WorldWideScience

Sample records for bedrock hydrogeology forsmark

  1. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  2. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Smellie, John (Conterra AB, Partille (Sweden)); Tullborg, Eva-Lena (Terralogica, Graabo (Sweden)); Gimeno, Maria (Univ. of Zaragoza, Zaragoza (Spain)); Hallbeck, Lotta (Microbial Analytics, Goeteborg (Sweden)); Molinero, Jorge (Amphos XXI Consulting S.L., Barcelona (Spain)); Waber, Nick (Univ. of Bern, Bern (Switzerland))

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  3. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  4. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  5. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  6. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  7. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  8. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  9. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  10. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  11. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  12. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    reduced in order to reach the observed accumulated discharge. 2. The uppermost layer of Quaternary deposits in Forsmark is very high-conductive. A drainage function was activated in the model to describe the fast transport of water in the upper soil layer to the water courses. 3. Anisotropy in the hydraulic conductivity of the till was applied in the model. 4. The model was extended to a depth of 600 m (from 150 m), where a no flow boundary condition was applied. When validating the model, the model was run for an independent data period. After the validation and evaluation of the model results, it was decided to run an additional sensitivity analysis, including simulations of a pumping test, in order to further investigate possible reasons for the high calculated heads in the bedrock and the problems related to the surface water discharge during the validation period. The results from the additional sensitivity analysis showed that the bedrock properties had to be modified to lower the calculated heads in the bedrock and to improve the agreement with the responses observed during the pumping test. The vertical conductivity was reduced by a factor of ten, and the horizontal conductivity of the sheet joints was increased by a factor of ten. The storage coefficient of the rock was reduced by several orders of magnitude to achieve fast responses similar to those observed in the pumping test. To reach a good agreement between measurements and the calculated heads in the bedrock an activation of the drainage at the SFR repository was needed. The final mean absolute error between observed and calculated groundwater elevation in the Quaternary deposits was 0.28 m, and the corresponding value for the bedrock was 0.41 m. The solute transport modelling presented in this report included particle tracking, PT, and advection-dispersion, AD, simulations. The studied particle and AD solute sources were placed in the bedrock as well as on the ground surface. When modelling transport from

  13. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  14. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  15. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-07-15

    This report presents methodology and modelling results concerning a deep-rock repository for spent nuclear fuel in Forsmark. Specifically, the modelling tools MIKE SHE, MIKE 11 and MOUSE are used to quantify the groundwater inflow to the repository and associated hydrological and hydrogeological effects during the construction and operation phases. The modelling results presented in the report provide input to the Environmental Impact Assessment (EIA) that will be part of a permit application according to the Environmental Code. Based on an existing MIKE SHE model for Forsmark, the first step of the modelling process was to implement an updated hydrogeological model of the bedrock and to increase the vertical and horizontal extents of the model domain. Other model updates involve the vegetation classification, and implementation of SFR (final repository for short-lived radioactive waste) and the subsurface drainage system at the nearby nuclear power plant. The updated model was calibrated using measured data on groundwater levels in the Quaternary deposits and the bedrock, water levels in lakes, and stream discharges. The calibrated model was then used for simulation of undisturbed conditions (i.e. without the repository) as a reference for modelling results obtained for disturbed conditions (with the repository). The modelling results for undisturbed conditions that are presented in the report closely resemble those of the final MIKE SHE site descriptive modelling (SDM-Site Forsmark). The repository layout was implemented as pipe links (segments) in the modelling tool MOUSE, and the implemented layout was used for the modelling of disturbed conditions. The study uses an updated and verified MIKE SHE-MOUSE coupling routine that is specifically adapted for calculation of groundwater inflow to grouted rock tunnels. The vertical shafts of the repository are implemented in the form of MIKE SHE grid cells with atmospheric pressure. Modelling results for disturbed

  16. Quantitative mapping and statistical evaluation of fracture minerals in the granitic bedrock at Forsmark, Sweden

    Science.gov (United States)

    Löfgren, Martin; Sidborn, Magnus

    2016-10-01

    This article provides quantitative data on occurrences and amounts of fracture minerals that coat discrete fractures in granitic rock at the Forsmark site in Sweden. The data are useful for retardation modelling of radionuclide and other contaminants, and for groundwater composition calculations. In a unique campaign, 2071 open fractures in groundwater conducting rock have been mapped with respect to chlorite, calcite, and pyrite. In total 767 m of drill core has been studied from very shallow rock down to ~1000 m depth. The occurrences of fracture minerals, their thicknesses, and their fractions of surface coverage have been recorded for up to eight layers for each fracture. Detection limits are, for each layer, 0.1 mm for the thickness and 1 % for the surface coverage, except for pyrite crystals where surface coverages down to 0.01 % are detectable. The abundance of data has permitted statistical treatment, using parametric and non-parametric methods. Parametric fittings have been made to log-normal, truncated log-normal, and beta distributions. Chlorite, calcite, and pyrite were found in 57 %, 52 %, and 10 % of all mapped fractures, respectively. The fracture mineral thickness was 0.1 mm for calcite, 0.2 mm for chlorite, and 2 μm for pyrite, as averaged over the fracture surface area. For 50 % and 99 % of all fractures the total fracture coating thickness was less than 0.1 mm and 1 mm, respectively, which is important for diffusion resistance estimates. Average surface coverages were 18 % for calcite, 38 % for chlorite, and 0.5 % for pyrite. These data may be used for calculating the reaction capacity of flow paths.

  17. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  18. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer.

  19. Digital Polygon Model Grid of the Hydrogeologic Framework of Bedrock Units for a Simulation of Groundwater Flow for the Lake Michigan Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis...

  20. Thermal properties Forsmark. Modelling stage 2.3 Complementary analysis and verification of the thermal bedrock model, stage 2.

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Laendell, Maerta (Geo Innova AB (Sweden)); Back, Paer-Erik; Rosen, Lars (Sweco AB (Sweden))

    2008-11-15

    This report present the results of thermal modelling work for the Forsmark area carried out during modelling stage 2.3. The work complements the main modelling efforts carried out during modelling stage 2.2. A revised spatial statistical description of the rock mass thermal conductivity for rock domain RFM045 is the main result of this work. Thermal modelling of domain RFM045 in Forsmark model stage 2.2 gave lower tail percentiles of thermal conductivity that were considered to be conservatively low due to the way amphibolite, the rock type with the lowest thermal conductivity, was modelled. New and previously available borehole data are used as the basis for revised stochastic geological simulations of domain RFM045. By defining two distinct thermal subdomains, these simulations have succeeded in capturing more of the lithological heterogeneity present. The resulting thermal model for rock domain RFM045 is, therefore, considered to be more realistic and reliable than that presented in model stage 2.2. The main conclusions of modelling efforts in model stage 2.3 are: - Thermal modelling indicates a mean thermal conductivity for domain RFM045 at the 5 m scale of 3.56 W/(mK). This is slightly higher than the value of 3.49 W/(mK) derived in model stage 2.2. - The variance decreases and the lower tail percentiles increase as the scale of observation increases from 1 to 5 m. Best estimates of the 0.1 percentile of thermal conductivity for domain RFM045 are 2.24 W/(mK) for the 1 m scale and 2.36 W/(mK) for the 5 m scale. This can be compared with corresponding values for domain RFM029 of 2.30 W/(mK) for the 1 m scale and 2.87 W/(mK)for the 5 m scale. - The reason for the pronounced lower tail in the thermal conductivity distribution for domain RFM045 is the presence of large bodies of the low-conductive amphibolite. - The modelling results for domain RFM029 presented in model stage 2.2 are still applicable. - As temperature increases, the thermal conductivity decreases

  1. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  2. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  3. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  4. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  5. Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The site descriptive model (SDM) presented in this report is an integrated model for bedrock geology, rock mechanics, bedrock hydrogeology and bedrock hydrogeochemistry of the site investigated in the SFR extension project (PSU). A description of the surface system is also included in the report. However, the surface system is not integrated with the other disciplines as new data regarding the surface system will not be available until after the completion of SDM-PSU. It is noted that SDM-PSU does not include all disciplines handled in SDM-Site Forsmark (SKB 2008b), the focus is to produce a site description that meets the needs of the SFR extension project. The overall objective of the SFR extension project is to have the application for the extension ready by 2013. This report presents an integrated site model incorporating the historic data acquired from the investigations for and construction of the existing SFR facility (1980-1986), as well as from the recent investigations for the planned extension of SFR (2008-2009). It also provides a summary of the abundant underlying data and the discipline-specific models that support the integrated site model. The description relies heavily on background reports concerning detailed data analyses and modelling in the different disciplines. It is noteworthy that the investigations conducted during the SFR extension project were guided by the choice of site prior to the investigations, which was based on the experience gained during the construction of the existing SFR facility.

  6. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  7. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111225 Chen Luwang(School of Resource and Environmental Engineering,Hefei University of Technology,Hefei 230009,China);Gui Herong The Standard Type Trace Elements and the Discriminant Model of Water Bursting Source in the Linhuan Coal District(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,37(3),2010,p.17-22,2 illus.,2 tables,11 refs.)Key words:mine environment,water gushing,Anhui It is of great academic and practical significance that hydrogeological information during the sign time of water bursting is captured by means of standard type trace elements which can trace hydrogeological features of different aquifers.On the basis of these standard type trace elements,a Bayes linear discriminant model of water bursting source is built.

  8. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150507Gao Dongdong(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China);Wu Yong Water Cycle and Groundwater Recharge of Small Watershed Rainfall Process in a Mountain Forest System(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,41(1),2014,p.7-14,4illus.,9tables,32refs.)Key words:hydrologic cycle,groundwater recharge,Sichuan Province

  9. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080542 Cao Wenbing(School of Water Resources and Environment,China University of Geosciences,Beijing 100083,China);Wan Li Experiments on Osmosis through Clayey Soil under the Condition of Variable Water Levels(Hydrogeology & Engineering Geology,ISSN1000-3665,CN11-2202/P,33(2),2006,p.118-122,6 illus.,1 table,3 refs.,with English abstract)

  10. Hydrogeological flux scenarios at Forsmark. Generic numerical flow simulations and compilation of climatic information for use in the safety analysis SFR1 SAR-08

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (Bergab, Goeteborg (SE)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartikainen, Juha (Helsinki Univ. of Technology, Helsinki (FI)); Svensson, Urban (CFE AB, Karlskrona (SE))

    2007-11-15

    In the earlier modelling for SFR-SAFE it was concluded that the groundwater flow would increase with time along with the shoreline displacement. Even though the numerical results are different the same conclusion is drawn after this study. General conclusions from the present study are that: The upper boundary conditions have a significant impact on the groundwater flow in the geosphere. The characteristic of the surface in regards of being a recharge or discharge area affects the results. In general, a discharge area will experience an increase in groundwater flow under changed conditions. The presence of caging fracture zones affects the results, and, for the tested un-frozen SFR situation, the resulting effect is an increase in groundwater flow. Specific conclusions regarding the relative change of groundwater flow due to different surface conditions are that: The permafrost scenarios, along with the development from sporadic permafrost to continuous permafrost, yield increased groundwater flows in unfrozen parts of the domain. The increase is one order of magnitude or less. In the permafrost, the flow is negligible. The ice sheet scenarios yield situations with significantly increased groundwater flow. The results indicate an increase by two to three orders of magnitude. These increased values, however, apply only for short duration intervals. It is possible that such intervals may be only a couple of years. In the selected climate Base variant, repeating the conditions for the last glacial cycle, permafrost conditions occur after 8,000 years. In the climate variant affected by increased greenhouse warming, permafrost conditions do not occur until after more than 50,000 years. In the chosen climate variants, ice sheets reach the Forsmark area and cause significantly increased groundwater flow, after approx60,000 years or more

  11. Comparison of Olkiluoto (Finland) and Forsmark (Sweden) candidate sites for radioactive-waste disposal

    Science.gov (United States)

    Geier, J. E.; Bath, A.; Stephansson, O.; Luukkonen, A.

    2012-12-01

    Site characterizations for deep radioactive-waste repositories consider rock properties, groundwater conditions, and the influences of regional settings and site-specific evolution. We present a comparison of these aspects for two candidate repository sites that have similar rocks and coastal settings, but are 200 km apart on opposite sides of the Gulf of Bothnia. The Olkiluoto site in Finland and the Forsmark site in Sweden are both in hard crystalline rock (migmatite gneiss and metagranite, respectively) with groundwater flow mainly via fractures. Both sites are undergoing licensing for a high-level radioactive-waste repository. The licensing is stepwise in Finland, and operation in both countries will be strictly regulated, but all responsibility lies with the implementers until accepted closure. The comparison reveals many expected similarities but also unexplained differences, which illustrate the complexities of site characterization in fractured crystalline rock. Both sites underwent a similar sequence of hydrologic conditions over the Weichselian and earlier glacial cycles. Hydrogeologically, Forsmark has more conductive upper bedrock, contributing to a very flat water table. Deep bedrock at Olkiluoto is more fractured in the horizontal plane. At repository depth and below, Forsmark likely contains larger volumes of low-conductivity rock. At both sites, the local model is connected to regional-scale boundaries via submarine deformation zones which (especially at Olkiluoto) are poorly characterized. Stress measurements at the two sites have shown that vertical stress is in agreement with the weight of overburden while horizontal stresses differ in magnitude and orientation. Interpreted overcoring stress measurements from Forsmark are almost twice the magnitudes estimated from hydraulic methods. Rock mechanical differences include the possibility that Olkiluoto bedrock is more prone to spalling than Forsmark. Olkiluoto bedrock is more anisotropic in terms of

  12. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  13. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  14. Hydrogeochemical evaluation of the Forsmark site, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [GeoPoint AB, Sollentuna (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Smellie, John [Conterra AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra, Montreal (Canada)

    2004-01-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Simpevarp, on the eastern coast of Sweden to determine their geological, geochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Forsmark groundwater analytical data collected up to May 1, 2003 (i.e. the first 'data freeze'). The HAG group had access to a total of 456 water samples collected mostly from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest samples reflected depths down to 200 m. Furthermore, most of the waters sampled (74%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the flat topography and closeness to the Baltic Sea resulting in relative small hydrogeological driving forces which can preserve old water types from being flushed out, b) the changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees modern or ancient water/rock interactions and mixing processes. Based on the general geochemical character and the apparent age two major water types occur in Forsmark: fresh-meteoric waters with a bicarbonate imprint and low residence times (tritium values above detection limit), and brackish-marine waters with Cl contents up to 6,000 mg/L and longer residence times (tritium

  15. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  16. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  17. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  18. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  19. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  20. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  1. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB (Sweden); Leven, Jakob [Geosigma AB (Sweden); Hartley, Lee; Holton, David; McCarthy, Rachel; Roberts, David [Serco Assurance (United Kingdom)

    2007-01-15

    As part of the preliminary Site Descriptive Modelling (SDM version 1.2) for the Initial Site Investigation (ISI) stage at Forsmark, Simpevarp and Laxemar, a methodology was developed for constructing hydrogeological models of the crystalline bedrock. The methodology achieved reasonable success given the restricted amounts and types of data available at the time. Notwithstanding, several issues of concern have surfaced following the reviews of the preliminary site descriptions of the three sites. Possible solutions to parts of the problems have been discussed internally for a longer time and an integrated view and strategy forward has been formulated. The 'new strategy' is not a complete shift in methodology, however, but a refocusing on and clarification of the key aspects that the hydrogeological SDM needs to accomplish. In broad terms the basic principle of the 'new strategy' suggested is to develop an overall conceptual model that first establishes the major flowing deformation zones, and then gradually approaches determination of the hydraulic properties of the bedrock outside these zones in the potential repository volume. On each scale, the focus of the description should be on features/structures of significance on that scale. Clearly, a detailed (although statistical) description of the repository and canister deposition hole scale is the end goal, but this approach (which also is more the traditional approach in hydrogeology) is judged to provide a much better motivated overall geometrical description. Furthermore, the 'new strategy' puts more emphasis on field testing (e.g. interference tests) and data analyses and less on numerical simulation and calibration. That is, before extensive (and costly) simulations and model calibrations are made it needs to be clearly understood what could be the potential gains of carrying them out. This report presents the conceptual model development for Forsmark in preparation of the site

  2. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  3. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer.

    Science.gov (United States)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  4. Monitoring Forsmark - Bird monitoring in Forsmark 2012

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin [Dept of Biology, Lund Univ., Lund (Sweden)

    2013-03-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds directive) breeding birds in Forsmark 2002 - 2012. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2012 in the same way as in earlier years. The results from 2012 generally follow patterns recorded in earlier years. 2012 was in general a better bird year compared to 2010 and 2011 and most species (82%) showed increasing or stable numbers from 2011 to 2012. Only two species (18%) decreased in numbers between the last two years. All in all, six species (55 %, black-throated diver, honey buzzard, black grouse, ural owl, wryneck and red-backed shrike) show no significant trends since the start of the bird monitoring (2002/2003/2004 depending on species). During this period three species (27 %, white-tailed eagle, osprey and lesser spotted woodpecker) have increased in numbers while just two (18 %, capercaillie and hazelhen) have decreased. A new pair of black-throated divers was discovered in 2012 and seven resident pairs were registered. Breeding success was very good, the second best during the study period. Population development follows the national pattern, but breeding success seems to be better in Forsmark than in the country as a whole. Honey buzzards and ospreys occurred in good numbers, and breeding success for ospreys was good. No signs of successful breedings of honey buzzards were recorded, but this may mean little as no detailed monitoring of breeding success is made for this species. The white-tailed eagles had their best breeding year since the start of the SKB bird monitoring, meaning that during the last two years local breeding success has been back at the level recorded before the site investigations started. The three grouse species (black grouse, capercaillie and hazelhen) again showed somewhat varying patterns between the last two years as well as in the long run. The black grouse increased

  5. Background complementary hydrogeochemical studies. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Birgitta E. (ed.)

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, uranium, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  6. Comparison of site descriptive models for Olkiluoto, Finland and Forsmark, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.; Bath, A.; Stephansson, O.; Luukkonen, A.

    2012-08-15

    The proposed high-level radioactive waste repository sites at Olkiluoto and Forsmark share broadly similar geologic histories and regional settings. Despite differences in lithology, rock strength and patterns of brittle deformation, the sites show similarities in terms of hydrogeochemistry and hydrogeology. These similarities reflect a dominating influence of saline and brackish water intrusion during inundation by the postglacial Littorina Sea and Baltic Sea, followed by exposure to meteoric waters following postglacial uplift and transition to a Baltic coastal setting. Both sites also contain deep bedrock saline groundwater, though this is more evident at Olkiluoto than at Forsmark. A comparative study of site descriptive models for the two sites identifies the following key differences that could potentially impact safety of a repository: (1) Redox controls, buffering and biogeochemistry at proposed repository depths; (2) Salinity gradients at and below proposed repository depths; (3) Methane concentrations at and below proposed repository depths; (4) Depths to which glacial water and Littorina water penetrated; (5) Cation hydrogeochemistry and water-rock reaction; (6) Pore water compositions in rock matrix; (7) Rock fabric, secondary minerals and alteration with respect to radionuclide retention; (8) Brittle deformation fabric differences on multiple scales that affect vertical hydraulic conductivity; (9) Differences in apparent frequency of encountering water-conducting networks at proposed repository depths; (10) Shallow bedrock hydraulic properties; (11) Unique intrusive or dissolution features; (12) Connectivity of site-scale models to regional-scale features; (13) Mesoproterozoic rocks in vicinity and possibilities for human-intrusion scenarios; (14) Rock stresses and bedrock strength and deformability at proposed repository depths; (15) Thermal anisotropy. These differences are all potentially significant to safety functions, but none are so severe that

  7. Reflection seismic studies in the Forsmark area - stage 1

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, Christopher; Bergman Bjoern; Palm, Hans [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2002-10-01

    Reflection seismic data were acquired in the Spring of 2002 in the Forsmark area, located about 70 km northeast of Uppsala, Sweden. The Forsmark area has been targeted by SKB as a possible storage site for high level radioactive waste. About 16 km of high resolution seismic data were acquired along five separate profiles varying in length from 2 to 5 km. Non-final source and receiver spacing was 10 m with 100 active channels when recording data from a dynamite source (15-75 g). The profiles were located within a relatively undeformed lens of bedrock that trends in the NW-SE direction. The lens is surrounded by highly deformed rock on all sides. In conjunction with the reflection component of the study, all shots were also recorded on up to eleven 3-component fixed Orion seismographs. These recordings provided long offset data from which a velocity model of the uppermost 400 m of bedrock could be derived. Results from the study show that the bedrock has been well imaged down to depths of at least 3 km. The upper 1000 m of bedrock is much more reflective in the southeastern portion of the lens compared to the northwestern part close to the Forsmark reactors. This is interpreted as the bedrock being more homogeneous in the northwest. However, a major reflective zone (the A1 reflector) is interpreted to dip to the S-SE below this homogeneous bedrock. In the southeastern portion of the lens the orientation of the reflectors is well determined where the profiles cross one another. The general strike of the major reflectors is NE-SW with dips of 20-35 degrees to the southeast.

  8. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    biosphere, is sufficiently advanced for some initial modelling exercises. The available information on the geosphere in the Forsmark regional model area is quite extensive, at least locally (especially SFR). In order to develop and test the modelling procedures, this information has been collected and transformed into appropriate formats under four separate headings: Geology, Rock mechanics, Hydrogeology, and Hydrogeochemistry. In the areas of rock engineering, hydrogeology and hydrogeochemistry, modelling activities were mainly confined to parametrisation exercises, using presently available data from the Forsmark regional model area to put limits on, for instance, the in situ stress field, the mechanical properties of the rock mass, the hydraulic properties of the fracture zones and rock mass between them, and the hydrogeochemical evolution. (abstract truncated)

  9. Fracture mineralogy of the Forsmark site. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (Dept. of Earth Sciences, Univ. of Goeteborg (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Graabo (Sweden)); Smellie, John (Conterra AB, Luleaa (Sweden)); MacKenzie, Angus B. (SUERC, Scottish Enterprise Technology Park, East Kilbride (United Kingdom)); Suksi, Juhani (Dept. of Chemistry, Univ. of Helsinki, Helsinki (Finland))

    2008-08-15

    Detailed investigations of the fracture mineralogy and altered wall rock have been carried out as part of the site characterisation programme between 2003 and 2007 at Forsmark. The results have been published in a number of P-reports and in contributions to scientific journals. This report summarises and evaluates the data obtained during the detailed fracture mineralogical studies. The report includes descriptions of the identified fracture minerals and their chemical composition. A sequence of fracture mineralisations has been distinguished and provides information of the low to moderate temperature (brittle) geological and hydrogeological evolution at the site. Special focus has been paid to the chemical and stable isotopic composition of calcite to obtain palaeohydrogeological information. Chemical analyses of bulk fracture filling material have been carried out to identify possible sinks for certain elements and also to reveal the presence of minor phases rich in certain elements which have not been possible to detect by X-ray diffraction (XRD). Statistical analysis of the mineralogy in fractures outside deformation zones (i.e. within fracture domains FFM01, FFM02, FFM03 and FFM06) have been carried out concerning variation of fracture mineral distribution at depth and in different fracture domains. Uranium contents and uranium-series isotopes have been analysed on fracture coating material from hydraulically conductive fractures. Such analyses are also available from the groundwaters and the results are combined in order to reveal recent (< 1 Ma) removal/deposition of uranium in the fracture system. The redox conditions in the fracture system have been evaluated based on mineralogical and chemical indicators as well as Moessbauer analyses

  10. Forsmark site investigation. Investigation of marine and lacustrine sediment in lakes. Field data 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hedenstroem, Anna [SGU, Uppsala (Sweden)

    2003-04-01

    The aim of this activity is to describe the aerial and stratigraphical distribution of marine and lacustrine sediment i.e. sediment overlaying the glacial till and/or bedrock surface, in lakes in the Forsmark area. The investigation is carried out within areas where mapping of unconsolidated Quaternary deposits is presently carried out. Since small and shallow lakes cover a large part of the region, this work will give important information on the distribution and stratigraphy of sedimentary deposits not included in the regular mapping of unconsolidated Quaternary deposits within the site investigation programme. Samples were also collected for laboratory analyses of grain size distribution, mineralogical composition as well as the total content of C, N and S and calcium carbonate. The analyses will be carried out on selected samples of representative sedimentary units in order to characterise the chemical and physical properties of the unconsolidated deposits. The analytical data will be useful for the hydrogeological modelling and for models of the Quaternary evolution of the area. The mineralogical analyses of clay may provide information on the origin of the clay particles. One stratigraphic sequence from Lake Eckarfjaerden will be stored for later analyses, e.g. pollen analysis. This report includes field data from spring 2003. Together, the field data and the forthcoming results from the laboratory analyses will form the basis for construction of stratigraphical profiles to be presented in a following report in the fall 2003.

  11. Monitoring Forsmark. Bird monitoring in Forsmark 2010

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin (Dept. of Animal Ecology, Lund Univ. (Sweden))

    2010-12-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds Directive) breeding birds in Forsmark 2002-2010. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2010 in the same way as in earlier years. The results from the monitoring in 2010 differed somewhat from results gathered in earlier years. Most monitored species have increased in local numbers during the study years, and from most years continued increases have been reported. Between 2009 and 2010 most species (seven, 64% of the monitored ones) instead decreased in numbers. Only one species (honey buzzard) increased in numbers between the years and in this case this was probably more a result of small moves by certain pairs so that they this year had parts reaching into the regional model area, while in 2009 their territories were outside of this. No dramatic changes in bird numbers were however recorded and all the studied species show stable or increasing local populations over the study period. Number of Black-throated diver pairs was normal and breeding success was good this year. The breeding success of divers has improved considerably over the studied period and the patterns recorded in Forsmark closely follow recorded patterns at the national level. Honey buzzards and ospreys occurred in good numbers, above the average for the whole period, and breeding success was better than in 2009. Even if breeding success of honey buzzards is not monitored in any detail, there were still signs of at least a few successful breedings in the area this year. Breeding success of ospreys was below average, but still within the normal variation for most years. The local white-tailed eagles had a poor breeding season and no young at all were produced within the study area. All three grouse species (black grouse, capercaillie and hazelhen) decreased in numbers between 2009 and 2010. Note however that the large amounts of snow

  12. Forsmark Site: M3 modelling and 2D visualisation of the hydrochemical parameters in Forsmark groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gurban, Ioana (3D Terra (Canada))

    2008-08-15

    This work represents the stage 2.3 of the hydrochemical evaluation and modelling of the Forsmark data. This comprises M3 modelling and 2D visualisation of the data along the boreholes. The following conclusions can be drawn: - M3 modelling helped to summarise and understand the data, by using as variables the major elements and the isotopes delta18O and deltaD. - Previous alternative models and the experience from Forsmark 1.2, 2.1 and 2.2, helped to clarify different previously unsolved issues such as: the use of variables, tests with different endmembers, the use of only groundwater data in order to build a bedrock hydrochemical model. - The visualisation of the mixing proportions along the boreholes helps to understand the distribution of the data in the domain and to check and compare the results of different models; and therefore to chose the model which best describes the measured data. - The different M3 modelling tests resulted in the following conclusions: a) When calculating mixing proportions only samples from the boreholes will be used, b) the altered meteoric end-member which best describes the more shallow groundwater compositions is defined by a representative upper bedrock sample; the Littorina end-member employed the existing modelled compositions; the Deep saline and glacial end-members compositions were tested by means of a feasibility study and employed in the modelling. - Three models were presented. All the models are good and can be used, but the best is to use the one that fits the conceptual model best and the hydrogeochemical understanding. - The use of Littorina, Glacial, Deep Saline and Altered Meteoric end-members makes possible the comparison of different sites such as Laxemar and Forsmark. - All the data used in the M3 modelling and the results of the modelling and visualisation along the boreholes are presented in SKB database SIMON. - The extended data do not affect the results of the modelling of the Forsmark 2.3 dataset (the

  13. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  14. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Skagius, Kristina [Kemakta Konsult AB, Stockholm (Sweden)] (eds.)

    2007-09-15

    borehole (VSP) reflection seismic data along profiles 2 and 5, Forsmark, Sweden. Christopher Juhlin. 3. Correlation of 2D surface seismic, vertical seismic profile (VSP), and geological and sonic data in boreholes KFM01A and KFM02A, Forsmark: Background analysis. Nicoleta Enescu and Calin Cosma. 4. Refraction seismic data and bedrock velocity distribution at Forsmark. Johan Nissen. 5. Correlation between refraction seismic data, low magnetic lineaments and deformation zones (model stage 2.2). Hans Isaksson. 6. Interpretation of tomography inversion models for seismic refraction data along profile LFM001017 in Forsmark. Haakan Mattsson. 7. Correlation of oriented radar reflectors with geological features in boreholes at Forsmark. Seje Carlsten.

  15. A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden

    Science.gov (United States)

    Follin, Sven; Hartley, Lee; Rhén, Ingvar; Jackson, Peter; Joyce, Steven; Roberts, David; Swift, Ben

    2014-03-01

    The large-scale geological structure of the crystalline rock at the proposed high-level nuclear waste repository site at Forsmark, Sweden, has been classified in terms of deformation zones of elevated fracture frequency. The rock between deformation zones was divided into fracture domains according to fracture frequency. A methodology to constrain the geometric and hydraulic parameters that define a discrete fracture network (DFN) model for each fracture domain is presented. The methodology is based on flow logging and down-hole imaging in cored boreholes in combination with DFN realizations, fracture connectivity analysis and pumping test simulations. The simulations suggest that a good match could be obtained for a power law size distribution where the value of the location parameter equals the borehole radius but with different values for the shape parameter, depending on fracture domain and fracture set. Fractures around 10-100 m in size are the ones that typically form the connected network, giving inflows in the simulations. The report also addresses the issue of up-scaling of DFN properties to equivalent continuous porous medium (ECPM) bulk flow properties. Comparisons with double-packer injection tests provide confidence that the derived DFN formulation of detailed flows within individual fractures is also suited to simulating mean bulk flow properties and their spatial variability.

  16. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  17. Background complementary hydrogeochemical studies. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Birgitta E. (ed.)

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, uranium, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  18. Rock Mechanics Forsmark. Site descriptive modelling Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Fredriksson, Anders (Golder Associates AB (SE)); Roeshoff, Kennert; Karlsson, Johan (Berg Bygg Konsult AB (SE)); Hakami, Hossein (Itasca Geomekanik AB (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, Forsmark and Laxemar/Simpevarp, with the objective of siting a geological repository for spent nuclear fuel. The characterisation of a site is an integrated work carried out by several disciplines including geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface systems. This report presents the rock mechanics model of the Forsmark site up to stage 2.2. The scope of work has included compilation and analysis of primary data of intact rock and fractures, estimation of the rock mass mechanical properties and estimation of the in situ state of stress at the Forsmark site. The laboratory results on intact rock and fractures in the target volume demonstrate a good quality rock mass that is strong, stiff and relatively homogeneous. The homogeneity is also supported by the lithological and the hydrogeological models. The properties of the rock mass have been initially estimated by two separate modelling approaches, one empirical and one theoretical. An overall final estimate of the rock mass properties were achieved by integrating the results from the two models via a process termed 'Harmonization'. Both the tensile tests, carried out perpendicular and parallel to the foliation, and the theoretical analyses of the rock mass properties in directions parallel and perpendicular to the major principal stress, result in parameter values almost independent of direction. This indicates that the rock mass in the target volume is isotropic. The rock mass quality in the target volume appears to be of high and uniform quality. Those portions with reduced rock mass quality that do exist are mainly related to sections with increased fracture frequency. Such sections are associated with deformation zones according to the geological description. The results of adjacent rock domains and fracture domains of the target

  19. A coupled regolith-lake development model applied to the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  20. Forsmark site investigation. A deformation analysis of the Forsmark GPS monitoring network from 2005 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Lars; Ljungberg, Annika (Caliterra AB (Sweden))

    2010-10-15

    The objective of the study is to identify possible movements in the bedrock within and outside the candidate area at Forsmark. Seven physically stable stations were built in the Forsmark area in the autumn of 2005. Stations were established within a ten-kilometer radius. The stations were placed in three different areas separated by regional deformation zones: NE of the Singoe zone, within the candidate area, and SW of the Forsmark zone. Data have been collected in eighteen campaigns, each with a duration of about five days, from November 2005 to December 2009. Stations consist of a stainless steel rod fixed in the bedrock on which the GPS antenna mounts. Each station has dedicated GPS equipment only used at the specific site. Sets consist of a GPS receiver collecting raw GPS data and a choke ring antenna linked to the receiver using a coaxial cable. The receivers and antennas are dual frequency high precision geodetic grade. During each campaign the GPS receiver saves a reading every second for the duration of the five days campaign. The antennas remain mounted on the stations during the entire project, whereas all other equipment is in place at the station only during the campaigns. The measurements were related to the SWEPOS network stations Lovoe, Uppsala and Maartsbo that are defined as stations with stable fundaments by the National Land Survey of Sweden (Lantmaeteriet). This report deals with altogether 18 campaigns. The first 13 campaigns were performed during the period November 2005 to August 2008. However, the number of campaigns has been extended by adding a fourth year to the project. Optimization of the data processing depends on the properties of the entire data set comprising a period of four years. We divided the data into periods of 24 hours with each period processed as a separate session in the Bernese post processing software, after which we analyzed the residuals to conclude that data are of the expected quality. The entire data set from four

  1. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  2. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  3. Execution programme for the initial site investigations at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Forsmark, Simpevarp and Tierp. Site investigations have started at Forsmark and Simpevarp. The municipal council of Tierp voted no to a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial site investigations are performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The initial site investigations are expected to take 1.5-2 years. If the assessment shows that the site has good potential to host a repository, complete site investigations will follow for an expected duration of 3.5-4 years. The purpose of the complete site investigations is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. A general programme in which the results from feasibility studies are summarized, the candidate sites presented and the framework of programme for the site investigation phase presented has been published. The general programme, and main references to the programme, specifies which data are required in order to design the repository and carry out a safety assessment, how the investigations should be carried out in order to provide these data, criteria with which the site must comply, as well as

  4. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. Derek (Univ. of Alberta (Canada))

    2007-11-15

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, sigma1 and sigma2, respectively. The minimum principal stress (sigma3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also

  5. Modelling of soil depth and lake sediments. An application of the GeoEditor at the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Maria [DHI Water and Environment AB, Lund (Sweden)

    2005-02-01

    This report aims at describing the modelled soil depth according to three layers with different hydrogeological properties at the Forsmark site, based on available data from boreholes, observation points, seismic data and radar profiles. For the lakes in the area, the sediment has been modelled according to six layers of the most common deposits in the area. The peat layer at Stenroesmossen has also been visualized. The program used in the modelling of soil depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 1,532 points based on seismic measurements, 31 profiles of interpreted ground penetrating radar data, 119 boreholes and 472 observation points. The western and south eastern part of the area has a low data density. In the southern parts the data density with respect to estimated bedrock elevation is low. Observation points in this area are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum soil depth at each location. A detailed topographical DEM, bathymetry and map of Quaternary deposits were also used. The model is based on a three-layer-principle where each layer is assumed to have similar hydrological characteristics. The uppermost layer, Z1, is characterized by the impact from surface processes, roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock. The middle layer, Z2, is assumed to have different hydraulic qualities than Z1 and Z3. The lake sediments have been modelled according to six classes of typical deposits. The modelled soil depths show a relatively high bedrock elevation and thus small total soil depth in the major part of the area. The median soil depth has been calculated to 1.9 m, based on model results in areas with higher data density. The maximum modelled soil depth is about 13 m, just north of Lake Stocksjoen. Generally, the sediment layers in the lakes of the area consists of a

  6. Coupled hydrogeological and solute transport, visualisation and supportive detailed reaction modelling

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Arcos, David; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    This report summarises the main findings achieved by spatial analysis of hydrochemical information using 3D visualisation techniques with the available Forsmark 2.3 hydrochemical database. A major improvement compared with previous versions is that the current visualisation tool can handle the Fracture Domain geometries of the site, which is useful for integration of hydrochemical data with current geological-hydrogeological conceptual models. It is seen that computed M3 mixing fractions show a spatial distribution qualitatively correlated with key hydrochemical signatures, such as strontium (for Deep Saline), magnesium (for Littorina), 18O and 2H (for Glacial) and tritium (for Modified meteoric). It is worth noting that the most saline waters with the highest Deep Saline signatures are located at deformation zones adjacent to the strongly foliated rocks, which constitute fracture domains FFM04 and FFM05, out of the target area. Maximum glacial signatures are also located outside the target area. In general terms, it is seen that hydrochemical spatial distribution is consistent with the current hydrogeological conceptual model, where the 'shallow bedrock aquifer' would be responsible for the observed preservation of Littorina signatures down to a depth of 150-200 m

  7. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  8. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  9. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  10. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  11. Soils and site types in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  12. Soils and site types in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  13. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  14. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  15. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel [SwedPower AB, Stockholm (Sweden)

    2005-09-15

    horizontal stress was found in gneissic rock. Aside from this, clear correlations between rock type and measured stresses were also lacking, as well as confirmatory evidence of a low-stress environment in the superficial, more fractured bedrock. Assessment of a representative stress state for the Forsmark site was based on different subsets of the total data set of stress measurements. Linear stress profiles were assumed for the horizontal and vertical stress components, with each stress profile being representative of the conditions within the tectonic lens. These stress profiles define the lower and upper limit of the stress state based on the data considered reliable for each stress component. The resulting stress profiles are: Maximum horizontal stress ({sigma}H) applicable for 230-450 m vertical depth (z): Lower limit: {sigma}H = 0.085z (MPa), Upper limit: {sigma}H = 13+0.095z (MPa), Alternative upper limit: {sigma}H 29+0.050z (MPa). Orientation: 140 deg (clockwise from North). Minimum horizontal stress ({sigma}h) applicable for 0-1,000 m vertical depth (z): Lower limit: {sigma}h = 0.022z (MPa), Upper limit: {sigma}h 5.5+0.0265z (MPa). Vertical stress ({sigma}v) applicable for 0-800 m vertical depth (z): {sigma}v = 0.0265z (MPa). Future measurements and activities should be planned to address the gaps indicated by the present data set. It is recommended that new overcoring measurements are conducted, starting already at approximately 100 m depth below the ground surface, and continued as deep as possible - until the method is no longer applicable (extensive core damage and/or core discing inhibiting correct installation and/or overcoring of the measurement probe). Furthermore, any observations on core discing should be logged in detail to provide confirmatory evidence of stress magnitudes. If core discing of solid core is observed, pilot hole drilling with subsequent overcoring (without installation of the measurement probe) should be considered to induce ring discing

  16. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  17. SR-Site - sulphide content in the groundwater at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    during the monitoring phase. When both CCC and monitoring values are available from one borehole section two values are used, one representing each of the sampling methods. When time series are measured in the monitoring sections, in most cases the sulphide values are higher in the downhole tubing and in the borehole section compared with groundwater from the surrounding fractures. The routinely carried out removal of five borehole section water volumes prior to monitoring are in most cases inadequate to obtain representative samples from the bedrock fractures, i.e. without elevated sulphide due to contamination from the initial stagnant water from the borehole section. It is, however, assumed that the two groundwater samples from the same water conducting structures, i.e. the sample from the monitoring and the sample from the CCC sampling, the latter usually showing lower sulphide, spans the interval of representative sulphide values in the formation water. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' value. It is worth noting that the plug flow calculations have proven to be very useful in order to judge the water volumes needed to be pumped at each monitored section before obtaining a sample sufficiently representative of the fracture groundwater. Practically all sulphide concentrations at Forsmark are <= 0.013 mmol/L (approx0.4 mg/L). There is, however, a probability that for some deposition location in the repository the surrounding groundwaters may have sulphide concentrations as high as 0.12 mmol/L (approx4 mg/L). In order to estimate canister corrosion rates in the SR-Site during a full glacial cycle, it is recommended that the observed distribution of sulphide in groundwaters at Forsmark during the present temperate conditions should be used. Furthermore, it should be noted that the present sulphide concentrations have been sampled after a recent period of possible

  18. SR-Site - hydrogeochemical evolution of the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Joaquin; Molinero, Jorge; Juarez, Iker (Amphos 21 (Spain)); Gimeno, Maria Jose; Auque, Luis; Gomez, Javier (Univ. of Zaragoza (Spain))

    2010-12-15

    The present work has involved the development of a methodology in order to simulate the evolution of the groundwater composition within the candidate repository site of the Forsmark area. A series of climate periods is expected to be probable after the repository closure (temperate, periglacial and glacial) and, eventually, the area could be submerged under seawaters or under a lake of glacial melt waters. These environmental conditions will affect groundwater flow and composition around of the candidate repository volume. The present report summarizes the results obtained by the calculations which reproduce the hydrogeochemical evolution in the Forsmark area, and within the candidate repository volume. The hydrogeochemical evolution of groundwaters is one of the key factors affecting the chemical stability of the buffer and the canister. In this way, the main objective of the hydrogeochemical simulations is to assay the evolution of a series of safety assessment factors, such as salinity, redox potential, pH, and concentrations of iron, sulphide and potassium, among others. Using ConnectFlow, previous hydrological calculations have provided the transport of (1) the fractions of selected reference waters (Deep Saline, Old Meteoric, Glacial, Littorina and Altered Meteoric groundwaters), or (2) salinities, depending on the working team (Serco or Terrasolve). The results of the regional-scale groundwater flow modelling for each specific climate period are used as input of the geochemical models. Groundwater compositions have been modelled using PHREEQC, through mixing and chemical reactions between the waters obtained from the hydrogeological models and the reactive fracture-filling minerals. Both models (hydrological and geochemical) are not fully coupled, and it allows a description of the geochemical heterogeneity, which otherwise would be hard to attain. The stage of the open repository has been non-numerically analysed. Aspects as salinity, redox conditions

  19. SR-Site - hydrogeochemical evolution of the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Joaquin; Molinero, Jorge; Juarez, Iker (Amphos 21 (Spain)); Gimeno, Maria Jose; Auque, Luis; Gomez, Javier (Univ. of Zaragoza (Spain))

    2010-12-15

    The present work has involved the development of a methodology in order to simulate the evolution of the groundwater composition within the candidate repository site of the Forsmark area. A series of climate periods is expected to be probable after the repository closure (temperate, periglacial and glacial) and, eventually, the area could be submerged under seawaters or under a lake of glacial melt waters. These environmental conditions will affect groundwater flow and composition around of the candidate repository volume. The present report summarizes the results obtained by the calculations which reproduce the hydrogeochemical evolution in the Forsmark area, and within the candidate repository volume. The hydrogeochemical evolution of groundwaters is one of the key factors affecting the chemical stability of the buffer and the canister. In this way, the main objective of the hydrogeochemical simulations is to assay the evolution of a series of safety assessment factors, such as salinity, redox potential, pH, and concentrations of iron, sulphide and potassium, among others. Using ConnectFlow, previous hydrological calculations have provided the transport of (1) the fractions of selected reference waters (Deep Saline, Old Meteoric, Glacial, Littorina and Altered Meteoric groundwaters), or (2) salinities, depending on the working team (Serco or Terrasolve). The results of the regional-scale groundwater flow modelling for each specific climate period are used as input of the geochemical models. Groundwater compositions have been modelled using PHREEQC, through mixing and chemical reactions between the waters obtained from the hydrogeological models and the reactive fracture-filling minerals. Both models (hydrological and geochemical) are not fully coupled, and it allows a description of the geochemical heterogeneity, which otherwise would be hard to attain. The stage of the open repository has been non-numerically analysed. Aspects as salinity, redox conditions

  20. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  1. Preliminary site description Forsmark area - version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    , mechanical classification by depth at KFM01A and at outcrops. A first model of thermal properties of the rock has been developed, although still rather immature due to few site-specific data in support of the model. The hydrogeological description is based on the new geological (structure) model and the fracture transmissivity distribution of the DFN model is based on the data from depth (cored borehole KFM01A). The fracture intensity and permeability are very low below 400 m depth. Hydrogeological simulations of the groundwater evolution since the last glaciation have been performed and compared with the hydrogeochemical conceptual model. The conceptual model of the development of post-glacial hydro geochemistry has been updated. Also, the salinity distribution, mixing processes and the major reactions altering the groundwaters have been described down to a depth of 200 m. A first model of the transport properties of the rock has been presented, although still rather immature due to lack of site-specific data in support of the model. For the near-surface, there is additional information regarding the stratigraphic distribution of glacial till and water-laid sediment, with related updates in the description. There is much uncertainty in version 1.1 of the site descriptive model, but the main uncertainties have been identified, some are also quantified and others are left as input to alternative hypotheses. However, since a main reason for uncertainty in version 1.1 is lack of data and poor data density and as much more data are expected in coming data freezes, it has not been judged meaningful to carry the uncertainty quantification or the alternative model generation too far. Advances have been made on some of the important site specific questions that were formulated in planning the execution programme for the Forsmark area. Concerning the shape of the tectonic lens, the understanding of the three dimensional shape of the rock domains in the local model area is now fair

  2. Water Activities in Forsmark (Part I). Removal of groundwater from final repository for spent fuel; Vattenverksamhet i Forsmark (del I). Bortledande av grundvatten fraan slutfoervarsanlaeggningen foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    The construction, operation and decommissioning of the repository for spent nuclear fuel in Forsmark are associated with a number of measures that constitute water operations according to Chapter 11 in the Environmental Code. This report is an appendix to the Environmental Impact Assessment (EIA) and describes water operations in the form of groundwater diversion from the repository (the report is also included in the permit application according to the Nuclear Activities Act). The main objective of the report is to describe hydrogeological and hydrological effects and the consequences that may arise in the surroundings of the repository due to the groundwater diversion. Moreover, the report presents prevention measures to reduce the effects of the groundwater diversion and mitigation measures that aim at its consequences

  3. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, Kristina (ed.)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. An integrated component in the characterisation work is the development of a site descriptive model that constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere as well as those ongoing natural processes that affect their long-term evolution. The present report documents the site descriptive modelling activities (version 1.2) for the Forsmark area. The overall objectives of the version 1.2 site descriptive modelling are to produce and document an integrated description of the site and its regional environments based on the site-specific data available from the initial site investigations and to give recommendations on continued investigations. The modelling work is based on primary data, i.e. quality-assured, geoscientific and ecological field data available in the SKB databases SICADA and GIS, available July 31, 2004. The work has been conducted by a project group and associated discipline-specific working groups. The members of the project group represent the disciplines of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and surface ecosystems (including overburden, surface hydrogeochemistry and hydrology). In addition, some group members have specific qualifications of importance in this type of project e.g. expertise in RVS (Rock Visualisation System) modelling, GIS-modelling and in statistical data analysis. The overall strategy to achieve a site description is to develop discipline-specific models by interpretation and analyses of the primary data. The different discipline-specific models are then integrated into a site description. Methodologies for developing the discipline-specific models are documented in

  4. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  5. Preliminary site description Forsmark area - version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    , mechanical classification by depth at KFM01A and at outcrops. A first model of thermal properties of the rock has been developed, although still rather immature due to few site-specific data in support of the model. The hydrogeological description is based on the new geological (structure) model and the fracture transmissivity distribution of the DFN model is based on the data from depth (cored borehole KFM01A). The fracture intensity and permeability are very low below 400 m depth. Hydrogeological simulations of the groundwater evolution since the last glaciation have been performed and compared with the hydrogeochemical conceptual model. The conceptual model of the development of post-glacial hydro geochemistry has been updated. Also, the salinity distribution, mixing processes and the major reactions altering the groundwaters have been described down to a depth of 200 m. A first model of the transport properties of the rock has been presented, although still rather immature due to lack of site-specific data in support of the model. For the near-surface, there is additional information regarding the stratigraphic distribution of glacial till and water-laid sediment, with related updates in the description. There is much uncertainty in version 1.1 of the site descriptive model, but the main uncertainties have been identified, some are also quantified and others are left as input to alternative hypotheses. However, since a main reason for uncertainty in version 1.1 is lack of data and poor data density and as much more data are expected in coming data freezes, it has not been judged meaningful to carry the uncertainty quantification or the alternative model generation too far. Advances have been made on some of the important site specific questions that were formulated in planning the execution programme for the Forsmark area. Concerning the shape of the tectonic lens, the understanding of the three dimensional shape of the rock domains in the local model area is now fair

  6. Subsidence analysis Forsmark nuclear power plant - unit 1; Saettningsanalys Forsmarks kaernkraftverk - aggregat 1

    Energy Technology Data Exchange (ETDEWEB)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars (Golder Associates AB (Sweden))

    2010-12-15

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied.

  7. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  8. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  9. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    the south-eastern part. Till is the dominating type of QD. The QD are often shallow; the mean depth is approximately 5 m and the maximum depth observed on land is 16 m. Most of the lakes are underlain by fine-grained sediments. Bedrock outcrops are frequent but constitute only 5% of the area. Granitic rock is dominating bedrock of the area. The main changes between the SDM-Site MIKE SHE model and the present SR-Site MIKE SHE model are the size of the model area and the grid resolution, which both are larger in the SR-Site version, and the updated description of the geometry and hydraulic properties of the bedrock. Also, the uppermost part of the QD-profile has been taken into consideration when describing the hydraulic properties in the unsaturated zone compartment of the MIKE SHE model. In previous model versions the distribution of the QD has been the same in both the saturated and unsaturated zone description. In the present version the information from the QD-mapping regarding the upper 0.5 m has been included in the description of the unsaturated zone. The hydrology under different future conditions with regard to shoreline positions and climate conditions has been simulated. Three different shorelines were studied, corresponding to 2000 AD, 5000 AD and 10,000 AD, and three different climates, temperate (i.e. the present climate), wet (i.e. temperate with increased precipitation), and periglacial (cold climate with permafrost). No full-scale sensitivity analysis of the different model parameters was carried out, but a quality check and calibration of the model was made by comparing model results to measured data. Based on the calibrated model describing present conditions at the Forsmark site the different cases were defined for simulating future shorelines and climates. A simulation case describing present conditions, i.e. the present climate and the 2000 AD shoreline, was compared to measured data from the site. To obtain an acceptable response when modelling a

  10. Human population and activities in Forsmark. Site description

    Energy Technology Data Exchange (ETDEWEB)

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km{sup 2} near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the

  11. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  12. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (Studsvik Nuclear AB (Sweden)); Qvarfordt, Susanne; Borgiel, Micke (Sveriges Vattenekologer AB (Sweden))

    2011-04-15

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  13. Repository for spent nuclear fuel. Plant description layout D - Forsmark; Slutfoervarsanlaeggning foer anvaent kaernbraensle. Anlaeggningsbeskrivning layout D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and

  14. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    the south-eastern part. Till is the dominating type of QD. The QD are often shallow; the mean depth is approximately 5 m and the maximum depth observed on land is 16 m. Most of the lakes are underlain by fine-grained sediments. Bedrock outcrops are frequent but constitute only 5% of the area. Granitic rock is dominating bedrock of the area. The main changes between the SDM-Site MIKE SHE model and the present SR-Site MIKE SHE model are the size of the model area and the grid resolution, which both are larger in the SR-Site version, and the updated description of the geometry and hydraulic properties of the bedrock. Also, the uppermost part of the QD-profile has been taken into consideration when describing the hydraulic properties in the unsaturated zone compartment of the MIKE SHE model. In previous model versions the distribution of the QD has been the same in both the saturated and unsaturated zone description. In the present version the information from the QD-mapping regarding the upper 0.5 m has been included in the description of the unsaturated zone. The hydrology under different future conditions with regard to shoreline positions and climate conditions has been simulated. Three different shorelines were studied, corresponding to 2000 AD, 5000 AD and 10,000 AD, and three different climates, temperate (i.e. the present climate), wet (i.e. temperate with increased precipitation), and periglacial (cold climate with permafrost). No full-scale sensitivity analysis of the different model parameters was carried out, but a quality check and calibration of the model was made by comparing model results to measured data. Based on the calibrated model describing present conditions at the Forsmark site the different cases were defined for simulating future shorelines and climates. A simulation case describing present conditions, i.e. the present climate and the 2000 AD shoreline, was compared to measured data from the site. To obtain an acceptable response when modelling a

  15. Approaches to confirmatory testing of a groundwater flow model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden

    Science.gov (United States)

    Follin, Sven; Hartley, Lee

    2014-03-01

    The Svensk Kärnbränslehantering AB (SKB) has proposed the Forsmark site as a future repository for spent high-level nuclear fuel, involving disposal at about 470 m depth in sparsely fractured crystalline bedrock. An essential part of the completed inter-disciplinary site investigation was to develop an integrated account of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. First, this report recollects the integrated understanding and some key hydraulic characteristics of the crystalline bedrock at Forsmark along with a description of the flow model set-up and the methodology used for paleoclimatic flow modeling. Second, the protocol used for site-scale groundwater flow and solute transport modeling is demonstrated. In order to conduct a quantitative assessment of groundwater flow paths at Forsmark, the standard guide for groundwater flow modeling was elaborated on, to support both discrete and porous media flow approaches. In total, four independent types of data were used to confirm that the final groundwater flow model for the crystalline bedrock was representative of site conditions.

  16. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting a comprehensive geoscientific characterization of two alternative sites to allocate a deep geological repository of high level nuclear waste. The Site Characterization Program also includes the near-surface systems, which are expected to constitute the last geological barrier between the repository system and the earth's surface. The evaluation of the retention capacity of the near surface systems is, therefore, very relevant for the site characterization program. From the geological point of view, near-surface systems in the Forsmark area consist of Quaternary deposits that overlay a granitic bedrock. Glacial till is the most abundant outcropping Quaternary deposit (approx75% of surface extension) and the remainder is made up of clayey materials (glacial and post-glacial clays). These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time scale considered in this work, is calcium carbonate (calcite). This mineral is found along with clay minerals (e.g. illite) and Fe(III) hydroxides. In contrast, glacial and post-glacial clays are basically composed of illite with minor amounts of calcium carbonate, and containing organic matter-rich levels (gyttja) which can promote reducing conditions in the system. The assessment of the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark was developed in an earlier work, that focused on the evaluation of the capacity of the Quaternary deposits for radionuclide retention. The work reported here is an improvement of the geochemical conceptual and numerical model already presented, based on data available in the Site Descriptive Model v 1.2 (Forsmark). Regarding the geochemical variability of the Quaternary deposits present at Forsmark and its implications on radionuclide mobility through the near-surface systems, a

  17. Construction experiences from underground works at Forsmark. Compilation Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders [Vattenfall Power Consultant AB, Stockholm (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-02-15

    The main objective with this report, the Construction Experience Compilation Report (CECR), is to compile experiences from the underground works carried out at Forsmark, primarily construction experiences from the tunnelling of the two cooling water tunnels of the Forsmark nuclear power units 1, 2 and 3, and from the underground excavations of the undersea repository for low and intermediate reactor waste, SFR. In addition, a brief account is given of the operational experience of the SFR on primarily rock support solutions. The authors of this report have separately participated throughout the entire construction periods of the Forsmark units and the SFR in the capacity of engineering geologists performing geotechnical mapping of the underground excavations and acted as advisors on tunnel support; Anders Carlsson participated in the construction works of the cooling water tunnels and the open cut excavations for Forsmark 1, 2 and 3 (geotechnical mapping) and the Forsmark 3 tunnel (advise on tunnel support). Rolf Christiansson participated in the underground works for the SFR (geotechnical mapping, principal investigator for various measurements and advise on tunnel support and grouting). The report is to a great extent based on earlier published material as presented in the list of references. But it stands to reason that, during the course of the work with this report, unpublished notes, diaries, drawings, photos and personal recollections of the two authors have been utilised in order to obtain such a complete compilation of the construction experiences as possible.

  18. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    diffuse and occurring through SGD, small transient streams and/or coastal wetlands. Regarding transport quantifications, hydrogeochemical characteristics and pollution source loads may generally differ between larger, monitored catchments and smaller unmonitored coastal catchments. Since national hydrological monitoring data systematically exclude smaller, coastal catchments, they may not be representative for conditions in Forsmark (or Laxemar-Simpevarp). This emphasises the importance of extending in time the recently started hydrological and hydrogeochemical data series in the Forsmark and Laxemar-Simpevarp coastal catchment areas, since they are in effect unmonitored from a hydrological viewpoint, due to the lack of extended discharge time series. In the performed initial demonstration analysis of solute transport pathways from deep groundwater to recipients at the surface, we considered the main scenarios: (I) transport in the Quaternary deposits-bedrock interface zone only, and (II) transport in the coupled groundwater-surface water system. Considering mean travel times from each model cell to the coast, and disregarding travel times in the deep bedrock domain itself (which may be added to the here presented values), results show that travel times in scenario (II) were less than 4 years in 90% of the considered model area. Travel times were longer in scenario (I) with values higher than 10 years in 40% of the catchment area. These results are based on the assumption that the pathways do not go through zones of near-stagnant groundwater. If they would do so (and the above assumption is violated), results show that travel times can be considerably longer, for instance exceeding 400 years in half of the model area in scenario (I). Considering possible solute attenuation (caused by e.g. biogeochemical reactions or decay) along the hydrological transport pathways to inland surface waters and to the coast, we estimate solute mass delivery factors, representing the

  19. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    diffuse and occurring through SGD, small transient streams and/or coastal wetlands. Regarding transport quantifications, hydrogeochemical characteristics and pollution source loads may generally differ between larger, monitored catchments and smaller unmonitored coastal catchments. Since national hydrological monitoring data systematically exclude smaller, coastal catchments, they may not be representative for conditions in Forsmark (or Laxemar-Simpevarp). This emphasises the importance of extending in time the recently started hydrological and hydrogeochemical data series in the Forsmark and Laxemar-Simpevarp coastal catchment areas, since they are in effect unmonitored from a hydrological viewpoint, due to the lack of extended discharge time series. In the performed initial demonstration analysis of solute transport pathways from deep groundwater to recipients at the surface, we considered the main scenarios: (I) transport in the Quaternary deposits-bedrock interface zone only, and (II) transport in the coupled groundwater-surface water system. Considering mean travel times from each model cell to the coast, and disregarding travel times in the deep bedrock domain itself (which may be added to the here presented values), results show that travel times in scenario (II) were less than 4 years in 90% of the considered model area. Travel times were longer in scenario (I) with values higher than 10 years in 40% of the catchment area. These results are based on the assumption that the pathways do not go through zones of near-stagnant groundwater. If they would do so (and the above assumption is violated), results show that travel times can be considerably longer, for instance exceeding 400 years in half of the model area in scenario (I). Considering possible solute attenuation (caused by e.g. biogeochemical reactions or decay) along the hydrological transport pathways to inland surface waters and to the coast, we estimate solute mass delivery factors, representing the

  20. Forsmark site investigation. Detailed ground magnetic survey and lineament interpretation in the Forsmark area, 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans; Thunehed, Hans; Pitkaenen, Timo; Keisu, Mikael (GeoVista AB, Luleaa (SE))

    2007-12-15

    The report presents detailed ground magnetic measurements carried out on an 11.1 km2 area in the Forsmark site investigation area. The main objective of this activity is to determine a detailed ground magnetic representation of the bedrock. The results from previous surveys were encouraging and have led to a broad geophysical programme for investigation of lineaments at Forsmark. This report comprises the results from the second and final phase of the extended survey programme and a compilation and summary of all phases in the programme. On ground and on lake ice, a grid with parallel lines was staked. Measurements of the magnetic total field were carried out along profiles, perpendicular to the staked lines, with a profile spacing of 10 m and a station spacing of 5 m. Measurements on the ice-covered sea bays were carried out by a two man crew. One crew member walked along the survey lines, carrying a RTK-GPS guiding the other crew member who measured the magnetic total field. No seaborne survey was carried out in the final phase. Previously, using a high accuracy RTK-GPS unit for boat navigation gave a seaborne survey grid of on average 10 m line spacing and 2-3 m station spacing. In total 427,238 magnetic survey stations have been measured and an area of 4.7 km2 has been surveyed from boat. The magnetic pattern in the survey area can be divided into six main areas with different magnetic character. Along the southwest margin of the survey area the magnetic pattern is intensely banded with rapidly changing low and highly magnetic bands striking southeast-northwest, which to the northeast changes to a gentler, banded pattern of low to moderate magnetic intensity. To the northeast, at the SFR office and along the coastline to the southeast, the pattern is again intensely banded with, southeast-northwest trending, rapidly changing low and highly magnetic bands. These two banded structures probably forms fold limbs of a common fold with a northwest oriented fold axis

  1. Forsmark site investigation. Detailed ground magnetic survey and lineament interpretation in the Forsmark area, 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, Hans; Thunehed, Hans; Pitkaenen, Timo; Keisu, Mikael (GeoVista AB, Luleaa (SE))

    2007-12-15

    The report presents detailed ground magnetic measurements carried out on an 11.1 km2 area in the Forsmark site investigation area. The main objective of this activity is to determine a detailed ground magnetic representation of the bedrock. The results from previous surveys were encouraging and have led to a broad geophysical programme for investigation of lineaments at Forsmark. This report comprises the results from the second and final phase of the extended survey programme and a compilation and summary of all phases in the programme. On ground and on lake ice, a grid with parallel lines was staked. Measurements of the magnetic total field were carried out along profiles, perpendicular to the staked lines, with a profile spacing of 10 m and a station spacing of 5 m. Measurements on the ice-covered sea bays were carried out by a two man crew. One crew member walked along the survey lines, carrying a RTK-GPS guiding the other crew member who measured the magnetic total field. No seaborne survey was carried out in the final phase. Previously, using a high accuracy RTK-GPS unit for boat navigation gave a seaborne survey grid of on average 10 m line spacing and 2-3 m station spacing. In total 427,238 magnetic survey stations have been measured and an area of 4.7 km2 has been surveyed from boat. The magnetic pattern in the survey area can be divided into six main areas with different magnetic character. Along the southwest margin of the survey area the magnetic pattern is intensely banded with rapidly changing low and highly magnetic bands striking southeast-northwest, which to the northeast changes to a gentler, banded pattern of low to moderate magnetic intensity. To the northeast, at the SFR office and along the coastline to the southeast, the pattern is again intensely banded with, southeast-northwest trending, rapidly changing low and highly magnetic bands. These two banded structures probably forms fold limbs of a common fold with a northwest oriented fold axis

  2. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  3. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  4. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  5. Bedrock geologic map of Vermont

    Science.gov (United States)

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  6. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  7. Iowa Bedrock Topography

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Map of the Elevation of the Bedrock Surface in Iowa was compiled using all available data, principally information from GEOSAM, supplemented with well and boring...

  8. Bedrock Outcrop Points Compilation

    Data.gov (United States)

    Vermont Center for Geographic Information — A compilation of bedrock outcrops as points and/or polygons from 1:62,500 and 1:24,000 geologic mapping by the Vermont Geological Survey, the United States...

  9. Ogallala Bedrock Data Enhancement

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set provides an enhanced estimate of the bedrock elevation of the Ogallala Aquifer in Kansas based on lithologic logs from a variety of sources. The data...

  10. Inventory of mammals at Forsmark and Haallnaes; Inventering av daeggdjur i Forsmark och Haallnaes

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan [Svensk Naturfoervaltning AB, Goeteborg (Sweden)

    2012-08-15

    A selection of terrestrial mammals was surveyed in the SKB site investigation areas near Forsmark and Haallnaes between January and April 2012. The methods that were used include snow tracking along line transects, snow tracking along water, aerial survey and fecal pellet counts. The same species were found in 2012 as in previous surveys performed in 2002, 2003 and 2007. Some species show a large variation in density between years and it is difficult to draw any conclusions about their long term development. Several carnivores, i.e. lynx, fox and otter show a positive growth rate in both areas. The wild boar population is also growing whilst moose density remains fairly stable and roe deer are becoming less numerous.

  11. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are one of the major driving forces for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise

  12. Bioturbation in different ecosystems at Forsmark and Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tryggve; Lenoir, Lisette; Taylor, Astrid [Dept. of Ecology and Environmental Research, Swedish University or Agricultural Sciences, Uppsala (Sweden)

    2007-01-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) carries out extensive investigations on factors that can affect long-term storage of nuclear waste. Earthworms consume organic soil materials and when doing so they transport and mix mineral soil particles as well as litter and humus materials. Ants do not consume soil materials, but they collect and mix mineral soil particles and litter materials to construct their nests. This process of material displacement by earthworms and ants is called bioturbation and can be a mechanism for the redistribution (vertical and horizontal) of radionuclides within the soil profile. The aim of the present study was to determine the quantitative impact of earthworms and ants on bioturbation of soil in different ecosystems at Forsmark and Oskarshamn. Earthworms were sampled at four 20x20 cm{sup 2} sub-plots at each site and were determined, dried and weighed in the laboratory. Gut passage time and faeces production were determined in a laboratory experiment at constant temperature. Temperature dependence of earthworm growth was studied at 3, 6, 10 and 20 deg C, and it was assumed that defecation mirrored growth as regards temperature dependence. Ant species composition, ant nest density and nest volume were investigated in the field by using pitfall traps and a transect method to enumerate ant nests. Dry weights of ant nests were determined after weighing in the laboratory. Earthworm abundances and biomasses were high in moist/wet alder forests and deciduous woodlands and low in pine and pine/spruce forests at both Forsmark and Oskarshamn. In mesic spruce forests, high estimates of abundance/biomass of earthworms were found at Forsmark but low at Oskarshamn, whereas grazed pastures had high estimates at Oskarshamn and ungrazed abandoned fields had relatively low estimates at Forsmark. High pH at Forsmark and low pH at Oskarshamn as well as high groundwater tables at some of the Forsmark sites can explain the difference between

  13. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, A.K.; Blomqvist, P. [Uppsala Univ. (Sweden). Dept. of Limnology

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  14. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  15. Safety-related site characteristics - a relative comparison of the Forsmark reference areas; Saekerhetsrelaterade platsegenskaper - en relativ jaemfoerelse av Forsmark med referensomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, Anders (Conterra AB, Uppsala (Sweden))

    2010-12-15

    SKB has over the years from 2002 to 2008 conducted site investigations in Forsmark and Laxemar, with associated site modeling, design and safety analysis. In mid-2009 Forsmark was selected on the basis of analysis made as site for a future repository for spent nuclear fuel. Based on defined safety-related geoscientific location factors data from Forsmark are compared in relative terms with data from a number of locations in Sweden, previously studied by SKB. The factors compared include: the rock's composition and structures, future climate evolution, rock mechanical conditions, earthquakes, groundwater flow, groundwater composition, delay of solutes, and the ability to characterize and describe the location. Past comparisons of these properties for the selected sites show that none of these sites collectively show any significant benefit over Forsmark site for a repository. This does not preclude that there may be places on the basis of an overall assessment of geoscientific location factors could be equivalent to Forsmark

  16. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F. [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  17. Forsmark site investigation. Programme for further investigations of geosphere and biosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-01

    of the geological and ecological conditions in the area has largely been completed. In order to investigate the bedrock at depth, five deep (1,000 m) and two shallower cored boreholes have been drilled and documented. Drilling of a sixth deep cored borehole is under way. 19 percussion boreholes have been drilled, partly to supply core drilling with flushing water and partly to investigate the bedrock. A comprehensive, preliminary site description (version 1.1) has been published. The work of compiling all information from the initial site investigation is under way and will result in version 1.2 of the site description. The consultation process for a possible deep repository in Forsmark has been established in accordance with the provisions of the Environmental Code. An active information and communication programme has been established for ongoing dialogue with nearby residents, the public, Oesthammar Municipality, neighbouring municipalities and other local stakeholders.

  18. Hydrogeology of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of hydrogeology for the State of Nevada. Consolidated rocks and unconsolidated sediments are the two major hydrogeologic units. Consolidated...

  19. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  20. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  1. Explorative analysis of major components and isotopes. SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John (Conterra AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Nilsson, Ann-Chatrin (Geosigma AB (Sweden)); Sandstroem, Bjoern (Goeteborg Univ. (Sweden)); Waber, Niklaus (Univ. of Bern (Switzerland)); Gimeno, Maria (Univ. of Zaragoza (Spain)); Gascoyne, Mel (GGP Inc. (United Kingdom))

    2008-09-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate events are the major driving force for hydrogeochemical changes and therefore are of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  2. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  3. Full waveform inversion of seismic reflection data from the Forsmark planned repository for spent nuclear fuel, eastern central Sweden

    Science.gov (United States)

    Zhang, Fengjiao; Juhlin, Christopher

    2014-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has been carrying out extensive studies at the planned repository for spent nuclear fuel at the Forsmark site in the eastern part of central Sweden since 2002. Identification of subhorizontal to gently dipping seismic reflections is especially important since these may represent transport routes for radionuclides. Studies have shown that such reflections can be generated by water filled fracture zones that have a lower velocity than the surrounding bedrock. Lithological changes, that is, mafic sills, may also be responsible for reflections in some cases. At the Forsmark site, it is difficult to distinguish fracture zones from mafic sills in the standard reflection seismic processed sections. However, since mafic sills usually have a positive velocity contrast with the background velocity field compared to fractures zones that have a negative one, the two possibilities could be differentiated if we could reconstruct the underground velocity field. Seismic full waveform inversion has the potential to perform this reconstruction, allowing us to discriminate between fractures zones and mafic sills. In this study, we apply a 2-D waveform inversion code on crooked line data sets acquired at the Forsmark site. This implies we are dealing with a 3-D geometry. We handle this problem by applying 3-D to 2-D coordinate projections. First, we perform a synthetic benchmark test with a similar geometry to that of the projected real data. We test both amplitude and phase inversion and phase only inversion on the synthetic data. The results show that the phase only inversion has fewer artefacts and is more stable. After successful application on the synthetic data, we apply the phase only waveform inversion on the real data. The resulting velocity fields show more details compared with the starting model based on first arrival traveltime tomography. Time domain synthetic data sets generated from the final velocity fields

  4. Site investigation SFR. Vegetation in streams in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva (Svensk Nuclear Fuel and Waste Management Co. (Sweden)); Aquilonius, Karin; Sivars Becker, Lena (Studsvik Nuclear AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden))

    2011-09-15

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  5. Soil carbon effluxes in ecosystems of Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ. (Sweden))

    2007-12-15

    Soil carbon effluxes were estimated in a number of ecosystems in Laxemar and Forsmark investigations areas. It was done in a young Scots pine (Pinus sylvestris) stand, a wet deciduous stand, a poor fen and an agricultural field in the Laxemar investigation area in south-eastern Sweden (57 deg 5 min N, 16 deg 7 min E) and in a pasture, two Norway spruce (Picea abies) stands, a deciduous forest, a mire, a wet deciduous forest and a clear-cut in the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). It was measured with the closed chamber technique in 2005 and 2006. Soil temperature at 10 cm depth, air temperature and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate annual soil respiration. A hyperbolic curve with Gross Primary Production (GPP) against PAR was used for modelling GPP for the growing season in the poor fen and the agricultural area of Laxemar. The exponential regressions with soil respiration against air and soil temperature explained on average 33.6% and 44.0% of the variation, respectively. GPP of the ground vegetation were reducing soil carbon effluxes, in all stands but one of the spruce stands, the deciduous forest, the mire and the wet deciduous forest of Forsmark. The significant (all but spruce 2 in Forsmark) curves with GPP against PAR explained on average 22.7% of the variation in GPP. The cubic regressions with GPP against air temperature were only significant for the poor fen and the agricultural field in Laxemar and it explained on average 34.8% of the variation in GPP for these ecosystems. The exponential regressions with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The hyperbolic curve with GPP against PAR could also be used for temporal extrapolation of GPP for the ecosystems without a tree layer, i.e. the poor fen and the agricultural

  6. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>(1) HYDROGEOLOGY 20051014 Duan Yonghou (China Institute of Geo - Environment Monitoring, Beijing ) ; Wang Jiabin Groundwater Resources and Its Sustainable Development in Tianjin, China ( Hydrogeology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 31(3), 2004, p. 29 -39, 8 illus. , 7 tables, 8 refs. , with English abstract) Key words: water supply, groundwater resources, Tianjin

  7. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  8. Mechanical modelling of the Singoe deformation zone. Site descriptive modelling Forsmark stage 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats [Golder Associates AB (Sweden)

    2007-02-15

    This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle.

  9. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva

    2010-12-15

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  10. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Eva

    2010-12-15

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  11. Landscape Forsmark - data, methodology and results for SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.) (Svensk Kaernbraenslehantering AB (Sweden))

    2010-12-15

    This report presents an integrated description of the landscape at the Forsmark site during the succession from present conditions to the far future. It was produced as a part of the biosphere modelling within the SR-Site safety assessment. The report gives a description of input data, methodology and resulting models used to support the current understanding of the landscape used in SR-Site. It is intended to describe the properties and conditions at the site and to give information essential for demonstrating understanding. The report relies heavily on a number of discipline-specific background reports concerning details of the data analyses and modelling. Long-term landscape development in the Forsmark area is dependent on two main and partly interdependent factors, i.e. climate variations and shoreline displacement. These two factors in combination strongly affect a number of processes, which in turn determine the development of ecosystems. Some examples of such processes are erosion and sedimentation, groundwater recharge and discharge, soil formation, primary production and decomposition of organic matter. The biosphere at the site during the next 1,000 years is assumed to be quite similar to the present situation. The most important changes are the natural infilling of lakes and a slight withdrawal of the sea with its effects on the near-shore areas and the shallow coastal basins. The climate during the rest of the temperate period may vary considerably, with both warmer and colder periods. The main effect of temperature changes will be on the vegetation period. Changed temperatures may give rise to drier or wetter climate and to changed snow cover and frost characteristics, and this can in turn affect the dominant vegetation and mire build-up. The description of the Forsmark ecosystem succession during a glacial cycle is one of the main features of the SR-Site biosphere modelling. The future areas potentially affected by deep groundwater discharge are

  12. VT Biodiversity Project - Bedrock Classification

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is a five category, nine sub-category classification of the bedrock units appearing on the Centennial Geologic Map of Vermont. The...

  13. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  14. Confidence assessment. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The objective of this report is to assess the confidence that can be placed in the Forsmark site descriptive model, based on the information available at the conclusion of the surface-based investigations (SDM-Site Forsmark). In this exploration, an overriding question is whether remaining uncertainties are significant for repository engineering design or long-term safety assessment and could successfully be further reduced by more surface based investigations or more usefully by explorations underground made during construction of the repository. The confidence in the Forsmark site descriptive model, based on the data available at the conclusion of the surface-based site investigations, have been assessed by exploring: Confidence in the site characterisation data base; Key remaining issues and their handling; Handling of alternative models; Consistency between disciplines; and, Main reasons for confidence and lack of confidence in the model. It is generally found that the key aspects of importance for safety assessment and repository engineering of the Forsmark site descriptive model are associated with a high degree of confidence. Because of the robust geological model that describes the site, the overall confidence in Forsmark site descriptive model is judged to be high. While some aspects have lower confidence this lack of confidence is handled by providing wider uncertainty ranges, bounding estimates and/or alternative models. Most, but not all, of the low confidence aspects have little impact on repository engineering design or for long-term safety. Poor precision in the measured data are judged to have limited impact on uncertainties on the site descriptive model, with the exceptions of inaccuracy in determining the position of some boreholes at depth in 3-D space, as well as the poor precision of the orientation of BIPS images in some boreholes, and the poor precision of stress data determined by overcoring at the locations where the pre

  15. Forsmark site investigation. Hydrochemical investigations in four calciferous lakes in the Forsmark area. Results from the second year of a complementary investigation in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Qvarfordt, Susanne; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden); Berg, Cecilia [Geosigma AB, Uppsala (Sweden)

    2011-12-15

    The present report documents the results from the second year of hydrochemical investigations in four small, calciferous lakes in the Forsmark area in order to study the lake water compositions. The construction of a permanent storage facility for used nuclear fuel may result in a lowering of the ground water level and also lake surface water levels. Restoration of habitats by adding water may be an option to reduce possible negative consequences induced by a lower water level on biodiversity and valuable species. Thus, knowledge of the water composition is needed. This report presents the results from six sampling occasions during January to December 2010. The results from the sampling of the four lakes includes field measurements of redox potential (ORP), pH, dissolved oxygen, electrical conductivity, salinity, depth, atmospheric pressure, turbidity, chlorophyll and water temperature, as well as chemical analyses of major constituents and nutrient salts. The four investigated small lakes are well buffered with high alkalinity, high pH and high calcium concentrations. This is in accordance with results from the ongoing monitoring programme of lakes and streams in the area and with the results from the previous sampling period (2008-2009). The results show both seasonal and inter-annual variation in the analysed parameters. This can be explained by seasonal changes and annual differences in temperature, ice-cover, precipitation etc and lake specific parameters such as lake size and drainage area. The variation highlights the importance of both year round sampling and continued sampling for several years when discussing the water composition.

  16. Reflection seismic imaging of a hydraulically conductive fracture zone in a high noise area, Forsmark, Sweden

    Science.gov (United States)

    Juhlin, C.; Stephens, M. B.; Cosma, C.

    2007-05-01

    High resolution reflection seismic methods have proven to be useful tools for locating fracture zones in crystalline rock. Siting of potential high-level nuclear waste repositories is a particularly important application of these methods. By using small explosive sources (15-75 grams), high resolution images of the sub-surface have been obtained in the depth range 100 m to 2 km in Sweden, Canada and elsewhere. Although ambient noise conditions in areas such as the Fennoscandian and Canadian shields are generally low, industrial noise can be high in some areas, particularly at potential sites suitable for repositories, since these are often close to existing infrastructure. In addition, the presence of this infrastructure limits the choice of sources available to the geophysicist. Forsmark, located about 140 km north of Stockholm, is one such potential site where reflection seismics have been carried out. Existing infrastructure includes nuclear reactors for power generation and a low- level waste repository. In the vicinity of the reactors, it was not possible to use an explosive source due to permitting restrictions. Instead, a VIBSIST system consisting of a tractor mounted hydraulic hammer was used in the vicinity of the reactors. By repeatedly hitting the pavement, without breaking it, at predefined sweeps and then stacking the signals, shot records comparable to explosive data could be generated. These shot records were then processed using standard methods to produce stacked sections along 3 profiles within the reactor area. Clear reflections are seen in the uppermost 600 m along 3 of these profiles. Correlation of crossing profiles shows that the strongest reflection (B8) is generated by a gently east-southeast dipping interface. Prior to construction of the reactors, several boreholes were drilled to investigate the bedrock in the area. One of these boreholes was located close to where two of the profiles cross. Projection of the B8 reflection into the

  17. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>(1) HYDROGEOLOGY20041696 Bian Jinyu (Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu); Fang Rui Analysis of Controlling Factors of Ground water Quality in Yancheng Area, Jiangsu Province, China (Hydrogeolo gy & Engineering Geology, ISSN 1000 -3665, CN11-2202/P, 30(5), 2003, p. 56 - 60, 1 illus. , 4 tables, 5 refs. ) Key words: groundwater quality evaluation, Jiangsu Province

  18. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  19. Uncertainty aspects of the digital elevation model for the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2009-10-15

    A digital elevation model (DEM) describes the terrain relief. A proper DEM is an important data source for many of the different site description models conducted in the Forsmark region. Input data for the Forsmark DEM is elevation data for both land and sea areas of different origin and quality. No statistical analysis of the error in the Forsmark DEM is so far carried out. However, the Forsmark DEM is part of the quality assessment of the regolith depth model for the Forsmark area since it represents the upper surface of the regolith depth model. The aim of this project was to calculate the errors in different areas in the Forsmark DEM and present them in terms of general descriptive statistics. Measurements have confirmed the knowledge that the 0.25-metre DEM produced from the laser scanning measurements in the Laxemar-Simpevarp area is of very high quality. The 0.25-metre DEM was used to calculate the errors of the 10 and 50-metre DEMs, and the errors for different sea shoreline sources. These error distributions were placed randomly among points for the same data sources in the Forsmark area and used for correction of the original elevation levels. Using the corrected input data for the 10 and 50-metre DEMs and for the sea shoreline, a new DEM was produced. All other input data remained unchanged. The error for the Forsmark DEM was calculated for areas within the data sources corrected from the 0.25-metre DEM. The 0.25-metre DEM from the Laxemar-Simpevarp area was also used for a calculation of how density of input data points used in interpolation affects quality in a 20-metre DEM. Part of the input data was removed in the sea area, new DEMs were produced and compared to the existing Forsmark DEM within the areas of the removed data, to get a measure of the error in these areas of the DEM. In areas of input data for the sea shoreline, the quality of the Forsmark DEM is high. The errors within the SKB 10-metre DEM are slightly less than within the extension

  20. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>(1) HYDROGEOLOGY 20072166 Chen Liqun(Institute of Geographical Sciences and Natural Resources Research,CAS,Beijing 100101,China);Liu Changming Impact of Climate on Runoff in the Source Regions of the Yellow River(Earth Science Frontiers,ISSN1005-2321,CN11-3370,13(5),2006,p.321-329,14 illus.,3 tables,10 refs.,with English abstract)

  1. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    Science.gov (United States)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  2. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Mapping Bedrock Topography using Electromagnetic Profiling. ... Journal of Applied Sciences and Environmental Management ... within the Abakaliki Urban, to map the bedrock topography which also aids us to determine the position of the ...

  3. Numerical studies on spatial variation of the in situ stress field at Forsmark - a further step. Site descriptive modelling Forsmark - stage 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Hossein [Itasca Geomekanik AB, Solna (Sweden)

    2006-12-15

    The present work is an investigation into the depiction of a spatial distribution of the in situ stresses at the Forsmark candidate site. The methodology is based on numerical simulations of the pre-occurrences of perturbation of the stress field, produced by the deformations/displacements that rock mass/major fracture zones undergo. The distinct element program DEC, was used for the purpose. Forsmark area is dominated mainly by the Forsmark and the Singoe faults but also by a number of major fracture zones. Almost all these structures, not only that they are reported to dip vertically, but they more or less run sub-parallel with the inferred overall orientation of the major principal stress, s1. These zones, as a result, cause a fairly limited perturbation in the state of in situ stress at the site. At a diminished scale, however, fracture zones of a lesser extent - which dip obliquely and run at an angle in relation to the s1 orientation - produce a significant perturbation of the state of stress. This work also included two preliminary investigations on: - Assessing the remote orientation of the major principal stress. This was done by looking at the crustal shortening, which characterizes in part the past tectonic activities of the Fennoscandian shield. - Looking for the mechanically viable explanations for the formation of joints sub-parallel with ground surface within the uppermost section of the rock mass.

  4. Mining hydrogeological data from existing AEM datasets for mineral Mining

    Science.gov (United States)

    Menghini, Antonio; Viezzoli, Andrea; Teatini, Pietro; Cattarossi, Andrea

    2017-04-01

    Large amount of existing Airborne Electromagnetic (AEM) data are potentially available all over the World. Originally acquired for mining purposes, AEM data traditionally do not get processed in detail and inverted: most of the orebodies can be easily detected by analyzing just the peak anomaly directly evidenced by voltage values (the so-called "bump detection"). However, the AEM acquisitions can be accurately re-processed and inverted to provide detailed 3D models of resistivity: a first step towards hydrogeological studies and modelling. This is a great opportunity especially for the African continent, where the detection of exploitable groundwater resources is a crucial issue. In many cases, a while after AEM data have been acquired by the mining company, Governments become owners of those datasets and have the opportunity to develop detailed hydrogeological characterizations at very low costs. We report the case in which existing VTEM (Versatile Time Domain Electromagnetic - Geotech Ltd) data, originally acquired to detect gold deposits, are used to improve the hydrogeological knowledge of a roughly 50 km2 pilot-test area in Sierra Leone. Thanks to an accurate processing workflow and an advanced data inversion, based on the Spatially Constrained Inversion (SCI) algorithm, we have been able to resolve the thickness of the regolith aquifer and the top of the granitic-gneiss or greenstone belt bedrock. Moreover, the occurrence of different lithological units (more or less conductive) directly related to groundwater flow, sometimes having also a high chargeability (e.g. in the case of lateritic units), has been detailed within the regolith. The most promising areas to drill new productive wells have been recognized where the bedrock is deeper and the regolith thickness is larger. A further info that was considered in hydrogeological mapping is the resistivity of the regolith, provided that the most permeable layers coincide with the most resistive units. The

  5. Impact assessment of the impact on nature values of the construction and operation of the repository for spent nuclear fuel at Forsmark; Konsekvensbedoemning av paaverkan paa naturvaerden av anlaeggande och drift av slutfoervar foer anvaent kaernbraensle i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Allmer, Johan (Ekologigruppen AB, Stockholm (Sweden))

    2011-03-15

    Construction and operation of a repository at Soederviken in Forsmark, Oesthammar municipality means impact, effects and consequences for the environment. This report describes the natural conditions and natural values in Forsmark with particular focus on Soederviken. Furthermore, an assessment of consequences for the natural environment in the development and operation of a repository at Soederviken. Assessment of impacts from water activities are treated in a special report.

  6. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (ed.) (Studsvik Nuclear AB (Sweden))

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  7. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (ed.) (Studsvik Nuclear AB (Sweden))

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  8. Water-Resources Data and Hydrogeologic Setting at the Raleigh Hydrogeologic Research Station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.; Huffman, Brad A.

    2009-01-01

    Water-resources data were collected to describe the hydrologic conditions at the Raleigh hydrogeologic research station, located in the Piedmont Physiographic Province of North Carolina. Data collected by the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, from May 2005 through September 2007 are presented in this report. Three well clusters and four piezometers were installed at the Raleigh hydrogeologic research station along an assumed flow path from recharge to discharge areas. Each well cluster includes four wells to monitor the regolith, transition zone, and shallow and deep bedrock. Borehole, surface, and waterborne geophysics were conducted to examine the lithology and physical properties of the bedrock and to determine the aerial extent of near vertical diabase dikes. Slug tests were conducted in the wells at each cluster to determine the hydraulic conductivity of the formation tapped by each well. Periodic water-level altitudes were measured in all wells and in four piezometers. Continuous hourly water levels were measured in wells for variable periods of time during the study, and a surface-water gage collected 15-minute stage data from April to June 2006. In October 2005 and April 2006, water-quality samples were collected from a tributary and in all wells at the Raleigh hydrogeologic research station. Continuous water-quality data were collected hourly in three wells from December 2005 through January 2007 and every 15 minutes in the tributary from May to June 2006. In August 2006, streambed temperatures and drive-point ground-water samples were collected across lines of section spanning the Neuse River.

  9. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  10. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  11. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  12. The potential for ore and industrial minerals in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Hardy [MIRAB Mineral Resurser AB, Uppsala (Sweden); Isaksson, Hans; Thunehed, Hans [GeoVista AB, Luleaa (Sweden)

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc

  13. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land; Vattenverksamhet i Forsmark. Ekologisk faeltinventering och naturvaerdesklassificering samt beskrivning av skogsproduktionsmark

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  14. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Science.gov (United States)

    Thomas, Mary Ann

    2016-02-23

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  15. Uptake of elements by fungi in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, Mykhaylo M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  16. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  17. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))

    2009-06-15

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with

  18. Review of SKB's preliminary safety evaluations for Forsmark and Laxemar; Myndigheternas granskning av SKB:s preliminaera saekerhetsbedoemningar foer Forsmark och Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Maria; Wallberg, Petra; Wiebert, Anders; Dverstorp, Bjoern; Shulan Xu (Swedish Radiation Protection Authority, Stockholm (Sweden)); Toverud, Oeivind; Stroemberg, Bo; Kautsky, Fritz; Simic, Eva (Swedish Nuclear Power Inspectorate, Stockholm (Sweden))

    2008-01-15

    This report presents SKI's and SSI's review of SKB's preliminary safety evaluations for Forsmark and Laxemar. The purpose of the review is to assess if the extent of SKB's initial site investigations are sufficient and if they are performed with adequate quality and also if they comprise the data that is needed for future safety analysis. To meet the request from the municipalities where site investigations are performed the authorities have also attempted to elucidate if a site has such obvious weakness that it probably will not comply with authority regulations. The target groups for the review are the municipalities in Oskarshamn and Oesthammar, and SKB

  19. A strategy for delineating the area of ground-water contribution to wells completed in fractured bedrock aquifers in Pennsylvania

    Science.gov (United States)

    Risser, D.W.; Barton, G.J.

    1995-01-01

    Delineating a contributing area to a well completed in a fractured bedrock aquifer in Pennsylvania is difficult because the hydrogeologic characteristics of fractured rocks are extremely complex. Because of this complexity, a single method or technique to delineate a contributing area will not be applicable for all wells completed in fractured-bedrock aquifers. Therefore, a strategy for refining the understanding of boundary conditions and major heterogeneities that control ground-water flow and sources of water to a supply well is suggested. The strategy is based on developing and refining a conceptual model for the sources of water to the well. Specifically, the strategy begins with an initial conceptual model of the ground-water-flow system, then requires the collection of hydrogeologic information to refine the conceptual model in a stepwise manner from one or more of sic categories: (1) hydrogeologic mapping, (2) water-level and streamflow measurements, (3) geochemistry, (4) geophysics and borehole flowmetering, (5) aquifer testing, and (6) tracer testing. During the refinement process, the applicability of treating the fratured-rock aquifer as a hydrologic continuum is evaluated, and the contributing area is delineated. Choice of the method used to delineate the contributing area is less important than insuring that the method is consistent with the refined conceptual model. By use of such a strategy, the improved understanding of the ground-water-flow system will lead to a technically defensible delineation of the contributing area.

  20. Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Barbaro, Jeffrey R.

    2012-01-01

    The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and

  1. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  2. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Roennback, Pernilla [School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar (Sweden)], E-mail: pernilla.ronnback@hik.se; Astroem, Mats [School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar (Sweden); Gustafsson, Jon-Petter [Department of Land and Water Resources Engineering, KTH, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2008-07-15

    This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median {sigma}REE 52 {mu}g/L), but also in Forsmark (median {sigma}REE 6.7 {mu}g/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 {mu}g/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the

  3. Elemental composition of a deep sediment core from Lake Stocksjoen in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Sciences; Brunberg, Anna-Kristina [Uppsala Univ. (Sweden). Dept. of Ecology and Evolution/Limnology

    2006-10-15

    A deep sediment core was taken from Lake Stocksjoen, situated within the Forsmark site investigation area. The 55 cm long sediment core, representing the entire history of the lake (approx 430 years) was sliced in 5 cm portions and analysed for various chemical elements, using ICP-MS technique. In total, 54 different elements - classified as main elements, heavy metals and trace elements - were analysed. In general terms, three different patterns of stratigraphy were derived from all the analysed elements. Calcium, manganese, lead and mercury occurred in highest concentrations in the upper sediments (<30 cm depth). Phosphorus, zinc, cadmium, antimony, tin and strontium occurred in more even proportions throughout the sediment core. All the other elements were substantially reduced in the upper parts (<30 cm) compared to the deeper parts of the sediment core. Metals that are considered as airborne pollutants were found in low or moderate concentrations. This is in concert with other investigations of pollutants that have been performed in the Forsmark area. The sediment of Lake Stocksjoen is highly organic, and has been so during the entire history of the lake. Much of the organic Material seems to be refractory and less susceptible for mineralisation and respiration during the prevailing environmental conditions. This corresponds well with the characteristic gelatinous cyanophycee gyttja found in the lower parts of the sediment core. Although speculative, the pronounced changes in elemental composition of the sediment at 30 cm depth may correspond to the final isolation of the lake from the Baltic Sea, which occurred approximately 230 years ago. The deeper parts (below 30 cm depth) thus may represent the time period with regular intrusions of brackish water into the lake basin. One important factor governing the environmental conditions and the resulting elemental composition of the sediment is the unusually thick 'microbial mat', which is characteristic

  4. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Sara; Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Andersson, Eva (SWECO, Stockholm (Sweden))

    2008-11-15

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  5. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders (ed.) (EcoAnalytica, Haegersten (Sweden))

    2010-12-15

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  6. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders (EcoAnalytica, Haegersten (Sweden)) (ed.)

    2008-12-15

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  7. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Sara; Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Andersson, Eva (SWECO, Stockholm (Sweden))

    2008-11-15

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  8. Hydrogeology of the Clifton Park area, Saratoga County, New York

    Science.gov (United States)

    Reynolds, Richard J.

    1985-01-01

    The hydrogeology of the 75-square mile Clifton Park suburban area near Albany, N.Y., is presented in six maps at 1:24,000 scale. The maps show: (1) location of wells and test holes; (2) bedrock topography; (3) surficial geology and geologic sections; (4) saturated thickness of the confined aquifer; (5) generalized soil permeability; and (6) land use. The aquifers in the Clifton Park area serve approximately 22,000 people through 32 public distribution systems. Average daily pumpage from these systems is approximately 1.85 million gallons per day. The most productive aquifer is the Colonie Channel aquifer, a confined, buried bedrock channel aquifer of glacial material from which wells may yield more than 500 gallons per minute. A water-table aquifer of fine sand is present over most of the area and is separated from the confined aquifer by a thick sequence of lacustrine silt and clay. Recharge to the confined aquifer occurs primarily where kame-delta deposits that are exposed at land surface are hydraulically connected to the buried aquifer. Saturated thickness of the confined aquifer varies from less than 5 feet to approximately 70 feet. In recharge areas, where the aquifer is locally under water-table conditions, saturated thickness may exceed 100 feet. Pumping interference between wells tapping the confined aquifer has been observed over distances of 3/4 mile. (USGS)

  9. Hydrogeologic framework, groundwater movement, and water budget in the Puyallup River Watershed and vicinity, Pierce and King Counties, Washington

    Science.gov (United States)

    Welch, Wendy B.; Johnson, Kenneth H.; Savoca, Mark E.; Lane, Ron C.; Fasser, Elisabeth T.; Gendaszek, Andrew S.; Marshall, Cameron; Clothier, Burt G.; Knoedler, Eric N.

    2015-01-01

    This report presents information used to characterize the groundwater-flow system in the Puyallup River Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 1,220 square miles in northern Pierce and southern King Counties, Washington; extends north to the Green River and Auburn Valley and southwest to the Puyallup River and adjacent uplands; and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits, which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and eastern margin of the study area. Geologic units were grouped into 13 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 1,012 drillers’ logs to construct 8 hydrogeologic sections, and unit extent and thickness maps.

  10. Hydrogeologic framework of LaSalle County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Bailey, Clinton R.

    2016-10-28

    Water-supply needs in LaSalle County in northern Illinois are met by surface water and groundwater. Water-supply needs are expected to increase to serve future residential and mining uses. Available information on water use, geology, surface-water and groundwater hydrology, and water quality provides a hydrogeologic framework for LaSalle County that can be used to help plan the future use of the water resources.The Illinois, Fox, and Vermilion Rivers are the primary surface-water bodies in LaSalle County. These and other surface-water bodies are used for wastewater disposal in the county. The Vermilion River is used as a drinking-water supply in the southern part of the county. Water from the Illinois and Fox Rivers also is used for the generation of electric power.Glacial drift aquifers capable of yielding sufficient water for public supply are expected to be present in the Illinois River Valley in the western part of the county, the Troy Bedrock Valley in the northwestern part of the county, and in the Ticona Bedrock Valley in the south-central part of the county. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, although well yield often needs to be improved by using large-diameter wells. Arsenic concentrations above health-based standards have been detected in some wells in this aquifer. These aquifers are a viable source for additional water supply in some areas, but would require further characterization prior to full development.Shallow bedrock deposits comprising the sandstone units of the Ancell Group, the Prairie du Chien Group, dolomite of the Galena and Platteville Groups, and Silurian-aged dolomite are utilized for water supply where these units are at or near the bedrock surface or where overlain by Pennsylvanian-aged deposits. The availability of water from the shallow bedrock deposits depends primarily on the geologic unit analyzed. All these deposits can yield sufficient water for

  11. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  12. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Forsmark; Nulaegesanalys samt bedoemning av konsekvenser foer rekreation och friluftsliv av ett slutfoervar i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Pia [Atrax Energi AB, Stockholm (Sweden)

    2007-07-15

    This report describes how the area around Forsmark is used with respect to recreation and outdoor life. It also describes the impact of the final repository on recreation and outdoor life if it is located in Forsmark. The studied area is situated in the parish of Forsmark in the municipality of Oesthammar. Forsmark nuclear power plant and the final repository for radioactive operational waste, SFR, are situated within the area and there are both houses and holiday houses. The area is used for leisure pursuit by inhabitants and employees at FKA and SKB, but also by a number of different associations and by tourists. Statistical data shows that the parish of Forsmark is sparsely populated. The area was previously dominated by one big landowner and the land surrounding the nuclear power plant was inaccessible to the general public during that period. The outdoor life is therefore less widespread here than along other parts of the east coast. The value of the area does not lie in paths and trails, bike tracks and bathing places, but in the unspoiled countryside, the wildlife and the bird life. Recreation such as hunting and fishing is very popular in the area. The construction of a final repository will increase traffic and hence increase noise and motion in the area. This will mainly impact the enjoyment value for the people spending time in the area. No other significant consequences are expected as the final repository will be mainly situated within the existing industrial complex and hence the character of the area should remain unchanged.

  13. Flow Structure in a Bedrock Canyon (Invited)

    Science.gov (United States)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2013-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The

  14. Structure of Flow in a Bedrock Canyon

    Science.gov (United States)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2012-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The

  15. A safety assessment approach using coupled NEAR3D and CHAN3D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Gylling, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    Safety assessment calculations for the Forsmark site were performed using a new code, which couples the far-field code CHAN3D and the near-field code NEAR3D. In addition, the package has a Graphical User Interface (GUI) and a code that governs the simulations (Coupling). The simulations were performed for 90 different canister locations, which were randomly chosen. Deterministic data were used for tunnels, deposition holes, and shafts. The background fractures were stochastically generated in two HRD realizations. The F-ratio and the water travel time distributions were used to study the performance of the simulations. Near-field calculations were not performed for the Forsmark site using the new coded presented in the prevailing report. However, the obtained results in this study are compared with the results from the Task 2 model of the ConnectFlow report /Joyce et al. 2010/. Although the results cannot be compared directly, a reasonably good agreement is obtained for the F-ratio

  16. Review of possible correlations between in situ stress and PFL fracture transmissivity data at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek (University of Alberta (United States)); Follin, Sven (SF GeoLogic AB (Sweden))

    2011-11-15

    In laboratory samples, the fracture transmissivity decreases significantly as the confining stress increases. While these experimental relationships are widely accepted and validated on laboratory samples, it is unknown if such relationships exist in situ or if these relationships can be scaled from the centimetre-scale laboratory tests to the metre-scale of in situ fractures. The purpose of this work is to assess the relationship between the structural-hydraulic data gathered in deep, cored boreholes at Forsmark and the in situ stress state acting on the these fractures. In conclusion, there does not appear to be sufficient evidence from these analyses to support the notion that the magnitude of the flow along the fractures at Forsmark is solely controlled by the in situ stress acting on the fracture. This should not be surprising because the majority of the fractures formed more than 1 billion years ago and the current in situ stress state has only been active for the past 12 million years. It is more likely that the transmissivity values are controlled by fracture roughness, open channels within the fracture, fracture stiffness and fracture infilling material

  17. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  18. Lithostratigraphic contact – a significant site for hydrogeological investigation in crystalline fractured-rock terrains

    Indian Academy of Sciences (India)

    Tapas Acharya; Rajesh Prasad

    2017-02-01

    Estimating the hydrogeologic control of fractured aquifers in hard crystalline and metamorphosed rocks is challenging due to complexity in the development of secondary porosity. The present study in the Precambrian metamorphic terrain in and around the Balarampur of Purulia district, West Bengal, India, aims to estimate the hydrogeologic significance of lithostratigraphic contacts using fracture characteristics obtained from surface bedrock exposures supported by hydrological data from the existing dugwells. This study involves the domain-wise analysis of the frequencies of fractures that control the fractureporosity.The domain-wise study reveals higher fracture-frequencies adjacent to the lithostratigraphic contacts. The concurrence of lithostratigraphic contacts with the occurrences of high-discharging wells and also with the deep weathered zone in low-lying areas is clearly established, thus assigning the lithostratigraphic contact as hydrogeologically significant. An increase in frequencies of the fractures within the ‘influence zone’ of the lithocontact, is clearly visible. Among those fractures, particularly, which make the angle greater than the ‘limiting angle’ with the lithocontact are characterised by increased frequencies. However, brittle rocks like quartz biotite granite gneisses, phyllite and epidiorite show high porosity of fracture, within the ‘influence zone’ of the lithostratigraphic contact. Enhanced deepening of the weathered-zone at lower topographic region may perhaps be a plausible explanation for this increased fracture-porosity at lithocontact to assign it as a hydrogeologically significant transmissive zone within fractured rocks.

  19. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  20. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  1. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R. [Golder Associate Inc., Redmond, WA (United States); Olofsson, Isabelle; Hermanson, Jan [Golder Associates AB, Uppsala (Sweden)

    2005-04-01

    different high and low fracture intensity intervals in order to capture the variation of this parameter in the model volume. The fracture intensity P32 has been derived by means of simulations for each rock domain and each fracture type, and is expressed as a mean value, and if possible standard deviation and span. The uncertainty in the model has been quantified: for the different geometrical parameters by providing ranges of variations and studying relevant distribution models, by conducting sensitivity analysis on some input data: the effect of truncation of lineaments at the border of the regional model volume and the impact of truncation in outcrop mapping. An alternative conceptual model is under study which is based on the identified deterministic deformation zones, and not on lineaments. An important issue using this model is the bias of information and the limited amount of structures. The current DFN model still contains significant uncertainties which need to be resolved in order to be able to produce a final site DFN model. Three main issues are listed below: The definition of the subhorizontal fracture set in terms of geological processes and tectonics. The size distribution is a critical issue for the hydrogeology of the site. The variation of the fracture intensity by rock domain has been identified but the variation pattern and the spatial distribution within an individual domain are still sufficiently unpredictable that the fracture network permeability structure within a rock domain is uncertain from a conceptual perspective, not just a data uncertainty perspective. Moreover, many rock domains have not yet been sampled by boreholes or outcrops, and thus their fracture properties remain highly uncertain. Validation of the DFN models will require resolution of these two issues, and may also require the drilling of highly inclined or horizontal boreholes. Near-vertical boreholes and the mapping protocol to only map fracture traces in outcrop greater than 0

  2. Chemistry and dissolved gases of matrix pore water and fluid inclusions in Olkiluoto bedrock from drillhole ONK-PH9

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F.; Haemmerli, J.; Waber, H.N.; Diamond, L.W. [Univ. of Bern (Switzerland). Inst. of Geological Sciences; Smellie, J.A.T. [Conterra AB, Stockholm (Sweden)

    2013-05-15

    Matrix pore water and gas dissolved in matrix pore water in drillcore samples from drillhole ONK-PH9 have been successfully characterised for their chemical and isotopic composition. Based on the comparison of natural tracers in matrix pore water and adjacent fracture groundwater, conclusions about the palaeohydrogeological history of the encountered system are drawn. The investigations are based on naturally saturated core samples from the subhorizontal drillhole ONK-PH9 which was drilled from the ONKALO access tunnel at a vertical depth of 306 m into the bedrock intersecting the water-conducting hydrogeological zone HZ20B. Pore water samples were taken from this highly transmissive water-conducting zone and the adjacent low transmissive bedrock along a continuous eleven metre long profile. Additional samples have been collected at intervals between five and ten metres until 100 m drillhole length (DHL)

  3. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012; Inventering av vegetation och bottenfauna i nyanlagda och naturliga goelar i Forsmark 2012

    Energy Technology Data Exchange (ETDEWEB)

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden)

    2013-01-15

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  4. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  5. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  6. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  7. Forsmark site characterisation - Borehole KFM22 and KFM23: Derivation of porewater data by diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H. N. [Rock Water Interaction, University of Bern, Bern (Switzerland); Smellie, J. A. T. [Conterra AB, Partille (Sweden)

    2012-04-15

    Within the Detum Project (Detailed Investigations in Forsmark) a 'Methodology comparison for porewater extraction and characterisation techniques' was initiated. This has centred on two shallow boreholes drilled at Soederviken within the northern part of the Forsmark characterisation site. The comparison includes different methodologies to characterise the chemical and isotopic composition of porewater residing in the connected pore space of the rock matrix. The present report describes the chemical and isotopic information of the porewater obtained by out-diffusion experiments and the diffusive isotope equilibration technique applied to originally water saturated drillcore samples. In addition, petrophysical data and solute transport properties of the rock matrix, all necessary for porewater characterisation, have also been elaborated. Specially conditioned drillcore samples were obtained from depths of less than 100 m from boreholes KFM22 and KFM23. Porewater has been extracted successfully from seven samples by laboratory out-diffusion and diffusive isotope exchange methods. The methodology to extract and analyse the porewater is outlined and the analytical data are tabulated. The data are critically reviewed for potential experimental artefacts and their significance with respect to in situ conditions. The connected pore space in the core material representing borehole KFM22 and KFM23 was measured on different types of originally saturated drillcore samples using gravimetric and isotope mass balance methods. Out-diffusion experiments were performed on kg-sized drillcore samples to derive the in situ concentration of the chemically conservative compounds chloride and bromide. The attainment of equilibrium conditions in the out-diffusion experiments was monitored by the concentration change of chloride and bromide as a function of time. The water isotope composition of porewater was determined by the diffusive isotope equilibration technique and by

  8. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    most evolved groundwaters are found in borehole KR3 with a TDS value of 265 mg/l and a chloride content of 109 mg/l. Reducing conditions are expected to exist at depth, which are favourable in terms of low radionuclide solubility and slow canister corrosion. Potentially suitable bedrock blocks have been identified at the site for locating a repository for spent fuel in the depth range of 400 - 700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones should be avoided when locating the deposition tunnels and disposal holes. (orig.) 254 refs.

  9. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Energy Technology Data Exchange (ETDEWEB)

    Stigsson, Martin

    2009-12-15

    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  10. Thermal modelling. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-01

    This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is

  11. Hydrogeology of Cibola County, New Mexico

    Science.gov (United States)

    Baldwin, J.A.; Rankin, D.R.

    1995-01-01

    The hydrogeology of Cibola County, New Mexico, was evaluated to determine the occurrence, availability, and quality of ground-water resources. Rocks of Precambrian through Quaternary age are present in Cibola County. Most rocks are sedimentary in origin except for Precambrian igneous and metamorphic rocks exposed in the Zuni Uplift and Tertiary and Quaternary basalts in northern and central parts of the county. The most productive aquifers in the county include (youngest to oldest) Quaternary deposits, sandstones in the Mesaverde Group, the Dakota-Zuni-Bluff aquifer, the Westwater Canyon aquifer, the Todilto- Entrada aquifer, sandstone beds in the Chinle Formation, and the San Andres-Glorieta aquifer. Unconsolidated sand, silt, and gravel form a mantle ranging from a few inches to 150 to 200 feet over much of the bedrock in Cibola County. Well yields range from 5 to 1,110 gallons per minute. Dissolved-solids concentrations of ground water range from 200 to more than 5,200 milligrams per liter. Calcium, magnesium, bicarbonate, and sulfate are the predominant ions in ground water in alluvial material. The Mesaverde Group mainly occurs in three areas of the county. Well yields range from less than 1 to 12 gallons per minute. The predominant ions in water from wells in the Mesaverde Group are calcium, sodium, and bicarbonate. The transition from calcium-predominant to sodium-predominant water in the southwestern part of the county likely is a result of ion exchange. Wells completed in the Dakota-Zuni-Bluff aquifer yield from 1 to 30 gallons per minute. Dissolved-solids concentrations range from 220 to 2,000 milligrams per liter in water from 34 wells in the western part of the county. Predominant ions in the ground water include calcium, sodium, sulfate, and bicarbonate. Calcium predominates in areas where the aquifer is exposed at the surface or is overlain with alluvium. Sandstones in the Chinle Formation yield from 10 to 300 gallons per minute to wells in the Grants

  12. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  13. Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.

    2016-08-31

    Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of

  14. Removal of groundwater from final repository in Forsmark. Description of consequences for nature values and forest production; Bortledande av grundvatten fraan slutfoervarsanlaeggningen i Forsmark. Beskrivning av konsekvenser foer naturvaerden och skogsproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Ulrika; Collinder, Per; Allmer, Johan (Ekologigruppen AB (Sweden))

    2010-11-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) has chosen Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes consequences for nature values and forestry due to groundwater diversion during construction and operation of the repository. The report concerns nature values that depend on, or are favoured by, a groundwater table close to or above the ground surface

  15. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  16. Defining Hydrogeological Boundaries for Mountain Front Recharge (MFR) Predictions in Multi-Catchment Mountainous Systems

    Science.gov (United States)

    Neilson-Welch, L. A.; Allen, D. M.

    2010-12-01

    Cross-catchment groundwater flow in mountainous watersheds results from the development of local, intermediate, and regional groundwater flow pathways in multi-catchment systems. As such, hydrogeological analysis (e.g. water balance calculations and numerical modelling) to assess contributions of groundwater to mountain front recharge (MFR) must consider the choice of boundaries based on hydrological divides. Numerical 3-dimensional hydrogeological modelling was completed using FeFlow (DHI-WASY), for conceptual regional-scale multi-catchment systems; extending from a watershed boundary to a mountain front. The modelled systems were designed to represent major ridge and valley configurations observed in mountainous watersheds including: nested, adjacent, disconnected, non-parallel, and parallel catchments. Both homogeneous and heterogeneous hydraulic conductivity scenarios were simulated; with the heterogeneous scenario including a shallow zone of higher hydraulic conductivity bedrock overlying less permeable bedrock. The influence of cross-catchment flow in the development of groundwater flow pathways contributing to MFR was examined. The results provide a basis for identifying topographic scenarios where contributions to MFR may originate outside hydrological divides. This understanding will contribute to improving MFR predictions using both the numerical modelling approach and the water balance approach.

  17. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Provost, A.M.; Voss, C.I. [U.S. Geological Survey, Reston, VA (United States)

    2001-11-01

    Nuclear waste repositories located in regional ground-water recharge ('upstream') areas may provide the safety advantage that potentially released radionuclides would have long travel time and path length, and large path volume, within the bedrock before reaching the biosphere. Nuclear waste repositories located in ground-water discharge ('downstream') areas likely have much shorter travel time and path length and smaller path volume. Because most coastal areas are near the primary discharge areas for regional ground-water flow, coastal repositories may have a lower hydrogeologic safety margin than 'upstream' repositories located inland. Advantageous recharge-area sites may be located through careful use of regional three-dimensional, variable-density, ground-water modeling. Because of normal limitations of site-characterization programs in heterogeneous bedrock environments, the hydrogeologic structure and properties of the bedrock will generally remain unknown at the spatial scales required for the model analysis, and a number of alternative bedrock descriptions are equally likely. Model simulations need to be carried out for the full range of possible descriptions. The favorable sites are those that perform well for all of the modeled bedrock descriptions. Structural heterogeneities in the bedrock and local undulations in water-table topography, at a scale finer than considered by a given model, also may cause some locations in favored inland areas to have very short flow paths (of only hundreds of meters) and short travel times, compromising the long times and paths (of many kilometers) predicted by the analysis for these sites. However, in the absence of more detailed modeling, the favored upstream sites offer a greater chance of achieving long times and paths than do downstream discharge areas, where times and paths are expected to be short regardless of the level of detail included in the model. As an example of this siting

  18. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mats Troejbom Konsult AB (Sweden)); Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  19. Characterization of a hydraulically induced bedrock fracture

    OpenAIRE

    2014-01-01

    Hydraulic fracturing is a controversial practice because of concerns about environmental impacts due to its widespread use in recovering unconventional petroleum and natural gas deposits. However, water-only hydraulic fracturing has been used safely and successfully for many years to increase the permeability of aquifers used for drinking and irrigation water supply. This process extends and widens existing bedrock fractures, allowing groundwater storage to increase. Researchers have studied ...

  20. Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain

    Directory of Open Access Journals (Sweden)

    J. R. Raposo

    2012-06-01

    Full Text Available Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity. Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presents a net of well-developed fractures. The current European Water Framework Directive requires an efficient management of all groundwater resources; this begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, dominated by granitic and metasedimentary rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials. These results were cross-validated with an independent technique, i.e. the chloride mass balance (CMB. A relation among groundwater recharge and annual precipitation according to two different logistic curves was found for both granites and metasedimentary rocks, thus allowing the parameterization of recharge by means of only a few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated to be 4427 hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.

  1. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  2. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102620 Chen Chuanfang(Southeastern Fujian Geology Party of Fujian Province,Quanzhou 362021,China)Preestimation of Flowing Yield from the Mine Pits of the Pantian Minefield in Anxi County,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.315-319,1 illus.,2 tables,with English abstract)Key words:estimating water yield of mine,Fujian

  3. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110546 Chen Chuanfang(Southeastern Geology Party of Fujian Province,Quanzhou 362021,China)Primary Influencing Factors of Mine Drainage in the Karst Area of the Pantian Iron Minefield,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,29(1),2010,p.42-45,1 illus.)Key words:mine drainage,Fujian Province The Pantian marble and iron mining area in Anxi County has the mixture conditio

  4. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20081223 Chen Jiansheng(State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China);Zhao Xia Isotope Method for Confined Groundwater Recharge of the Lower Reaches of the Heihe Riv

  5. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131276 Chen Dengqi (Guizhou Institute of Geological Engineering Exploration , Guiyang 550008 , China); Song Xiaoqing The Reasons of Sifangjing Karst Spring Drying-Up in Zhijin of Guizhou Province (Guizhou Geology , ISSN1000-5943 , CN52-1059/P , 29 (2), 2012 , p.94-98 , 2illus. , 6refs.) Key words : karst water

  6. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141756 Chen Ruige(Mathematical College,China University of Geosciences,Beijing100083,China);Zhou Xun Numerical Simulation of Groundwater Level Fluctuation in a Coastal Confined Aquifer with Sloping Initial Groundwater Level Induced by the Tide(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(7),2013,p.1099-1104,6 illus.,16 refs.) Key words:confined water,groundwater level

  7. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151960 Cao Chongben(No.114 Geological Party,Guizhou Bureau of Geology and Mineral Exploration and Development,Zunyi563000,China);Zhou Shien Building and Significance of Karst Reservoir Structure Resistivity Model in Geophysical Water Exploration

  8. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    Science.gov (United States)

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  9. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Energy Technology Data Exchange (ETDEWEB)

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  10. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Energy Technology Data Exchange (ETDEWEB)

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  11. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Energy Technology Data Exchange (ETDEWEB)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

    2007-04-15

    The site investigations reported here were conducted to provide data for the comprehensive descriptive ecosystem model that is being constructed. This report provides estimates of annual inputs of aboveground litter from trees (dry mass and amounts of C and N), litter decomposition rates and changes in organic and inorganic components in litter during decomposition. The study in the Forsmark area comprised two Norway spruce (Picea abies (L.) Karst) stands (sites F1 and F3), and a mixed stand of Norway spruce and alder (Alnus glutinosa (L.) Gaertn.) (site F2). The study in the Oskarshamn area comprised one common oak stand (Quercus robur L.) (site O1), one Scots pine stand (Pinus silvestris L.) (site O2) and one Norway spruce stand (site O3). In the Forsmark area, the aboveground litterfall from trees was of similar magnitude at sites F1 and F2, but considerably lower at site F3. At the former sites the average annual litterfall amounted to 195 and 231 gdw/m{sup 2} respectively, whereas the latter site received only 136 gdw/m{sup 2}. There was also a large variation in annual litterfall between stands in the Oskarshamn area. The spruce stand at site O3 exhibited the highest litterfall (almost 400 gdw/m{sup 2}), followed by the oak stand at site O1 (with almost 300 gdw/m{sup 2}), whereas the pine stand at site O2 had the lowest (less than 150 gdw/m{sup 2}). The proportion of needles/leaves in the total litterfall varied between 65% and 75% for the stands. The amount of carbon (C) returned in aboveground litterfall amounted to between 60 and 110 gdw/m{sup 2}/yr at the forest sites within the Forsmark area. The corresponding range for the sites in the Oskarshamn area was 70 to 190 gdw/m{sup 2}/yr. At sites O1 and O2 in Oskarshamn, about 3.6 gdw/m{sup 2}/yr of nitrogen (N) were returned annually to the forest floor by the aboveground litterfall. This was over four times the N amount deposited in the Scots pine stand in the same area (about 0.8 gdw/m{sup 2}/yr). At the

  12. Hydrogeology of Webb County, Texas

    Science.gov (United States)

    Lambert, Rebecca B.

    2004-01-01

    Introduction: Webb County, in semiarid South Texas on the U.S.-Mexico border, is a region confronted by increasing stresses on natural resources. Laredo (fig. 1), the largest city in Webb County (population 193,000 in 2000), was one of the 10 fastest-growing metropolitan areas in the country during 1990-2000 (Perry and Mackun, 2001). Commercial and industrial activities have expanded throughout the region to support the maquiladora industry (manufacturing plants in Mexico) along the border and other growth as a result of the passage of the North American Free Trade Agreement. The Rio Grande currently (2002) is the primary source of public water supply for Laredo and other cities along the border in Webb County (fig. 1). Other cities, such as Bruni and Mirando City in the southeastern part of the county, rely on ground-water supplies to meet municipal demands. Increased water demand associated with development and population growth in the region has increased the need for the City of Laredo and Webb County to evaluate alternative water sources to meet future demand. Possible options include (1) supplementing the surface-water supply with ground water, and (2) applying artificial storage and recovery (ASR) technology to recharge local aquifers. These options raise issues regarding the hydraulic capability of the aquifers to store economically substantial quantities of water, current or potential uses of the resource, and possible effects on the quality of water resulting from mixing ground water with alternative source waters. To address some of these issues, the U.S. Geological Survey (USGS), in cooperation with the City of Laredo, began a study in 1996 to assess the ground-water resources of Webb County. A hydrogeologic study was conducted to review and analyze available information on the hydrogeologic units (aquifers and confining units) in Webb County, to locate available wells in the region with water-level and water-quality information from the aquifers, and

  13. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (Sweden)

    2006-12-15

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  14. Bedrock structures controlling the spatial occurrence and geometry of 1.8 Ga younger glacifluvial deposits - Example from First Salpausselkä, southern Finland

    Science.gov (United States)

    Skyttä, Pietari; Kinnunen, Jussi; Palmu, Jukka-Pekka; Korkka-Niemi, Kirsti

    2015-12-01

    The glacifluvial deposits within formerly glaciated areas of southern Finland comprise the predominance of well-sorted subglacial and ice marginal sediments. The deposits are less than 100 m thick and form significant aquifers utilized by the respective areas. The spatial correlation of subglacial deposits with bedrock structures, particularly the deformation zones, has been long recognized, but most often not systematically investigated. The purpose of this study was to understand how specific bedrock structures control the position and processes of formation of glacifluvial deposits, using the First Salpausselkä area of southern Finland as a model area. We apply a means of structural analysis to compile structural interpretations (form lines and 3D-surfaces) of the bedrock and correlate the results with the patterns of the glacifluvial deposits and the topography of the underlying bedrock surface. Two major E-W striking shear zones defining abrupt breaks at the bedrock surface along with secondary SW-NE striking splays, originating from the horsetail-like termination of the Somero shear zone, control the deposition of eskers and ice marginal deposits. Based on correlations between the bedrock topography, glacial erosion and sedimentation, we infer that laterally extensive shear zones may have indirectly affected the glacial dynamics within the areas of areal scour more than previously considered. Recognized deformation zones are important for modelling the internal stratigraphy of glacifluvial deposits, their hydrogeological properties and for mapping fresh water supplies within the Nordic countries and other glaciated areas which have undergone substantial tectonic deformation. The development of 3D geologic models is essential for understanding regional-scale correlations between Quaternary sediments and bedrock structures.

  15. Hydrogeologic Constraints on Yucatan's Development.

    Science.gov (United States)

    Doehring, D O; Butler, J H

    1974-11-15

    The Republic of Mexico has an ambitious and effective national water program. The Secretaria de Recursos Hidraulicos (SRH), whose director has cabinet rank in the federal government, is one of the most professionally distinguished government agencies of its kind in the Americas. Resources for the Future, Inc., has been assisting the World Bank with a water planning study which the Bank is undertaking jointly with the Mexican government. The study is intended to provide guidelines for the development of government policies and projects designed to bring about the most efficient use of Mexico's water resources. However, to date, their study has not been directed toward the growing problems of the northern Yucatáan Peninsula which are discussed here. LeGrand (13) suggested that man has inherited a harsh environment in carbonate terranes. In the case of the northern Yucatán Peninsula, the physical environment creates a set of hydrogeologic constraints to future economic and social development. Planning for intermediate and long-range land use on the peninsula must be related directly to the limited and fragile groundwater source. Continued contamination will make future aquifer management a difficult challenge for federal, state, and territorial agencies. We conclude that any strategy for long-range land use in the study area should include establishment of a regional aquifermonitoring network for long-term measurements of key hydrogeologic parameters, including precipitation, evapotranspiration, water table elevations, and water quality. Information from this network would flow into a central facility for storage, interpretation, and analysis. At present the SRH is collecting some of these data. Expansion of the existing program to provide sound information for regional planning will greatly benefit present as well as future generations. If such a program is implemented, it will represent a model for regional planning in other tropical and subtropical karstic

  16. Modelling Waterfall Retreat in Heterogenous Bedrock

    Science.gov (United States)

    Attal, M.; Hodge, R. A.; Williams, R.; Baynes, E.

    2016-12-01

    Bedrock rivers are the mediators of environmental change through mountainous landscapes. In response to an increase in uplift rate for example, a "knickpoint" (often materialised as a waterfall) will propagate upstream, separating a domain downstream where the river and its adjacent hillslopes have steepened in response to the change from a "relict" domain upstream which is adjusted to the conditions before the change (Crosby and Whipple 2006). Many studies assume that knickpoint propagation rate scales with drainage area, based on the stream power theory. However, recent studies in a range of locations have found no obvious relationship between knickpoint retreat rate and drainage area, potentially resulting from the stream power law neglecting (i) the influence of sediment on the processes associated with waterfall migration and (ii) thresholds for bedrock detachment (Cook et al. 2013; Mackey et al. 2014; DiBiase et al. 2015; Baynes et al. 2015; Brocard et al. 2016). In this study, we develop a 1D model of waterfall retreat in horizontally bedded bedrock with varying joint spacing. In the model, knickpoint migration is based on two rules: a waterfall will start migrating once the threshold flow depth (a function of knickpoint height and joint spacing) has been exceeded (Lamb and Dietrich 2009), and the migration rate will then be a function of the water-depth-to-waterfall-height ratio, based on experimental results by Baynes (2015). Using a hydrograph based on a Poisson rectangular pulse rainfall simulator (Tucker and Bras 2001), we demonstrate the importance of structure in controlling the speed at which waterfalls migrate but also their number and the length over which they are distributed (Fig. 1). The model is applied to the Jökulsá á Fjöllum, NE Iceland, where rapid migration of waterfalls as a result of discrete events has been identified (Baynes et al. 2015), using new constraints on joint spacing derived from high resolution lidar survey of the gorge

  17. Controlling the feedwater flow in a BWR. Examples from Forsmark 2; Regleringen av matarvattenfloedet i en BWR. Med exempel fraan Forsmark 2

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Bengt-Goeran; Oguma, Ritsuo (GSE Power Systems AB, Nykoeping (Sweden))

    2009-03-15

    An investigation of the feedwater controller at Forsmark 2 has been performed. The investigation is based on signal analysis of measurement signals recorded during operation of the plant during different tests. The feedwater controller consists of the water level controller, the flow controller and the condenser balance controller. The overall goal of the feedwater control is to maintain constant water level (level controller) in the reactor and at the same time balance the water levels in the two condensers (condenser balance controller) to avoid that one condenser is full of water while the other one is operated with too low level. There is also a feed forward of the difference between steam flow and feedwater flow (flow controller) for each turbine system with the aim to reduce the fluctuation in reactor water level. The relation in strength between the three controllers is such that the level controller is the strongest followed by the condenser balance controller and finally the flow controller. Tests with trip of the feedwater pump and automatic start of the spare pump in each turbine system indicates a fast reduction in reactor water level that is restored after the transient in the control system. The transient in water level is stable without oscillations. However, it takes about 100 s before the reactor water level is restored. The function of the flow controller has been questioned by the authors. It does not take the action that is expected when a disturbance takes place in the difference between steam and feedwater flow. In addition to this principal weakness there is an offset in the feedwater controller output for feedwater flow 22 that reduces the contribution in flow control that is expected during the introduction of a disturbance. This offset should be adjusted during instrument maintenance of the feedwater controller. The PIP parameters for the level controller are gain factors and time constants. These have been evaluated with the aid of

  18. Fractal Character of China Bedrock Coastline

    Institute of Scientific and Technical Information of China (English)

    朱晓华

    2004-01-01

    Fractal theory was applied to a preliminary discussion of the fractal character and formation mechanism of the coastline of the bedrock coast of China on the basis of GIS (Geographical Information System). Some significant conclusions were drawn:(1) The fractal dimensions of the coastline and linear structures of Liaodong Peninsula are 1.0093 and 1.0246 respectively, those of Shandong Peninsula are 1.019 and 1.021 respectively, etc.(2) The fractal dimensions of coastlines of Liaodong Peninsula, Shandong Peninsula, Zhejiang and Fujian-Guangdong tend to increase with the spatial change from north to south.(3)The regional linear structures(including faults)control the basic trends and fractal dimensions of coastlines as a whole in the regions of the bedrock coast of China:the more the controlling effect of linear structures, the smaller the fractal dimensions of coastlines.(4)The substantial constituents of coast and biologic function both play an important role in affecting the fractal dimensions of coastlines of Liaodong Peninsula, Shandong Peninsula, Zhejiang, Fujian-Guangdong and Taiwan Island.

  19. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  20. Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States

    Science.gov (United States)

    Anning, David W.; Konieczki, Alice D.

    2005-01-01

    The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were

  1. Update of structural models at SFR nuclear waste repository, Forsmark, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Axelsson, C.L.; Maersk Hansen, L. [Golder Associates AB (Sweden)

    1997-12-01

    The final repository for low and medium-level waste, SFR, is located below the Baltic, off Forsmark. A number off various geo-scientific investigations have been performed and used to design a conceptual model of the fracture system, to be used in hydraulic modeling for a performance assessment study of the SFR facility in 1987. An updated study was reported in 1993. No formal basic revision of the original conceptual model of the fracture system around SFR has so far been made. During review, uncertainties in the model of the fracture system were found. The previous local structure model is reviewed and an alternative model is presented together with evidence for the new interpretation. The model is based on review of geophysical data, geological mapping, corelogs, hydraulic testing, water inflow etc. The fact that two different models can result from the same data represent an interpretation uncertainty which can not be resolved without more data and basic interpretations of such data. Further refinement of the structure model could only be motivated in case the two different models discussed here would lead to significantly different consequences 20 refs, 24 figs, 16 tabs

  2. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  3. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    Science.gov (United States)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  4. Scope, delimitations and inquiries for environmental impact statements for an encapsulation plant and a repository for spent nuclear fuels. Forsmark; Omfattning, avgraensningar och utredningar foer miljoekonsekvensbeskrivningar (MKB) foer inkapslingsanlaeggning och slutfoervar foer anvaent kaernbraensle. Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-15

    SKB has studied different alternatives for locating a plant for encapsulating spent fuel element for later disposal in an underground repository. SKB aims to apply for a license to build this plant close to the Central interim storage for spent fuels (Clab), at Oskarshamn. An alternative localization can be Forsmark, should the repository be localized there. This report gives a review of the work and inquiries that will form the basis for the EIS documents. A similar report is published for the Oskarshamn localization.

  5. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Science.gov (United States)

    Thomas, Mary Ann

    2016-02-23

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  6. Mineralogy and geochemistry of rocks and fracture fillings from Forsmark and Oskarshamn: Compilation of data for SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Henrik; Sandstroem, Bjoern [Isochron GeoConsulting HB, Goeteborg (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2006-11-15

    This report is a compilation of the so far available data for the safety assessment SR-Can carried out by SKB. The data consists of mineralogy, geochemistry, porosity, density and redox properties for both dominating rock types and fracture fillings at the Forsmark and Oskarshamn candidate areas. In addition to the compilation of existing information, the aim has been to identify missing data and to clarify some conception of e.g. deformation zones. The objective of the report is to present the available data requested for the modelling of the chemical stability of the two sites. The report includes no interpretation of the data.

  7. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-02-15

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  8. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-02-15

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  9. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  10. Teaching hydrogeology: a review of current practice

    Directory of Open Access Journals (Sweden)

    T. Gleeson

    2012-07-01

    Full Text Available Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  11. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  12. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  13. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  14. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  15. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  16. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  17. Evaluating hydrochemical data from shallow groundwater in Forsmark from a microbiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-03-15

    Oxygen is one of the chemical species that can corrode a copper canister in a KBS-3 repository. It is therefore important to determine whether oxygen dissolved in precipitation or groundwater could reach repository depth by groundwater transport. This matter can be determined by gaining an understanding of the oxygen-consuming microbial processes that take place in shallow groundwater in the area of interest. This report evaluates hydrogeochemical data from shallow groundwater in the Forsmark area from a microbiological perspective. Hydrogeochemical data were gathered from soil pipes at depths from 1.6 to 9.6 m and from percussion-drilled boreholes having mid-point depths of between c. 30 and c. 180 m. Only a few of the percussion-drilled boreholes had packers installed. The sampled sections were therefore very long, allowing groundwater from many different depths to mix. Oxygen and oxidation-reduction potential (ORP) were measured in groundwater in soil pipes but not in percussion-drilled boreholes. The poor quality of the oxygen data made it difficult to identify the depth of origin of completely oxygen-free groundwater. Parameters that indicated ongoing anaerobic microbial processes, such as nitrite, ferrous iron, dissolved manganese, and sulphide, were found in many soil pipes. The soil pipes displayed individual chemical profiles in terms of chemical species related to microbial activity. The microbial activity could not be linked to the classes of soil pipe, i.e. recharge, discharge, or intermittent. Existing soil pipes and percussion-drilled boreholes could be used for additional sampling of microbial parameters. Such sampling would benefit from careful hypothesis-driven description of the sampling parameters and experience-guided choice of sampling methods

  18. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  19. Evaluating hydrochemical data from shallow groundwater in Forsmark from a microbiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-03-15

    Oxygen is one of the chemical species that can corrode a copper canister in a KBS-3 repository. It is therefore important to determine whether oxygen dissolved in precipitation or groundwater could reach repository depth by groundwater transport. This matter can be determined by gaining an understanding of the oxygen-consuming microbial processes that take place in shallow groundwater in the area of interest. This report evaluates hydrogeochemical data from shallow groundwater in the Forsmark area from a microbiological perspective. Hydrogeochemical data were gathered from soil pipes at depths from 1.6 to 9.6 m and from percussion-drilled boreholes having mid-point depths of between c. 30 and c. 180 m. Only a few of the percussion-drilled boreholes had packers installed. The sampled sections were therefore very long, allowing groundwater from many different depths to mix. Oxygen and oxidation-reduction potential (ORP) were measured in groundwater in soil pipes but not in percussion-drilled boreholes. The poor quality of the oxygen data made it difficult to identify the depth of origin of completely oxygen-free groundwater. Parameters that indicated ongoing anaerobic microbial processes, such as nitrite, ferrous iron, dissolved manganese, and sulphide, were found in many soil pipes. The soil pipes displayed individual chemical profiles in terms of chemical species related to microbial activity. The microbial activity could not be linked to the classes of soil pipe, i.e. recharge, discharge, or intermittent. Existing soil pipes and percussion-drilled boreholes could be used for additional sampling of microbial parameters. Such sampling would benefit from careful hypothesis-driven description of the sampling parameters and experience-guided choice of sampling methods

  20. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  1. Sediment dynamics in the coastal areas of Forsmark and Laxemar during an interglacial

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2009-06-15

    Radionuclides dissolved in groundwater that reach the sea bottom from below may bind to fine grained particles. When a nuclide binds to an immovable particle in the sea sediment, further transport may cease; however, if the nuclide binds to a moveable particle it may be repeatedly suspended, transported, and re-deposited. Whether the nuclide binds to a moveable or immovable particle determines the type of biota it encounters. Therefore, it is of great value to understand how bottom types are spread in the sea close to a proposed repository and how the distribution of these bottoms have changed over time, in order to predict what may happen if a nuclide leaks from a repository. In the coastal areas of Forsmark and Laxemar, the sediment dynamics have been modelled for the period between 9500 BC and 9500 AD. The model is based on a wave model (STWAVE) included in the program package from SMS (Surface Water Modelling System). A sediment resuspension module was developed and is presented in this report. The model inputs are weather data (wind direction and wind speed) and bathymetry. The bathymetry is in a regular grid structure. The wave model is separated into two steps. The first is an outer model with coarse resolution (1000 m) that represents the whole Baltic Sea. This outer model gives border conditions to an inner model with higher resolution (100 m) that represents the coastal areas close to Forsmark and Laxemar. The outputs from the wave model are wave height, wave period and water depth for each cell in the model domains. A new program module, written in VisualBasic, reads the results from the wave module and calculates the maximum wave generated water velocity close to the sea bottom, and the maximum resuspendable grain size at that water velocity based on a semi-empirical relationship. The model is run with a time step of 500 years. Since the bathymetry is changing over time due to the positive shore displacement, a sub-model for the Baltic Sea evolution has

  2. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  3. Hydrogeologic framework, groundwater movement, and water budget of the Kitsap Peninsula, west-central Washington

    Science.gov (United States)

    Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

    2014-01-01

    This report presents information used to characterize the groundwater-flow system on the Kitsap Peninsula, and includes descriptions of the geology and hydrogeologic framework, groundwater recharge and discharge, groundwater levels and flow directions, seasonal groundwater-level fluctuations, interactions between aquifers and the surface‑water system, and a water budget. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, the part of Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Geologic units were grouped into 12 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 2,116 drillers’ logs to construct 6 hydrogeologic sections and unit extent and thickness maps. Unconsolidated aquifers typically consist of moderately to well-sorted alluvial and glacial outwash deposits of sand, gravel, and cobbles, with minor lenses of silt and clay. These units often are discontinuous or isolated bodies and are of highly variable thickness. Unconfined conditions occur in areas where aquifer units are at land surface; however, much of the study area is mantled by glacial till, and confined aquifer conditions are common. Groundwater in the unconsolidated aquifers generally flows radially off the peninsula in the direction of Puget Sound and Hood Canal. These generalized flow patterns likely are complicated by the presence of low

  4. SRP baseline hydrogeologic investigation, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1987-11-01

    As discussed in the program plan for the Savannah River Plant (SRP) Baseline Hydrogeologic Investigation, this program has been implemented for the purpose of updating and improving the current state of knowledge and understanding of the hydrogeologic systems underlying the Savannah River Plant (SRP). The objective of the program is to install a series of observation well clusters (wells installed in each major water bearing formation at the same site) at key locations across the plant site in order to: (1) provide detailed information on the lithology, stratigraphy, and groundwater hydrology, (2) provide observation wells to monitor the groundwater quality, head relationships, gradients, and flow paths.

  5. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  6. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  7. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  8. Forsmark site investigation. Programme for long-term observations of geosphere and biosphere after completed site investigations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    The site investigation at Forsmark was terminated the last of June, 2007. Hundreds of investigations have been conducted during a period of more than five years. Monitoring of a number of geoscientific parameters and biological objects has been one important part of the site investigation programme. Monitoring is defined as recurrent measurements of the same parameters/objects, so that time series are generated. Long-term monitoring of for example weather parameters, surface water discharge in brooks, and the groundwater head in a large number of boreholes has been conducted during the site investigations. Furthermore, repeated sampling of precipitation, surface water and groundwater in soil and rock for hydrochemical analyses has been carried out, and the groundwater flow in isolated borehole sections has been measured several times. Besides, some biological objects, for example rare bird species, have been invented each year of the site investigation. The measured parameters and the invented objects are characterized by a certain degree of time dependent variability, which is also site-specific. The aim of the monitoring is primarily to establish the 'undisturbed' conditions, the so called 'baseline'. If a deep repository is sited at Forsmark, many site-specific conditions will change, due to natural causes as well as to the construction works. Knowledge about the undisturbed conditions strengthens the ability to reveal and quantify such changes and to distinguish natural changes from those caused by the human activities. Another object of monitoring is to, by the study of the variability pattern of the monitored parameters, elevate the knowledge about the underlying, often complex causes governing the variations. In this way the description of site-specific conditions may be more precise and the prospects of modelling important processes are improved. After completion of the site investigations, a period of about two years will follow, when

  9. Hydrogeology of the Croton-Ossining area, Westchester County, New York

    Science.gov (United States)

    Reynolds, Richard J.

    1988-01-01

    The hydrogeology of a 29-sq-mi area surrounding the village of Croton-on-Hudson, New York, is summarized on 6 sheets at 1:12 ,000 scale that show locations of wells and test holes, surficial geology, geologic sections, bedrock geology, land use, and soil permeability. The primary stratified-drift aquifer in this area is the Croton River aquifer, which consists of outwash sand and gravel that partly fills the Croton River valley from the New Croton Dam to the Hudson River--a distance of approximately 3 miles. The valley is narrow and ranges in width from 100 to 1,900 ft, and its v-notch bedrock floor ranges from 30 to 50 ft below sea level. Detailed hydrogeologic studies during 1936-38 showed the stratigraphy to consist of an upper water-table aquifer with a saturated thickness of about 35 ft, underlain by a silt and clay confining unit 8 to o0 ft in thickness that in turn is underlain by a lower confined outwash aquifer up to 40 ft thick. Aquifer-test data and laboratory permeability tests show that the average hydraulic conductivity of the upper outwash aquifer is 475 ft/d, and that of the lower confined aquifer is about 300 ft/d. The aquifer is recharged through direct precipitation, runoff from adjacent hillsides, and leakage under the new Croton Dam. Previous studies estimate the average leakage under the dam to be 0.65 Mgal/d and the total average daily recharge to the aquifer between New Croton Dam and Quaker Bridge to be 1.73 Mgal/d. (USGS)

  10. Hydrogeological Studies to Identify the Trend of Concealed Section of the North Tabriz Fault (Iran).

    Science.gov (United States)

    Rajabpour, Hossein; Vaezihir, Abdorreza

    2017-05-01

    The North Tabriz Fault (NTF) is the predominant regional-scale tectonic structure in the northwest of Iran. In the east side of the city of Tabriz, a portion of the fault trend has been completely concealed by recent sediments and urbanization. In this paper, some hydrogeological methods are used to locate the concealed sector. As is clear from the pumping tests results, despite the fact that the northern observation wells were closer to the pumping wells than the southern ones, they have not been affected by pumping. Conversely, all southern wells were affected by pumping and displayed decline of the water table. In addition, obvious differences in groundwater levels combined with clear differences in groundwater quality within a short distance across the probable fault trend are sufficient reasons for the presence of the fault that behaves as a barrier to groundwater lateral flows. Significant change in the elevation of the bedrock base of the aquifer over less than 200 m suggests that the fault has near vertical dip. These results indicate that the inferred trend of the NTF closely conforms to its actual trend. Therefore, the hydrogeological studies can be complementary tools to determine the position and trend of concealed faults. © 2016, National Ground Water Association.

  11. Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Erickson, J.R.; Healy, R.W.

    1984-01-01

    The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

  12. Basis for applying for exemption according to species protection regulation. Final repository for spent nuclear fuel at Forsmark; Underlag till ansoekan om dispens enligt artskyddsfoerordningen. Slutfoervar foer anvaent kaernbraensle i Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    SKB will submit applications for permits and admissibility under the Environmental Act and under the Nuclear Activities Act to construct and operate a disposal facility for spent nuclear fuel at Forsmark. In the final repository the spent nuclear fuel from Swedish nuclear power plants is placed in order to protect human health and the environment against harmful effects of ionizing radiation. Construction and operation of the disposal facility in Forsmark will make an impact, give effects and consequences for the natural environment. Utilization of land for the construction of the facility and the impact on ground water as a result of groundwater drainage is expected to have negative consequences for the species included in species protection regulation. Thus, the planned activity require exemption from species protection regulation (SFS 2007:845). The purpose of this document is to provide a basis for an application for exemption under 14 paragraph species protection regulation from the prohibitions of 4, 6, 7 and 8 paragraph species protection regulation. A basis for the exemption application is that the proposed activity is considered to have an 'overriding public interest' prescribed in 14 paragraph species protection regulation. The document reports the impact, effects and consequences of the planned activities on species covered in the species protection regulation. The impact on protected species can be divided into two categories: - Direct effects on protected species and their habitats by utilization of the land. - Indirect effects on protected species and their habitats in the drainage of groundwater and the effect on groundwater levels. The document also includes a description of planned actions to prevent, restrict and compensate for the effects and consequences that the activity may cause. By applying for an exemption under 14 paragraph species protection regulation in a separate order from the application for permit according to chapters 9

  13. Hydrogeologic framework of western Cape Cod, Massachusetts

    Science.gov (United States)

    Masterson, John P.; Stone, Byron D.; Walter, Donald A.; Savoie, Jennifer G.

    1997-01-01

    The aquifer of western Cape Cod consists of several hydrogeologic units composed of sand, gravel, silt, and clay (fig. 1) that were deposited during the late Wisconsinan glaciation of New England. The aquifer is a shallow, unconfined hydrologic system in which ground-water flows radially outward from the apex of the ground-water mound near the center of the peninsula toward the coast (fig.2). The aquifer is the sole source of water supply for the towns of Bourne, Sandwich, Falmouth, and Mashpee, and the Massachusetts Military Reservation (MMR).Previous geologic studies summarized the characteristics and relative ages of the glacial moraines and meltwater deposits and the relation of these sediments to the extent of the ice-sheet lobes during the last glaciation of southern New England (Oldale and Barlow, 1986; Hartshorn and others, 1991). Hydrogeologic studies in western Cape Cod characterized the shallow regional ground-water-flow system (LeBlanc and others, 1986) and analyzed simulated responses of the aquifer to changes in hydrologic stresses (Guswa and LeBlanc, 1985; Barlow and Hess, 1993; Masterson and Barlow, 1994; and Masterson and others, 1996). Recent concerns about widespread ground-water contamination, especially from sources on the MMR, have resulted in extensive investigations to characterize the local hydrogeology of the aquifer near the MMR (ABB Environmental Services, 1992). Masterson and others (1996) illustrated the strong influence of geology on ground-water flow and the importance of characterizing the hydrogeology to predict the migration of the contaminant plumes beneath the MMR.This report, a product of a cooperative study between the National Guard Bureau and the U.S. Geological Survey (USGS), characterizes the regional hydrogeology of the western Cape Cod aquifer on the basis of surficial glacial geology previously described by Mather and others (1940) and Oldale and Barlow (1986), and presents a new analysis of the subsurface hydrogeology

  14. A study on landscape and the historical geography of two areas - Oskarshamn and Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ulf; Berg, Johan; Bjoerklund, Annika [Stockholm Univ. (Sweden). Dept. of Human Geography

    2004-06-01

    The aim of this project is to investigate the land-use; the settlement and the way people have used and affected the landscape in two areas, Forsmark and Simpevarp. This preliminary report aim mainly at describing the sources and methods used in the project. Some analyses are undertaken, but a more complete interpretation will take place in the final report of Phase two. This is a project that forms a part of the environmental impact assessment work that is done for examining potential locations for a plant for a deep repository for spent nuclear fuel. Both areas are located on the East Coast of Sweden. A number of scientific studies are carried out in this project. Fields that are included studies for the EIA and the safety assessment include geology, quaternary geology, limnology, biology and other natural sciences that focus on vegetation and the terrestrial as well as the aquatic environment.The study that is carried out at the Department of Human geography at Stockholm university is basically a study of the historical land-use, the changes in settlement and how people have been working and using the landscape over the last centuries.The methods used include historical maps, cadastral material and in a later phase interviews and fieldwork. In the first phase that ends the summer 2004 the bulk of the historical material is probed and analysed. A big effort is put into the creation of GIS-data sets that can be used for further analyses. The work during spring 2004 resulted in this preliminary report that deal with historical land-use, population, settlement from medieval times to the present and both detailed and general descriptions and investigations of the historical geography of the areas.Both the investigated areas are located by the Baltic, but are very different both physically, especially with the land upheaval in the north, and historically with a different land-use system, ownership structure and distribution of settlement. The results of this study

  15. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  16. How Bedrock Nitrogen Influences Carbon Storage

    Science.gov (United States)

    Rios, C.; Mitchell, S. A.

    2016-12-01

    The purpose of this research is to examine how trees, specifically Douglas fir (Pseudotsuga menziesii) responds at sites with high amounts of nitrogen (N) from rocks. In forests where Douglas firs are found, their growth is usually limited by the amount of N available to them. By providing the trees with more N from the rocks, the trees can consume more carbon (C) from the atmosphere. This explores carbon sequestration, capturing C from the atmosphere in the biomass of the trees and reducing the amount of CO2 in the atmosphere. My hypothesis is that trees with access to more N from the rocks, which acts like a fertilizer, will be larger and capture more C from the atmosphere storing it as biomass. We will be collecting measurements from 12 sites in northern California. The sites range from 60 to 1000 parts per million (ppm) of N in the rocks. We will use the diameter at breast height (DBH) measurements to calculate the leaf area index (LAI), which tells us how much C the trees are holding per acre. Contributing to the research will also be the counting tree rings which indicate the age of trees, so we may also see if trees are able to see if trees with more N are growing more annually. The larger amount of N taken from the bedrock resulted in more CO2 taken from the atmosphere as biomass. This resulted in more photosynthetic vegetation per unit area which means the trees are more productive. Carbon stored at these sites helps to slow the effects of increasing atmospheric CO2.

  17. Digital compilation bedrock geologic map of the Warren quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-4A Walsh, GJ, Haydock, S, Prewitt, J, Kraus, J, Lapp, E, O'Loughlin, S, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the...

  18. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  19. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  20. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  1. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  2. Bedrock Geologic Map of Charlotte,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-5 Gale, M., Kim, J., Earle, H., Clark, A., Smith, T., and Petersen, K., 2009, Bedrock Geologic Map of Charlotte, Vermont: VGS Open-File Report...

  3. Bedrock Geologic Map of the Underhill quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-4B Doolan, B., Cherchetti, L., Holt, J., Ryan, J., Hengstenburg, C., and Rosencrantz, E., 2003,�Bedrock Geologic Map of the Underhill...

  4. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996, Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  5. Digital compilation bedrock geologic map of the Milton quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-8A Dorsey, R, Doolan, B, Agnew, PC, Carter, CM, Rosencrantz, EJ, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the Milton...

  6. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  7. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  8. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  9. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM and Burton, WC, 1996, Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  10. Digital compilation bedrock geologic map of the Lincoln quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-5A Stanley, R, DelloRusso, V, Haydock, S, Lapp, E, O'Loughlin, S, Prewitt, J,and Tauvers, PR, 1995, Digital compilation bedrock geologic map...

  11. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Kivetty is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved groundwaters are found in borehole KR1 with a TDS value of 233 mg/l and a chloride content of 48 mg/l in KR5. Reducing conditions are expected to exist at depth, which are favourable in terms of low radionuclide solubility and slow canister corrosion. Potentially suitable bedrock blocks have been identified at the site for locating a repository for spent fuel in the depth range of 400 - 700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones should be avoided when locating the deposition tunnels and disposal holes. (orig.)

  12. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    from the Baltic Sea some 4000 years ago. The groundwater varies from modern fresh water at shallow depth to saline water at greater depths, the saline water normally representing a mixture of relic Litorina Sea water and meteoric and glacial meltwater. The maximum Total Dissolved Solids (TDS) in the groundwater is 32 g/l and the chloride content 19 g/1. Reducing conditions are expected to exist at depth, which are favourable for low radionuclide solubility and slow canister corrosion. Suitable bedrock volumes have been identified at the site for locating a repository in the depth range of 400-700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones, mainly those that are sub-horizontal, should be avoided when locating the deposition tunnels and disposal holes. The salinity of the groundwater will probably place limits on the use of certain materials for construction purposes. (orig.) 122 refs.

  13. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    postglacial history of the island of Olkiluoto, which rose from the Baltic Sea some 2 500 - 3 000 years ago. The groundwater varies from modern fresh water near the surface to saline water at greater depths. Above 150 m current meteoric recharge and Baltic Sea water dominates. Below this a mixture of Litorina Sea water and glacial meltwater is dominant. Deeper below 500 m subglacial and older saline groundwater predominates. The maximum values for Total Dissolved Solids (TDS) and chloride content are 69.13 g/l and the 43 g/l, respectively. Reducing conditions are expected to exist at depth, which are favourable in terms of low radionuclide solubility and slow canister corrosion. Potentially suitable bedrock blocks have been identified at the site for locating a repository for spent fuel in the depth range of 400 - 700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones should be avoided when locating the deposition tunnels and disposal holes. In addition, the salinity of the groundwater will probably limit to some extent the types of constructional materials that can be used. (orig.) 323 refs.

  14. Can arsenic occurrence rates in bedrock aquifers be predicted?

    Science.gov (United States)

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 µg L−1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 µg L−1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology. PMID:22260208

  15. Geology, Bedrock - BEDROCK_GEOLOGY_RGM_250K_IN: Bedrock geology of Indiana, from the Regional Geologic Map Series of the Indiana Geological Survey (Indiana Geological Survey, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — BEDROCK_GEOL_RGM_IN is a polygon shapefile that shows the bedrock geology of the state of Indiana, produced from the Indiana Geological Survey Regional Geologic Map...

  16. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    Science.gov (United States)

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  17. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    Science.gov (United States)

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  18. Surveys of mammal populations in the areas adjacent to Forsmark and Tierp. A pilot study 2001-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cederlund, Goeran; Hammarstroem, Angelica; Wallin, Kjell [Svensk Viltfoervaltning AB, Ramsberg (Sweden)

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. To get relevant data on the dynamics of the mammal populations it is important to estimate the abundance and variations over time. Data achieved can be used to specifically monitor endangered species (like wolf, Canis lupus, and otter, Lutra lutra), detect effects from e.g. drilling activities on populations (important to hunters) and be used for assessment programs (MKB). One of the major goals is to monitor populations over several years and to obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclide. From late 2001 to late spring 2002 a pilot study was accomplished in the areas surrounding the suggested areas in the Tierp region and in Forsmark (Oskarshamn was not included in this pilot study). A reference area was chosen near the coast some 20 km north of Forsmark. The aim was to initiate surveys of most of the larger mammal species that were expected to be found in the region. Selected species were wolf, lynx, otter, marten, mink, red fox, beaver, wild boar, red deer, roe deer, moose, European hare and mountain hare. Several methods were used and adapted to expected habitat use and expected local density of the species. Line transects were used on snow to index (frequency of tracks crossing the transects) or calculate actual number (for example the Buffon method). Pellet counts were used in spring to calculate hare and cervid (moose and deer species) density. In mid winter an aerial (helicopter) survey was conducted along the coast to count moose. The aquatic mammals were tracked on snow along selected parts of the streams and

  19. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  20. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  1. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  2. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb (ECOMatters Inc., Pinawa (Canada)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2009-03-15

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  3. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Soederbaeck, Bjoern (ed.)

    2008-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  4. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  5. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  7. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  8. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, H.; Plantman, P.; Borgiel, M. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    (boulders, rock) a luxuriant growth of the bladder wrack (Fucus vesiculosus) could be seen. Also, the moss Fontinalis dalecarlica was not unusual. This moss is frequently observed in the Gulf of Bothnia but does not occur in the Baltic proper. Among the animals, the blue mussel (Mytilus edulis) was to a large extent missing, although suitable substrate was present. In the Bothnian Sea the marine mussel Mytilus extends up to the Northern Quark, but usually only scattered, few individuals are found at each site along the whole coast. The blue mussel never has the same mass-occurrence as can be observed in the Stockholm archipelago and further south in the Baltic proper. Thus, the ecosystem of the SFR-area has a function somewhat different from the Baltic proper as the filter feeders lack to a large extent. The species biomass was determined by collecting 54 quantitative samples (usually 12 samples per transect). At comparable depths, when excluding the bladder wrack (Fucus vesiculosus) and the blue mussel (Mytilus edulis) the total depth distribution of plant and animal biomass was similar those of the Graesoe-Singoe area (ranging between 30-60 g dry weight m{sup -2} of plants and 20-50 g of animals). However, the total biomass of both the bladder wrack (Fucus vesiculosus) and the filter feeding blue mussel (Mytilus edulis) was considerable lower in the Forsmark area. This can to some extent be explained by the difference in dominating substrate (mostly rocky) as well as a larger influence from the Baltic proper in the Graesoe-Singoe area. For the low amounts of Mytilus see explanation given above.

  9. Mineralogy, geochemistry, porosity and redox properties of rocks from Forsmark. Compilation of data from the regional model volume for SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB, Stockholm (Sweden)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2009-11-15

    This report is a compilation of the data acquired during the Forsmark site investigation programme on the mineralogy, geochemistry, redox properties and porosity of different rock types at Forsmark. The aim is to provide a final summary of the available data for use during the SR-Site modelling work. Data presented in this report represent the regional model volume and have previously been published in various SKB reports. The data have been extracted from the SKB database Sicada and are presented as calculated median values, data range and lower/upper quartile. The representativity of all samples used for the calculations have been evaluated and data from samples where there is insufficient control on the rock type have been omitted. Rock samples affected by alteration have been omitted from the unaltered samples and are presented separately based on type of alteration (e.g. oxidised or albitized rock)

  10. Bedrock Channels: Towards a Process-Based Understanding

    Science.gov (United States)

    Parsons, D. R.; Darby, S. E.; Hackney, C. R.; Leyland, J.; Best, J.; Nicholas, A. P.; Aalto, R. E.; Horn, C. A. P. T., III; Thy, M. R.

    2014-12-01

    Most previous studies on the genesis and evolution of bedforms in large rivers have focused on aggradational bedforms within alluvial sediments, with very few investigations that concern either erosive bedform evolution or bedrock channel abrasion processes. Detailed understanding of the processes within bedrock reaches of river channels is vital if an improved understanding of formation and evolution of bedrock scours and bedforms are to be elucidated. The paper presents high-resolution bathymetry and sidescan derived from multibeam sonar (MBES) and detailed flow mapping by acoustic Doppler current profiling (ADCP) to illustrate, in intricate detail, relations between morphology, flow and sediment transport processes through a bedrock reach of the Mekong River (Cambodia) during a large flood event. A 2 by 5 km reach of the Mekong river near Sambor was surveyed with a RESON 7125 MBES system revealing incredible >40 m scour features within the bedrock substrate, with sidescan imagery also revealing the routing of alluvial sediment through the scours. A series of ADCP transects were obtained, both transverse and perpendicular to the primary downstream flow, that map the flows into, around and within these scour features. The paper will conclude by looking at how advances in measurement capability have permitted the detailed processes in such channels to be investigated for the first time at this scale.

  11. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Cascoyne, M. [Gascoyne GeoProjects Inc. (Canada)

    2000-06-01

    formed on freezing of seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids, under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters, loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost, lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock. (orig.)

  12. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M. [Gascoyne GeoProjects Inc., Pinawa (Canada)

    2000-04-01

    seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids,under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters,loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost,lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock.

  13. Mechanisms and Rates of Plucking of Experimental Bedrock Blocks

    Science.gov (United States)

    Harbor, D. J.; Wilkinson, C.; Helgans, E.; Kuehner, J. P.

    2015-12-01

    Plucking in bedrock channels can be the dominant erosional mechanism but is difficult to predict numerically due to variation in block shape and orientation in the flow, and the general lack of experimental data compared to alluvial sediments. In a 250 cm-long, 14 cm-wide flume, we modeled bedrock channels using a bedrock test zone consisting of flow over an upstream step of 0 to 1.6 cm, a bed slope of 0.5 to1.24%, and a changing downstream backwater control on the location of a hydraulic jump. With flow velocity from 50 to 100 cm/s and depth from 3 to 10 cm, the low-density bedrock may well characterize natural bedrock plucking events in larger rivers in flood. Plucking initiated in critical to supercritical flow near hydraulic jumps. The first blocks to move lift from both the upstream and downstream sides and then other blocks slide both up- and downstream or laterally once neighbors are removed. Initiation of motion from each new bedrock slab began with different size and shape of blocks exhibiting no protrusion relative to the surrounding bed. Block erodibility increased with step height and channel slope and following the removal of the first block. A pressure gradient within the block mass near the jump and velocity differential within the channel margin set the stage for block uplift, but flow structures likely provide the variability that initiates lift. Preliminary flow visualization using Particle Image Velocimetry aids the understanding of flow structures contributing to blocks lift. Negative and positive feedback to further plucking was observed by erosion and deposition of plucked blocks. After their initial removal, blocks can accumulate downstream and slow the flow over the eroded reach or the position of jumps and jets shift with block removal to promote further plucking.

  14. Results of monitoring at Olkiluoto in 2013. Hydrology and hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Ahokas, H.; Komulainen, J.; Nummela, J.; Pentti, E.; Turku, J. [Poeyry Finland Oy, Vantaa (Finland); Karvonen, T. [WaterHope, Helsinki (Finland); Aro, S.

    2014-12-15

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open drillholes, transverse flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, and water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Monitoring Report of Environment. Updated monitoring program was introduced in the beginning of 2012. The updated program will be used for the period before repository operation. Only minor changes were implemented. Monitoring has been carried out according to plan. This Report presents the results for the year 2013. Excavation of the access tunnel was completed in 2012. Demonstration tunnels 3 and 4 were excavated and central tunnel 1 was continued from chainage 4366-22 m to chainage 4366-60 m in 2013. Total inflow into ONKALO down to chainage 4580 m including shaft ONK-KU2 down to level -437 m was on average 35 l/min in 2013. The mapping of water leakages and moisture conditions on the tunnel walls and the ceiling has been continued. The general pattern of leakages has remained similar during the construction of ONKALO. Most significant differences are caused by seasonal effects like condensation of warm ventilation air on tunnel walls and ceiling. The changes observed in the groundwater level in observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of a local decrease in groundwater level have been observed. Effects on the head

  15. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to

  16. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to

  17. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  18. Hydrogeology of the Islamic Republic of Mauritania

    Science.gov (United States)

    Friedel, Michael J.; Finn, Carol

    2008-01-01

    Hydrogeologic maps were constructed for the Islamic Republic of Mauritania. The ground-water flow system in the country can best be described as two interconnected regional systems: the porous Continental Terminal coastal system and the interior, fractured sedimentary Taoudeni Basin system. In these systems, ground-water flow occurs in fill deposits and carbonate, clastic, metasedimentary, and metavolcanic rocks. Based on an evaluation of the potentiometric surface, there are three areas of ground-water recharge in the Taoudeni Basin system. One region occurs in the northwest at the edge of the Shield, one occurs to the south overlying the Tillites, and one is centered at the city of Tidjikdja. In contrast to the flow system in the Taoudeni Basin, the potentiometric surfaces reveal two areas of discharge in the Continental Terminal system but no localized recharge areas; the recharge is more likely to be areal. In addition to these recharge and discharge areas, ground water flows across the country's borders. Specifically, ground water from the Atlantic Ocean flows into Mauritania, transporting dissolved sodium from the west as a salt water intrusion, whereas fresh ground water discharges from the east into Mali. To the north, there is a relatively low gradient with inflow of fresh water to Mauritania, whereas ground-water flow discharges to the Senegal River to the south. A geographical information system (GIS) was used to digitize, manage, store, and analyze geologic data used to develop the hydrogeologic map. The data acquired for map development included existing digital GIS files, published maps, tabulated data in reports and public-access files, and the SIPPE2 Access database. Once in digital formats, regional geologic and hydrologic features were converted to a common coordinate system and combined into one map. The 42 regional geologic map units were then reclassified into 13 hydrogeologic units, each having considerable lateral extent and distinct

  19. Hydrogeology of the Jharia Coal Field, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.D.; Sankaranarayana, I. (Indian School of Mines, Dhanbad (India). Dept. of Applied Geology)

    1990-07-01

    The Jharia Coalfield is a part of an east-west trending intracratonic Gondwana basin in eastern India. This paper presents the results of a comprehensive research programme to understand the hydrogeological setting and the aquifer characteristics. Water table in weathered zone is observed to fluctuate cyclically with seasons and suggests shallow ground water flow system. Aquifer parameters obtained by pumping tests are relatively low and these formations are classified as poor aquifers. The small volumes of water in coal mines are directly related to poor hydraulic conductivity of the rocks associated with coal. 12 refs., 7 figs., 1 tab.

  20. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  1. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  2. Bedrock Geologic Map of Vermont - Faults and Contacts

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  3. Bedrock Geologic Map of Vermont - Geochronology Sample Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  4. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  5. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  6. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  7. Bedload transport controls bedrock erosion under sediment-starved conditions

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.

    2015-07-01

    Fluvial bedrock incision constrains the pace of mountainous landscape evolution. Bedrock erosion processes have been described with incision models that are widely applied in river-reach and catchment-scale studies. However, so far no linked field data set at the process scale had been published that permits the assessment of model plausibility and accuracy. Here, we evaluate the predictive power of various incision models using independent data on hydraulics, bedload transport and erosion recorded on an artificial bedrock slab installed in a steep bedrock stream section for a single bedload transport event. The influence of transported bedload on the erosion rate (the "tools effect") is shown to be dominant, while other sediment effects are of minor importance. Hence, a simple temporally distributed incision model, in which erosion rate is proportional to bedload transport rate, is proposed for transient local studies under detachment-limited conditions. This model can be site-calibrated with temporally lumped bedload and erosion data and its applicability can be assessed by visual inspection of the study site. For the event at hand, basic discharge-based models, such as derivatives of the stream power model family, are adequate to reproduce the overall trend of the observed erosion rate. This may be relevant for long-term studies of landscape evolution without specific interest in transient local behavior. However, it remains to be seen whether the same model calibration can reliably predict erosion in future events.

  8. Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Science.gov (United States)

    Savoca, Mark E.; Welch, Wendy B.; Johnson, Kenneth H.; Lane, R.C.; Fasser, Elisabeth T.

    2010-01-01

    This report presents information used to characterize the groundwater-flow system in the Chambers-Clover Creek Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 706 square miles in western Pierce County, Washington, and extends north to the Puyallup River, southwest to the Nisqually River, and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and southeastern margin of the study area. Geologic units were grouped into 11 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 450 drillers' logs to construct 6 hydrogeologic sections, and unit extent and thickness maps. Groundwater in unconsolidated glacial and interglacial aquifers generally flows to the northwest towards Puget Sound, and to the north and northeast towards the Puyallup River. These generalized flow patterns likely are complicated by the presence of low permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Water levels in wells completed in the unconsolidated hydrogeologic units show seasonal variations ranging from less than 1 to about 50 feet. The largest groundwater-level fluctuation (78 feet) observed during the monitoring period (March 2007-September 2008) was in a well completed in the bedrock unit. Synoptic streamflow measurements made in September 2007 and July 2008 indicated a

  9. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    Science.gov (United States)

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  10. Dynamic response of Antarctic ice shelves to bedrock uncertainty

    Directory of Open Access Journals (Sweden)

    S. Sun

    2014-01-01

    Full Text Available Bedrock geometry is an essential boundary condition in ice sheet modelling. The shape of the bedrock on fine scales can influences ice sheet evolution, for example through the formation of pinning points that alter grounding line dynamics. Here we test the sensitivity of the BISICLES adaptive mesh ice sheet model to small amplitude height fluctuations on different spatial scales in the bed rock topography provided by bedmap2 in the catchments of Pine Island Glacier, the Amery Ice Shelf, and a region of East Antarctica including the Denman and Totten Glaciers. We generate an ensemble of bedrock topographies by adding random noise to the bedmap2 data with amplitude determined by the accompanying estimates of bedrock uncertainty. Lower frequency coherent noise, which generates broad spatial scale (over 10s of km errors in topography with relatively gently slopes, while higher frequency noise has steeper slopes over smaller spatial scales. We find that the small amplitude fluctuations result in only minor changes in the way these glaciers evolve. However, lower frequency noise is more important than higher frequency noise even when the features have the same height amplitudes and the total noise power is maintained. This provides optimism for credible sea level rise estimates with presently achievable densities of thickness measurements. Pine Island Glacier appears to be the most sensitive to errors in bed topography, while Lambert–Amery is stable under the present day observational data uncertainty. Totten–Denman region may undergo a retreat around Totten ice shelf, where the bedrock is lower than the sea level, especially if basal melt rates increase.

  11. Geologic history and hydrogeologic units of intermontane basins of the northern Rocky Mountains, Montana and Idaho

    Science.gov (United States)

    Tuck, L.K.; Briar, David W.; Clark, David W.

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation’s water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to: (1) describe the ground-water systems as they exist today, (2) analyze the known changes that have led to the system's present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter Cofa three-part series and describes the quality of ground-water and surface water in the study area. Chapter A (Tück and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter B (Briar and others, 1996) describes the general distribution of ground-watcrlcwels in basin-fill deposits,Water-quality data illustrated in this report represent the distribution of concentrations and composition of dissolved solids in ground-water and surface water in the intermontane areas. The chemistry of ground and surface water in the intermontane areas is influenced by the chemical and physical nature of the rocks in the basin deposits of the valleys and surrounding bedrock in the mountains.

  12. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  13. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  14. Geological and hydrogeological aspects of PROHBEN area - Engenho Nogueira hydrogeological project, Belo Horizonte, MG, Brazil; Aspectos geologicos e hidrologicos da area do PROHBEN - Projeto Hidrogeologico da Bacia do Engenho Nogueira, Belo Horizonte, Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho Filho, Carlos Alberto de; Aquino Branco, Otavio Eurico de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Oliveira Loureiro, Celso de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia

    1996-08-01

    The Engenho Nogueira Hydrological Project, PROHBEN, was idealized with the goal to important an Experimental Hydrogeological Basin within its limits, in order to permit the development of hydrogeological studies and techniques, mainly in modeling the flux and transport of contaminants in saturated and unsatured porous media. The PROHBEN is located in Belo Horizonte city, Minas Gerais State, performing a 5 km{sup 2} area. The lithologies that compound the study area were divided in four geological units. The Unit A is mainly composed by the unweathered gneiss of the Archean Belo Horizonte Regional Complex, and form the bedrock of the local aquifer. The Unit B is constituted by weathered products of the Unit A rocks. Alluvial and colluvial deposits compound the C and D Units, respectively. The local porous, water-table Engenho Nogueira Aquifer reaches the thickness of 40 meters and is mainly formed by the sand-clays lithologies of the B and D geological Units. First results of seven pumping tests performed in local wells are now been analysing, and they are showing a 10{sup -4} cm/s value for the aquifer hydraulic conductivity. Three master degree studies are being performed in the PROHBEN area and one hope is that more researchers come to use this experimental field site. (author) 6 refs.

  15. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  16. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  17. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  18. Geophysical modeling and geochemical analysis for hydrogeologic assessment of the Steamboat Hills area, Nevada

    Science.gov (United States)

    Skalbeck, John David

    2001-07-01

    Three studies constitute the hydrogeologic assessment of the Steamboat Hills area, Washoe County, Nevada. Geophysical modeling and geochemical analysis are used to assess the hydrogeologic connection between a fractured bedrock geothermal system used to produce electrical power and surrounding alluvial aquifer basins used for municipal drinking water supply. Understanding the hydrogeologic connection between these two water resources is important for long-term management of these resources. Coupled 2.75-D forward modeling of multiple gravity and aeromagnetic profiles constrained by geological and physical properties (density, magnetic susceptibility, remanent magnetic) data yields a detailed 3-D geologic model of the geothermal system and the alluvial basins. A new method is presented for modeling the geothermal reservoir based on altered physical properties of host rock that yields a reservoir volume estimate that is double the previously assumed volume. The configuration of the modeled geothermal reservoir suggests that a previously unrecognized thermal water up-flow zone may exist along the west flank of the Steamboat Hills. Model results delineate the elevation and thickness of geologic units that can be used in numerical modeling of groundwater flow, planning exploration drilling, and evaluating fully 3-D forward modeling software. The Steamboat Hills geothermal resource area offers an excellent opportunity to test an exploration strategy using magnetics. A zone of demagnetized rock within the geothermal resource area resulting from thermochemical alteration due to thermal water flow along faults and fractures is apparent as an aeromagnetic low anomaly. Anomalously low ground magnetic data delineate a fault that conducts thermal water from the geothermal system to an alluvial aquifer. Vertical magnetic susceptibility from core measurements yields an average value for altered granodiorite used in forward modeling. Permeable fractures and a major fault zone

  19. Estimation of regional hydrogeological properties for use in a hydrologic model of the Chesapeake Bay watershed

    Science.gov (United States)

    Seck, A.; Welty, C.

    2012-12-01

    Characterization of subsurface hydrogeologic properties in three dimensions and at large scales for use in groundwater flow models can remain a challenge owing to the lack of regional data sets and scatter in coverage, type, and format of existing small-scale data sets. This is the case for the Chesapeake Bay watershed, where numerous studies have been carried out to quantify groundwater processes at small scales but limited information is available on subsurface characteristics and groundwater fluxes at regional scales. One goal of this work is to synthesize disparate information on subsurface properties for the Chesapeake Bay watershed for use in a 3D integrated ParFlow model over an area of 400,000 km2 with a horizontal resolution of 1 km and a vertical resolution of 5 m. We combined different types of data at various scales to characterize hydrostratigraphy and hydrogeological properties. The conceptual hydrogeologic model of the study area is composed of two major regions. One region extends from the Valley and Ridge physiographic province south of New York to the Piedmont physiographic province in Maryland and Virginia. This region is generally characterized by fractured rock overlain by a mantle of regolith. Soil thickness and hydraulic conductivity values were obtained from the U.S. General Soil Map (STATSGO2). Saprolite thickness was evaluated using casing depth information from well completion reports from four state agencies. Geostatistical methods were used to generalize point data to the model extent and resolution. A three-dimensional hydraulic conductivity field for fractured bedrock was estimated using a published national map of permeability and depth- varying functions from literature. The Coastal Plain of Maryland, Virginia, Delaware and New Jersey constitutes the second region and is characterized by layered sediments. In this region, the geometry of 20 aquifers and confining units was constructed using interpolation of published contour maps of

  20. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    C. Gabrielli; J.J. McDonnell; W.T. Jarvis

    2012-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...

  1. Quantitative bedrock geology of the conterminous United States of America

    Science.gov (United States)

    Peucker-Ehrenbrink, Bernhard; Miller, Mark W.

    2002-10-01

    We quantitatively analyze the area-age distribution of bedrock based on data from the most recent geologic map of the conterminous United States of America [, 1974a, 1974b], made available in digital form by the United States Geologic Survey. The area-age distribution agrees surprisingly well with older data [, 1949] but provides much higher temporal resolution. The mean stratigraphic age of all sedimentary bedrock is ˜134 Myr; that of Tertiary-Cambrian sediments is ˜104 Myr. The analysis also reveals area coverage of some minor lithologies, such as ultramafic rocks that cover ˜0.15% of the conterminous United States. Area coverage of 162 lithostratigraphic units is made available as an Excel data sheet.

  2. Hydrogeology of the Schodack-Kinderhook Area, Renssealaer and Columbia Counties, New York

    Science.gov (United States)

    Reynolds, Richard J.

    1999-01-01

    Two glaciodeltaic outwash terraces in southern Rensselaer and northern Columbia Counties, known locally as the Schodack and Kinderhook terraces, consist of ice-contact and outwash sand and gravel and together form a regional, unconfined, stratified-drift aquifer with a combined area of 18.75 square miles. The hydrogeology of these aquifers is summarized on four maps at 1:24,000 scale, that depict (1) locations of wells and test holes, (2) surficial geology, (3) altitude of the water table, and (4) altitude of the bedrock surface.Both terraces are associated with a thin and probably discontinuous confined aquifer consisting of beds of glaciofluvial sand and gravel derived from the outwash deltas that form the two terraces. The confined aquifer is overlain by thick deposits of lacustrine silt and clay. Consultants? estimates of average hydraulic conductivity, based on aquifer tests conducted at four test wells screened in thicker sections of the confined aquifer, range from 430 to 2,360 ft/d (feet per day), with a mean of 1,150 ft/d. The mean estimate of hydraulic conductivity derived from specific-capacity data from 16 test wells screened in confined and unconfined sections of the aquifer is 640 ft/d.Reported yields for domestic wells completed in unconfined sections of the Schodack and Kinderhook terrace aquifers average 16.1 and 18.3 gal/min (gallons per minute), respectively, and reported yields of domestic wells completed in hydraulically confined sections of these terraces average 15.3 and 12.8 gal/ min, respectively. Yields from public-supply wells screened in the confined sections of the Schodack Terrace aquifer range from 50 to 1,050 gal/min and average 305 gal/min. Average annual recharge to the Schodack Terrace aquifer and adjacent upland till deposits, as estimated in a 1960 U.S. Geological Survey study, were 16.3 and 7.1 inches per square mile, respectively. Bedrock that underlies the study area has been highly modified by tectonic activity, differential

  3. Site Characterization of Deep Bedrock with Integrated Geophysical Survey

    Science.gov (United States)

    Son, J.; Kim, C.; Eun, S. B.

    2015-12-01

    In order to utilize the deep underground storage facility stable for a long time, precise site characterization is required before its construction. Various kinds of geophysical survey as well as drilling and geological survey should be used to know the status of deep bedrock. A research had been conducted to make the site characterization of deep bedrock for several years, and to achieve its purpose, integrated geophysical survey were applied to the test area which had gneiss bedrock. DC resistivity survey for six surficial profiles was conducted to find the appropriate location of drilling survey. Cross-hole/surface-to-hole resistivity tomography survey and borehole reflection radar survey were applied to the drill holes after its installation completed. Three bore holes of which length was 500 meter were drilled to investigate the status of deep bedrock, and cross-hole tomography survey was applied between two boreholes among these. Also borehole reflection radar survey was conducted to another two boreholes. Deep seated fracture zones which were not identified with the surficial geological and resistivity survey were found through the analysis of tomography section. Fracture zones were consisted of steep slope fault and these were also identified with the result of borehole radar section. After the basic survey was completed, one of three holes was extended to the depth of 1 km. Radar reflection survey which was only available to the deep drill-hole was applied. Because steel casing was installed to the depth of 750 m to stabilize the extended drill-hole, resistivity method was not available and borehole radar reflection method was only available among the geophysical method used in this research. Through results of radar reflection survey, several fracture zones were identified for the newly extended section of drill hole and some of those facture has relatively large size and passed through the bore hole.

  4. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  5. Greenland Analogue Project - Hydraulic properties of deformation zones and fracture domains at Forsmark, Laxemar and Olkiluoto for usage together with Geomodel version 1

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB (Sweden)); Stigsson, Martin (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Rhen, Ingvar (Sweco Environment AB (Sweden)); Engstroem, Jon (Geologian tutkimuskeskus (Finland)); Klint, Knut Erik (De Nationale Geologiske Undersoegelser for Danmark og Groenland (Denmark))

    2011-05-15

    The database of the GAP site is under development. In order to meet the data needs of the different modelling teams working with groundwater flow modelling it has been decided to compile trial data sets comprising structural-hydraulic properties suitable for flow modelling on different scales. The properties provided in this report are based on data and groundwater flow modelling studies conducted for three sites located in the Fennoscandian Shield, two of which are studied by SKB, Forsmark and Laxemar, and one by Posiva, Olkiluoto. The provided hydraulic properties provided here are simplified to facilitate a readily usage together with the GAP Geomodel version 1.

  6. Characterizing and Modelling Preferential Flow Path in Fractured Rock Aquifer: A Case Study at Shuangliou Fractured Rock Hydrogeology Research Site

    Science.gov (United States)

    Hsu, Shih-Meng; Ke, Chien-Chung; Lo, Hung-Chieh; Lin, Yen-Tsu; Huang, Chi-Chao

    2016-04-01

    On the basis of a relatively sparse data set, fractured aquifers are difficult to be characterized and modelled. The three-dimensional configuration of transmissive fractures and fracture zones is needed to be understood flow heterogeneity in the aquifer. Innovative technologies for the improved interpretation are necessary to facilitate the development of accurate predictive models of ground-water flow and solute transport or to precisely estimate groundwater potential. To this end, this paper presents a procedure for characterizing and modelling preferential flow path in the fractured rock aquifer carried out at Fractured Rock Hydrogeology Research Site in Shuangliou Forest Recreation Area, Pingtung County, Southern Taiwan. The Shuangliou well field is a 40 by 30-meter area consisting of 6 wells (one geological well, one pumping well and four hydrogeological testing wells). The bedrock at the site is mainly composed of slate and intercalated by meta-sandstone. The overburden consists of about 5.6 m of gravel deposits. Based on results of 100 m geological borehole with borehole televiewer logging, vertical flow logging and full-wave sonic logging, high transmissivity zones in the bedrock underlying the well field were identified. One of transmissivity zone (at the depths of 30~32 m) and its fracture orientation(N56/54) selected for devising a multiple well system with 4 boreholes (borehole depths :45m, 35m, 35m and 25m, respectively), which were utilized to perform cross-borehole flow velocity data under the ambient flow and pumped flow conditions to identify preferential flow paths. Results from the cross-borehole test show the preferential flow pathways are corresponding to the predicted ones. Subsequently, a 3-D discrete fracture network model based on outcrop data was generated by the FracMan code. A validation between observed and simulated data has proved that the present model can accurately predict the hydrogeological properties (e.g., number of fractures

  7. Soil mechanics and analysis of soils overlying cavitose bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs.

  8. Using bedrock geology for making ecological base maps

    Science.gov (United States)

    Heldal, Tom; Solli, Arne; Torgersen, Espen

    2017-04-01

    For preparing for a sustainable future land use planning, a more holistic approach to nature management is important. This will imply more multidisciplinary research and cooperation across professional borders. In particular, the integration of knowledge about the geosphere and biosphere is needed. As the biosphere produces ecosystem services to us, the geosphere provides "geo-system" services or "Underground" services. In Norway, we have tried to investigate the connection between ecosystems and bedrock geology. The aim was to create various ecological base maps that can be used for improving mapping and investigations of biodiversity. By using geochemical analyses and linking the results to bedrock maps, we managed to get a rather realistic picture of the mineral content of soils formed by the chemical weathering of rocks. This made it possible to make the first national map of Ca-content in the bedrock. In addition, we can construct maps of anomal soil composition (such as high P, Mg and K). The presentation will outline the methodology for such ecological base maps, and discuss problems, challenges and further research.

  9. Bedrock incision by bedload: insights from direct numerical simulations

    Science.gov (United States)

    Aubert, Guilhem; Langlois, Vincent J.; Allemand, Pascal

    2016-04-01

    Bedload sediment transport is one of the main processes that contribute to bedrock incision in a river and is therefore one of the key control parameters in the evolution of mountainous landscapes. In recent years, many studies have addressed this issue through experimental setups, direct measurements in the field, or various analytical models. In this article, we present a new direct numerical approach: using the classical methods of discrete-element simulations applied to granular materials, we explicitly compute the trajectories of a number of pebbles entrained by a turbulent water stream over a rough solid surface. This method allows us to extract quantitatively the amount of energy that successive impacts of pebbles deliver to the bedrock, as a function of both the amount of sediment available and the Shields number. We show that we reproduce qualitatively the behaviour observed experimentally by Sklar and Dietrich (2001) and observe both a "tool effect" and a "cover effect". Converting the energy delivered to the bedrock into an average long-term incision rate of the river leads to predictions consistent with observations in the field. Finally, we reformulate the dependency of this incision rate with Shields number and sediment flux, and predict that the cover term should decay linearly at low sediment supply and exponentially at high sediment supply.

  10. Critical zone study in Korea: integration of hydrogeology, mineralogy, sedimentology and molecular biogeochemistry

    Science.gov (United States)

    Lee, J. Y.; Kwon, K.; Jo, K. N.; Lee, J. S.

    2015-12-01

    Critical Zone (CZ) is the topmost layer of the Earth ranging from the vegetation canopy down to the soil, groundwater, and bedrock that sustains our ecosystem including human life. This CZ is being greatly influenced by the climate change and anthropogenic forces. We introduce the Critical Zone Frontier Research Laboratory (CFRL), a critical zone research lab recently funded by the Korean government for 2015-2020. The objective of CFRL is to unravel the relationships between climate and CZ changes to propose a prediction model for future responses of CZ to climate change. For this ultimate goal, we establish multiple CZ observatories in Kangwon areas and investigate soil, groundwater, and cave environments by integration of hydrogeology, mineralogy, sedimentology and molecular biogeochemistry. This study will enhance our understanding about CZ and local resolution of a climate change model. This research is financially supported by the Basic Research Laboratory Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning.

  11. Regional hydrogeology of the Silurian and Ordovician sedimentary rock underlying Niagara Falls, Ontario, Canada

    Science.gov (United States)

    Novakowski, Kentner S.; Lapcevic, Patricia A.

    1988-12-01

    Due to concern over the potential for widespread groundwater contamination in the sedimentary rock underlying the Niagara Falls area, this study was done to investigate the hydrogeology of the Silurian and Ordovician stratigraphy underlying the Upper Niagara River and the Eastern Niagara Peninsula. Seven boreholes (up to 150 m deep) were drilled, instrumented with multiple packer casing, tested for permeability, sampled for inorganic and organic solutes and monitored for hydraulic head to provide data for a conceptual model of regional groundwater flow. Results show that there are at least three distinct groundwater flow regimes in the bedrock. The uppermost regime consists of fracture zones in the Guelph and Lockport Formations, within which hydraulic conductivity, hydraulic head measurements and geochemical analyses indicate active groundwater circulation primarily discharging towards the Niagara Gorge and Escarpment. Underlying the Lockport Formation are an overpressured (high hydraulic head) regime in the Clinton-Upper Cataract-Lower Queenston Formation and an underpressured (low hydraulic head) regime in the Lower Cataract-Upper Queenston Formation. In both regimes, geochemical analyses and permeability measurements indicate very old and saline groundwater which probably has undergone minimal migration since pre-Pleistocene time. The implication based on the study so far, is that potential groundwater contamination below the bottom of the Lockport Formation is probably not significant in the Niagara Falls area except adjacent to the Niagara Gorge where vertical permeability in the lower flow regimes may be enhanced.

  12. Hydrogeologic Areas of the Southwest Principal Aquifer (SWPA) study

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster dataset represents the boundaries of the hydrogeologic areas of the Southwest Principal Aquifer (SWPA) study of the National Water Quality Assessment...

  13. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  14. Hydrogeological Characterization of the Middle Magdalena Valley - Colombia

    Science.gov (United States)

    Arenas, Maria Cristina; Riva, Monica; Donado, Leonardo David; Guadagnini, Alberto

    2017-04-01

    We provide a detailed hydrogeological characterization of the complex aquifer system of the Middle Magdalena Valley, Colombia. The latter is comprised by 3 sub-basins within which 7 blocks have been identified for active exploration and potential production of oil and gas. As such, there is a critical need to establish modern water resources management practices in the area to accommodate the variety of social, environmental and industrial needs. We do so by starting from a detailed hydrogeological characterization of the system and focus on: (a) a detailed hydrogeological reconnaissance of the area leading to the definition of the main hydrogeological units; (b) the collection, organization and analysis of daily climatic data from 39 stations available in the region; and (c) the assessment of the groundwater flow circulation through the formulation of a conceptual and a mathematical model of the subsurface system. Groundwater flow is simulated in the SAM 1.1 aquifer located in the Middle Magdalena Valley with the objective of showing and evaluating alternative conceptual hydrogeological modeling alternatives. We focus here on modeling results at system equilibrium (i.e., under steady-state conditions) and assess the value of available information in the context of the candidate modeling strategies we consider. Results of our modeling effort are conducive to the characterization of the distributed hydrogeological budget and the assessment of critical areas as a function of the conceptualization of the system functioning and data avilability.

  15. Chemical Hydrogeology: Fifty Years of Advances, Breakthroughs, and Innovation

    Science.gov (United States)

    Brusseau, M. L.

    2015-12-01

    Chemical hydrogeology focuses on the composition, properties, and biogeochemical processes inherent to water in subsurface environments. Multiple avenues of research coalesced in the 1960's to foment the development of chemical hydrogeology as a distinct field. In the intervening 50 years, chemical hydrogeology principles have been applied to innumerable issues and problems, and concomitantly, the field has continually experienced advances, breakthroughs, and innovations in theory, analysis, and application. An overarching theme to chemical hydrogeology in both theory and application is integration--- integration of disciplines (interdisciplinary, multidisciplinary), integration of approaches (theoretical, experimental, analytical), and integration of scales (spatial, temporal). Chemical hydrogeology has never been more relevant and more challenged as today, as we face critical issues related to for example water scarcity and availability of clean water, impacts of energy development, production and storage, and human interactions with ecosystem services. This presentation will illustrate recent advances in chemical hydrogeology, ranging from application of advanced imaging for characterization of pore-scale multiphase systems to integrated physical and biogeochemical assessments of field-scale contaminant transport.

  16. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

  17. Occurrence of methane in groundwater of south-central New York State, 2012-systematic evaluation of a glaciated region by hydrogeologic setting

    Science.gov (United States)

    Heisig, Paul M.; Scott, Tia-Marie

    2013-01-01

    A survey of methane in groundwater was undertaken to document methane occurrence on the basis hydrogeologic setting within a glaciated 1,810-square-mile area of south-central New York along the Pennsylvania border. Sixty-six wells were sampled during the summer of 2012. All wells were at least 1 mile from any known gas well (active, exploratory, or abandoned). Results indicate strong positive and negative associations between hydrogeologic settings and methane occurrence. The hydrogeologic setting classes are based on topographic position (valley and upland), confinement or non-confinement of groundwater by glacial deposits, well completion in fractured bedrock or sand and gravel, and hydrogeologic subcategories. Only domestic wells and similar purposed supply wells with well-construction and log information were selected for classification. Field water-quality characteristics (pH, specific conductance, dissolved oxygen, and temperature) were measured at each well, and samples were collected and analyzed for dissolved gases, including methane and short-chain hydrocarbons. Carbon and hydrogen isotopic ratios of methane were measured in 21 samples that had at least 0.3 milligram per liter (mg/L) of methane. Results of sampling indicate that occurrence of methane in groundwater of the region is common—greater than or equal to 0.001 mg/L in 78 percent of the groundwater samples. Concentrations of methane ranged over five orders of magnitude. Methane concentrations at which monitoring or mitigation are indicated (greater than or equal to 10 mg/L) were measured in 15 percent of the samples. Methane concentrations greater than 0.1 mg/L were associated with specific hydrogeologic settings. Wells completed in bedrock within valleys and under confined groundwater conditions were most closely associated with the highest methane concentrations. Fifty-seven percent of valley wells had greater than or equal to 0.1 mg/L of methane, whereas only 10 percent of upland wells

  18. Novice to Expert Cognition During Geologic Bedrock Mapping

    Science.gov (United States)

    Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.

    2011-12-01

    Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the

  19. Photogrammetry in Experiments for Hydrogeological Risk Assessment

    Science.gov (United States)

    Barazzetti, L.; Scaioni, M.; Feng, T.; Qiao, G.; Lu, P.; Tong, X.; Li, R.

    2013-01-01

    The construction of scaled-down simulation platforms is largely used to support investigations for the assessment of hydrological risk. Achieved outcomes can be integrated and assimilated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological modeling in general. During design of such simulation platforms, a relevant role has to be given to the spatial sensor network (SSN) to deploy, which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3D imaging sensors) can play an important role in SSN owing to its capability of collecting 2D images and 3D point clouds data covering wide surfaces without any contact. Different kinds of metric measurements can be then extracted from datasets. The aim of this paper is to give an overview and some examples on the potential of photogrammetry in hydrogeological experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors), potential applications are classified into 2D and 3D categories. Examples are focused on a scaled-down landslide simulation platform developed at Tongji University (Shanghai, P. R. China).

  20. Hydrogeological assessment of the Thar lignite prospect

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N.; Stace, R. [Nottingham Centre of Geomechanics (United Kingdom). Dept. of Civil Engineering, Faculty of Engineering; Pathan, A.G. [Mehran Univ. of Engineering and Technology, Shahrood (Iran, Islamic Republic of). Faculty of Mining, Petroleum and Geophysics; Atkins, A.S. [Staffordshire Univ., Stafford (United Kingdom). Faculty of Computing, Engineering and Technology

    2010-07-01

    This paper described a hydrogeological appraisal conducted at a proposed mine site in the Thar lignite field in Pakistan. The field contains an estimate 9 billion tonnes of lignite reserves. Three aquifers surrounding the lignite seams are inducing pore pressure in the rock mass and creating hazardous conditions at the site's high wall slopes. Groundwater inflow predictions were conducted using a finite element-based software package. The study was conducted to calculate dewatering quantities in order to ensure stability during excavation activities. Pumping tests conducted in boreholes at the bottom aquifer were used to determine permeability coefficients. Pumping rates from the 3 aquifers were calculated using the equivalent well approach. Results of the simulations were used to predict groundwater inflow from the bottom aquifer to the fully penetrating pit of the mine under steady state flow conditions. Results of the study indicated that 20 pumping out wells equipped with 150 mm diameter motor pumps will be required over a period of 10 years to achieve an overall dewatering rate of 0.6 m{sup 3}/s for the top aquifer. High head borehole pumps are needed for the intermediate and bottom-confined aquifers. 6 refs., 2 tabs., 2 figs.

  1. Geology and hydrogeology of the Florida Keys

    Science.gov (United States)

    Halley, Robert B.; Vacher, H. L.; Shinn,

    1997-01-01

    This chapter discusses the geology and hydrogeology of the Florida Keys, and focuses on the islands formed of Pleistocene limestone. These islands, which are crossed when driving from Miami to Key West, are typically regarded as "the Florida Keys." The outstanding and fragile character of ecosystems on and around the Florida Keys has prompted State and Federal efforts to protect and preserve the remaining public portions of the region. The Florida Keys were largely ignored during the sixteenth, seventeenth, and eighteenth centuries, although the waters just offshore provided a major shipping thoroughfare to and from the New World. The Florida Keys are now recognized as one of the great recreational and environmental resources of the United States. The islands are outposts of a laid-back, tropical resort culture that has as its foundation warmth and clear water. A significant part of the attraction is fishing, diving, and boating around the area's coral reefs, which the islands protect. But the reefs were not always so highly valued. The Florida Keys that have protected the reefs for millennia, may now be the source of the agents that may accomplish what Agassiz thought was beyond man's power a century ago.

  2. PHOTOGRAMMETRY IN EXPERIMENTS FOR HYDROGEOLOGICAL RISK ASSESSMENT

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2014-01-01

    Full Text Available The construction of scaled-down simulation platforms is largely used to support investigations for the assessment of hydrological risk. Achieved outcomes can be integrated and assimilated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological modeling in general. During design of such simulation platforms, a relevant role has to be given to the spatial sensor network (SSN to deploy, which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3D imaging sensors can play an important role in SSN owing to its capability of collecting 2D images and 3D point clouds data covering wide surfaces without any contact. Different kinds of metric measurements can be then extracted from datasets. The aim of this paper is to give an overview and some examples on the potential of photogrammetry in hydrogeological experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors, potential applications are classified into 2D and 3D categories. Examples are focused on a scaled-down landslide simulation platform developed at Tongji University (Shanghai, P. R. China.

  3. 2101-M Pond hydrogeologic characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  4. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites.

  5. Hydrogeological Issues Concerning the Thar Lignite Prospect

    Directory of Open Access Journals (Sweden)

    R. N. Singh

    2012-12-01

    Full Text Available The paper is concerned with the hydrogeological appraisal of the proposed mining operations in theThar lignite field in Sindh, Pakistan. The Thar coalfield covers an area of approximately 9000km2 andcontains three lignite seams lying at depth of 130m to 250 m. In the Thar lignite field, the presence ofthree main aquifers induces pore pressure in the rock mass surrounding the lignite seams and makes highwall slopes potentially unsafe. It is, therefore, necessary to dewater the rock mass before commencingmining excavations. The paper describes the proposed mine dewatering scheme to facilitatedepressurising of the rock mass surrounding the mining excavations. Inflow prediction of groundwater tothe surface mining excavation was carried out using a SEEP/W finite element software package. Thesimulation results show that the ground water inflow from the Top aquifer is 114m3/d, from theIntermediate confined aquifer is 141m3/d and from the Bottom confined aquifer is 1.28 x 105 m3 /d. Theseresults were compared with the analytical solutions which indicated that the relative error of estimation ofinflow quantities varies from 3.4 % to 6.4%.

  6. A probabilistic framework for the cover effect in bedrock erosion

    Science.gov (United States)

    Turowski, Jens; Hodge, Rebecca

    2016-04-01

    Bedrock erosion rates in mountain rivers are driven by impacting bedload particles and are modulated by two conflicting affects. Rising sediment flux leads to an increasing number of impacts and thus larger erosion rates (the tools effect). However, when sediment supply gets too large, sediment particles sit on the bed protecting it from impacts and thereby decreasing the erosion rate (the cover effect). Previous flume experiments and numerical models have predicted a wide range of formulations for the relationship between sediment flux and sediment cover. Here, we propose a simple probabilistic framework to mathematically describe the cover effect, in which the development of cover is as a function of the probability of sediment deposition on bedrock or sediment-covered areas of the bed. The framework can incorporate empirical or modelling results and provides a neat link to process interpretations. We compare model predictions with results from both a cellular automaton model of grain dynamics, and from flume experiments. The framework is able to reproduce many of the observed behaviours, and thus provides a way of unifying the range of different results that have previously been reported. Further, we present a simple first order model for the dynamic evolution of bed cover over time that could be incorporated into channel morphodynamic models.

  7. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  8. Flowing with the changing needs of hydrogeology instruction

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-01-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the diverse background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey of 68 hydrogeology instructors. The literature and survey results suggest there are ~15 topics that are considered crucial by most hydrogeologists and >100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  9. Flowing with the changing needs of hydrogeology instruction

    Directory of Open Access Journals (Sweden)

    T. Gleeson

    2012-01-01

    Full Text Available Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the diverse background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey of 68 hydrogeology instructors. The literature and survey results suggest there are ~15 topics that are considered crucial by most hydrogeologists and >100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  10. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  11. Landslides and the interplay of infiltration, soil permeability and bedrock exfiltration on steep slopes

    Science.gov (United States)

    Schneider, Philipp; Brönnimann, Cornelia; Stähli, Manfred; Seibert, Jan

    2015-04-01

    Shallow landslides pose substantial risks to people and infrastructure in mountain areas. Their occurrence is influenced by soil and bedrock characteristics and triggered by precipitation-induced pore water dynamics. The bedrock may drain or contribute to groundwater in the overlying soil depending on permeability, degree of fracturing, saturation and hydraulic head. Here, we present a case study from Central Switzerland designed to illuminate a situation where such interactions are decisive and investigate runoff formation processes at hillslopes prone to slide. The bedrock in the study area represents a succession of fissured conglomerate-sandstone and weathered marlstone layers, overlaid by a gleysol. Evidence of a temporally confined aquifer in bedrock fractures was gathered from a severe storm event in August 2005. First, a geological model of the investigated slope derived from electrical resistivity tomography surveys, borehole data, and bedrock outcrops formed the basis for test site instrumentation. Second, the soil moisture and the groundwater response to 32 storm events were monitored in different soil and bedrock layers. Although the subsoil horizons are not particularly permeable, a fast and substantial rise of hydraulic heads in the bedrock was observed, suggesting that rapid percolation through bedrock fractures caused the immediate increase of pore water pressures. The data document how pore water pressure builds up in fractured bedrock below a low-permeable soil during storms, which may trigger shallow landslides. Third, sprinkling experiments were conducted on subplots with variable rainfall intensities and different dye tracers to identify preferential infiltration, percolation and storm runoff formation at the hillslope. Brilliant blue dye stained the entire organic topsoil, vertical soil fractures, and macropores. Lateral drainage in the subsoil or at the soil-bedrock interface was not observed; drainage was limited to the organic topsoil. In

  12. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Ronny [Univ. of Kalmar (Sweden)

    2005-12-15

    substrate shape file, were defined by means of the depth grid. The vegetation community and covering degree was defined according to adjacent polygons with information about both depth and substrate. In areas with diving or boat transects close to one another, polygons were defined by joining similar observations together. The covering degree of the vegetation within the new polygon was calculated as a mean of the joined observations. In areas which had not been visited in previous studies, a mean of other readings on a certain depth was used to estimate vegetation community and covering degree. The type of information used to define the vegetation community and covering degree was noted for all polygons in the GIS application. As a final step the area of the polygons was calculated. Six macrophyte communities were identified in the Forsmark area. The identified communities were Phanerogams, Chara, Filamentous (brown and green) algae, Vaucheria, Fucus and Red algae.

  13. Python-Based Applications for Hydrogeological Modeling

    Science.gov (United States)

    Khambhammettu, P.

    2013-12-01

    Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The

  14. Evaluation of percolation rate of bedrock aquifer in coastal area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sun Ju [NEXGEO Co. Ltd, Seoul (Korea, Republic of); Jun, Seong Chun [GeoGreen21 Co. Ltd, Seoul (Korea, Republic of)

    2016-03-15

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

  15. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  16. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  17. Hydrogeologic inferences from geophysical and geologic investigation of the Standard Mine site, Elk Basin, Colorado

    Science.gov (United States)

    Minsley, B. J.; Caine, J. S.; Ball, L. B.; Burton, B.; Curry-Elrod, E.; Manning, A. H.; Verplanck, P. L.

    2009-12-01

    Geophysical and geologic data were collected at the Standard Mine in Elk Basin near Crested Butte, CO, to improve our understanding of the hydrogeologic controls in the basin and how they influence surface and groundwater interactions with nearby mine workings. The Tertiary Ohio Creek and Wasatch formations are the bedrock geologic units; both are primarily sandstones, but with differences in weathering and fracturing. Dikes, near-vertical normal faults, and polymetallic quartz veins with varying degrees of lateral continuity cut the sedimentary units. The net impact of these features, along with basin topography, makes it difficult to predict the behavior of the surface and groundwater systems. This integrated study utilizes geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements. This is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. The approach combines the benefit of direct, but sparse, field observations with spatially continuous, but indirect, measurements of physical properties through the use of geophysics. Surface geophysical data includes electrical resistivity profiles aimed at imaging variability in subsurface structural properties and fluid content; self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow flow patterns; and magnetic measurements, which provide information on lateral variability in near-surface geologic features, although the minerals at this site are not strongly magnetized. Downhole caliper and optical televiewer logs were acquired in one well and provide valuable information on fracture properties. Field geologic observations include hand sample mineralogy and detailed mapping and characterization of faults, joints, and veins. Analyses of representative rock samples include magnetic susceptibility, mercury injection capillary pressure, semi-quantitative x-ray diffraction

  18. Event scale variability of mixed alluvial-bedrock channel dynamics

    Science.gov (United States)

    Cook, Kristen; Turowski, Jens; Hovius, Niels

    2015-04-01

    The relationship between flood events and fluvial behavior is critical for understanding how rivers may respond to the changing hydrologic forcing that may accompany climate change. In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a large number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes, bedrock-controlled changes in channel width and planform, and the shape of the hydrograph. We use the Daan River Gorge in western Taiwan as a case study to directly observe the effect of individual flood events on channel evolution. The 1200 m long and up to 20 m deep bedrock gorge formed in response to uplift of the riverbed during the 1999 Chi-Chi earthquake. The extremely rapid pace of change ensures that flood events have measurable and often dramatic effects on the channel. Taiwan is subject to both summer typhoons and a spring monsoon, resulting in numerous channel-altering floods with a range of magnitudes. Discharge is therefore highly variable, ranging from 5 to over 2000 m3/s, and changes in the channel are almost entirely driven by discrete flood events. Since early 2009 we have monitored changes in the gorge with repeated RTK GPS surveys, laser rangefinder measurements, and terrestrial LIDAR surveys. Six rainfall stations and five water level gauges provide hydrological data for the basin. We find a distinct relationship between flood magnitude and the magnitude of geomorphic change; however, we do not find a clear relationship between flood characteristics and the direction of change - whether the channel experienced aggradation or erosion in a particular flood. Upstream coarse sediment supply and the influence of abrupt changes in channel width on bedload flux through the gorge appear to have important influences on the channel response. The better understand these controls, we use the model sedFlow (Heimann et al., 2014) to explore the effects of interactions

  19. Post-glacial, land rise-induced formation and development of lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, Anna-Kristina; Blomqvist, Peter [Uppsala Univ. (Sweden). Dept. of Limnology, Evolutionary Biology Centre

    2000-03-15

    This report describes the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area. The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny have also been identified. Three main types of lake ecosystems could be identified: The oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; i) the pelagic zone, characterised by low production of biota, ii) the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites, and iii) the light-exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. In later stages of the lake ontogeny, Sphagnum becomes more and more dominant in the system, which successively turns acidic. The final stage is likely to be a raised bog ecosystem with an autonomous hydrological functioning. The brown water lakes are typically found within the main part of the River Forsmarksaan and are characterised by a high flow-through of water from the upper parts of the drainage area, which are dominated by mires. Their lake water is highly stained by allochtonous organic carbon imported from the catchment area. Also in this lake type a Sphagnum-littoral successively develops, and in a mature lake three key habitats can be identified; i) the pelagic zone, most likely the dominant habitat in terms of production of organisms and in which bacterioplankton dominates the

  20. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  1. Peak Ground Acceleration on Bedrock of Natanz, Iran

    Directory of Open Access Journals (Sweden)

    Bakouchi .emad

    2016-12-01

    Full Text Available The present paper was done under the title of peak ground acceleration(PGA on bedrock for natanz city. A set of seismic sources, historical and instrumental seismicity data within the radius of 150 kilometers from the city center since the year 1700 until now has been collected and used. Kijko[2000] method has been applied for estimating the seismic parameters considering lack of suitable seismic data, inaccuracy of the available information and uncertainty of magnitude in different periods. The calculations were performed by using the logic tree method, three weighted attenuation relationships were used; including Ghodrati et al (2007, 0.4; Ambraseys et al (1996, 0.3 ; Campbellbozorgnia (2000, 0.3 . The SEISRISKIII (1987 software was used to calculate the earthquake hazard. The results of this analysis were submitted for 10% and 2% probability of event in 50 years.

  2. Influence of bedrock on river hydrodynamics and channel geometry

    Science.gov (United States)

    Rennie, C. D.; Church, M. A.; Venditti, J. G.; Bomhof, J.; Adderley, C.

    2013-12-01

    We present an acoustic Doppler current profiler (aDcp) survey of a 524 km long reach of Fraser River, British Columbia, Canada, as it passes through the Fraser Canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach between the towns of Quesnel and Hope). A continuous centreline aDcp survey was employed to measure longitudinal variation in slope, depth, depth-averaged velocity, and shear velocity. A total of 71 aDcp sectional surveys throughout the reach provided section widths (w), section-averaged depths (d), velocity distributions, and discharge (Q). Finally, air photo analysis using Google imagery provided channel widths at 0.5 km spacing. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. The resulting data provide a unique opportunity to evaluate the influence of bedrock confinement on river hydrodynamics and channel geometry. Continuous centreline longitudinal aDcp data and the widths from air photo analysis were grouped within each sub-reach based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were also narrower and deeper, but had lower depth-averaged velocity and shear velocity. Sectional geometry data were homogenized along the river (to compensate increasing flows at tributary junctions) by computing w/Q^{1/2} and d/Q^{1/3}, following commonly observed scaling relations. Alluvial reaches are 2.3x wider than rock-bound reaches (from the more abundant imagery data) and 0.60x as deep (from aDcp sections), implying

  3. Ultramafic-derived arsenic in a fractured bedrock aquifer

    Science.gov (United States)

    Ryan, P.C.; Kim, J.; Wall, A.J.; Moen, J.C.; Corenthal, L.G.; Chow, D.R.; Sullivan, C.M.; Bright, K.S.

    2011-01-01

    In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from elements, indicating that As was introduced to the ultramafic rocks during metasomatism by fluids derived from the subducting slab. Evidence from sequential chemical extraction, X-ray diffraction (XRD) and stoichiometric analysis indicates that the majority of the As is located in antigorite and magnesite (MgCO3) with lesser amounts in magnetite (Fe3O4). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9??g/L) and an Mg-HCO3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO3- concentrations. ?? 2011 Elsevier Ltd.

  4. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin; Lane, John; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2017-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  5. Ice sheet growth with laterally varying bedrock relaxation time

    Science.gov (United States)

    van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik

    2017-04-01

    Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.

  6. Forsmark site investigation. Geophysical, radar and BIPS logging in boreholes HFM01, HFM02, HFM03 and the percussion drilled part of KFM01A

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Christer; Nilsson, Per [Malaa Geoscience AB/RAYCON, Jaerfaella (Sweden)

    2003-03-01

    This document reports the data gained during logging operations, which is one of the activities performed within the site investigation at Forsmark. The logging operations presented here include geophysical logging with Wellmac, RAMAC and BIPS. In total, 430 metres of logging was carried out in four percussion drilled boreholes. The boreholes in question are; KFM01A (c. 100 m deep of which 50 m were logged/diameter 165 mm), HFM01 (200 m/140 mm), HFM02 (100 m/140 mm) and HFM03 (30 m/140 mm). The borehole referred to as KFM01A is the uppermost, percussion drilled part of a c 1000 m deep telescopic drilled borehole of which the section 1001000 metres is core drilled. All measurements were conducted in June 2002. Instruments used: Borehole radar (RAMAC) system with dipole radar antennas. Borehole TV system (Borehole Image Processing System BIPS), a high resolution, side viewing, colour borehole TV system. Borehole geophysical logging system (WELLMAC)

  7. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  8. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    Science.gov (United States)

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  9. Reef and nonreef aquifers - A comparison of hydrogeology and geochemistry, northwestern Indiana

    Science.gov (United States)

    Schnoebelen, D.J.; Krothe, N.C.

    1999-01-01

    The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology, geophysical logs, aquifer tests) and geochemistry (major ions and stable isotopes). The study showed differences in water quantity and quality between the reef and nonreef aquifers. The reef aquifer had few shales, abundant fossiliferous material (up to 100 m thick), and high porosities (10 to 15%). The nonreef aquifer had abundant shales, less fossiliferous material (a few meters thick), and low porosities. Total transmissivities at the reef sites were 697 m2/d, (meters squared per day) and 4831 m2/d, compared to 46 m2/d at the nonreef site. Flowpaths in the nonreef aquifer were associated with fractures and poorly connected moldic porosity with larger fractures and better connected vuggy porosity in the reef aquifer. Water chemistry data for the nonreef aquifer showed mean concentrations of sodium (235 mg/L [milligrams per liter]), sulfate (160 mg/L), sulfide (13 mg/L), fluoride (2.7 mg/L), and dissolved solids (635 mg/L) approximately two to five times larger when compared to mean concentrations in the reef aquifer. Ground water at the nonreef site was classified as a sodium-bicarbonate type while that at the reef sites was calcium-magnesium bicarbonate. The oxygen/deuterium isotope data indicates recharge from modern precipitation and not Pleistocene-age recharge.The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology

  10. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  11. Case study for delineating a contributing area to a well in a fractured siliciclastic-bedrock aquifer near Lansdale, Pennsylvania

    Science.gov (United States)

    Barton, Gary J.; Risser, Dennis W.; Galeone, Daniel G.; Goode, Daniel J.

    2003-01-01

    A supply well used by the North Penn Water Authority near Lansdale, Pa., was selected as a case study for delineating a contributing area in a fractured siliciclastic-bedrock aquifer. The study emphasized the importance of refining the understanding of factors that control ground-water movement to the well by conducting (1) geophysical logging and flow measurements, (2) ground-water level monitoring, (3) aquifer testing, and (4) geochemical sampling. This approach could be applicable for other wells in siliciclastic-bedrock terranes, especially those of Triassic age in southeastern Pennsylvania. The principal methods for refining the understanding of hydrology at supply well MG-1125 were aquifer testing, water-level measurements, and geophysical logging. Results of two constant-discharge aquifer tests helped estimate the transmissivity of water-producing units and evaluate the anisotropy caused by dipping beds. Results from slug tests provided estimates of transmissivity that were used to evaluate the results from the constant-discharge aquifer tests. Slug tests also showed the wide distribution of transmissivity, indicating that ground-water velocities must vary considerably in the well field. Water-level monitoring in observation wells allowed maps of the potentiometric surface near the well field to be drawn. The measurements also showed that the hydraulic gradient can change abruptly in response to pumping from nearby supply wells. Water levels measured at a broader regional scale in an earlier study also provided a useful view of the potentiometric surface for purposes of delineating the contributing area. Geophysical logging and measurements of flow within wells showed that about 60 percent of water from supply well MG-1125 probably is contributed from relatively shallow water-producing fractures from 60 to 125 feet below land surface, but measurable amounts of water are contributed by fractures to a depth of 311 feet below land surface. Chemical samples

  12. The hillslope-storage Boussinesq model for non-constant bedrock slope

    NARCIS (Netherlands)

    Hilberts, A.G.J.; Loon, van E.E.; Troch, P.A.A.; Paniconi, C.

    2004-01-01

    In this study the recently introduced hill slope-storage Boussinesq (hsB) model is cast in a generalized formulation enabling the model to handle non-constant bedrock slopes (i.e. bedrock profile curvature). This generalization extends the analysis of hydrological behavior to hillslopes of arbitrary

  13. Root distribution and seasonal water status in weathered granitic bedrock under chaparral

    Science.gov (United States)

    P. D. Sternberg; M. A. Anderson; R. C. Graham; J. L. Beyers; K. R. Tice

    1996-01-01

    Soils in mountainous terrain are often thin and unable to store sufficient water to support existing vegetation through dry seasons. This observation has led to speculation about the role of bedrock in supporting plant growth in natural ecosystems, since weathered bedrocks often have appreciable porosity and, like soil, can store and transmit water. This study, within...

  14. Distributed Temperature Sensing as a downhole tool in hydrogeology

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Bour, O.; Borgne, Le T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.; Selker, J.S.

    2016-01-01

    Distributed Temperature Sensing (DTS) technology enables downhole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in-well flow, and subsurfac

  15. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  16. Closure of the Spent Fuel Repository in Forsmark - Studies of alternative concepts for sealing of ramp, shafts and investigation boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, Bjoern [SKB AB, Stockholm (Sweden); Luterkort, David [SGI, Stockholm (Sweden); Johansson, Roland [Miljoe- och Energikonsult AB, Ekeroe (Sweden)

    2012-12-15

    In March 2011, SKB submitted applications under the Nuclear Activities Act and the Environmental Code for the construction and operation of a final repository for spent nuclear fuel in Forsmark. An important supporting document for the application under the Nuclear Activities Act was the SR-Site safety assessment. As a part of the work with the application and as background material for SR-Site, SKB prepared production reports, including the closure production report. The closure production report presented definitions, requirements and design premises, a reference design and the initial state for repository closure. SR-Site evaluated the reference design and related design premises that were presented in the closure production report. SR-Site thereby concluded that the design premises on which the reference design were based are adequate. Relaxing the requirements would require additional sensitivity analyses focusing on the hydraulic properties of the access, main and transport tunnels. SR-Site further concluded that the reference design could likely be simplified without violating the current design premises. Furthermore, additional simplifications could probably be made if the design premises could be revised. This has been studied in the project 'Closure - concept studies', whose results are presented in this report. SR-Site also evaluated the reference design for investigation boreholes that is presented in the production report. The evaluation showed that the impact of improper borehole seals is very moderate. Further, SR-Site concludes that the current design premises are appropriate but possibly too strict, since even open boreholes seem to have a limited impact on the groundwater flow in the repository. Since it might be difficult to inspect the outcome of the current design of borehole sealing, it could be of interest to assess whether a solution that may result in higher effective permeability of the borehole seals would provide sufficiently

  17. Influence of alluvial cover and lithology on the adjustment characteristics of semi-alluvial bedrock channels

    Science.gov (United States)

    Ferguson, Sean P.; Rennie, Colin D.

    2017-05-01

    A growing body of research has focused on evaluating the adjustment characteristics of semi-alluvial channels containing proximate bedrock, mixed, and alluvial sections. Active orogens have been the focus of most empirical field-based studies with comparatively less focus on semi-alluvial bedrock channels located in other regions. In this study, we present an inventory of channel geometry data collected from semi-alluvial bedrock channels in Ontario and Québec, Canada, which are not subject to tectonic uplift. Data were sourced from a variety of physiographic settings, permitting evaluation of the influence of alluvial cover, lithology, and gradient on cross-sectional channel form. Our results show no substantial difference in channel width or scaling behaviour amongst bedrock, mixed, and alluvial channels included in our study, except for sedimentary bedrock channels virtually bare of alluvial cover that represent a uniquely wide, distinct subgroup. Channel gradient does not appear to exhibit any observable control on channel width amongst our study rivers, suggesting that sedimentary bedrock channels form a distinct subgroup because of lithology. Comparatively, the widths of our bedrock channels formed in igneous/metamorphic bedrock are comparable to the widths of mixed channels and alluvial channels for a given discharge and drainage area. Our findings also suggest that cross-sectional adjustment of sedimentary bedrock channels is achieved through lateral erosion of the channel banks and downward erosion of the channel bed, whereas cross-sectional adjustment of igneous/metamorphic bedrock is primarily achieved through downward erosion of the bed with limited lateral erosion of the banks.

  18. Chemistry data from surface ecosystems in Forsmark and Laxemar-Simpevarp. Site specific data used for estimation of CR and K{sub d} values in SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mats Troejbom Konsult AB (Sweden)); Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden))

    2010-11-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to compile information from the Forsmark and Laxemar-Simpevarp sites in order to select and provide relevant site data for parameter sed in the Radionuclide Dose Model. This report contains an overview of all available chemistry data from the surface ecosystems at Forsmark and Laxemar-Simpevarp areas, comprising hydrochemistry of shallow groundwater, porewater, lake water, stream water and sea water as well as the chemical composition of the regolith and biota of the terrestrial, limnic and marine ecosystems. Detailed references to data reports are tabulated and all sampling points are shown in a large number of maps in Chapter 2. An explorative analysis in Chapter 3 is the basis for the final selection of site data described in Chapter 4

  19. Application of Borehole Geophysical Methods for Assessing Agro-Chemical Flow Paths in Fractured Bedrock Underlying the Black Brook Watershed, Northwestern New Brunswick

    Science.gov (United States)

    Desroches, A.; Butler, K.

    2009-05-01

    fracture subsets dipping roughly 70o to 80o towards the N-NW and S-SE; 2) steeply dipping fractures that strike towards 156o/336o, with fracture subsets dipping roughly 70o to 80o towards the NE and SW; and 3) primary set of moderately dipping fractures that strike 074o/254o and dip roughly 30o to 40o towards the SE. The strike of the steeply dipping fracture sets are oriented roughly perpendicular to each other, reflecting two distinct fracture generation events. The low-angle fractures are most common and correspond to openings along bedding planes that dip roughly 38o towards 164o. This is a result of penetrating only one limb of a fold; presumably a similar set of bedding-plane openings occur along the adjacent limb of the fold, with resultant fracture dips towards the northwest. Fractures exposed in outcrops along the Trans-Canada Highway exhibit a similar orientation distribution to that observed in the boreholes. However, as expected, these exposures show a greater proportion of fractures with dips between 80o and 90o, compared to the vertical boreholes. A Terzaghi fracture probability correction was applied to the boreholes in order to account for this bias. The combined fracture datasets provide valuable information towards understanding groundwater flow and migration pathways of fertilizer leachate into the bedrock aquifer, and will lead to the development of more complex hydrogeological models.

  20. An integrated theoretical and practical approach for teaching hydrogeology

    Science.gov (United States)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    Hydrogeology as an earth science intersects the broader disciplines of geology, engineering, and environmental studies but it does not overlap fully with any of them. It is focused on its own range of problems and over time has developed a rich variety of methods and approaches. The resolution of many hydrogeological problems requires knowledge of elements of geology, hydraulics, physics and chemistry; moreover in recent years the knowledge of modelling techniques has become a necessary ability. Successful transfer of all this knowledge to the students depends on the breadth of material taught in courses, the natural skills of the students and any practical experience the students can obtain. In the Department of Earth and Environmental Sciences of the University of Milano-Bicocca, the teaching of hydrogeology is developed in three inter-related courses: 1) general hydrogeology, 2) applied hydrogeology, 3) groundwater pollution and remediation. The sequence focuses on both groundwater flux and contaminant transport, supplemented by workshops involving case studies and computer labs, which provide the students with practical translation of the theoretical aspects of the science into the world of work. A second key aspect of the program utilizes the students' skill at learning through online approaches, and this is done through three approaches: A) by developing the courses on a University e-learning platform that allows the students to download lectures, articles, and teacher comments, and to participate in online forums; B) by carring out exercises through computer labs where the student analyze and process hydrogeological data by means of different numerical codes, that in turn enable them to manage databases and to perform aquifer test analysis, geostatistical analysis, and flux and transport modelling both in the unsaturated and saturated zone. These exercises are of course preceded by theoretical lectures on codes and software, highlighting their features and

  1. Hydrogeologic investigation and establishment of a permanent multi-observational well network in Aiken, Allendale, and Barnwell Counties, South Carolina. Eight-year interim report (1986-1994). Volume 1 cluster-site description

    Energy Technology Data Exchange (ETDEWEB)

    Gellici, J.A.; Reed, R.H.; Logan, W.R.; Aadland, R.K.; Simones, G.C.

    1995-05-01

    The South Carolina Department of Natural Resources, Water Resources Division (SCWRD), in collaboration with the United States Department of Energy (USDOE) is conducting a hydrogeologic investigation of the ground-water system(s) peripheral to the Savannah River Site. The study area is located in the Southeastern Coastal Plain hydrogeologic province in Aiken, Allendale and Barnwell Counties, South Carolina. Ground-water movement, quality, and availability are being evaluated in order to better protect and manage this valuable regional resource. The investigation involves a well-cluster system comparable to the one constructed on the SRS. Cluster sites are situated outside the SRS on the basis of study objectives, proximity to the plant`s borders, land availability, and for the optimization of hydrogeologic control. One to three wells are completed into each major aquifer, and at each cluster site, at least one borehole is continuously cored and geophysically logged from land surface to at least 10 feet into unweathered bedrock. Data collected from the ongoing study include 146 paleontologic and palynologic age dates, 100 x-ray diffraction analyses of clay and bulk mineralogy, 442 sieve analyses, 6,040 feet of detailed core description, mineral composition and porosity determined from thin-section analyses, and continuous water-level data. This report is a compilation and interpretation of the {open_quotes}C-well{close_quotes} data that have been generated from the project and that will be used to model and characterize the aquifers and confining units in the region.

  2. Geophysical characterization of Hydrogeological processes at the catchment scale

    Science.gov (United States)

    Flores Orozco, Adrian; Gallistl, Jakob; Schlögel, Ingrid; Chwatal, Werner; Oismüller, Markus; Blöschl, Günter

    2016-04-01

    The characterization of hydrogeological properties in the subsurface with high resolution across space and time scales is critical to improve our understanding of water flow and transport processes. However, to date, hydrogeological investigations are mainly performed through well-tests or the analysis of samples, thus, limiting the spatial resolution of the investigation. To properly capture heterogeneities in the subsurface controlling surface-groundwater interactions, modern hydrogeological studies require the development of innovative investigation techniques that permit to gain continuous information about subsurface state with high spatial and temporal resolution at different scales: from the pore-space all the way to the catchment. To achieve this, we propose the conduction of geophysical surveys, in particular field-scale Spectral Induced Polarization (SIP) imaging measurements. SIP images provide information about the complex electrical conductivity (CEC), which is controlled by important hydrogeological parameters, such as porosity, water content and the chemical properties of the pore-water. Here, we present imaging results collected at the catchment scale (approximately 66 ha), which permitted to gain detailed information about the spatial variability of hydrogeological parameters at different scales. The heterogeneities observed in the geophysical images revealed consistency with independent information collected at the study area. In addition to this, and taking into account that different geophysical methods yield information about different properties and at diverse scales, interpretation of the SIP images was improved by incorporation of complementary measurements, such as: ElectroMagnetic Induction (EMI), Ground Penetrating Radar (GPR), Multichannel Analysis of Surface-Waves (MASW) and Seismic Refraction-Reflection (SRR).

  3. Testing bedrock incision models: Holocene channel evolution, High Cascades, Oregon

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Fonstad, M. A.

    2013-12-01

    There is abundant field evidence that sediment supply controls the incision of bedrock channels by both protecting the bed from incision and providing tools to incise the bed. Despite several theoretical models for sediment-dependent bedrock abrasion, many investigations of natural channel response to climatic, lithologic, or tectonic forcing rely on the stream power model, which does not consider the role of sediment. Here, we use a well-constrained fluvial channel cut into a Holocene lava flow in the High Cascades, Oregon to compare incision predictions of the stream power model and of the full physics of theoretical models for saltation-abrasion incision by bedload and suspended load. The blocky andesite of Collier lava flow erupted from Collier Cone ~1500 years ago, paving over the existing landscape and erasing fine-scale landscape dissection. Since the eruption, a 6 km stream channel has been incised into the lava flow. The channel is comprised of three alluvial reaches with sediment deposits up to 2 m thick and two bedrock gorges with incision of up to 8 m, with larger magnitude incision in the upstream gorge. Abraded forms such as flutes are present in both gorges. Given the low magnitude and duration of modern snowmelt flow in the channel, it is likely that much of the incision was driven by sediment-laden outburst floods from the terminus of Collier Glacier, which is situated just upstream of the lava flow and has produced two outburst floods in the past 100 years. This site is well suited for comparing incision models because of the relatively uniform lithology of the lava flow and our ability to constrain the timing and depth of incision using the undissected lava surface above the channel as an initial condition. Using a simple finite difference scheme with airborne-Lidar-derived pre-incision topography as an initial condition, we predict incision in the two gorges through time with both stream power and sediment-dependent models. Field observations

  4. Estimated Depth to Bedrock of Iowa as a 110 meter pixel_32bit Imagine Format Raster Dataset

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This raster dataset represents the depth to bedrock from the land surface. It was derived by subtracting a bedrock surface elevation layer from the NED 30 meter...

  5. On the reliability of manually produced bedrock lineament maps

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Jarna, Alexandra; Gasser, Deta; Łapinska-Viola, Renata

    2016-04-01

    Manual extraction of topographic features from digital elevation models (DEMs) is a commonly used technique to produce lineament maps of fractured basement areas. There are, however, several sources of bias which can influence the results. In this study we investigated the influence of the factors (a) scale, (b) illumination azimuth and (c) operator on remote sensing results by using a LiDAR (Light Detection and Ranging) DEM of a fractured bedrock terrain located in SW Norway. Six operators with different backgrounds in Earth sciences and remote sensing techniques mapped the same LiDAR DEM at three different scales and illuminated from three different directions. This resulted in a total of 54 lineament maps which were compared on the basis of number, length and orientation of the drawn lineaments. The maps show considerable output variability depending on the three investigated factors. In detail: (1) at larger scales, the number of lineaments drawn increases, the line lengths generally decrease, and the orientation variability increases; (2) Linear features oriented perpendicular to the source of illumination are preferentially enhanced; (3) The reproducibility among the different operators is generally poor. Each operator has a personal mapping style and his/her own perception of what is a lineament. Consequently, we question the reliability of manually produced bedrock lineament maps drawn by one person only and suggest the following approach: In every lineament mapping study it is important to define clear mapping goals and design the project accordingly. Care should be taken to find the appropriate mapping scale and to establish the ideal illumination azimuths so that important trends are not underrepresented. In a remote sensing project with several persons included, an agreement should be reached on a given common view on the data, which can be achieved by the mapping of a small test area. The operators should be aware of the human perception bias. Finally

  6. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands

    Science.gov (United States)

    Ayenew, Tenalem

    2008-05-01

    Occurrence of fluoride (F) in groundwater has drawn worldwide attention, since it has considerable impact on human health. In Ethiopia high concentrations of F in groundwaters used for community water supply have resulted in extensive dental and skeletal fluorosis. As a part of a broader study, the distribution of F in groundwater has been investigated, and compared with bedrock geology and pertinent hydrochemical variables. The result indicates extreme spatial variations. High F concentration is often associated with active and sub-active regional thermal fields and acidic volcanics within high temperature rift floor. Variations in F can also be related to changes in calcium concentration resulting from dissolution of calcium minerals and mixing with waters of different chemical composition originated from variable hydrogeological environment across the rift valley. The concentration of F dramatically declines from the rift towards the highlands with the exception of scattered points associated with thermal springs confined in local volcanic centers. There are also interactions of F-rich alkaline lakes and the surrounding groundwater. Meteoric waters recharging volcanic aquifers become enriched with respect to F along the groundwater flow path from highland recharge areas to rift discharge areas. Locally wells drilled along large rift faults acting as conduits of fresh highland waters show relatively lower F. These areas are likely to be possible sources of better quality waters within the rift. The result of this study has important implications on site selection for water well drilling.

  7. Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site, Adams County, Pennsylvania

    Science.gov (United States)

    Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.

    2000-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth

  8. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    Science.gov (United States)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a

  9. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    Science.gov (United States)

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

  10. Quality of bedrock groundwater in western Finland, with special reference to nitrogen compounds

    Directory of Open Access Journals (Sweden)

    Karro, E.

    1999-12-01

    Full Text Available Monitoring of bedrock aquifers utilized for water supply in the Vaasa region, western Finland, suggests slight changes in the chemical composition of groundwater resulting both from natural and anthropogenic factors. Applying the permissible limits for parameters in drinking water reveals that the groundwater quality is generally good. Groundwater occurring in fractures and fissures of the crystalline bedrock is protected from anthropogenic pollution by clay and till deposits with low permeability. Temporally, the contents of nitrogen compounds in groundwater exhibit a decreasing trend. Reducing conditions prevailing in bedrock aquifers are reflected in elevated ammonium, iron and manganese contents in water.

  11. Problems of hydrogeology and engineering geology in black coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Sztelak, J.

    1989-03-01

    Reviews topics discussed in 11 papers presented at the conference in the hydrogeology and engineering geology session. Three subgroups of topics were distinguished: environmental protection, surface waters and surface protection. One paper dealt with protection of a bath peat deposit from infiltration of saline mine waters from a settling pond. Other papers considered mine water recirculation, dumping slurries in rock body by injection through boreholes, hydrogeological damage caused to surface waters by mining operations, water bearing levels at 700-1,500 m depth, content of radioactive isotopes (uranium 234 and 238) in Carboniferous waters, draining water from the Jurassic water bearing level in the Lublin coal basin, rock burst criteria and forecasting, and slope stability.

  12. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  13. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Hans; Stadenberg, Ingela (SLU, Dept. of Ecology and Environmental Research, Uppsala (Sweden))

    2007-12-15

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m2, varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees (< 1 mm in diameter) were found in the mineral soil horizon the total profile down to 40 cm of the mineral soil, where 89, 82, 83 and 89% of the total amount in the whole profile were found. The upper 2.5 cm part of the humus layer contained 83, 81, 100 and 100% of all roots of the humus layer on the four different sampling occasions. High amounts of living fine roots were found in the upper 10 cm of the mineral soil horizon viz. 84, 76, 91 and 69% of the total mineral soil layer. Consequently, both the top soil horizons of the humus and the mineral soil layers were heavily penetrated by living fine roots. The highest proportion of living fine roots was found in the top 2.5 cm of the humus layer. Accordingly, the live/dead ratio of fine roots (< 1 mm in diameter) decreased from the top of the humus layer to the lower part of mineral soil horizon from 8.0-0.3, 0.8-0.2, 4.4-0.4 and 3.3-0.7 (g g-1) for the four sampling occasions, respectively. We concluded that the decrease in the live/ dead ratio was related to decreased vitality with depth of the fine roots in the soil profile. The highest live/dead ratio was found in the upper 2.5 cm of the humus layer for both the tree and field-layer species. This distribution pattern was most evident for tree fine roots < 1 mm in diameter. The mean fine-root biomass (live tissue < 1 mm in diameter) of tree species for the total profile varied on the four sampling occasions between 317, 113, 139 and 248 g m-2. The related fine root necromass (dead tissue

  14. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  15. Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients.

    Science.gov (United States)

    Angert, Alon; Weiner, Tal; Mazeh, Shunit; Sternberg, Marcelo

    2012-02-21

    The stable oxygen isotope compositions of soil phosphate (δ(18)O(p)) were suggested recently to be a tracer of phosphorus cycling in soils and plants. Here we present a survey of bioavailable (resin-extractable or resin-P) inorganic phosphate δ(18)O(p) across natural and experimental rainfall gradients, and across soil formed on sedimentary and igneous bedrock. In addition, we analyzed the soil HCl-extractable inorganic δ(18)O(p), which mainly represents calcium-bound inorganic phosphate. The resin-P values were in the range 14.5-21.2‰. A similar range, 15.6-21.3‰, was found for the HCl-extractable inorganic δ(18)O(p), with the exception of samples from a soil of igneous origin that show lower values, 8.2-10.9‰, which indicate that a large fraction of the inorganic phosphate in this soil is still in the form of a primary mineral. The available-P δ(18)O(p) values are considerably higher than the values we calculated for extracellular hydrolysis of organic phosphate, based on the known fractionation from lab experiments. However, these values are close to the values expected for enzymatic-mediated phosphate equilibration with soil-water. The possible processes that can explain this observation are (1) extracellular equilibration of the inorganic phosphate in the soil; (2) fractionations in the soil are different than the ones measured at the lab; (3) effect of fractionation during uptake; and (4) a flux of intercellular-equilibrated inorganic phosphate from the soil microbiota, which is considerably larger than the flux of hydrolyzed organic-P.

  16. Hydrogeologic Framework, Groundwater Movement, and Water Budget in Tributary Subbasins and Vicinity, Lower Skagit River Basin, Skagit and Snohomish Counties, Washington

    Science.gov (United States)

    Savoca, Mark E.; Johnson, Kenneth H.; Sumioka, Steven S.; Olsen, Theresa D.; Fasser, Elisabeth T.; Huffman, Raegan L.

    2009-01-01

    -flow directions in the sedimentary aquifer likely reflect local topographic relief (radial flow from bedrock highs) and more regional westward flow from the mountains to the Puget Sound. The largest groundwater-level fluctuations observed during the monitoring period (October 2006 through September 2008) occurred in wells completed in the sedimentary aquifer, and ranged from about 3 to 27 feet. Water levels in wells completed in unconsolidated hydrogeologic units exhibited seasonal variations ranging from less than 1 to about 10 feet. Synoptic streamflow measurements made in August 2007 and June 2008 indicate a total groundwater discharge to creeks in the tributary subbasin area of about 13.15 and 129.6 cubic feet per second (9,520 and 93,830 acre-feet per year), respectively. Streamflow measurements illustrate a general pattern in which the upper reaches of creeks in the study area tended to gain flow from the groundwater system, and lower creek reaches tended to lose water. Large inflows from tributaries to major creeks in the study area suggest the presence of groundwater discharge from upland areas underlain by bedrock. The groundwater system within the subbasins received an average (September 1, 2006 to August 31, 2008) of about 92,400 acre-feet or about 18 inches of recharge from precipitation a year. Most of this recharge (65 percent) discharges to creeks, and only about 3 percent is withdrawn from wells. The remaining groundwater recharge (32 percent) leaves the subbasin groundwater system as discharge to the Skagit River and Puget Sound.

  17. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  18. Coastal hydrogeological system of Mar Piccolo (Taranto, Italy).

    Science.gov (United States)

    Zuffianò, L E; Basso, A; Casarano, D; Dragone, V; Limoni, P P; Romanazzi, A; Santaloia, F; Polemio, M

    2016-07-01

    The Mar Piccolo basin is an internal sea basin located along the Ionian coast (Southern Italy), and it is surrounded primarily by fractured carbonate karstic environment. Because of the karstic features, the main continental water inflow is from groundwater discharge. The Mar Piccolo basin represents a peculiar and sensitive environment and a social emergency because of sea water and sediment pollution. This pollution appears to be caused by the overlapping effects of dangerous anthropogenic activities, including heavy industries and commercial and navy dockyards. The paper aims to define the contribution of subaerial and submarine coastal springs to the hydrological dynamic equilibrium of this internal sea basin. A general approach was defined, including a hydrogeological basin border assessment to detect inflowing springs, detailed geological and hydrogeological conceptualisation, in situ submarine and subaerial spring measurements, and flow numerical modelling. Multiple sources of data were obtained to define a relevant geodatabase, and it contained information on approximately 2000 wells, located in the study area (1600 km(2)). The conceptualisation of the hydrogeological basin, which is 978 km(2) wide, was supported by a 3D geological model that interpolated 716 stratigraphic logs. The variability in hydraulic conductivity was determined using hundreds of pumping tests. Five surveys were performed to acquire hydro-geochemical data and spring flow-yield measurements; the isotope groundwater age was assessed and used for model validation. The mean annual volume exchanged by the hydrogeological basin was assessed equal to 106.93 10(6) m(3). The numerical modelling permitted an assessment of the mean monthly yield of each spring outflow (surveyed or not), travel time, and main path flow.

  19. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source...

  20. Hillslope hydrological modeling : the role of bedrock geometry and hillslope-stream interaction

    NARCIS (Netherlands)

    Shahedi, K.

    2008-01-01

    Keywords: Hillslope hydrology, hydrological modeling, bedrock geometry, boundary condition, numerical solution. This thesis focuses on hillslope subsurface flow as a dominant control on the hydrological processes defining the catchment response to rainfall. Due to the difficulties associated with

  1. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  2. Bedrock Data from Western Cape Cod, Massachusetts (WELLSITE shapefile, Geographic, NAD27)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Cores collected from recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. Cores from 64...

  3. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  4. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  5. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  6. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  7. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  8. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  9. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  10. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  11. Bedrock geology of the Arabian Peninsula and selected adjacent areas (geo2bg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The data set for this coverage includes arcs, polygons, and polygon labels that outline and describe the general geologic age and type of bedrock of the Arabian...

  12. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998, Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  13. Bedrock Data from Western Cape Cod, Massachusetts (WELLSITE shapefile, Geographic, NAD27)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Cores collected from recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. Cores from 64...

  14. Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG08-3 Kim, J., Charnock, R., Chow, D. and Springston, G., 2008, Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham,...

  15. Lithogeochemical Character of Near-Surface Bedrock in the New England Coastal Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geographic information system (GIS) data layer shows the generalized lithologic and geochemical, termed lithogeochemical, character of near-surface bedrock in...

  16. Lithogeochemical Character of Near-Surface Bedrock in the Connecticut, Housatonic and Thames River Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data layer shows the generalized lithologic and geochemical (lithogeochemical) character of near-surface bedrock in the Connecticut, Housatonic, and Thames...

  17. Measured and Inferred Bedrock Faults in the Boulder-Weld Coal Field (frifaultu)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file is a digital line representation of measured and inferred bedrock faults in the Boulder-Weld coal field, Denver Basin, Colorado. This file was created as...

  18. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  19. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  20. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  1. Hydrogeology of the Western Amazon Aquifer System (WAAS)

    Science.gov (United States)

    Rosário, Fátima Ferreira do; Custodio, Emilio; Silva, Gerson Cardoso da, Jr.

    2016-12-01

    The Western Amazon Aquifer System (WAAS), as defined and proposed in the present work, encompasses an area of about 2.0·106 km2 located in the northwestern portion of South America. Published and unpublished data were used to define WAAS boundaries and main hydrogeologic characteristics. Petroleum industry data, environmental data, and other diverse thematic data were compiled for this study according to the data's origin. The analysis, treatment and integration of available data allowed us to define the WAAS as a multilayered aquifer system comprised of the Tertiary Solimões Aquifer System (SAS) and the Cretaceous Tikuna Aquifer System (TAS). The thick clay-rich basal strata of the SAS appear to confine the TAS. The SAS is widely used for both domestic and industrial purposes, providing good quality freshwater. The TAS has varying water quality: it contains freshwater near its recharge areas in the Sub-Andean fault belt zone, brackish to brine water in the Sub-Andean basins, and salty water in the Solimões Basin (Brazil). The interpretation and conclusions provided by an increasing understanding of the area's hydrogeology resulting from this work made it possible to propose an improved and new WAAS regional hydrogeologic conceptual model with data and descriptions not previously available. Some surprising results have been later confirmed as true by looking at unpublished reports, logs and field notes. Therefore, this work resulted in new findings and settled the basis for future works, especially for the poorly understood TAS.

  2. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  3. Experimental research on engineering geological mechanical model of strip mining below thin bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Sui, W. [CUMT, Xuzhou (China). School of Resources and Earth Science

    2004-03-15

    With respect to thin bedrock strata found in Taiping coal mining area of Yanzhou, mechanism and controlling factors of overlying strata and ground movement deformation induced by strip mining under the condition of thin bedrock were studied by means of engineering geological model test. The destruction process, forms, and ranges of overlying strata and the rules of ground movement were revealed, providing a theoretical basis for engineering practice. 10 refs., 3 figs.

  4. Survey Geolistrik Metode Resistivitas Untuk Interpretasi Kedalaman Lapisan Bedrock di Pulau Pakal Halmahera Timur

    OpenAIRE

    e.g., Roswita; Roswita

    2014-01-01

    The research done to know depth of the bedrock layer in Pakal Island, East Halmahera. The method of this research used a Resistivity Geoelectric with wenner electrode configuration. Measuring was done 5 lines that 500 meters and they were processed using by Res2Dinv software. The result is resistivity plate 2D then combined with core logging. The result depth of analysis and measurement data interpretation the bedrock layer variety has resistivity 300 ??m ??? 750 ??m. With maxi...

  5. Topographic roughness as a signature of the emergence of bedrock in eroding landscapes

    Science.gov (United States)

    Milodowski, D. T.; Mudd, S. M.; Mitchard, E. T. A.

    2015-10-01

    Rock is exposed at the Earth surface when rates of erosion locally exceed rates of soil production. The thinning of soils and emergence of bedrock has implications spanning geomorphology, ecology and hydrology. Soil-mantled hillslopes are typically shaped by diffusion-like sediment transport processes that act to smooth topography through time, generating the familiar smooth, convex hillslope profiles that are common in low relief landscapes. Other processes, however, can roughen the landscape. Bedrock emergence can produce rough terrain; in this contribution we exploit the contrast between rough patches of bedrock outcrop and smooth, diffusion-dominated soil to detect bedrock outcrops. Specifically, we demonstrate that the local variability of surface normal vectors, measured from 1 m resolution airborne LiDAR data, can be used as a topographic signature to identify areas within landscapes where rock exposure is present. We then use this roughness metric to investigate the transition from soil-mantled to bedrock hillslopes as erosion rates increase in two transient landscapes, Bald Rock Basin, which drains into the Middle Fork Feather River, California, and Harrington Creek, a tributary of the Salmon River, Idaho. Rather than being abrupt, as predicted by traditional soil production models, in both cases the transition from fully soil-mantled to bedrock hillslopes is gradual and spatially heterogeneous, with rapidly eroding hillslopes supporting a patchwork of bedrock and soil that is well documented by changes in topographic roughness, highlighting the utility of this metric for testing hypotheses concerning the emergence of bedrock and adding to a growing body of evidence that indicates the persistence of partial soil mantles in steep, rapidly eroding landscapes.

  6. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking

    Science.gov (United States)

    Christensen, Craig William; Pfaffhuber, Andreas Aspmo; Anschütz, Helgard; Smaavik, Tone Fallan

    2015-08-01

    Airborne electromagnetic (AEM) survey data was used to supplement geotechnical investigations for a highway construction project in Norway. Heterogeneous geology throughout the survey and consequent variable bedrock threshold resistivity hindered efforts to directly track depth to bedrock, motivating us to develop an automated algorithm to extract depth to bedrock by combining both boreholes and AEM data. We developed two variations of this algorithm: one using simple Gaussian or inverse distance weighting interpolators, and another using ordinary kriging and combined probability distribution functions of input parameters. Evaluation shows that for preliminary surveys, significant savings in boreholes required can be made without sacrificing bedrock model accuracy. In the case study presented, we estimate data collection savings of 1000 to 10,000 NOK/km (c. 160 to 1600 USD/km) would have been possible for early phases of the investigation. However, issues with anthropogenic noise, low signal, and uncertainties in the inversion model likely reduced the comparative advantage that including AEM provided. AEM cannot supersede direct sampling where the model accuracy required exceed the resolution possible with the geophysical measurements. Nevertheless, with the algorithm we can identify high probability zones for shallow bedrock, identify steep or anomalous bedrock topography, and estimate the spatial variability of depth at earlier phases of investigation. Thus, we assert that our method is still useful where detailed mapping is the goal because it allows for more efficient planning of secondary phases of drilling.

  7. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    Science.gov (United States)

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan

    2017-10-12

    Groundwater resources information was needed to understand regional aquifer systems and water available to wells and springs for rearing important Lake Michigan fish species at the Kettle Moraine Springs State Fish Hatchery in Sheboygan County, Wisconsin. As a basis for estimating the groundwater resources available, an existing groundwater-flow model was refined, and new groundwater-flow models were developed for the Kettle Moraine Springs State Fish Hatchery area using the U.S. Geological Survey (USGS) finite-difference code MODFLOW. This report describes the origin and construction of these groundwater-flow models and their use in testing conceptual models and simulating the hydrogeologic system.The study area is in the Eastern Ridges and Lowlands geographical province of Wisconsin, and the hatchery property is situated on the southeastern edge of the Kettle Moraine, a north-south trending topographic high of glacial origin. The bedrock units underlying the study area consist of Cambrian, Ordovician, and Silurian units of carbonate and siliciclastic lithology. In the Sheboygan County area, the sedimentary bedrock sequence reaches a thickness of as much as about 1,600 feet (ft).Two aquifer systems are present at the Kettle Moraine Springs State Fish Hatchery. A shallow system is made up of Silurian bedrock, consisting chiefly of dolomite, overlain by unconsolidated Quaternary-age glacial deposits. The glacial deposits of this aquifer system are the typical source of water to local springs, including the springs that have historically supplied the hatchery. The shallow aquifer system, therefore, consists of the unconsolidated glacial aquifer and the underlying bedrock Silurian aquifer. Most residential wells in the area draw from the Silurian aquifer. A deeper confined aquifer system is made up of Cambrian- and Ordovician-age bedrock units including sandstone formations. Because of its depth, very few wells are completed in the Cambrian-Ordovician aquifer system

  8. Present-day mass changes for the Greenland ice sheet and their interaction with bedrock adjustment

    Science.gov (United States)

    Olaizola, M.; van de Wal, R. S. W.; Helsen, M. M.; de Boer, B.

    2011-12-01

    Since the launch in 2002 of the Gravity Recovery and Climate Experiment (GRACE) satellites, several estimates of the mass balance of the Greenland Ice Sheet (GrIS) have been produced. To obtain ice mass changes estimates, data need to be corrected for the effect of deformation changes of the Earth's crust. This is usually done by independently modeling the Glaciological Isostatic Adjustment (GIA) trend and then by removing it from the data. Recently, Wu et al. (2010) proposed a new method to simultaneously estimate GIA and the present-day ice mass change, reporting an ice mass loss of around half of the previously published estimates and a general bedrock subsidence concentrated in the central parts of Greenland. This subsidence appears to be counterintuitive since the ice sheet is loosing mass at present. It was suggested by the authors that this could be a new evidence for additional net past ice accumulation. In this study, a 3-D ice-sheet model with a surface mass balance forcing based on a mass balance gradient approach has been used to: (a) analyze the bedrock response to changes in the ice load in order to evaluate whether bedrock subsidence and ice thinning can exist simultaneously; (b) study the magnitude and the pattern of the bedrock movement; and (c) evaluate if present-day bedrock subsidence could be the result of a net past mass accumulation. Under a sine forcing of the annual temperature, that mimics the temperature variations in the Holocene, mass changes yield a delay of the bedrock response of 200 years. Thinning of the ice as well as bedrock subsidence coexist during this period with an order of magnitude equal to the observations by Wu et al. (2010). Although, the resulting pattern of bedrock changes differs considerable: instead of the general bedrock subsidence reported before, we found areas of bedrock uplift as well as areas of bedrock subsidence. A simulation since the last glacial maximum (with the temperature represented as a linear

  9. Present-day mass changes for the Greenland ice sheet and their interaction with bedrock adjustment

    Directory of Open Access Journals (Sweden)

    M. Olaizola

    2011-12-01

    Full Text Available Since the launch in 2002 of the Gravity Recovery and Climate Experiment (GRACE satellites, several estimates of the mass balance of the Greenland Ice Sheet (GrIS have been produced. To obtain ice mass changes estimates, data need to be corrected for the effect of deformation changes of the Earth's crust. This is usually done by independently modeling the Glaciological Isostatic Adjustment (GIA trend and then by removing it from the data. Recently, Wu et al. (2010 proposed a new method to simultaneously estimate GIA and the present-day ice mass change, reporting an ice mass loss of around half of the previously published estimates and a general bedrock subsidence concentrated in the central parts of Greenland. This subsidence appears to be counterintuitive since the ice sheet is loosing mass at present. It was suggested by the authors that this could be a new evidence for additional net past ice accumulation.

    In this study, a 3-D ice-sheet model with a surface mass balance forcing based on a mass balance gradient approach has been used to: (a analyze the bedrock response to changes in the ice load in order to evaluate whether bedrock subsidence and ice thinning can exist simultaneously; (b study the magnitude and the pattern of the bedrock movement; and (c evaluate if present-day bedrock subsidence could be the result of a net past mass accumulation.

    Under a sine forcing of the annual temperature, that mimics the temperature variations in the Holocene, mass changes yield a delay of the bedrock response of 200 years. Thinning of the ice as well as bedrock subsidence coexist during this period with an order of magnitude equal to the observations by Wu et al. (2010. Although, the resulting pattern of bedrock changes differs considerable: instead of the general bedrock subsidence reported before, we found areas of bedrock uplift as well as areas of bedrock subsidence. A simulation since the last glacial maximum (with the

  10. Quantifying fluvial bedrock erosion using repeat terrestrial Lidar

    Science.gov (United States)

    Cook, Kristen

    2013-04-01

    The Da'an River Gorge in western Taiwan provides a unique opportunity to observe the formation and evolution of a natural bedrock gorge. The 1.2 km long and up to 20 m deep gorge has formed since 1999 in response to uplift of the riverbed during the Chi-Chi earthquake. The extremely rapid pace of erosion enables us to observe both downcutting and channel widening over short time periods. We have monitored the evolution of the gorge since 2009 using repeat RTK GPS surveys and terrestrial Lidar scans. GPS surveys of the channel profile are conducted frequently, with 24 surveys to date, while Lidar scans are conducted after major floods, or after 5-9 months without a flood, for a total of 8 scans to date. The Lidar data are most useful for recording erosion of channel walls, which is quite episodic and highly variable along the channel. By quantifying the distribution of wall erosion in space and time, we can improve our understanding of channel widening processes and of the development of the channel planform, particularly the growth of bends. During the summer of 2012, the Da'an catchment experienced two large storm events, a meiyu (plum rain) event on June 10-13 that brought 800 mm of rain and a typhoon on August 1-3 that brought 650 mm of rain. The resulting floods had significant geomorphic effects on the Da'an gorge, including up to 10s of meters of erosion in some sections of the gorge walls. We quantify these changes using Lidar surveys conducted on June 7, July 3, and August 30. Channel wall collapses also occur in the absence of large floods, and we use scans from August 23, 2011 and June 7, 2012 to quantify erosion during a period that included a number of small floods, but no large ones. This allows us to compare the impact of 9 months of normal conditions to the impact of short-duration extreme events. The observed variability of erosion in space and time highlights the need for 3D techniques such as terrestrial Lidar to properly quantify erosion in this

  11. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Science.gov (United States)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the

  12. Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    Science.gov (United States)

    Vidstrand, Patrik; Follin, Sven; Selroos, Jan-Olof; Näslund, Jens-Ove

    2014-09-01

    The impact of periglacial and glacial climate conditions on groundwater flow in fractured crystalline rock is studied by means of groundwater flow modeling of the Forsmark site, which was recently proposed as a repository site for the disposal of spent high-level nuclear fuel in Sweden. The employed model uses a thermal-hydraulically coupled approach for permafrost modeling and discusses changes in groundwater flow implied by the climate conditions found over northern Europe at different times during the last glacial cycle (Weichselian glaciation). It is concluded that discharge of particles released at repository depth occurs very close to the ice-sheet margin in the absence of permafrost. If permafrost is included, the greater part discharges into taliks in the periglacial area. During a glacial cycle, hydraulic gradients at repository depth reach their maximum values when the ice-sheet margin passes over the site; at this time, also, the interface between fresh and saline waters is distorted the most. The combined effect of advances and retreats during several glaciations has not been studied in the present work; however, the results indicate that hydrochemical conditions at depth in the groundwater flow model are almost restored after a single event of ice-sheet advance and retreat.

  13. THM-issues in repository rock. Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoekmark, Harald; Loennqvist, Margareta; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-05-15

    The present report addresses aspects of the Thermo-Hydro-Mechanical (THM) evolution of the repository host rock that are of potential importance to the SR-Site safety assessment of a KBS-3 type spent nuclear fuel repository. The report covers the evolution of rock temperatures, rock stresses, pore pressures and fracture transmissivities during the excavation and operational phase, the temperate phase and a glacial cycle on different scales. The glacial cycle is assumed to include a period of pre-glacial permafrost with lowered temperatures and with increased pore pressures in the rock beneath the impermeable permafrost layer. The report also addresses the question of the peak temperature reached during the early temperate phase in the bentonite buffer surrounding the spent fuel canisters. The main text is devoted exclusively to the projected THM evolution of the rock at the Forsmark site in central Sweden. The focus is on the potential for stress-induced failures, i.e. spalling, in the walls of the deposition holes and on changes in the transmissivity of fractures and deformation zones. All analyses are conducted by a combination of numerical tools (3DEC) and analytical solutions. All phases are treated separately and independently of each other, although in reality construction will overlap with heat generation because of the step-by-step excavation/deposition approach with some 50 years between deposition of the first and last canisters. It is demonstrated here that the thermal and thermo-mechanical evolution of the near-field will be independent of heat generated by canisters that were deposited in the past, provided that deposition is made in an orderly fashion, deposition area by deposition area. Peak temperatures and near-field stresses can, consequently, be calculated as if all canisters were deposited simultaneously. The canister and tunnel spacing is specified such that the peak buffer temperature will not exceed 100 deg C in any deposition hole, i.e. not

  14. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey

    Science.gov (United States)

    Pamuk, Eren; Akgün, Mustafa; Özdağ, Özkan Cevdet; Gönenç, Tolga

    2017-02-01

    Soil-bedrock models are used as a base when the earthquake-soil common behaviour is defined. Moreover, the medium which is defined as bedrock is classified as engineering and seismic bedrock in itself. In these descriptions, S-wave velocity is (Vs) used as a base. The mediums are called soil where the Vs is < 760 m/s, the bigger ones are called bedrock as well. Additionally, the parts are called engineering bedrock where the Vs is between 3000 m/s and 760 m/s, the parts where are bigger than 3000 m/s called seismic bedrock. The interfacial's horizontal topography where is between engineering and seismic bedrock is effective on earthquake's effect changing on the soil surface. That's why, 2D soil-bedrock models must be used to estimate the earthquake effect that could occur on the soil surface. In this research, surface wave methods and microgravity method were used for occuring the 2D soil-bedrock models in the east of İzmir bay. In the first stage, velocity values were obtained by the studies using surface wave methods. Then, density values were calculated from these velocity values by the help of the empiric relations. 2D soil-bedrock models were occurred based upon both Vs and changing of density by using these density values in microgravity model. When evaluating the models, it was determined that the soil is 300-400 m thickness and composed of more than one layers in parts where are especially closer to the bay. Moreover, it was observed that the soil thickness changes in the direction of N-S. In the study area, geologically, it should be thought the engineering bedrock is composed of Bornova melange and seismic bedrock unit is composed of Menderes massif. Also, according to the geophysical results, Neogene limestone and andesite units at between 200 and 400 m depth show that engineering bedrock characteristic.

  15. Thicknesses of hydrogeologic units used in the hydrogeologic framework and transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital three-dimensional hydrogeologic framework model (HFM) represents the geometry and extent of hydrogeologic units (HGUs) and major structures in the Death...

  16. Surface altitudes of hydrogeologic units used in the hydrogeologic framework and transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital three-dimensional (3D) hydrogeologic framework model (HFM) represents the geometry and extent of hydrogeologic units (HGUs) and major structures in the...

  17. Surface altitudes of hydrogeologic units used in the hydrogeologic framework and transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital three-dimensional (3D) hydrogeologic framework model (HFM) represents the geometry and extent of hydrogeologic units (HGUs) and major structures in the...

  18. Thicknesses of hydrogeologic units used in the hydrogeologic framework and transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital three-dimensional hydrogeologic framework model (HFM) represents the geometry and extent of hydrogeologic units (HGUs) and major structures in the Death...

  19. High-resolution monitoring of fluvial bedrock erosion in a natural gorge

    Science.gov (United States)

    Beer, Alexander R.; Turowski, Jens M.

    2014-05-01

    Morphological evolution of terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions stream development and stream shape as a consequence of the interaction of uplift and erosion is fundamental for surface formation. Bedrock stream sections are prevalent that are routings for water and sediments. Hence, the correct description of bedrock channel evolution is fundamental for landscape modelling. To analyse how in situ erosion rates depend on factors like discharge, sediment transport and topography, there is a need of highly resolved topographic field data that so far is not available. Here we present preliminary outcomes of a change detection study from the Gorner Gorge above Zermatt, Switzerland. The outflow of the Gorner glacier (the Gornera stream) is captured most of the time by a water intake for hydropower production. However this intake is flushed twice a day in summer to purge settled sediments. Then the Gornera, charged with erosive bedload, runs along its natural stream bed that cuts through a roche moutonnée. This bedrock section (25m long, 5m wide and 8m deep) was surveyed repeatedly twice a year benefiting from nearly dry bed conditions during water capturing. A Leica ScanStation C10 was used for capturing high density point clouds (aspired average point spacing 5mm) of the bedrock surfaces. Referencing each of the various scanning positions was conducted using Leica HDS targets attached to fixed anchor bolts in the bedrock, that were surveyed locally with a total station. Resulting DEMs were used to calculate DEMs of difference (DoDs) for the bedrock walls and a huge boulder residing on the gravel bed. Erosion rates are visualised and discussed in respect of to the local spatial arrangement of the bedrock to the stream flow and water level.

  20. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    Science.gov (United States)

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science

  1. Bedform genesis and evolution in bedrock substrates: a new experimental approach

    Science.gov (United States)

    Parsons, D. R.; Yin, N.; Peakall, J.

    2014-12-01

    Most previous studies on the genesis and evolution of bedforms have focused on aggradational bedforms within cohesionless sediments, with very few investigations that concern either erosive bedform genesis and evolution or bedrock channel abrasion processes. The study presented here details experiments that involve the genesis and formation of erosional bedform features within natural (soft clay) cohesive sediment beds and analogue bedrock substrates by modelling clay under the effect of both open-channel plain water flows, and sediment-laden flows. A new approach without using plaster-of-Paris or real bedrock developed provides a feasible method to simulate the genesis and evolution of the erosional bedforms in cohesive sediment beds and sculpted forms in bedrock channels on relatively short time-scales in the laboratory by using a realistic substrate substitute.A series of flume experiments are presented herein where the undrained shear strength of two different kinds of substrate material is systematically varied under constant flow conditions. Experiments using plain water flow indicated that erosive bedforms in cohesive sediment substrate cannot be produced only under the effect of sediment-free flow. Particulate-laden flows do form erosional bedforms in both kinds of clay beds and the shear strength of the bed material plays a key role in determining the diversity of erosional features forming on such substrates. Optimisation of modelling clay beds has enabled us to successfully replicate a suite of bedrock bedforms, including potholes, flutes, longitudinal furrows, etc., that have clear equivalents to those observed in bedrock rivers and contributed to investigate the genesis and evolution process of them and explore the flow structures within and above them in experimental analogue bedrock substrate for the first time.

  2. Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy)

    Science.gov (United States)

    Cardarelli, Ettore; De Donno, Giorgio

    2017-06-01

    The combined use of 1D, 2D and 3D electrical resistivity methods for estimating bedrock depth is presented with an application to a case study located in Central Italy. The site is a narrow basin where two boreholes were drilled reaching the bedrock, which had the greatest depth in the center of the basin. Six vertical electrical soundings were executed along a basin cross-section in order to have a preliminary 1D reconstruction of the bedrock and the overlying alluvial deposits. Inverted resistivity models, show bedrock depths in accordance with the borehole data and a complex subsurface layering of the overburden deposits to be further investigated with 2D and 3D electrical resistivity tomography. Four additional electrical lines, acquired using a pole-dipole array and directed normally to the alignment of the vertical soundings, confirm the 1D results in regards to the bedrock depths, adding additional information about the continuity of the bedrock within the basin, and giving a high resolution image of the shallower sediments. Through the tomographic inversion of 3D data we were able to reconstruct a volumetric image of the carbonate formation at the study site. Finally, the tomographic models have been validated through the inversion of a synthetic dataset, with the aim to attain a final model, whose synthetic model is comparable with the field one. The final model, estimated using an iterative procedure that minimises the absolute difference between field and synthetic models, has retrieved a bedrock resistivity one order of magnitude higher than that obtained from field data inversion.

  3. Dredged bedrock samples from the Amerasia Basin, Arctic Ocean

    Science.gov (United States)

    Brumley, K. J.; Mukasa, S. B.; O'Brien, T. M.; Mayer, L. A.; Chayes, D. N.

    2013-12-01

    Between 2008-2012, as part of the U.S. Extended Continental Shelf project in the Amerasia Basin, Arctic Ocean, 17 dredges were successfully collected sampling the first rock outcrops in the Chukchi Borderland and surrounding regions for the purpose of describing the geologic nature of the bathymetric features in this area. Multiple lines of evidence indicate that the specimens were collected from submarine rock exposures and were not samples of ice rafted debris, common in the ice covered waters of the Arctic Ocean. Using the USCGC Healy, each dredge was collected along very steep slopes (>35 degrees) measured with high resolution multibeam swath bathymety data. Each haul yielded samples of similar lithologies and identical metamorphic grade with manganese crusts on the surfaces exposed to seawater and fresh surfaces where the rocks were broken from outcrop. High tension pulls on the dredge line also indicated sampling of bedrock exposures. Dredged samples from a normal fault scarp in the central Chukchi Borderland consisted of Silurian (c. 430 Ma) orthogneisses that intruded older (c. 487-500 Ma) gabbros and luecogranties that were all metamorphosed to amphibolite grade (Brumley et al., 2011). Samples from the northern Northwind Ridge consisted of metasediments (greenschist facies) interpreted to have been deposited in a proximal arc setting with detrital zircon U-Pb age peaks at 434, 980 Ma with lesser peaks between 500-600, 1100-2000 Ma, and rare 2800 Ma grains (Brumley et al, 2010). Other dredges in the region of the Northwind Ridge yielded deformed and metamorphosed calcareous sandstones and low-grade phyllites (O'Brien et al., 2013). Taken together these rocks indicate a relationship to the Pearya Terrane of northern Ellesmere Island and S.W. Svalbard that were thought to represent a Cambro-Ordovician volcanic arc terrane that was involved in Caledonian orogenesis (Brumley et al., 2011). These findings constrain plate tectonic reconstruction models and bring

  4. Warning system for hydrogeological hazards in Campania (Southern Italy)

    Science.gov (United States)

    Biafore, Mauro; Cristiano, Luigi; Gentile, Salvatore; Gentilella, Matteo; Giannattasio, Maurizio; Napoli, Francesca

    2010-05-01

    Campania is the Italian region with the highest population density (419 inhabitants/km2). Almost 20% of its territory (13669 km2) is affected by significant hydrogeological hazards, with related loss scenarios in almost 12% of it. The most critical hydrogeological hazard scenarios are those triggered by extreme rainfall events with duration ranging from a few tens of minutes up 72 hours: flood loss scenarios are expected in catchments with spatial extent from a few Km2 up to 5000 km2; shallow landslides and mudflows are also triggered by rainfall events within a broad range of time scales. This study presents a warning system for hydrogeological hazards, which has been operating in Campania since 2005, designed for mitigating losses due to extreme rainfall events. The warning system is structured into two stages: the meteorological forecasting stage and the hydrological monitoring stage. In the first stage, after evaluating rainfall forecasts provided by numerical weather prediction models (with a forecasting time up to 48 hours), warning messages are issued to the local municipalities grouped in 8 warning zones. Critical rainfall events are identified by three different alert levels, according to their forecasted spatial and temporal extents, each corresponding to a category of expected hazard scenarios at regional level. During the second stage, the dynamic evolution of the hydrological events is monitored by a real-time network of river stage and rain gauges, which are employed to compute one or more precursors for each loss scenario. Loss scenarios have been classified according to the temporal and spatial scales of the corresponding precursors, in order to deal with the difficulties related to the occurrence of significantly different hazard scenarios during the same rainfall event. Three threshold values have been identified for each precursor, corresponding to given hazard and alert levels. As a precursor exceeds a threshold value, warning messages are

  5. Hydrogeological modeling for improving groundwater monitoring network and strategies

    Science.gov (United States)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  6. Do Titan's river channels carve into ice bedrock or loose regolith?

    Science.gov (United States)

    Collins, G. C.; Sklar, L. S.; Litwin, K. L.; Polito, P. J.

    2012-04-01

    Final results from our experiments investigating the abrasion resistance and strength of polycrystalline ice and ice/contaminant mixtures at Titan temperatures allow us to update the calculations of Collins (2005), which examined the ease of fluvial incision into ice bedrock on Titan. If Titan’s stream channels run over exposed bedrock, the rate of channel downcutting is limited by the supply of sediment particles to abrade the bedrock surface, or by the production of pluckable blocks from joints in the bedrock. By adapting the equations of Sklar and Dietrich (2004) to Titan, we estimate the relative rate of bedrock incision caused by abrasion of sediment particles, and find that bedrock on Titan responds like a welded tuff or a quartzite on Earth, rather than the weak sandstone-like response found initially by Collins (2005). Using the range of values for the HLS drainage basins used by Perron et al. (2006) and the sediment sizes observed by Keller et al. (2008), we adjust the unknown sediment supply rate into the channels to find the upper limit of the bedrock incision rate during rainstorm-runoff events. Maximum incision rates are about 1 micron per hour. If typical peak runoff events only last for a few hours, it would take on the order of 105 to 106 rainstorms for a channel to incise one meter into the solid bedrock. However, the mass flux of sediment from farther upstream required to erode this much bedrock implies that transportation of loose sediment would lower the entire catchment area 100 times faster than the bedrock in the channel is lowered. This is logically unsustainable, and leaves us with two optio