being discussed to obtain the best outcome which can be accepted in common at the present by experts in the world. This report has been compiled to review the discrepancies among the evaluations in the present data files and to provide a common database for the re-evaluation work (author)

  20. Arsenic and uranium in private wells in Connecticut, 2013-15

    Science.gov (United States)

    Flanagan, Sarah M.; Brown, Craig J.

    2017-05-03

    The occurrence of arsenic and uranium in groundwater at concentrations that exceed drinking-water standards is a concern because of the potential adverse effects on human health. Some early studies of arsenic occurrence in groundwater considered anthropogenic causes, but more recent studies have focused on sources of naturally occurring arsenic to groundwater, such as minerals within aquifer materials that are in contact with groundwater. Arsenic and uranium in groundwater in New England have been shown to have a strong association to the geologic setting and nearby streambed sediment concentrations. In New Hampshire and Massachusetts, arsenic and uranium concentrations greater than human-health benchmarks have shown distinct spatial patterns when related to the bedrock units mapped at the local scale.The Connecticut Department of Public Health (DPH) reported that there are about 322,600 private wells in Connecticut serving approximately 823,000 people, or 23 percent of the State’s population. The State does not require that existing private wells be routinely tested for arsenic, uranium, or other contaminants; consequently, private wells are only sampled at the well owner’s discretion or when they are newly constructed. The U.S. Geological Survey (USGS), in cooperation with the DPH, completed an assessment in 2016 on the distribution of concentrations of arsenic and uranium in groundwater from bedrock in Connecticut. This report presents the major findings for arsenic and uranium concentrations from water samples collected from 2013 to 2015 from private wells.