WorldWideScience

Sample records for bed shear stress

  1. Bed Shear Stress in Channels with Emergent Vegetation

    Science.gov (United States)

    Yang, Q.; Kerger, F.; Nepf, H. M.

    2014-12-01

    The shear stress at the bed of a channel influences important benthic processes such as sediment transport. Several methods exist to estimate the bed shear stress in open channel flow, but most of these are not appropriate for vegetated channels due to the impact of vegetation on the velocity profile and turbulence production. This study proposes a new model to estimate the bed shear stress in both vegetated and bare channels. The model is based on the observation that, for both bare and vegetated channels, within a viscous sub-layer at the bed, the viscous stress decreases linearly with increasing distance from the bed, resulting in a parabolic velocity profile at the bed. For emergent canopies of sufficient density, the thickness of this linear-stress layer is set by the stem diameter, leading to a simple estimate for bed shear stress. For bare channels, the model describes the velocity profile in the overlap region of the Law of the Wall. The model is supported by high-resolution experiments. Furthermore, the changes in turbulence isotropy and integral length across a range of vegetation density, from bare bed to dense canopy, have been explored.

  2. Dimensionless critical shear stress in gravel-bed rivers

    Science.gov (United States)

    Petit, François; Houbrechts, Geoffrey; Peeters, Alexandre; Hallot, Eric; Van Campenhout, Jean; Denis, Anne-Cécile

    2015-12-01

    This paper first compiles critical shear stress values from 26 studies of gravel-bed rivers (GBRs) worldwide. The most frequently proposed value of the Shields criterion (θc) is 0.045, but three major groups with θc values ranging from 0.100 were identified. Second, dimensionless critical shear stresses (the Shields criterion) were evaluated for 14 GBRs (18 sites) with watershed areas ranging from 12 to 3000 km2. Different approaches were used to identify the initial movement of the bed material: painted and PIT-tag pebbles, sediment traps, and bedload samplers. The Shields criterion (θc) was estimated using the total shear stress (τ) and the grain shear stress (τ‧). Several shear stresses were also estimated using shear velocities. For bedload transport, we obtained an average Shields criterion (θc) of 0.040. The values were higher in small rivers (> 0.050) than larger rivers (partial transport was ~ 0.025 and exceeded 0.040 for full transport (usually reached in association with discharges with a 10-year return period). The values based on the results of sediment traps and a bedload sampler were greater than those obtained using tracers, but these differences are smaller than those usually reported in the literature.

  3. Bed shear stress distribution in straight channels with arbitrary cross section

    DEFF Research Database (Denmark)

    Christensen, Henrik Bo; Fredsøe, Jørgen

    1998-01-01

    The bed shear stress distribution in straight open channels is affected by mechanisms as bed curvature of the cross section profile, shear diffusion, and secondary currents. This paper compares some analytical and numerical methods to estimate the bed shear stress distribution. The methods are...

  4. Measurement and modeling of bed shear stress under solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Guard, P.A.; Baldock, T.E.

    ) of the water particles, and kinematic viscosity (ν ): ν Au R e = (2) In order to estimate R e , the semi-excursion length of the water particles needs to be estimated properly for the solitary waves. This semi-excursion of the water particle... ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ =νν (8) where, z 0 is roughness height, z is depth, ν is kinematic viscosity. It was also shown that to leading order bed shear stress, τ , can be expressed as convolution integral of the depth integrated averaged horizontal velocity, u , Eq...

  5. On equivalent roughness of mobile bed at high shear stress

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan

    2009-01-01

    Roč. 57, č. 3 (2009), s. 191-199. ISSN 0042-790X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : bed shear * experiment * hydraulic transport * sediment transport Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  6. Research on Measurement of Bed Shear Stress Under WaveCurrent Interaction

    Institute of Scientific and Technical Information of China (English)

    徐华; 夏云峰; 张世钊马炳和; 郝思禹; 杜德军

    2015-01-01

    The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.

  7. Evaluations of wall shear stress in the standpipe of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, E.R.; Shadle, L.J.

    2008-05-13

    Shear stress was obtained in the standpipe of a Circulating Fluidized Bed (CFB) for a light cork particles under a variety of flow conditions. The shear stress data were estimated using incremental gas phase pressure drop readings, and an estimate of the bed height to predict the hydrostatic pressure drop [(dp/dy) = ρs (1-ε) g+4τsw/D]. In addition, we have also obtained data on aeration rate in the standpipe, particle circulation rate and riser gas flow rate. Analysis of the results using a one-dimensional momentum equation reveal that the observed forced per unit area may be attributed to wall friction. The resulting shear stress demonstrates that as the aeration air in the standpipe was increased the shear at the wall was decreased. An attempt was made to model solids friction factor as a function of particle velocity and it was compared to the other literature correlations.

  8. Flow velocities and bed shear stresses in a stone cover under an oscillatory flow

    DEFF Research Database (Denmark)

    Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu;

    2010-01-01

    I order to get a better understanding of the interaction between the wave-induced, near-bed oscillatory flow, the stome cover and the sea bed, physical model tests were carried out. The tests were conducted in an oscillating water tunnel. The bottom of the tunnes was covered by one, two and three...... layers of stones. The flow velocities in the pores of the stones were measured using LDA (Laser Doppler Anemometer). In addition to the velocity measurements, the bed shear stresses were also measured using a hotfilm (Constant Temperature Anemometry). It is found that the boundary layer of the outer flow...... current boundary layer without any externally generated turbulence. The bd shear stress is found to be very low, more than ten times smaller than in the case of a smooth base bottom without stone cover....

  9. The Influence of Salmonid Spawning on Grain Architecture, Critical Bed Shear Stress, and Bed Load Transport in Streams

    Science.gov (United States)

    Buxton, T.; Buffington, J. M.; Yager, E. M.; Fremier, A. K.; Hassan, M. A.

    2012-12-01

    Salmonid spawning occurs in many high to mid-order streams in North America and Europe, but the detailed mechanics of this disturbance on stream bed mobility is not well studied. We calculated and measured spawning effects on incipient bed mobility and sediment transport in a laboratory flume and found that the tailspill portion of simulated spawning nests ("redds") are less stable than unspawned beds. This result agrees with field research by others, but counters prior calculations of tailspill stability that used grain architecture relationships derived from unspawned beds. Redds have coarser and better sorted surfaces, which reduce grain exposure and protrusion compared to unspawned beds, but load cell measurements of the total resistance to movement of grains on redds were lower despite deeper grain pockets and larger pivot angles. This is because the redd-building process flushed fine sediment that had previously cemented bed material, resulting in a looser bed structure and more mobile grains. These observations are supported by force balance calculations of critical shear stress on redds being lower on average than on unspawned beds. Computational results are supported by visual observations and measurements of bed load transport from redds and unspawned beds in the flume, where redds mobilized sooner and exhibited a higher sediment transport rate than unspawned beds. Redds were observed to erode by translating, then dispersing and evacuating downstream, before grains on the unspawned bed mobilized. Further increase in discharge mobilized greater proportions of the unspawned bed but did not scour the deeper portion of redds where spawners deposit their eggs. Our results suggest both an evolutionary trade-off and advantage to large spawning populations. Namely, the structurally loose tailspill likely increases intragravel flow to eggs at the expense of tailspill instability, which may sufficiently elevate sediment yields in streams with high spawner densities

  10. A NEW MEASURE FOR DIRECT MEASUREMENT OF THE BED SHEAR STRESS OF WAVE BOUNDARY LAYER IN WAVE FLUME

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, a shear plate was mounted on the bottom in a wave flume and direct measurements of the smooth and rough bed shear stress under regular and irregular waves were conducted with the horizontal force exerted on the shear plates by the bottom shear stress in the wave boundary layer. Under immobile bed condition, grains of sand were glued uniformly and tightly onto the shear plate, being prevented from motion with the fluid flow and generation of sand ripples. The distribution of the bottom mean shear stress varying with time was measured by examining the interaction between the shear plate and shear transducers. The relation between the force measured by the shear transducers and its voltage is a linear one. Simultaneous measurements of the bottom velocity were carried out by an Acoustic Doppler Velocimeter (ADV), while the whole process was completely controlled by computers, bottom shear stress and velocity were synchronously measured. Based on the experimental results, it can be concluded that (1) the friction coefficient groews considerably with the increase of the Reynolds number, (2) the shear stress is a function varying with time and linearly proportional to the velocity. Compared with theoretical results and previous experimental data, it is shown that the experimental method is feasible and effective, A further study on the bed shear stress under regular or irregular waves can be carried out. And applicability to the laboratory studies on the initiation of sediments and the measurement of the shear stress after sediment imigration.

  11. Distribution of medium-sand particles in flow above erodible bed at hight shear stress

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    2007-01-01

    Roč. 55, č. 4 (2007), s. 274-281. ISSN 0042-790X R&D Projects: GA ČR GA103/06/0428 Grant ostatní: GA MŠk(CZ) 1M0579 Institutional research plan: CEZ:AV0Z20600510 Keywords : sheet flow * particle dispersion * suspension * concentration profile * bed shear stress Subject RIV: BK - Fluid Dynamics

  12. Time evolving bed shear stress due the passage of gravity currents estimated with ADVP velocity measurements

    Science.gov (United States)

    Zordan, Jessica; Schleiss, Anton J.; Franca, Mário J.

    2016-04-01

    Density or gravity currents are geophysical flows driven by density gradients between two contacting fluids. The physical trigger mechanism of these phenomena lays in the density differences which may be caused by differences in the temperature, dissolved substances or concentration of suspended sediments. Saline density currents are capable to entrain bed sediments inducing signatures in the bottom of sedimentary basins. Herein, saline density currents are reproduced in laboratory over a movable bed. The experimental channel is of the lock-exchange type, it is 7.5 m long and 0.3 m wide, divided into two sections of comparable volumes by a sliding gate. An upstream reach serves as a head tank for the dense mixture; the current propagates through a downstream reach where the main measurements are made. Downstream of the channel a tank exist to absorb the reflection of the current and thus artifacts due to the limited length of the channel. High performance thermoplastic polyurethane simulating fine sediments forms the movable bed. Measures of 3D instantaneous velocities will be made with the use of the non-intrusive technique of the ADV (Acoustic Doppler Current Profiler). With the velocity measurements, the evolution in time of the channel-bed shear stress due the passage of gravity currents is estimated. This is in turn related to the observed erosion and to such parameters determinant for the dynamics of the current as initial density difference, lock length and channel slope. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement n_607394-SEDITRANS.

  13. Pulsed Discharge Through Wetland Vegetation as a Control on Bed Shear Stress and Sediment Transport Affecting Everglades Restoration

    Science.gov (United States)

    Larsen, L. E.; Harvey, J. W.; Crimaldi, J. P.

    2007-12-01

    The ridge and slough landscape is a patterned peatland within the Florida Everglades in which elevated ridges of emergent vegetation are regularly interspersed among open-water sloughs with floating and submerged vegetation. Landscape features are aligned parallel to the historic flow direction. Degradation of patterning over the past 100 years coincides with diminished flow resulting from drainage and construction of levees and canals. A goal of restoration is to increase flow velocities and redistribution of particles and solutes in attempt to preserve remnant patterning and restore degraded portions of the ridge and slough landscape. To explore different management strategies that could induce sediment redistribution in the ridge and slough landscape, we simulated velocity profiles and bed shear stresses for different combinations of surface water stage, water surface slope, and vegetation community structure, based on field measurements and laboratory experiments. A mixing length approach, in which the minimum of stem spacing and distance from a solid boundary determined eddy scale, was used to simulate velocity profiles and bed shear stress in vegetated arrays. Simplified velocity profiles based only on vegetation frontal area above the bed and the Karman-Prandtl logarithmic law near the bed closely were used to approximate solutions of the one-dimensional Navier-Stokes equations for large-scale simulation. Estimates of bed shear stress were most sensitive to bed roughness, vegetation community structure, and energy slope. Importantly, our simulations illustrate that velocity and bed shear stress cannot be increased substantially in the Everglades simply by increasing surface-water stage. This result comes directly from the dependence of velocity and shear stress on vegetation frontal area and the fact that emergent vegetation stems protrude through the water column even during times of relatively deep water in the Everglades. Since merely increasing water

  14. Flow and bed shear stresses in scour protections around a pile in a current

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Liu, Xiaofeng; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    Transport of bed sediment inside and beneath the scour protection may cause deformation and sinking of the scour protection for pile foundations. This may reduce the stability of the mono pile and change the natural frequency of the dynamic response of an offshore wind turbine installed on it in an...... uniformly distributed coarse stones and a lower filter layer with finer stones. For the numerical simulations, the Flow-3D software was used. The scour protection layers were simulated with different numerical approaches, namely regularly arranged spheres, porous media, or their combinations (hybrid models......). Numerical simulations with one or four layers of cover stones without filter layer were first computed. Three additional simulations were then made for a scour protection with a cover layer and a single filter layer. Finally, a simulation of a full scale foundation and scour protection was made with porous...

  15. Experimental analysis of minimum shear stress to drag particles in a horizontal bed; Analise experimental da tensao de cisalhamento minima para arraste de particulas em um leito horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Dornelas, Breno Almeida; Soares, Edson Jose [Universidade Federal do Espirito Santo. Departamento de Engenharia Mecanica (Brazil)], e-mails: bad@ucl.br, edson@ct.ufes.br; Quirino Filho, Joao Pedro; Loureiro, Bruno Venturini [Faculdade do Centro Leste (UCL). Laboratorio de Fluidos e Fenomenos de Transporte (Brazil)], e-mails: joaoquirino@ucl.br, brunovl@ucl.br

    2009-12-15

    Efficient hole cleaning is still a challenge in well bore drilling to produce oil and gas. The critical point is the horizontal drilling that inherently tends to form a bed of sediment particles at the well bottom during drilling. The cuttings bed erosion depends mainly on the shear stress promoted by the drilling fluid flow. The shear stress required to cause drag in the cuttings bed is investigated according to the fluid and particles properties, using an experimental assembly, composed of: a system for fluid circulation, a particle box, a pump system and measuring equipment. The observation area is a box below the flow line in an acrylic duct used to calibrate sand particles. The test starts with the pumps in a low frequency which is increased in steps. At each frequency level, images are captured of carried particles and the established flow rate is recorded. The images are analyzed when the dragged particle is no longer random and sporadic, but becomes permanent. The shear stress is identified by the PKN correlation (by Prandtl, von Karman, and Nikuradse) for the minimum flow rate necessary to cause drag. Results were obtained for just water and water-glycerin solution flows. (author)

  16. EXPERIMENTAL AND COMPUTATIONAL MODELLING OF 3-D FLOW AND BED SHEAR STRESSES DOWNSTREAM FROM A MULTIPLE DUCT TIDAL BARRAGE

    OpenAIRE

    Jeffcoate, Penelope

    2013-01-01

    The near-field depth-varying velocities and resulting bed stresses downstream from a tidal barrage have not previously been studied. The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiment in a wide flume, 3-D RANS CFD simulation and 2-D depth-averaged computation. When there is no turbine representation and hence negligible swirl in the draft tubes, agreement between the experiments and 3-D modelling is shown to be g...

  17. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  18. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  19. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  20. Yield shear stress and disaggregating shear stress of human blood

    Science.gov (United States)

    Jung, Jinmu; Lee, Byoung-Kwon; Shin, Sehyun

    2014-05-01

    This review presents two distinct rheological parameters of blood that have the potential to indicate blood circulation adequacy: yield shear stress (YSS) and disaggregating shear stress (DSS). YSS and DSS reflect the strength of red blood cell (RBC) aggregation in suspension under static and dynamic conditions, respectively. YSS, defined as the critical stress to disperse RBC aggregates under static conditions, was found to be dependent upon hematocrit, fibrinogen, and red cell deformability, but not temperature. DSS, defined as the minimum shear stress to disperse RBC aggregates under dynamic conditions, is dependent upon fibrinogen, red cell deformability, and temperature but not hematocrit. Owing to recent advances in measurement technology, these two parameters can be easily measured, and thus, their clinical significance in blood circulation can be verified.

  1. Influence of shear stress on erythrocyte aggregation.

    Science.gov (United States)

    Kim, Jeong-Ho; Lee, Hoyoon; Lee, Byoung-Kwon; Shin, Sehyun

    2015-09-25

    Shear stress is known to induce platelet activation and aggregation. The red blood cell (RBC) aggregation test requires the application of shear stress for the cells to disaggregate for initialization. We tested the hypothesis that applying shear stress may activate platelets, which can influence RBC aggregation. The present study used a commercial microchip-based aggregometer (RheoSCan-AnD300) with a rotating stirrer for RBC disaggregation. Whole blood samples were exposed to different magnitudes of shear stress with various shearing times. As the rotational speed was increased up to 2800 rpm, the RBC aggregation index (AI) of the whole blood increased by up to 30% (p <  0.05), whereas that of the platelet-excluded blood samples did not show any apparent alteration. The AI also increased in proportion with the stirring time. The data suggest that high shear stress affects RBC aggregation through shear-induced platelet aggregation. PMID:26444600

  2. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.

  3. ON WALL SHEAR STRESS OF ARTERY

    Institute of Scientific and Technical Information of China (English)

    Liu Zhao-rong; Liu Bao-yu; Qin Kai-rong

    2003-01-01

    In this paper, a method was proposed that the wall shear stress of artery could be determined by measuring the centerline axial velocity and radial motion of arterial wall simultaneously.The method is simple in application and can get higher precision when it is used to determine the shear stress of arterial wall in vivo.As an example, the shear stress distribution in periodic oscillatory flow of human carotid was calculated and discussed.The computed results show that the shear stress distribution at any given instant is almost uniform and will be zero at the centerline and tends to maximum at the vessel wall.

  4. Development of Bed Ridges in Open Channels and their Effects on Secondary Currents and Wall Shear

    Directory of Open Access Journals (Sweden)

    Kamran Ansari

    2012-07-01

    Full Text Available A numerical analysis of the ridges on the bed of wide, open channels and their effects on the distribution of secondary currents and wall shear is undertaken using CFD (Computational Fluid Dynamics. The presence of the lines of boil, consisting of low speed streaks, periodically in the transverse direction, is reported in the literature due to the presence of the ridges. In the present work, simulations are run on channel sections with varying the number of ridges on the bed and the size of these ridges. The effect of these variations on the flow structures and shear stress distribution in wide open channels is reported. The results offer an interesting insight into the 3D (Three-Dimensional flow structures involved and the link between flow structures and bed morpho-dynamics in prismatic channels.

  5. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.;

    2001-01-01

    treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding of...... improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...

  6. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  7. Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models

    OpenAIRE

    C. F. Brædstrup; Egholm, D.L.; Ugelvig, S. V.; Pedersen, V. K.

    2016-01-01

    Shear stress at the base of glaciers exerts a significant control on basal sliding and hence also glacial erosion in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution. In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity o...

  8. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  9. Measurement and modelling of bed shear induced by solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.

    ±20% accuracy, which is probably adequate for most practical engineering purposes. 168 Solitary wave induced shear stresses Chapter 10: Conclusions 10.3. Friction factors The wave friction factors derived from the classical drag law vary... Engineering, 56(5-6): 506-516. Baldock, T.E. and Holmes, P., 1998. Seepage effects on sediment transport by waves and currents. 26th International Conference Coastal Engineering, Orlando, p.^pp. 3601- 3614. Barends, F.B.J. and Spierenburg, S.E.J., 1991...

  10. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  11. Shear Stress Sensing using Elastomer Micropillar Arrays

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.

    2013-01-01

    The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.

  12. Improved resuspension flux model based on local shear stress and particle Reynolds number

    Science.gov (United States)

    Shringarpure, Mrugesh; Balachandar, S.

    2015-11-01

    The excess density imposed by suspended sediment drives turbidity currents. The dynamics of the flow is controlled by the rate at which these sediment particles are deposited and/or entrained from the bed. Resuspension flux or entrainment of sediment from the bed is an important aspect of all the mathematical models employed to study and simulate turbidity currents. However, a detailed mathematical description of all the physical process that lead to resuspension is not possible due its inherent complexity. In last several decades, through extensive research and detailed experiments and simulations, critical conditions for sediments to be mobilized have been reported. The abstraction of mobilized sediment to equivalent resuspension flux that is robust and truly based on local flow and bed conditions has not been formulated. Such a resuspension flux will be an improvement over the current models that are based on a correlation between average shear stress and the increase in the sediment load as a turbidity current propagates over a certain span of the bed. In this study we will present an improved model for resuspension flux which is a function of local bed shear stress and particle Reynolds number. This function incorporates the local kinematics of a particle lying on the bed along with turbulence characteristics of the flow such that a spatial average of shear stress and resuspension flux reconciles with the existing models proposed in the literature. This work has been supported by ExxonMobil Upstream Research Company.

  13. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhaorong

    2001-01-01

    [1]Langille, B. L., 7Donnell, F., Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, 1986, 231: 405—407.[2]Langer, R., Vacanti, J. P., Tissue engineering, Science, 1993, 260: 920—926.[3]Kamiya, A., Togawa, T., Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol. (Heart Circ. Physiol.), 1980, 239: H14—H21.[4]Fung, Y. C., Biomechanics: Motion, Flow, Stress, and Growth, New York: Springer-Verlag, 1990.[5]Liu, S. Q., Biomechanical basis of vascular tissue engineering, Critical Reviews in Biomedical Engineering, 1999, 27: 75—148.[6]Ando, J., Kamiya, A., Blood flow and vascular endothelium cell function, Frontiers Med. Biological Eng., 1993, 5: 245—264.[7]Ku, D. N., Giddens, D. P., Zarins, D. K. et al., Pulsatile flow and atherosclerosis in the human carotid bifurcation-positive correlation between plaque location and low and oscillating shear stress, Atherosclerosis, 1985, 5: 293—302.[8]Liu Zhaorong, Li Xixi, Theory and Method on Hemodynamics (in Chinese), Shanghai: Fudan University Press, 1997.

  14. Direct bed stress measurements under solitary tsunami-type waves and breaking tsunami wave fronts

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; Baldock, T.E.

    , the force measured by the shear plate includes the bed shear stress and the pressure gradient force from the wave. Linear wave theory is often used to estimate (Rankin and Hires, 2000) and eliminate the pressure gradient from the total force so... for selected solitary waves generated in laboratory that are comparable with the theory Parameters Cyclone (shallow) Cyclone (deep) Tsunami-1 (shallow) Tsunami-2 (shallow) Tsunami-1 (deep) Tsunami-2 (deep) Wave height (m) 20 20 1 1 1 1 Wave...

  15. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  16. Critical wall shear stress for the EHEDG test method

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    wall shear stress of 3 Pa for the standardised EHEDG cleaning test method. The cleaning tests were performed on a test disc placed in a radial flowcell assay. Turbulent flow conditions were generated and the corresponding wall shear stresses were predicted from CFD simulations. Combining wall shear......In order to simulate the results of practical cleaning tests on closed processing equipment, based on wall shear stress predicted by computational fluid dynamics, a critical wall shear stress is required for that particular cleaning method. This work presents investigations that provide a critical...... stress predictions from a simulation using the low Re k-epsilon and one using the two-layer model of Norris and Reynolds were found to produce reliable predictions compared to empirical solutions for the ideal flow case. The comparison of wall shear stress curves predicted for the real RFC with the...

  17. Shear banding and yield stress in soft glassy materials

    NARCIS (Netherlands)

    P.C.F. Møller; S. Rodts; M.A.J. Michels; D. Bonn

    2008-01-01

    Shear localization is a generic feature of flows in yield stress fluids and soft glassy materials but is incompletely understood. In the classical picture of yield stress fluids, shear banding happens because of a stress heterogeneity. Using recent developments in magnetic resonance imaging velocime

  18. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf; Sumer, B. Mutlu

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953. The...... work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...

  19. Single low shear stress results in atherosclerosis in vivo

    Institute of Scientific and Technical Information of China (English)

    HUANG Rong-guo; LIU Hou-qi; YANG Xiang-qun; ZHANG Chuan-sen; KANG Bin; JIANG Zong-lai

    2005-01-01

    Objective: Whether single low shear stress can result in atherosclerosis without hyperliposis-diet in vivo or not is unknown. Methods: Based on an electromagnetic blood flow meter and a method to determine the pulsatile shear stress from blood flow rate waveform and its software,we developed an in vivo pulsatile blood flow rate-shear stress determining system.The left external carotid arteries of 20 adult New Zealand white rabbits were ligated and the rabbits were fed with a standard chow for 2,4,8 or 12 weeks,then the common carotid arteries of 2 sides in each rabbit were harvested for morphologic test. Results: The ligation reduced pulsatile shear stress of left common carotid significantly,for example,τmean changed from(21.16±7.17) dynes/cm2 to(3.13±2.28) dynes/cm2(p=2.176E-21),meanwhile,the pulsatile shear stress of right common carotid did not change significantly,which lasted more than 12 weeks.Atherosclerotic plaques were found after 8 and 12 weeks in pulsatile-low-shear-stress left(not normal-shear-stress right) common carotid arteries.Conclusion:Single pulsatile low shear stress can result in atherosclerosis.It supports the pulsatile low shear stress(not hypolipidemia) is the key risk factor for atherosclerosis.

  20. Modeling flow and shear stress fields over unsteady three dimensional dunes

    Science.gov (United States)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim

    2014-05-01

    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  1. Reynolds stresses from hydrodynamic turbulence with shear and rotation

    OpenAIRE

    Snellman, J. E.; Käpylä, P. J.; Korpi, M. J.; Liljeström, A. J.

    2009-01-01

    To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\\degr) the rotation vector makes ...

  2. Compression Enhanced Shear Yield Stress of Electrorheological Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min-Liang; TIAN Yu; JIANG Ji-Le; ZHU Xu-Li; MENG Yong-Gang; WEN Shi-Zhu

    2009-01-01

    @@ Shear tests of an electrorheological fluid with pre-applied electric field and compression along the field direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful [or developing high performance flexible ER or magnetorheological couplings.

  3. Sediment transport and shear stress partitioning in a vegetated flow

    Science.gov (United States)

    Le Bouteiller, Caroline; Venditti, J. G.

    2015-04-01

    Vegetation is a common feature in natural coastal and riverine water ways, interacting with both the water flow and sediment transport. However, the physical processes governing these interactions are still poorly understood, which makes it difficult to predict sediment transport and morphodynamics in a vegetated environment. We performed a simple experiment to study how sediment transport responds to the presence of flexible, single-blade vegetation, and how this response is influenced by the vegetation density. We found that the skin friction and sediment transport are reduced in a plant patch, and that this effect is larger for denser vegetation. We then evaluated several methods to calculate the skin friction in a vegetated flow, which is the key to sediment transport prediction. Among these, the inversion of bed load transport formulas and the Einstein and Banks (1950) methods appeared to produce the most reasonable values of the skin friction. Finally, we suggest using the parameter α, which is the ratio of the skin friction computed by these methods to the total bed shear stress, to make more realistic sediment transport predictions in morphodynamic models.

  4. Numerical study of shear stress distribution at sand ripple surface in wind tunnel flow

    Science.gov (United States)

    Bar, Nitsan; Elperin, Tov; Katra, Itzhak; Yizhaq, Hezi

    2016-06-01

    The mechanism responsible for the formation and sustainability of sand ripples sheared by a uniform air flow is not well understood, despite the significant attention that has been given to it ever since the pioneering studies of Bagnold (1941). In this study we explore ANSYS Fluent simulations of fine-scale turbulent flow structure in the vicinity of 2D sand ripples with particular emphasis on shear stress distribution at the sand bed. The flow parameters in the simulations were pertinent to the wind tunnel experiments for studying sand ripples formation. The simulations show that the shear stress at the crest is about 2.5 times larger than the shear stress at the trough and that in most of the simulations a separation bubble has been developed at the lee slope. In contrast to wind tunnel experiments the simulations show that ripples will be flattened at wind speed of 9 m/s as shear stress at the ripples surface exceeds the fluid threshold. This discrepancy between the calculations and real wind tunnel measurements are due to the important role of the saltation layer on the decrease of the shear stress at the surface. Without this effect ripples cannot grow higher and will be diminished at quite moderate winds.

  5. The origin of persistent shear stress in supercooled liquids

    Science.gov (United States)

    Abraham, Sneha; Harrowell, Peter

    2012-07-01

    The persistence of shear stress fluctuations in viscous liquids is a direct consequence of the non-zero shear stress of the local potential minima which couples stress relaxation to transitions between inherent structures. In simulations of 2D and 3D glass forming mixtures, we calculate the distribution of this inherent shear stress and demonstrate that the variance is independent of temperature and obeys a power law in density. The inherent stress is shown to involve only long wavelength fluctuations, evidence of the central role of the static boundary conditions in determining the residual stress left after the minimization of the potential energy. A temperature Tη is defined to characterise the crossover from stress relaxation governed by binary collisions at high temperatures to low temperature relaxation dominated by the relaxation of the inherent stress. Tη is found to coincide with the breakdown of the Stokes-Einstein scaling of diffusion and viscosity.

  6. Wall shear stress in intracranial aneurysms and adjacent arteries

    Institute of Scientific and Technical Information of China (English)

    Fuyu Wang; Bainan Xu; Zhenghui Sun; Chen Wu; Xiaojun Zhang

    2013-01-01

    Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries.

  7. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    International Nuclear Information System (INIS)

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm2. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  8. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  9. Wall Shear Stress Distribution in Patient Specific Coronary Artery Bifurcation

    Directory of Open Access Journals (Sweden)

    Vahab Dehlaghi

    2010-01-01

    Full Text Available Problem statement: Atherogenesis is affected by hemodynamic parameters, such as wall shear stress and wall shear stress spatial gradient. These parameters are largely dependent on the geometry of arterial tree. Arterial bifurcations contain significant flow disturbances. Approach: The effects of branch angle and vessel diameter ratio at the bifurcations on the wall shear stress distribution in the coronary arterial tree based on CT images were studied. CT images were digitally processed to extract geometrical contours representing the coronary vessel walls. The lumen of the coronary arteries of the patients was segmented using the open source software package (VMTK. The resulting lumens of coronary arteries were fed into a commercial mesh generator (GAMBIT, Fluent Inc. to generate a volume that was filled with tetrahedral elements. The FIDAP software (Fluent Corp. was used to carry out the simulation by solving Navier-Stokes equations. The FIELDVIEW software (Version 10.0, Intelligent Light, Lyndhurst, NJ was used for the visualization of flow patterns and the quantification of wall shear stress. Post processing was done with VMTK and MATLAB. A parabolic velocity profile was prescribed at the inlets and outlets, except for 1. Stress free outlet was assigned to the remaining outlet. Results: The results show that for angle lower than 90°, low shear stress regions are observed at the non-flow divider and the apex. For angle larger than 90°, low shear stress regions only at the non-flow divider. By increasing of diameter of side branch ratio, low shear stress regions in the side branch appear at the non-flow divider. Conclusion: It is concluded that not only angle and diameter are important, but also the overall 3D shape of the artery. More research is required to further quantify the effects angle and diameter on shear stress patterns in coronaries.

  10. Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models

    Science.gov (United States)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Pedersen, V. K.

    2016-02-01

    Shear stress at the base of glaciers exerts a significant control on basal sliding and hence also glacial erosion in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution. In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity of the higher-order model, we first compare the detailed distribution of basal shear stress in iSOSIA and in a three-dimensional full-Stokes model (Elmer/Ice). We find that iSOSIA and Elmer/Ice predict similar first-order stress and velocity patterns, and that differences are restricted to local variations at length scales of the order of the grid resolution. In addition, we find that subglacial shear stress is relatively uniform and insensitive to subtle changes in local topographic relief. Following the initial comparison studies, we use iSOSIA to investigate changes in basal shear stress as a result of landscape evolution by glacial erosion. The experiments with landscape evolution show that subglacial shear stress decreases as glacial erosion transforms preglacial V-shaped valleys into U-shaped troughs. These findings support the hypothesis that glacial erosion is most efficient in the early stages of glacial landscape development.

  11. Shear-stress sensitive lenticular vesicles for targeted drug delivery

    Science.gov (United States)

    Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  12. Interfacial stresses in strengthened beam with shear cohesive zone model

    Indian Academy of Sciences (India)

    Zergua Abdesselam

    2015-02-01

    The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress concentration of FRP–concrete interface. Understanding the cause and mechanism of the debonding of the FRP plate and the prediction of the stress distribution at the concrete–FRP interface are important for more effective strengthening technique. This paper presents an analytical solution, based on Smith and Teng’s equations, for interfacial shear and normal stresses in reinforced concrete (RC) beams strengthened with a fibre reinforced polymer (FRP) plate. However, the shear stress–strain relationship is considered to be bilinear curve. The effects of the shear deformations are calculated in an RC beam, an adhesive layer, and an FRP plate. The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses.

  13. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  14. Analysis of effective solid stresses in a conical spouted bed

    OpenAIRE

    A. L. T. CHARBEL; G. Massarani; PASSOS M. L.

    1999-01-01

    Some applications of spouted beds have been limited by problems with spout stability. In order to overcome these limitations, research should be concentrated on describing the mechanism by which the spout is developed. This work presents a theoretical and experimental study to describe the effective solid stress distribution in the annular region of a conical spouted bed. From experimental observation, the failure state of the bed of particles at the outset of spouting is identified and relat...

  15. BOTTOM SHEAR STRESS UNDER WAVE-CURRENT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2008-01-01

    The present work adopts the COHERENS-SWAN model developed by the first author through coupling three-dimensional hydrodynamic model (COHERENS) and third-generation wave model (SWAN). Inside the COHERENS-SWAN, the SWAN is regarded as a subroutine and the time- and space-varying current velocity and surface elevation are obtained from the COHERENS. Wave-enhanced bottom shear stress, wave induced surface mixing length and wave dependent surface drag coefficient have been introduced into the COHERENS. Secondly, as wave-enhanced bottom shear stress ("bottom shear stress" described as BSS sometimes in this article) is concerned, a modified bottom shear stress Grant and Madsen model which introduces random wave field is given and introduced to COHERENS-SWAN. COHERENS-SWAN is also adopted to simulate three-dimensional flow in the Yellow River Delta with wave-current co-existing. Four numerical experiments were given to study the effects of wave-current interaction on enhancing bottom shear stress. The simulated current velocities, wave height and wave period match well with field measurement data. The simulated significant wave height and wave period for the case with considering the effects of current can give better agreement with measurement data than the case without involving the effects of current. The introduction of random wave generates lower the bottom shear stress than the case without introducing it. There are obvious differences between bottom shear stress of two way interaction and one way interaction. Velocity field obtained by the COHERENS-SWAN is reasonable according to previous studies and measurements.

  16. Elevated Shear Stress in Arteriovenous Fistulae: Is There Mechanical Homeostasis?

    Science.gov (United States)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2011-11-01

    Arteriovenous fistulae are created surgically to provide access for dialysis in patients with renal failure. The current hypothesis is that the rapid remodeling occurring after the fistula creation is in part a process to restore the mechanical stresses to some preferred level (i.e. mechanical homeostasis). Given that nearly 50% of fistulae require an intervention after one year, understanding the altered hemodynamic stress is important in improving clinical outcomes. We perform numerical simulations of four patient-specific models of functioning fistulae reconstructed from 3D Doppler ultrasound scans. Our results show that the vessels are subjected to `normal' shear stresses away from the anastomosis; about 1 Pa in the veins and about 2.5 Pa in the arteries. However, simulations show that part of the anastomoses are consistently subjected to very high shear stress (>10Pa) over the cardiac cycle. These elevated values shear stresses are caused by the transitional flows at the anastomoses including flow separation and quasiperiodic vortex shedding. This suggests that the remodeling process lowers shear stress in the fistula but that it is limited as evidenced by the elevated shear at the anastomoses. This constant insult on the arterialized venous wall may explain the process of late fistula failure in which the dialysis access become occluded after years of use. Supported by an R21 Grant from NIDDK (DK081823).

  17. Direct Measurement Sensor of the Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Kerenyi, Kornel; Lih, Shyh-Shiuh; Sherrit, Stewart; Trease, Brian P.; Widholm, Scott

    2010-01-01

    The flow fields and boundary erosion that are associated with scour at bridge piers are very complex. Direct measurement of the boundary shear stress and boundary pressure fluctuations in experimental scour research has always been a challenge and high spatial resolution and fidelity have been almost impossible. Most researchers have applied an indirect process to determine shear stress using precise measured velocity profiles. Laser Doppler Anemometry and Particle Image Velocimetry are common techniques used to accurately measure velocity profiles. These methods are based on theoretical assumptions to estimate boundary shear stress. In addition, available turbulence models cannot very well account for the effect of bed roughness which is fundamentally important for any CFD simulation. The authors have taken on the challenge to advance the magnitude level to which direct measurements of the shear stress in water flow can be performed. This paper covered the challenges and the efforts to develop a higher accuracy and small spatial resolution sensor. Also, preliminary sensor designs and test results are presented.

  18. Field measurement of critical shear stress for erosion and deposition of fine muddy sediments

    Science.gov (United States)

    Salehi, M.; Strom, K. B.; Field Study

    2010-12-01

    The movement of muddy sediment from one region to another is linked to the fate and transport of pollutants that can be attached to this sediment. Important in understanding this movement is the need to know the critical conditions for erosion and deposition of the fine muddy sediment. For non-cohesion sediment, such as sands and gravels, reasonable estimates for the critical conditions can often be made theoretically without in situ measurements of the critical fluid condition or sediment transport rate. However, the shear stress needed for the incipient motion of the mud (cohesive sediments) is inherently difficult to calculate theoretically or in research flumes due to the influence of (1) flow history; (2) local sediment composition; (3) biological activity within the bed; (4) water content of the bed; and (5) salinity of the water column. The complexity of the combination of these factors makes the field measurement necessary. A field experiment was conducted under tidal flow in the region surrounding the Houston Ship Channel (near Houston, TX) to determine these conditions. Observations were made using single point, simultaneous, in situ measurement of turbulent flow and suspended sediment concentration within bottom boundary layer. Measurements were primarily made with a 6 MHz Nortek Vector velocimeter (ADV). The ADV was programmed to record 3-minute turbulent velocity with 32 Hz frequency every 10 minute. The suspended sediment concentration (SSC) was measured using the calibration of acoustic backscatter recorded by ADV against sample derived SSC. Different methods such as turbulent kinetic energy (TKE), TKEw and direct covariance method (COV) are compared together. TKE showed much more reasonable estimation on bed shear stress. Combination of time varying SSC, distance from the bed to the sampling volume recorded by ADV and calculation of shear stress made the determination of critical conditions for erosion and deposition possible.

  19. Wall Orientation and Shear Stress in the Lattice Boltzmann Model

    CERN Document Server

    Matyka, Maciej; Mirosław, Łukasz

    2013-01-01

    The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near ...

  20. Estimation of shear stress in counter-current annular flow

    International Nuclear Information System (INIS)

    The accuracy to which the friction factor is correlated is important in counter-current flow (CCF) analysis using a two-fluid model. Current two-fluid model codes use correlations of friction factors developed for co-current flow, or correlations developed on the assumption of zero wall shear stress. An assessment of two-fluid model codes with these existing correlations shows that the downward flow rate of water is overestimated. An analytical model is developed to calculate the shear stress profile in a liquid film of the CCF in order to obtain information on the shear stress between the interface and the wall. Both this analysis and Bharathan's CCF data show that the wall shear stress acting on the falling water film is approximately of same order as the interfacial shear stress, and the correlation for co-current flow cannot be applied to CCF. Tentative correlations of interfacial and wall friction factors are developed based on the results of the present study. (author)

  1. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs.

    Science.gov (United States)

    Rotenberg, Menahem Y; Ruvinov, Emil; Armoza, Anna; Cohen, Smadar

    2012-08-01

    Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model. PMID:22622237

  2. Effect of Zinc and Nitric Oxide on Monocyte Adhesion to Endothelial Cells under Shear Stress

    OpenAIRE

    Lee, Sungmun; Eskin, Suzanne G.; Shah, Ankit K.; Schildmeyer, Lisa A.; McIntire, Larry V.

    2011-01-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm2 or 1 dyne/cm2) or reversing shear stress (time average 1 dyne/cm2) for 24 hours. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike o...

  3. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  4. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis.

    Science.gov (United States)

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-12-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  5. Measurement of surface shear stress vector distribution using shear-sensitive liquid crystal coatings

    Institute of Scientific and Technical Information of China (English)

    Ji-Song Zhao; Peter Scholz; Liang-Xian Gu

    2012-01-01

    The global wall shear stress measurement technique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements.Simple and common everyday equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found.Spatial wall shear stress distributions of several typical flows are obtained using this technique,including wall-jet flow,vortex flow generated by a delta wing and junction flow behind a thin cylinder,although the magnitudes are not fully calibrated.The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.

  6. Analysis of effective solid stresses in a conical spouted bed

    Directory of Open Access Journals (Sweden)

    CHARBEL A. L. T.

    1999-01-01

    Full Text Available Some applications of spouted beds have been limited by problems with spout stability. In order to overcome these limitations, research should be concentrated on describing the mechanism by which the spout is developed. This work presents a theoretical and experimental study to describe the effective solid stress distribution in the annular region of a conical spouted bed. From experimental observation, the failure state of the bed of particles at the outset of spouting is identified and related to fluid-particle properties and column dimensions. Linear and angular momentum balances for the solid phase are then formulated as a function of the bed failure state. The set of equations obtained is solved using numerical methods, and results regarding stress distribution, stability and spout shape are presented and discussed.

  7. Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves.

    Science.gov (United States)

    Bose, Sujit K; Dey, Subhasish

    2009-09-01

    Based on the Reynolds averaged Navier-Stokes (RANS) equations and the time-averaged continuity equation, a theory of turbulent shear flow over an undulating sand bed is developed addressing the instability criterion of plane sand beds in free-surface flows leading to the formation of sand waves. In the analysis, the integration of RANS equations leads to generalized Saint Venant equations, in which the time-averaged streamwise velocity is characterized by a power law obtained from turbulence closure, treating the curvilinear streamlines by the Boussinesq approximation. As a consequence, the modified pressure distribution has a departure from the traditionally linear hydrostatic pressure distribution. The instability analysis of a plane sand bed yields the curves of the Froude number versus nondimensional wave number, determining an instability zone for which at lower Froude numbers (less than 0.8), the plane bed becomes unstable with the formation of dunes; whereas at higher Froude numbers, the plane bed becomes unstable with the formation of standing waves and antidunes. For higher Froude numbers, the experimental data for antidunes lie within the unstable zone; while for lower Froude numbers, the same is found for dunes with some experimental scatter. PMID:19905209

  8. Fluid shear stress modulation of hepatocyte-like cell function.

    Science.gov (United States)

    Rashidi, Hassan; Alhaque, Sharmin; Szkolnicka, Dagmara; Flint, Oliver; Hay, David C

    2016-07-01

    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype. PMID:26979076

  9. Shear stress mediates endothelial adaptations to exercise training in humans.

    NARCIS (Netherlands)

    Tinken, T.M.; Thijssen, D.H.J.; Hopkins, N.; Dawson, E.A.; Cable, N.T.; Green, D.J.

    2010-01-01

    Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial functi

  10. Shear stress related blood damage in laminar couette flow.

    Science.gov (United States)

    Paul, Reinhard; Apel, Jörn; Klaus, Sebastian; Schügner, Frank; Schwindke, Peter; Reul, Helmut

    2003-06-01

    Artificial organs within the blood stream are generally associated with flow-induced blood damage, particularly hemolysis of red blood cells. These damaging effects are known to be dependent on shear forces and exposure times. The determination of a correlation between these flow-dependent properties and actual hemolysis is the subject of this study. For this purpose, a Couette device has been developed. A fluid seal based on fluorocarbon is used to separate blood from secondary external damage effects. The shear rate within the gap is controlled by the rotational speed of the inner cylinder, and the exposure time by the amount of blood that is axially pumped through the device per given time. Blood damage is quantified by the index of hemolysis (IH), which is calculated from photometric plasma hemoglobin measurements. Experiments are conducted at exposure times from texp=25 - 1250 ms and shear rates ranging from tau=30 up to 450 Pa ensuring Taylor-vortex free flow characteristics. Blood damage is remarkably low over a broad range of shear rates and exposure times. However, a significant increase in blood damage can be observed for shear stresses of tau>or= 425 Pa and exposure times of texp>or= 620 ms. Maximum hemolysis within the investigated range is IH=3.5%. The results indicate generally lower blood damage than reported in earlier studies with comparable devices, and the measurements clearly indicate a rather abrupt (i.e., critical levels of shear stresses and exposure times) than gradual increase in hemolysis, at least for the investigated range of shear rates and exposure times. PMID:12780506

  11. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  12. Liquid crystals for unsteady surface shear stress visualization

    Science.gov (United States)

    Reda, D. C.

    1988-04-01

    Oscillating airfoil experiments were conducted to test the frequency response of thermochromic liquid crystal coatings to unsteady surface shear stresses under isothermal-flow conditions. The model was an NACA-0015 airfoil, exposed to an incompressible flow at a freestream Reynolds number (based on chord) of 1.14 x 1000000. Angle-of-attack forcing functions were sine waves of amplitude + or - 10 deg about each of three mean angles of attack: 0 deg 10 deg, and 20 deg. Frequencies of oscillation were 0.2, 0.6 and 1.2 hertz, corresponding to reduced frequencies of 0.0055, 0.0164 and 0.0328. Data acquisition was accomplished by video recording. Observations showed the liquid crystal technique capable of visualizing high surface shear stress zones over the stated dynamic range in a continuous and reversible manner.

  13. Structure-Enhanced Yield Shear Stress in Electrorheological Fluids

    Science.gov (United States)

    Tao, R.; Lan, Y. C.; Xu, X.

    A new technology, compression-assisted aggregation, is developed to enhance the strength of electrorheological (ER) fluids. The yield shear stress of ER fluids depends on the fluid microstructure. The unassisted electric-field induced ER structure mainly consists of single chains, whose weak points are at their ends. This new technology produces a structure consisting of robust thick columns with strong ends. As the weak points of the original ER structure are greatly enforced, the new structure makes ER fluids super-strong: At a moderate electric field and moderate pressure the yield shear stress of ER fluids at 35% volume fraction exceeds 100 kPa, well above any requirement for major industrial applications.

  14. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  15. Shearing of a confined granular layer: tangential stress and dilatancy.

    Science.gov (United States)

    Coste, C

    2004-11-01

    We study the behavior of a confined granular layer under shearing, in an annular cell, at low velocity. We give evidence that the response of the granular layer under shearing is described by characteristic length scales. The tangential stress reaches its steady state on the same length scale as the dilatancy. Stop-and-go experiments performed at several driving velocities show a logarithmic increase of the static friction coefficient with waiting time, followed by rejuvenation on a characteristic length of the order of the magnitude of a Hertz contact between adjacent grains. The dilatancy does not evolve during the stop, neither during the elastic reloading when the driving is resumed. There is a small variation when sliding sets anew, which corresponds to the rejuvenation of the layer, and this variation is independent of the waiting time. We argue that aging is due to the behavior of individual contacts between grains, not global evolution of the piling. Under an instantaneous increase of the velocity, the tangential stress reaches a new steady state, exhibiting velocity strengthening behavior. An increase of dilatancy is also observed. It is much larger than fluctuations in the steady state, variations in a stop and-go-experiment, but much less than for shearing of freshly poured grains. The dilatancy variation during a velocity jump is not due to structural rearrangements of the piling. The evolutions of tangential stress and dilatancy are logarithmic in the ratio of upper and lower velocities. PMID:15600598

  16. Pulse shear stress for anaerobic membrane bioreactor fouling control.

    Science.gov (United States)

    Yang, Jixiang; Spanjers, Henri; van Lier, Jules B

    2011-01-01

    Increase of shear stress at membrane surfaces is a generally applied strategy to minimize membrane fouling. It has been reported that a two-phase flow, better known as slug flow, is an effective way to increase shear stress. Hence, slug flow was introduced into an anaerobic membrane bioreactor for membrane fouling control. Anaerobic suspended sludge was cultured in an anaerobic membrane bioreactor (AMBR) operated with a side stream inside-out tubular membrane unit applying sustainable flux flow regimes. The averaged particle diameter decreased from 20 to 5 microm during operation of the AMBR. However, the COD removal efficiency did not show any significant deterioration, whereas the specific methanogenic activity (SMA) increased from 0.16 to 0.41 gCOD/g VSS/day. Nevertheless, the imposed gas slug appeared to be insufficient for adequate fouling control, resulting in rapidly increasing trans membrane pressures (TMP) operating at a flux exceeding 16 L/m2/h. Addition of powdered activated carbon (PAC) enhanced the effect of slug flow on membrane fouling. However, the combined effect was still considered as not being significant. The tubular membrane was subsequently equipped with inert inserts for creating a locally increased shear stress for enhanced fouling control. Results show an increase in the membrane flux from 16 L/m2/h to 34 L/m2/h after the inserts were mounted in the membrane tube. PMID:22097007

  17. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  18. Wall shear stress indicators in abnormal aortic geometries

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Gutmark-Little, Iris

    2015-11-01

    Cardiovascular disease, such as atherosclerosis, occurs at specific locations in the arterial tree. Characterizing flow and forces at these locations is crucial to understanding the genesis of disease. Measures such as time average wall shear stress, oscillatory shear index, relative residence time and temporal wall shear stress gradients have been shown to identify plaque prone regions. The present paper examines these indices in three aortic geometries obtained from patients whose aortas are deformed due to a genetic pathology and compared to one normal geometry. This patient group is known to be prone to aortic dissection and our study aims to identify early indicators that will enable timely intervention. Data obtained from cardiac magnetic resonance imaging is used to reconstruct the aortic arch. The local unsteady flow characteristics are calculated, fully resolving the flow field throughout the entire cardiac cycle. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different red blood cell loading. The impact of the deformed aortic geometries is analyzed to identify flow patterns that could lead to arterial disease at certain locations.

  19. Effect of normal stress during hydration and shear on the shear strength of GCL/textured geomembrane interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, R.D.; Soydemir, C. [Haley and Aldrich, Inc., Cambridge, MA (United States); Stulgis, R.P. [Haley and Aldrich, Inc., Manchester, NH (United States); Coombs, M.T. [Tufts Univ., Medford, MA (United States)

    1997-11-01

    A laboratory testing program was performed to evaluate the interface shear strength of a geosynthetic clay liner (GCL)/textured geomembrane interface utilizing two pre-shear inundation methods designed to simulate field conditions. Two commercially-available products were tested, a needlepunched and a stitch-bonded GCL. Oedometer swell tests provided swell data for the two products which were used to design the interface shear testing program. Interface shear tests were performed for (1) GCL samples inundated under a low normal stress for a short time and sheared under a higher normal stress, and (2) GCL samples inundated for a longer period under the design normal stress. The results for the two different GCL materials and the two preshear inundation conditions are compared.

  20. Interplay between shear stress and adhesion on neutrophil locomotion.

    Science.gov (United States)

    Smith, Lee A; Aranda-Espinoza, Helim; Haun, Jered B; Hammer, Daniel A

    2007-01-15

    Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation. PMID:17071667

  1. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    OpenAIRE

    Antony, SJ

    2015-01-01

    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The cor...

  2. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  3. A review of Reynolds stress models for turbulent shear flows

    Science.gov (United States)

    Speziale, Charles G.

    1995-01-01

    A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.

  4. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation.

    Directory of Open Access Journals (Sweden)

    Iván eRodríguez

    2014-09-01

    Full Text Available Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide (NO synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase (eNOS and vascular endothelial growth factor (VEGF, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life.

  5. Interfacial shear-stress effects on transient capillary wedge flow

    Science.gov (United States)

    Su, Song-Kai; Lai, Chun-Liang

    2004-06-01

    The effects on the transient capillary flow in a wedge due to the interfacial shear-stress distribution S along the flow direction z is studied theoretically. With the assumptions of a slender liquid column and negligible gravitational and inertia effects, the problem is reduced to finding the axial velocity distribution at any cross section. The propagation of the liquid column h(z,t) and the tip location l(t) are then solved with the aid of the continuity equation. When the half-wedge angle α, the contact angle θ, and the shear-stress distribution on the free surface S are constant, analytic solutions exist. Otherwise, numerical simulation has to be applied. The results indicate that when S(z) is acting in the flow direction, the flow is strengthened and the liquid column propagates faster. When S(z) is opposing the flow direction, reverse flow may exist near the free surface and the propagation speed of the liquid column is reduced. Moreover, for a capillary flow in a wedge with constant α, θ, and S, both the analytic solutions and the numerical simulation predict that l(t)∝t3/5 for the constant-flow-rate stage and l(t)∝t1/2 for the constant-height flow stage. When S is a function of the flow direction z, the above functional relationship between l and t becomes no longer valid; it varies as the liquid column propagates along the wedge.

  6. Endovascular Treatment of Thoracic Aortic Dissection: Hemodynamic Shear Stress Study

    Science.gov (United States)

    Tang, Yik Sau; Lai, Siu Kai; Cheng, Stephen Wing Keung; Chow, Kwok Wing

    2012-11-01

    Thoracic Aortic Dissection (TAD), a life threatening cardiovascular disease, occurs when blood intrudes into the layers of the aortic wall, creating a new artificial channel (the false lumen) beside the original true lumen. The weakened false lumen wall may expand, enhancing the risk of rupture and resulting in high mortality. Endovascular treatment involves the deployment of a stent graft into the aorta, thus blocking blood from entering the false lumen. Due to the irregular geometry of the aorta, the stent graft, however, may fail to conform to the vessel curvature, and would create a ``bird-beak'' configuration, a wedge-shaped domain between the graft and the vessel wall. Computational fluid dynamics analysis is employed to study the hemodynamics of this pathological condition. With the `beaking' configuration, the local hemodynamic shear stress will drop below the threshold of safety reported earlier in the literature. The oscillating behavior of the shear stress might lead to local inflammation, atherosclerosis and other undesirable consequences. Supported by the Innovation and Technology Fund of the Hong Kong Government.

  7. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    Directory of Open Access Journals (Sweden)

    M. W. Schmeeckle

    2015-02-01

    Full Text Available Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  8. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    Science.gov (United States)

    Schmeeckle, M. W.

    2015-02-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  9. SHEAR STRESS FOR INITIATION OF MOTION OF NON-UNIFORM SEDIMENT MIXTURES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experiments on initiation of motion of different fractions of non-uniform sediment mixtures are reported. Four sediment mixes and reference transport method to define the threshold of bed particle movement are used in this analysis. Factors controlling the initiation of motion are analyzed. It is found that relative size of different grains with respect to a median size greatly affects the initiation of movement. The incipient motion of non-uniform sediment is very much dependent on the absolute size for coarser fractions.Considering the factors controlling the initiation of motion the experimental data sets along with the other available data yield a new relationship for the calculation of critical shear stress of non-uniform sediments. A set of equations have found that all the data points fall into a single line for the finer and for coarser fractions.

  10. Characterization of the Differential Response of Endothelial Cells Exposed to Normal and Elevated Laminar Shear Stress

    OpenAIRE

    White, Stephen J.; Hayes, Elaine M.; Lehoux, Stéphanie; Jeremy, Jamie Y; Horrevoets, Anton JG; Newby, Andrew C.

    2011-01-01

    Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse t...

  11. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet

    Energy Technology Data Exchange (ETDEWEB)

    El Hassan, Mouhammad; Vetel, Jerome; Garon, Andre [Ecole Polytechnique de Montreal, Department of Mechanical Engineering, LADYF, Montreal, Quebec (Canada); Assoum, Hassan Hassan; Sobolik, Vaclav; Abed-Meraim, Kamel; Sakout, Anas [LaSIE, Universite de La Rochelle, La Rochelle (France)

    2012-06-15

    The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR-PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers. (orig.)

  12. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet

    Science.gov (United States)

    El Hassan, Mouhammad; Assoum, Hassan Hassan; Sobolik, Vaclav; Vétel, Jérôme; Abed-Meraim, Kamel; Garon, André; Sakout, Anas

    2012-06-01

    The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR-PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.

  13. Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity

    Indian Academy of Sciences (India)

    Q H Fang; J M Chen; Y W Liu; P H Wen

    2010-04-01

    According to the Mott and Nabarro’s model, the contribution to the critical shear stress of the material caused by the interaction between edge dislocations and nanoscale cylindrical inhomogeneities with interface stresses is obtained. The influence of the radius and the volume fraction of the inhomogeneity as well as the interface stresses on the critical shear stress is investigated. The important result is that, if the interface stress is considered, a maximum of the contribution to the critical shear stress produced by this interaction may be obtained when the radius of the inhomogeneity reaches a critical value.

  14. Shear Stress Inhibits Apoptosis of Ischemic Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-01-01

    Full Text Available As a therapeutic strategy for ischemic stroke, to restore or increase cerebral blood flow (CBF is the most fundamental option. Laminar shear stress (LS, as an important force generated by CBF, mainly acts on brain microvascular endothelial cells (BMECs. In order to study whether LS was a protective factor in stroke, we investigated LS-intervented ischemic apoptosis of rat BMECs (rBMECs through PE Annexin V/7-AAD, JC-1 and Hoechst 33258 staining to observe the membranous, mitochondrial and nuclear dysfunction. Real-time PCR and western blot were also used to test the gene and protein expressions of Tie-2, Bcl-2 and Akt, which were respectively related to maintain membranous, mitochondrial and nuclear norm. The results showed that LS could be a helpful stimulus for ischemic rBMECs survival. Simultaneously, membranous, mitochondrial and nuclear regulation played an important role in this process.

  15. Scale-free channeling patterns near the onset of erosion of sheared granular beds

    CERN Document Server

    Aussillous, Pascale; Guazzelli, Élisabeth; Yan, Le; Wyart, Matthieu

    2016-01-01

    Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study experimentally the collective dynamics of the moving particles, using a set-up where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space, and occurs along channels of local flux $\\sigma$ whose distribution displays scaling near threshold and follows $P(\\sigma)\\sim J/\\sigma$, where $J$ is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that for laminar flows, erosion is a dy...

  16. Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model

    Science.gov (United States)

    Bair, S.; Winer, W. O.

    1980-01-01

    Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

  17. Disbond monitoring in adhesive joints using shear stress optical fiber sensors

    International Nuclear Information System (INIS)

    We present dedicated shear stress optical fiber sensors for in situ disbond monitoring of adhesive bonds. The shear stress sensitivity of these sensors is about 60 pm MPa−1, which corresponds to a shear strain sensing resolution of 50 μϵ. By integrating a combination of three such sensors in the adhesive bond line of a single lap joint, we can assess the internal shear stress distribution when the joint is tensile loaded. Disbonding of this joint was initiated by cyclic tensile loading, and the sensor responses were monitored during this process. Our results show that this sensing system can detect disbonds as small as 100 μm. (papers)

  18. In situ measurements of erosion shear stress and geotechnical shear strength of the intertidal sediments of the experimental managed realignment scheme at Tollesbury, Essex, UK

    Science.gov (United States)

    Watts, C. W.; Tolhurst, T. J.; Black, K. S.; Whitmore, A. P.

    2003-11-01

    Managed realignment is one of several 'soft' engineering options which may reduce the costs of coastal defence, provide a more 'natural' response to the problem of rising sea levels and at the same time deliver environmental, specifically nature conservation, benefits. The success of this technique depends on the ability of the soils and sediments within the site to resist the erosive action of waves and tidal currents and allow sediment accretion to occur, at least at a rate equal to mean sea-level rise. Once a critical shear stress, τ0 crt exerted by the moving fluids over the bed, is exceeded erosion will occur. A cohesive strength meter (CSM) and the fall-cone method were used to gather data, in situ on the strength and stability of sediments from an experimental managed realignment site and an adjacent, established saltmarsh in south-east England. Following six years of regular tidal cover, the underlying agricultural soil appeared both very strong (mean surface shear strength, τ f=228 kPa) and highly resistant to erosion ( τ 0 crt=6.23 N m -2). During this period much of the site had been covered by sediment, and saltmarsh plants ( Salicornia europaea) had become established above the mean high water neap tide (MHWN) level. Above MHWN level (tidal cover time <15%) sediments had greater bulk densities and lower water contents which resulted in a moderate shear strength (τ f=11.6 kPa) and resistance to erosion (τ 0 crt=2.45 N m -2) . Below MHWN, where sediment accretion rates were greatest, poor consolidation resulted in very high water contents and low bulk densities. These areas were at the highest potential risk of erosion (τ 0 crt=1.5 N m -2) and had very low shear strengths (τ f=0.33 kPa) . Where sediment exceeded 25 cm depth, gullies formed allowing their banks and adjacent margins to drain faster than the surrounding sediment. This led to a significant increase in bed strength (τ f=10.8 kPa) and stability (τ 0 crt=4.3 N m -2) . These gullies

  19. Fluid Shear Stress Increases Neutrophil Activation via Platelet-Activating Factor

    OpenAIRE

    Mitchell, Michael J.; Lin, Kimberly S.; King, Michael R.

    2014-01-01

    Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to...

  20. Possible effect from shear stress on maturation of somatic embryos of Norway spruce (Picea abies).

    Science.gov (United States)

    Sun, Hong; Aidun, Cyrus K; Egertsdotter, Ulrika

    2011-05-01

    Somatic embryogenesis is the only method with the potential for industrial scale clonal propagation of conifers. Implementation of the method has so far been hampered by the extensive manual labor required for development of the somatic embryos into plants. The utilization of bioreactors is limited since the somatic embryos will not mature and germinate under liquid culture conditions. The negative effect on mature embryo yields from liquid culture conditions has been previously described. We have described the negative effects of shear stress on the development of early stage somatic embryos (proembryogenic masses; PEMs) at shear stresses of 0.086 and 0.14 N/m(2). In the present study, additional flow rates were studied to determine the effects of shear stress at lower rates resembling shear stress in a suspension culture flask. The results showed that shear stress at 0.009, 0.014, and 0.029 N/m(2) inhibited the PEM expansions comparing with the control group without shear stress. This study also provides validation for the cross-correlation method previously developed to show the effect of shear stress on early stage embryo suspensor cell formation and polarization. Furthermore, shear stress was shown to positively affect the uptake of water into the cells. The results indicate that the plasmolyzing effect from macromolecules added to liquid culture medium to stimulate maturation of the embryos are affected by liquid culture conditions and thus can affect the conversion of PEMs into mature somatic embryos. PMID:21449024

  1. Shear stress partitioning of overland flow on disturbed and undisturbed rangelands

    Science.gov (United States)

    Physically-based hillslope erosion models commonly estimate soil detachment and transport capacity based on overland flow shear stress applied to soil aggregates. However, vegetation and rock cover counteract the shear stress of overland flow where they occur. Accordingly, partitioning of total sh...

  2. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    International Nuclear Information System (INIS)

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents. (paper)

  3. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex; Krueger, Katharina; Liu, Ying; Baumunk, Daniel; Zakrzewicz, Andreas; Tepel, Martin

    2012-01-01

    The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...... shear stress, producing a constant laminar flow (generating a shear stress of 6 dyne/cm(2)), laminar pulsatile atheroprotective flow (with a mean shear stress of 20 dyne/cm(2)), or laminar atheroprone bidirectional flow (with a mean shear stress of 0 dyne/cm(2)) differentially induced TRPC6 and TRPV1 m......RNA as measured by quantitative real-time RT-PCR and normalized to GAPDH expression. Thereby, TRPC6 and TRPV1 mRNA expressions were significantly increased after 24 hours of exposure to an atheroprone flow profile compared with an atheroprotective flow profile. Furthermore, the expression of...

  4. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    Science.gov (United States)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in

  5. Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump

    NARCIS (Netherlands)

    Michels, M.H.A.; Goot, van der A.J.; Vermuë, M.H.; Wijffels, R.H.

    2016-01-01

    The tolerance to shear stress of Tetraselmis suecica, Isochrysis galbana, Skeletonema costatum, and Chaetoceros muelleri was determined in shear cylinders. The shear tolerance of the microalgae species strongly depends on the strain. I. galbana, S. costatum, and C. muelleri exposed to shear stress b

  6. Effects of flow unsteadiness on the wall shear stress

    Science.gov (United States)

    Amiri, K.; Cervantes, M. J.; Raisee, M.

    2012-11-01

    Measurements were performed on pulsating fully turbulent flows in a pipe test rig with a diameter of 100 mm. Sinusoidal oscillatory flow at different frequencies was superimposed on a mean flow of averaged Reynolds number Re=20000 based on the pipe diameter. The measurements have been performed at different forcing frequencies (0.001 < ω+ < 0.08) covering all the oscillatory regimes; quasi-steady, relaxation, quasi laminar and high frequency. The amplitude of the flow oscillation was small enough to allow a linear response in the measurements, i.e., all flow parameters showed an oscillatory behavior at the frequency of the flow. The amplitude of the oscillatory flow was about 10% of the mean velocity in all cases. The results include mean and phase averaged values of different parameters. The centerline velocity was measured by a 2D LDA system. Hot film and constant temperature anemometry system was used to determine the wall shear stress. Bulk velocity and pressure gradient along the pipe were also acquired. The results showed a good agreement with the previous analytical, experimental and numerical results available in the literature.

  7. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow.

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn C

    2016-01-01

    Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations. PMID:26592536

  8. Exponential decay of shearing stress during jerky flows in a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2013-03-01

    Full Text Available Presently, an exponential decay of shearing stresses with the time during jerky flows in a Zr-based bulk metallic glass is revealed. The flow stresses with the time satisfy the following equation: σ = A · e−B · x, where A = −158.24*exp ( − N/47.60 + 1939.63 (N = 1, 2, 3…, and the mean value of obtained B is −0.13 with a Normal distribution. During jerky flows, the viscous shearing layer is formed, and the exponential decay of shear banding is present. The evolvement of shear bands is explained by the consumption of free volumes during flows.

  9. WASHOUT CONDITION OF CLUMP-TYPE GRASS CONSIDERING THE CHANGE OF THE REFERENCE VELOCITY AND SHEAR STRESS IN THE VEGETATED AREA

    Science.gov (United States)

    Hara, Tatsuaki; Tanaka, Norio

    Threshold shear stress for removing grasses by flood is important but is not well understood quantitatively for clump-type vegetation, Eragrostis curvula. New model for calculating the velocities in the vegetated layer and the surface layer was proposed and the model was validated with flume experiments. The bed shear stress in vegetation was calculated by the momentum balance in the vegetated layer, and was applied for evaluating the wash-out conditions of the grass. The threshold value for removing the clump-type vegetation was evaluated as a rate of shear stress of d90, grain diameter at which 90% volume passed through the sieve, and the critical shear stress of d90, WOI. The critical WOI for removing the grass is 1.9-2.1, and 1.8-1.9 for one layer analysis, and two layer analysis, respectively. The critical shear stress inside the vegetated region does not decrease much because there is bare land between each clump-type grass, and the flow is accelerated in the region by the momentum exchange.

  10. Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays

    International Nuclear Information System (INIS)

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)

  11. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  12. Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels

    Science.gov (United States)

    Engelstad, S. P.; Reddy, J. N.; Knight, N. F., Jr.

    1990-01-01

    The objectives of the study are to assess the influence of shear flexibility on overall postbuckling response, and to examine transverse shear stress distributions in relation to panel failure. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented in this paper analytically substantiate the experimentally observed failure mode.

  13. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  14. Biological effects of dynamic shear stress in cardiovascular pathologies and devices

    OpenAIRE

    Girdhar, Gaurav; Bluestein, Danny

    2008-01-01

    Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations ...

  15. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis.

    Science.gov (United States)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Mitchell, Arnan; McIntyre, Peter; Khoshmanesh, Khashayar

    2016-03-01

    Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation. PMID:27099646

  16. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    International Nuclear Information System (INIS)

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and

  17. Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The...

  18. Role of cytoplasmic and releasable ADP in platelet aggregation induced by laminar shear stress

    International Nuclear Information System (INIS)

    We examined the extent of lytic and sublytic platelet injury after exposure of platelets to shear stress and the role in shear-induced PAG of ADP liberated from platelets as a result of shear-induced platelet dense body release and/or platelet damage. Platelets in C-PRP or TAS were subjected to well-defined, laminar shear stress in a rotational viscometer, and PAG (loss of single, nonaggregated platelets), 14C-serotonin release, and loss from platelets of LDH and 51Cr were determined. Increased PAG with increasing shear stresses was associated with progressive loss of LDH and 51Cr. Loss of 51Cr was consistently in excess of that of LDH, indicating sublytic platelet injury, which was confirmed by electron microscopy. At the lowest shear stress used (50 dynes/cm2), PAG in C-PRP was observed in the absence of detectable loss of 51Cr or LDH. When platelets in TAS were sheared in the presence of CP/CPK, an enzyme system capable of removing extracellular ADP, PAG was only partially (approximately 40%) inhibited. However, when platelets were preincubated with CP/CPK and ATP (to saturate platelet ADP receptors), shear-induced PAG was almost completely suppressed. Similar results were obtained with PAG induced by collagen in the aggregometer. The findings indicate that (1) shear-induced PAG in this system may occur without measurable lytic or sublytic platelet damage and (2) ADP liberated from platelets as a result of shear-induced release or damage may represent the major if not sole mediator of shear-induced PAG

  19. Regulation of endothelial metabolism by laminar shear stress and flow-induced transcription factor KLF2

    OpenAIRE

    Doddaballapur, Anuradha

    2016-01-01

    Flow hemodynamics regulates endothelial cell (EC) responses and laminar shear stress induces an atheroprotective and quiescent phenotype. The flow-responsive transcription factor KLF2 is a pivotal mediator of endothelial quiescence, but the precise mechanism is unclear. In this doctoral study, we assessed the hypothesis that laminar shear stress and KLF2 regulate endothelial quiescence by controlling endothelial metabolism. Laminar flow exposure and KLF2 over expression in HUVECs reduced g...

  20. Thermal Stress Analysis of Laminated Composite Plates using Shear Flexible Element

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1996-01-01

    Full Text Available Using degree Centigrade shear flexible QUAD-9 plate element, stresses and deflections in composite laminated plates due to thermal loads analysed. A formulation based on first order shear deformation theory has been employed for the analysis. The effects of various parameters, such as ply-angle, number of layers, thickness and aspect ratios on stresses and deflections are brought out. The present formulation is being extended for studying composite shell structures.

  1. Thermal Stress Analysis of Laminated Composite Plates using Shear Flexible Element

    OpenAIRE

    Ganapathi, M; Patel, B.P.; V. Balamurugan; D.R.S.V. Varma

    1996-01-01

    Using degree Centigrade shear flexible QUAD-9 plate element, stresses and deflections in composite laminated plates due to thermal loads analysed. A formulation based on first order shear deformation theory has been employed for the analysis. The effects of various parameters, such as ply-angle, number of layers, thickness and aspect ratios on stresses and deflections are brought out. The present formulation is being extended for studying composite shell structures.

  2. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.

    OpenAIRE

    Y. Ikeda; Handa, M; Kawano, K; Kamata, T; Murata, M.; Araki, Y; Anbo, H; Kawai, Y; Watanabe, K.; Itagaki, I

    1991-01-01

    Exposure of platelets to shear stress leads to aggregation in the absence of exogenous agonists. We have now found that different adhesive proteins and platelet membrane glycoproteins are involved in aggregation depending on the shear stress conditions and the concentration of divalent cations in the medium. When blood is collected with trisodium citrate as anticoagulant, which causes a decrease in the levels of external ionized calcium ([Ca2+]o), platelet aggregation can be induced under low...

  3. Application of Entropy Concept for Shear Stress Distribution in Laminar Pipe Flow

    Science.gov (United States)

    Choo, Yeon Moon; Choo, Tai Ho; Jung, Donghwi; Seon, Yun Gwan; Kim, Joong Hoon

    2016-04-01

    In the river fluid mechanics, shear stress is calculated from frictional force caused by viscosity and fluctuating velocity. Traditional shear stress distribution equations have been widely used because of their simplicity. However, they have a critical limitation of requiring energy gradient which is generally difficult to estimate in practice. Especially, measuring velocity/velocity gradient on the boundary layer is difficult in practice. It requires point velocity throughout the entire cross section to calculate velocity gradient. This study proposes shear stress distribution equations for laminar flow based on entropy theory using mean velocity and entropy coefficient. The proposed equations are demonstrated and compared with measured shear stress distribution using Nikuradse's data. Results showed that the coefficient of determination is around 0.99 indicating that the proposed method well describes the true shear stress distribution. Therefore, it was proved that shear stress distribution can be easily and accurately estimated by using the proposed equations. (This research was supported by a gran(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government)

  4. Effect of Varying Fluid Shear Stress on Cancer Stem Cell Viability & Protein Expression

    Science.gov (United States)

    Domier, Ria; Kim, Yonghyun; Dozier, David; Triantafillu, Ursula

    2013-11-01

    Cancer stem cells cultured in vitro in stirred bioreactors are exposed to shear stress. By observing the effect of shear stress on cancer stem cell viability, laboratory cell growth could be optimized. In addition, metastasized cancer stem cells in vivo are naturally exposed to shear stress, a factor influencing stem cell differentiation, while circulating in the bloodstream. Changes in protein expression after exposure to shear stress could allow for identification and targeting of circulating cancer cells. In this study, blood flow through capillaries was simulated by using a syringe pump to inject suspensions of Kasumi-1 leukemia stem cells into model blood vessels composed of PEEK tubing 125 microns in diameter. The Hagen-Poisseuille equation was used to solve for operating flow rates based on specified amounts of shear stress. After exposure, cell counts and viabilities were observed using an optical microscope and proteins were analyzed using Western blotting. It was observed that at a one minute exposure to stress, cell viability increased as the amount of shear was increased from 10 to 60 dynes per square centimeter. Results from this research are applicable to optimization of large-scale stem cell growth in bioreactors as well as to the design of targeted cancer therapies. Funding from NSF REU grant #1062611 is gratefully acknowledged.

  5. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro.

    Science.gov (United States)

    Aisha, M D; Nor-Ashikin, M N K; Sharaniza, A B R; Nawawi, H; Froemming, G R A

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. PMID:26163894

  6. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers.

    Science.gov (United States)

    Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Luyckx, Geert; Van Hemelrijck, Danny; Mergo, Pawel; Urbanczyk, Waclaw; Chah, Karima; Caucheteur, Christophe; Mégret, Patrice; Thienpont, Hugo; Berghmans, Francis

    2013-08-26

    We demonstrate shear stress sensing with a Bragg grating-based microstructured optical fiber sensor embedded in a single lap adhesive joint. We achieved an unprecedented shear stress sensitivity of 59.8 pm/MPa when the joint is loaded in tension. This corresponds to a shear strain sensitivity of 0.01 pm/µε. We verified these results with 2D and 3D finite element modeling. A comparative FEM study with conventional highly birefringent side-hole and bow-tie fibers shows that our dedicated fiber design yields a fourfold sensitivity improvement. PMID:24105585

  7. Tracer-pebble movement along a concave river profile: Virtual velocity in relation to grain size and shear stress

    Science.gov (United States)

    Ferguson, R. I.; Wathen, S. J.

    1998-08-01

    Over 1400 tracer pebbles 16-256 mm in diameter were tracked for 2 years in six reaches of Allt Dubhaig, Scotland, a small gravel-bed river along which shear stress and bed surface grain size decrease toward a local base level. Pebble movement was size-selective both within and between reaches. Within reaches the decrease in mean travel distance with increasing grain size is strongest in the coarse tail of the size distribution. Particle shape has a minor secondary effect. A nondimensional grain velocity, averaged over the duration of competent flow, is used to compare different size classes and reaches. Over 90% of its variance is explained by relative grain size and reach Shields stress. The pattern of size selectivity is consistent with single-event tracer results elsewhere, bedload trap data from our distal reach, and the concept of partial mobility. It provides a mechanism for strong downstream fining by selective transport and deposition along rivers in which stress declines toward base level. The nondimensional prediction equation for grain velocity may be of use in other rivers but requires testing.

  8. Analysis of shearing stress in the limited durability of bovine pericardium used as a biomaterial.

    Science.gov (United States)

    Carrera San Martin, A; García Paez, J M; García Sestafe, J V; Herrero, E J; Navidad, R; Cordón, A; Castillo-Olivares, J L

    1998-02-01

    The objective of the study was to determine the shearing stress exerted by the suture thread under conditions of normal working stress. Thirty-six samples of calf pericardium, similar to that employed in the manufacture of bioprosthetic cardiac valve leaflets, were subjected to tensile testing. Prior to the trial, a continuous suture was sewn in the central zone of each sample, at a 45 degrees angle to the longest axis of the sample, using commercially-available threads (silk, Gore-Tex, Surgilene and nylon). Application of the Mohr circle for combined wear revealed that the shearing stress ranged between 2.68-fold greater (for samples sewn with silk) and 5.48-fold greater (for samples sewn with nylon) than the working tensile stress in the region of the suture. It is concluded that the shearing stress is responsible for the limited durability of sutured samples of calf pericardium prepared to simulate bioprosthetic cardiac valve leaflets. PMID:15348911

  9. A PZT-based smart aggregate for seismic shear stress monitoring

    International Nuclear Information System (INIS)

    A lead zirconate titanate (PZT)-based smart aggregate (SA) is proposed for seismic shear stress monitoring in concrete structures. This SA uses a d15-mode PZT as the sensing element. A calibration test is designed in which a cyclic shear stress with a dominant frequency of the earthquake response spectrum is applied on the two opposite sides of the proposed SA using a specially designed loading mold. The test is repeated on six copies of the proposed SA. The maximum applied shear stress is larger than the shear strength of ordinary concrete to allow measurements during failure. The output voltage of the SA is experimentally verified as varying linearly with the applied stress in the loading range. The sensitivity of the proposed SA to the applied stress under the given boundary conditions is examined. The calibrated sensitivity value is then compared with the calculated value, which is obtained by computing the stress distribution in the SA using finite element analysis (FEA). The calculated values and the calibrated values are approximately the same, indicating that the established finite element (FE) model is reliable. Monotonic loading is also applied on the proposed SA to induce cracks between the SA and the loading mold, and the SA’s response to cracking processes is examined. It is found that the proposed SA underestimates the cracking process. This study demonstrates that the proposed SA can be used in monitoring the overall shear stress development process in concrete during a seismic event. (paper)

  10. Is crack branching under shear loading caused by shear fracture? ——A critical review on maximum circumferential stress theory

    Institute of Scientific and Technical Information of China (English)

    孙宗颀

    2001-01-01

    When a crack is subjected to shear force, crack branching usually occurs. Theoretical study shows that the crack branching under shear loading is caused by tensile stress, but not caused by shear fracture. The co-plane shear fracture could be obtained if compressive stress with given direction is applied to the specimen, subsequently, calculated shear fracture toughness, KⅡ C, is larger than KⅠ C. A prerequisite of possible occurrence of mode Ⅱ fracture was proposed. The study of shear fracture shows that the maximum circumferential stress theory considered its criterion as a parametric equation of a curve in KⅠ, KⅡ plane is incorrect; the predicted ratio KⅡ C/KⅠ C=0.866 is incorrect too.

  11. Effect of cell size and shear stress on bacterium growth rate

    Science.gov (United States)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  12. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    International Nuclear Information System (INIS)

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN

  13. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  14. Acute Shear Stress Direction Dictates Adherent Cell Remodeling and Verifies Shear Profile of Spinning Disc Assays

    OpenAIRE

    Fuhrmann, Alexander; Engler, Adam J.

    2015-01-01

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disc chamber or “spinning disc” in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologie...

  15. Multilayered shell finite element with interlaminar continuous shear stresses

    OpenAIRE

    Brank, Boštjan; Carrera, Erasmo

    2015-01-01

    A finite element formulation for refined linear analysis of multilayered shell structures of moderate thickness is presented. An underlying shell model is a direct extension of the first-order shear-deformation theory of Reissner-Mindlin type. A refined theory with seven unknown kinematic fields is developed

  16. Development of Pore Pressure in Cohesionless Soils with Initial Shear Stresses during Cyclic Loading

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jacobsen, H. Moust

    1989-01-01

    A number of triaxial tests with the loading harmonically oscillating around an initial and anisotropic stress state have been performed. Hereby the influence of the initial shear stress on the development of pore pressure in a cohesionless  sand specimen have been clarified. A simple theory...

  17. Discrimination between nuclear explosions and earthquakes based on consideration of tectonic ambient shear stress values

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of fracture mechanics earthquake rupture model, the relations between source parameters and t0, the value of tectonic ambient shear stress in the place where the earthquake occurs, have been derived. Thus, we can calculate a large number of values of tectonic ambient shear stress or values of background stress in the place where the earthquake occurs. If nuclear explosions are treated as earthquakes in the calculation, we find that t0 values of nuclear explosions have about 20 MPa, which is obviously higher than average t0 values of earthquakes with the same magnitude. This result can be used to discriminate nuclear explosions from earthquakes.

  18. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  19. Yield shear stress model of magnetorheological fluids based on exponential distribution

    Science.gov (United States)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-06-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe3O4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors.

  20. Measurement of intergranular stress and porosity during dynamic compaction of porous beds of cyclotetramethylene tetranitramine

    Science.gov (United States)

    Greenaway, M. W.

    2005-05-01

    The dynamic compaction of granular beds of the propellant cyclotetramethylene tetranitramine (HMX) has been investigated using a modified split Hopkinson pressure bar system. Intergranular stress and bed porosity were simultaneously measured during controlled loading. The importance of grain size was investigated by comparing conventional HMX (mean particle size ˜260μm) to microfine HMX (hydraulically pressing the beds prior to testing. With large grains, resistance to compaction increased with the solid volume fraction. Microfine HMX behaved like low porosity conventional HMX beds in all cases. Porosity was typically reduced by 5%-10% during compaction and intergranular stresses below the yield stress were ensured. Energy dissipation to plastic flow and fracture were largely eliminated. Optical particle size analysis and electron microscopy support the experimental observations.

  1. ANALYSIS OF PULSATILE FLOW IN THE PARALLEL-PLATE FLOW CHAMBER WITH SPATIAL SHEAR STRESS GRADIENT

    Institute of Scientific and Technical Information of China (English)

    QIN Kai-rong; HU Xu-qu; LIU Zhao-rong

    2007-01-01

    The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endothelical Cells (ECs) exposed to fluid shear stress. The steady flow in different kinds of PPFC has been extensively investigated, whereas, the pulsatile flow in the PPFC has little attention. In consideration of the characteristics of geometrical size and pulsatile flow in the PPFC, the 3-D pulsatile flow was decomposed into a 2-D pulsatile flow in the vertical plane, and an incompressible plane potential flow in the horizontal plane. A simple method was then proposed to analyze the pulsatile flow in the PPFC with spatial shear stress gradient. On the basis of the method, the pulsatile fluid shear stresses in several reported PPFCs with spatial shear stress gradients were calculated. The results were theoretically meaningful for applying the PPFCs in-vitro, to simulate the pulsatile fluid shear stress environment, to which cultured ECs were exposed.

  2. Experimental investigation of the wall shear stress in a circular impinging jet

    Science.gov (United States)

    El Hassan, M.; Assoum, H. H.; Martinuzzi, R.; Sobolik, V.; Abed-Meraim, K.; Sakout, A.

    2013-07-01

    The influence of the large-scale vortical structures on the wall shear stress in a circular impinging jet is investigated experimentally for a Reynolds number of 1260. Time-resolved particle image velocimetry and polarographic measurements are performed simultaneously. It is found that the instantaneous wall shear stress is strongly dependent on the vortex dynamics, particularly for different parts of the transverse vortex. The influence of the vortex ring, the secondary and tertiary vortices on the ejection/sweep process near the wall is the main mechanism involved in the wall shear stress variation. In the region of the boundary layer separation, the wall shear stress amplitude increases just upstream of the separation and dramatically decreases in the recirculation zone downstream from the separation. The interaction between primary and secondary structures and their pairing process with the tertiary structure affects the sweep/ejection process near the wall and subsequently the wall shear stress variation. A comparison between the Finite Time Lyapunov Exponent (FTLE) method and the phase average technique is performed. It is shown that both methods describe the flow dynamics in the impinging region of the vortex ring. However, the FTLE method is more suitable for describing the unsteady separation of the boundary layer.

  3. Estimation of shear stress in counter-current gas-liquid annular two-phase flow

    International Nuclear Information System (INIS)

    The accuracy of the correlations of the friction factor is important for the counter-current flow (CCF) analysis with two-fluid model. However, existing two fluid model codes use the correlations of friction factors for co-current flow or correlation developed based on the assumption of no wall shear stress. The assessment calculation for two fluid model code with those existing correlations of friction factors shows the falling water flow rate is overestimated. Analytical model is developed to calculate the shear stress distribution in water film at CCF in order to get the information on the shear stress at the interface and the wall. The analytical results with the analysis model and Bharathan's CCF data shows that the wall shear stress acting on the falling water film is almost same order as the interfacial shear stress and the correlations for co-current flow cannot be applied to the counter-current flow. Tentative correlations of the interfacial and the wall friction factors are developed based on the results of the present study. (author)

  4. The influence of stress state on the development of adiabatic shear for uranium niobium alloys

    International Nuclear Information System (INIS)

    In order to reveal the influence of stress state on the form and development of adiabatic shear, the split Hopkinson press bar (SHPB) is used to impact specimen with different shape such as cylinder, step-cylinder, dumbbell and ladder-shaped specimen. The specimens after Hopkinson bar test were investigated by optical microscopy. The deformation behavior and shear localization in four specimens of uranium niobium alloys under impact loading are simulated by the finite element code LS-DYNA. The results show that the shapes of specimens effect the tendency of the adiabatic shear band (ASB) in the single axial compress state. The location and propagations of ASB predicted by present FEM simulation show good agreement with the experimental results. The calculation results show that the stress condition has significant influence on the initiation and propagation of adiabatic shear band. (authors)

  5. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    OpenAIRE

    Benoit, Joshua B.

    2011-01-01

    Recent emergence of bed bugs (Cimex spp.) has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor all...

  6. A Wind Tunnel Investigation of the Shear Stress with A Blowing Sand Cloud

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be characterized by shear stress and force exerted on the wind by moving particles results in the modification of wind profiles.Detailed wind pro-files re-adapted to blown sand movement are measured in a wind tunnel for different grain size populations and at differ-ent free-stream wind velocities.The shear stress with a blowing sand cloud and force exerted on the wind by moving par-ticles are calculated from the measured wind velocity profiles.The results suggest that the wind profiles with presence of blowing sand cloud assume convex-upward curves on the u(z)-ln(z) plot compared with the straight lines characterizing the velocity profiles of clean wind,and they can be better fitted by power function than log-linear function.The exponent of the power function ranging from 0.1 to 0.17 tends to increase with an increase in wind velocity but decrease with an increase in particle size.The force per unit volume exerted on the wind by blown sand drift that is calculated based on the empirical power functions for the wind velocity profiles is found to decrease with height.The particle-induced force makes the total shear stress with blowing sand cloud partitioned into air-borne stress that results from the wind velocity gradient and grain-borne stress that results from the upward or downward movement of particles.The air-borne stress in-creases with an increase in height,while the grain-borne stress decreases with an increase in height.The air-borne shear stress at the top of sand cloud layer increases with both wind velocity and grain size,implying that it increases with sand transport rate for a given grain size.The shear stress with a blowing sand cloud is also closely related to the sand transport rate.Both the total shear stress and grain-borne stress on

  7. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    Science.gov (United States)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  8. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows

    Science.gov (United States)

    Mehdi, Faraz; Johansson, T. Gunnar; White, Christopher M.; Naughton, Jonathan W.

    2014-01-01

    A full momentum integral-based method for determining wall shear stress is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms. It is applicable for flows that change rapidly in the streamwise direction and, in particular, to flows with ill-defined outer boundary conditions or when the measurement grid does not extend over the whole boundary layer thickness. The method is applied to two different experimental plane turbulent wall jet data sets for which independent estimates of wall shear stress were known, and the different results compare favorably. Complications owing to experimental limitations and measurement error in determining wall shear stress from the proposed method are presented, and mitigating strategies are described.

  9. Prediction of shear stress-related hemolysis in centrifugal blood pumps by computational fluid dynamics

    Institute of Scientific and Technical Information of China (English)

    WANG Fangqun; LI Lan; FENG Zhigang; QIAN Kunxi

    2005-01-01

    A quantitative evaluation of shear stress-related hemolysis in centrifugal blood pumps with different impeller designs has been investigated. Computational fluid dynamics (CFD) is applied to track the shear stress history of the streamlines of red cells. The power law model of the relations among the hemolysis, shear stress and exposure time is used to evaluate the hemolysis in the pumps.Hemolysis tests are also conducted to verify the estimations. Both the estimations and experimentally measured hemolysis levels show that the hemolysis in the streamlined impeller pump developed by the authors is lower than the pump with straight-vane under the same boundary conditions. The approach is proved to be acceptable and practical to predict hemolysis levels of blood pumps.

  10. The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)

    Science.gov (United States)

    Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)

    2015-11-01

    Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.

  11. Mean interfacial shear stress and liquid film thickness in countercurrent air-water flow

    International Nuclear Information System (INIS)

    Countercurrent air-water flow experimental results in a tubular vertical test section 2.2 m long and 0.02 m ID are presented; the relations between the mean value of the interfacial shear stress and the mean liquid film thickness and flow rate of gas and liquid phases are derived. The experiments were performed in the laminar regime of the liquid film, for Reynolds number = 250:950, at the flooding conditions, before and after the flooding occurrence. Flooding data are compared with the Wallis correlation and with the Bharathan-Wallis theoretical model. Experimental values of the mean interfacial shear stress and wall shear stress are compared with the prediction of the empirical correlations that are used for the countercurrent flow modelling. An interfacial friction factor correlation is also presented

  12. Evaluation of Differentially Expressed Genes by Shear Stress in Human Osteoarthritic Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Mel S. Lee

    2009-02-01

    Full Text Available Background: The pathogenesis of osteoarthritis is related to abnormal mechanical stressesthat alter cartilage metabolism and chondrocyte survival. Among themechanical stresses, shear stress is held responsible for the development ofarthritis.Methods: Monolayer cultures of human osteoarthritic chondrocytes were subjected tofluid-induced shear stress in vitro. A cDNA microarray technology was usedto screen the differentially regulated genes and quantitative real-time polymerasechain reaction (Q-RT-PCR was used to confirm the results. The significanceof the expression ratio for each gene was determined on the lowestassociated false discovery rate calculated from the changes of gene expressionin relation to the standard deviation of repeated measurements for thatgene.Results: Exposure of human osteoarthritic chondrocytes to shear stress (0.82 Pa for 2hours differentially regulated 373 and 227 clones in two independentmicroarray analyses with at least a 1.7-fold change. By comparing the differentiallyregulated clones, 14 upregulated and 6 downregulated genes wereidentified. Many of the differentially expressed genes were related to cellproliferation/differentiation (TGF-β, acidic FGF, cell survival/apoptosis(CYP1B1, BCL2L3, TNFRSF11B, chemokine ligands, ADM, and matrixhomeostasis (DCN, SDC2, MGP, WISP2.Conclusion: The gene expression patterns following shear stress show a high similarity tothe gene expression in the reparative process of osteoarthritis chondrocytes.Using microarray analysis, this study suggests a close interaction betweenshear stress and the pathogenesis of osteoarthritis.

  13. Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications

    OpenAIRE

    Lin, Qiao; Jiang, Fukang; Wang, Xuan-Qi; Xu, Yong; Han, Zhigang; Tai, Yu-Chong; Lew, James; Ho, Chih-Ming

    2004-01-01

    MEMS thermal shear-stress sensors exploit heat-transfer effects to measure the shear stress exerted by an air flow on its solid boundary, and have promising applications in aerodynamic control. Classical theory for conventional, macroscale thermal shear-stress sensors states that the rate of heat removed by the flow from the sensor is proportional to the 1/3-power of the shear stress. However, we have observed that this theory is inconsistent with experimental data from MEMS sensors. This pap...

  14. Shear-stress fluctuations in self-assembled transient elastic networks

    Science.gov (United States)

    Wittmer, J. P.; Kriuchevskyi, I.; Cavallo, A.; Xu, H.; Baschnagel, J.

    2016-06-01

    Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled transient networks formed by repulsive beads reversibly bridged by ideal springs. With Δ t being the sampling time and t(f ) ˜1 /f the Maxwell relaxation time (set by the spring recombination frequency f ), the dimensionless parameter Δ x =Δ t /t(f ) is systematically scanned from the liquid limit (Δ x ≫1 ) to the solid limit (Δ x ≪1 ) where the network topology is quenched and an ensemble average over m -independent configurations is required. Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G (t ) may be efficiently determined for all Δ x using the simple-average expression G (t ) =μA-h (t ) with μA=G (0 ) characterizing the canonical-affine shear transformation of the system at t =0 and h (t ) the (rescaled) mean-square displacement of the instantaneous shear stress as a function of time t . This relation is compared to the standard expression G (t ) =c ˜(t ) using the (rescaled) shear-stress autocorrelation function c ˜(t ) . Lower bounds for the m configurations required by both relations are given.

  15. Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile

    International Nuclear Information System (INIS)

    Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile. (paper)

  16. Statistical properties of wall shear stress fluctuations in turbulent channel flows

    International Nuclear Information System (INIS)

    Highlights: ► Accurate measurements of instantaneous wall shear stress are conducted. ► LDA is used to measure near-wall streamwise velocity. ► Electrochemical probe is used to measure wall shear stress. ► Frequency response and non-uniform correction methods were used to provide an accurate, well-resolved wall-statistics database. ► Reynolds number dependency of the statistical wall quantities is investigated. - Abstract: Instantaneous velocity and wall shear stress measurements are conducted in a turbulent channel flow in the Kármán number range of Reτ = 74–400. A one-dimensional LDA system is used to measure the streamwise velocity fluctuations, and an electrochemical technique is utilized to measure the instantaneous wall shear stress. For the latter, frequency response and nonuniform correction methods are used to provide an accurate, well-resolved wall statistics database. The Reynolds number dependency of the statistical wall quantities is carefully investigated. The corrected relative wall shear stress fluctuations fit well with the best DNS data available and meet the need for clarification of the small discrepancy observed in the literature between the experimental and numerical results of such quantities. Higher-order statistics of the wall shear stress, spectra, and the turbulence kinetic energy budget at the wall are also investigated. The present paper shows that the electrochemical technique is a powerful experimental method for hydrodynamic studies involving highly unsteady flows. The study brings with it important consequences, especially in the context of the current debate regarding the appropriate scaling as well as the validation of new predictive models of near-wall turbulence.

  17. Dynamic deformation capability of a red blood cell under a cyclically reciprocating shear stress.

    Science.gov (United States)

    Watanabe, N; Yasuda, T; Kataoka, H; Takatani, S

    2004-01-01

    Red blood cells (RBCs) in the cardiovascular devices are exposed to varying degree of the shear stress from all the directions. However the RBCs' deformability or the deformation capability under such a shear stress is not well understood. In this study, we designed and built a system that can induce a cyclically reciprocating shear stress to a RBC suspension. The arm of the cyclically reciprocating shear stress device was attached to the upper piece of the parallel glass plates between which a suspension of human RBCs (1% hematocrit whole blood diluted in a 32 weight% dextran phosphate buffer solution) was contained. The cyclic reciprocating motion of the upper glass plate of 3.0 mm stroke length was produced using a slider-crank shaft mechanism that was linked to an eccentric cam-motor system. Each rotation of the motor produced a 3.0 mm stroke each in the forward and backward direction of the slider block. The clearance between the two glass plates was adjusted to 30 micrometer. The cyclic reciprocating glass plate apparatus was attached to a light microscope stage (IX71 Olympus with x40 objective lens) for illumination with a 350 watt metal halide light source. A high speed camera (MEMREMCAM fx-K3 Nac, 5000 frames per second with shutter kept open) was attached to the microscope to capture the deformation process of the RBCs under cyclic shear stress. The preliminary result indicated that the correlation between the amplitude of the maximum shear stress and the RBCs' deformability. This indicates a potential application of the cyclic reciprocating device to evaluate the temporal response of the RBCs deformability prior to its destruction. The future study will focus on the study of the relative velocity of the erythrocytes with respect to the velocity of the reciprocating plate. PMID:17271457

  18. The fundamental difference between shear alpha viscosity and turbulent magnetorotational stresses

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios

    2006-01-01

    Numerical simulations of turbulent, magnetized, differentially rotating flows driven by the magnetorotational instability are often used to calculate the effective values of alpha viscosity that is invoked in analytical models of accretion discs. In this paper we use various dynamical models of...... turbulent magnetohydrodynamic stresses, as well as numerical simulations of shearing boxes, to show that angular momentum transport in MRI-driven accretion discs cannot be described by the standard model for shear viscosity. In particular, we demonstrate that turbulent magnetorotational stresses are not...

  19. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders

    DEFF Research Database (Denmark)

    Skovgaard, Mette; Ahniyaz, Anwar; Sørensen, Bent F.;

    2010-01-01

    For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders are extrem......For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders...

  20. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.;

    2009-01-01

    change in the flow pattern in the vicinity of the aggregates and not because of changes in the type of particle adhesion. This raises the importance of the experimental conditions on assessing the critical wall shear stress since this parameter may not be always only directly related to the soil adhesion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the...

  1. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    Science.gov (United States)

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  2. Influence of particle shape on shear stress in granular media

    CERN Document Server

    Azema, émilien; Peyroux, Robert; Saussine, Gilles

    2007-01-01

    We analyze the contact and force networks in a dense confined packing of pentagonal particles simulated by means of the contact dynamics method. The particle shape effect is evidenced by comparing the data from pentagon packing and from a packing with identical characteristics except for the circular shape of the particles. A surprising observation is that the pentagon packing develops a lower structural anisotropy than the disk packing. We show in this work that this weakness is compensated by a higher force anisotropy that leads to enhanced shear strength of the pentagon packing. With the polygonal shape of the particles, the strong force chains are mostly composed of edge-to-edge contacts with a marked zig-zag aspect.

  3. Metal Hydride Wall Stress Measurements on a Four-Inch Short (FISH) Bed

    International Nuclear Information System (INIS)

    A 38 cm (15 inch) long metal hydride bed fabricated using 11.4 cm (4.5 inch) O.D., standard schedule 316/316L stainless steel pipe was fitted with 22 strain gauges to measure tangential and longitudinal stress resulting from hydride absorption and desorption cycling. Tests were conducted using two different LaNi4.25Al0.75 metal hydride fill-levels in the bed.Tests conducted with hydride filled to two-thirds (1.75L) of the 2.63L total bed volume resulted in a maximum stress less than one-third of the pipe's ASME Code allowable, for hydride absorption up to a hydrogen-to-metal ratio (H/M) of 0.86. After 15 absorption/desorption tests and hydride passivation, examination of the bed interior revealed a significant decrease in particle size and increase in hydride height. The second fill level had 0.4L of fresh hydride added to the bed's cycled hydride material, and 56 absorption/desorption tests, up to a gas loading of 0.83 H/M performed. Second fill tests resulted in maximum stresses less than 40% of the ASME Code allowable. Post-test bed radiographs showed a further increase in the apparent hydride fill height, and internal component deformation

  4. Perturbation of the yield-stress rheology of polymer thin films by nonlinear shear ultrasound

    Science.gov (United States)

    Léopoldès, J.; Conrad, G.; Jia, X.

    2015-01-01

    We investigate the nonlinear response of macromolecular thin films subjected to high-amplitude ultrasonic shear oscillation using a sphere-plane contact geometry. At a film thickness comparable to the radius of gyration, we observe the rheological properties intermediate between bulk and boundary nonlinear regimes. As the driving amplitude is increased, these films progressively exhibit oscillatory linear, microslip, and full slip regimes, which can be explained by the modified Coulomb friction law. At highest oscillation amplitudes, the interfacial adhesive failure takes place, being accompanied by a dewettinglike pattern. Moreover, the steady state sliding is investigated in thicker films with imposed shear stresses beyond the yield point. We find that applying high-amplitude shear ultrasound affects not only the yielding threshold but also the sliding velocity at a given shear load. A possible mechanism for the latter effect is discussed.

  5. The Behavior Under Shearing Stress of Duralumin Strip with Round, Flanged Holes

    Science.gov (United States)

    Schussler, Karl

    1934-01-01

    This report presents the results of an investigation to determine the behavior of dural strip with flanged holes in the center when subjected to shear stresses. They buckle under a certain load just as a flat sheet. There is one optimum hole spacing and a corresponding buckling load in shear for each sheet width, sheet thickness, and flange form. Comparison with non-flanged sheets revealed a marked increase of buckling load in shear due to the flanging and a slightly greater displacement. Strips were clamped between two stationary end rails and one sliding center rail at which the shear is applied. The force was measured with a tension stirrup up to 20 tons and a compression dynamometer up to 10 tons. The displacement was recorded with the Zeiss dial gauge. The following were investigated: 1) effect of strip width; 2) strip thickness; 3) diameter of flanging; 4) depth of flanging; 5) and hole distance.

  6. Overcoming shear stress of microalgae cultures in sparged photobioreactors

    NARCIS (Netherlands)

    Barbosa, M.J.; Hadiyanto, H.; Wijffels, R.H.

    2004-01-01

    In the present work we identified and quantified the effect of hydrodynamic stress on two different microalgae strains, Dunaliella tertiolecta and D. salina, cultivated in bench-scale bubble columns. The cell death rate constant increased with increasing gas-entrance velocity at the sparger. Dunalie

  7. Shear stress behavior in mesoscale simulations of granular materials

    Science.gov (United States)

    Fujino, Don; Lomov, Ilya; Antoun, Tarabay; Vitali, Efrem

    2012-03-01

    3D mesoscale simulations of shock propagation in porous solids and powders have been performed with the Eulerian hydrocode GEODYN. The results indicate that voids can have a profound effect on the stress state in the material behind the shock front. The simulations can explain experimentally observed wave profiles that are difficult to interpret in the context of the classical elastic-plastic theory. In particular, a quasielastic precursor is observed in reshock simulations. This effect persists even at extremely low porosity values, down to 0.1% by volume. Stress relaxation is pronounced in simulations involving wave propagation, but is not observed in uniform ramp loading. In this sense, the relaxation phenomenon is non-local in nature and classic continuum models are inadequate for its description. Simulations show that the response of highly porous powders is dominated by deviatoric stress relaxation in the shock regime. We propose an enhancement which can be easily integrated into most existing porous material continuum models for modeling the shockinduced relaxation phenomena observed in the mesoscale simulation. The model calculates the microkinetic energy generated by dynamic loading and stores it as an internal state variable. The rate of production and dissipation of microkinetic energy and other model parameters are calibrated based on the mesoscale results. The augmented continuum model represents the deviatoric stress behavior observed under different regimes of dynamic loading.

  8. Effect of stress-state and spacing on voids in a shear-field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    elongate until interaction with neighboring micro-cracks gives coalescence, so that the failure mechanism is very different from that under tensile loading. In the present studies the plane strain unit cell has fully periodic boundary conditions, so that any combination of the stress components in the......Unit cell model analyses are carried out for a material with a periodic array of voids, subject to shear loading. Thus the focus is on ductile fracture in conditions of low stress triaxiality. It has been shown recently that voids in shear are flattened out to micro-cracks, which rotate and.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...

  9. On the reduce of interfacial shear stresses in fiber reinforced polymer plate retrofitted concrete beams

    International Nuclear Information System (INIS)

    One major problem when using bonded fiber reinforced polymer (FRP) plate is the presence of high interfacial shear stresses near the end of the composite (edge effect) which might govern the failure of the strengthening schedule. It is known that the decrease of plate thickness reduces the magnitude of stress concentration at plate ends. Another way is to use a plate end tapering. In this paper, the analytical solution of interfacial shear stresses obtained has been extended by a numerical procedure using the modal analysis of finite element method (FEM) in a retrofitted concrete (RC) beam with the FRP plate with tapered end, which can significantly reduce the stress concentration. This approach allows taking into consideration the variation of elastic properties of adhesive and plate as well as the complicated geometrical configurations and effects of thermal loads.

  10. Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin

    Science.gov (United States)

    Westenbroek, Stephen M.

    2006-01-01

    Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.

  11. Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory

    Science.gov (United States)

    Rolfes, R.; Noor, A. K.; Sparr, H.

    1998-01-01

    A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.

  12. THE CHANGES OF BARRIER ENERGY IN FCC→BCC PHASE TRANSFORMATION BY SHEAR STRESSES

    OpenAIRE

    Kazanç, Sefa; ÖZGEN, Soner

    2010-01-01

    ABSTRACT The Lattice energy of a cubic nickel crystal has been calculated by using the embedded atom method. The embedding energy has been determined by means of quantum mechanical approximations. The lattice energy changes of the static structure including 864 atoms with Bain  and shear stresses have been obtained. The energies of the fcc and bcc phases caused by Bain stress have been compared. The variation of the barrier energy required for the transition between these structures has ...

  13. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions

    Science.gov (United States)

    Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  14. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    Science.gov (United States)

    Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  15. Flexible tactile sensor for shear stress measurement using transferred sub-µm-thick Si piezoresistive cantilevers

    International Nuclear Information System (INIS)

    We propose a flexible tactile sensor using sub-µm-thick Si piezoresistive cantilevers for shear stress detection. The thin Si piezoresistive cantilevers were fabricated on the device layer of a silicon on insulator (SOI) wafer. By using an adhesion-based transfer method, only these thin and fragile cantilevers were transferred from the rigid handling layer of the SOI wafer to the polydimethylsiloxane layer without damage. Because the thin Si cantilevers have high durability of bending, the proposed sensor can be attached to a thin rod-type structure serving as the finger of a robotic hand. The cantilevers were arrayed in orthogonal directions to measure the X and Y directional components of applied shear stresses independently. We evaluated the bending durability of our flexible tactile sensor and confirmed that the sensor can be attached to a rod with a radius of 10 mm. The sensitivity of the flexible tactile sensor attached to a curved surface was 1.7 × 10−6 Pa−1 on average for a range of shear stresses from −1.8 × 103 to 1.8 × 103 Pa applied along its surface. It independently detected the X and Y directional components of the applied shear stresses. (paper)

  16. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    Science.gov (United States)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  17. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Benjamin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  18. Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution

    DEFF Research Database (Denmark)

    Perrusquia, G.; Petersen, O.; Larsen, Torben

    1995-01-01

    Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...

  19. Periodontal Treatment Elevates Carotid Wall Shear Stress in the Medium Term.

    Science.gov (United States)

    Carallo, Claudio; Franceschi, Maria Serena De; Tripolino, Cesare; Iovane, Claudio; Catalano, Serena; Giudice, Amerigo; Crispino, Antonio; Figliuzzi, Michele; Irace, Concetta; Fortunato, Leonzio; Gnasso, Agostino

    2015-10-01

    Periodontal disease is associated with endothelial dysfunction of the brachial artery and hemodynamic alterations of the common carotid artery. Periodontal therapy improves endothelial function. It is not known if it is able also to improve the hemodynamics of the carotid artery. The aim of the current study was to evaluate the efficacy of 2 different periodontal treatments on carotid hemodynamics: scaling and root planing (SRP) alone or together with low-level laser therapy (LLLT). Forty patients were recruited and randomly treated with SRP (n = 20) or SRP + LLLT (n = 20). Periodontal indices (plaque, gingival, and probing depth indices) were measured before and 5 months after treatment. Blood viscosity, common carotid wall shear stress, circumferential wall tension, and Peterson elastic modulus were evaluated before, soon after and 5 months after treatment. It was found that the periodontal indices improved in both groups, but significantly more so for SRP + LLLT than for SRP (decrease in gingival index 69.3% versus 45.4%, respectively, P = 0.04). In the SRP + LLLT group, after a transient reduction by 5% immediately after therapy, shear stress increased by 11% after 5 months. In SRP only group, however, shear stress variations were less marked. No significant changes were found for the other hemodynamic parameters in either of the groups. Periodontal disease treatment by SRP + LLLT can therefore be said to improve common carotid wall shear stress. This suggests a possible mechanism by which the treatment of periodontal disease has beneficial effects on the cardiovascular system. PMID:26496285

  20. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress

    Science.gov (United States)

    Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    Our aim was to determine whether the adaptation to simulated microgravity (microG) impairs regulation of cerebral blood flow (CBF) during orthostatic stress and contributes to orthostatic intolerance. Twelve healthy subjects (aged 24 +/- 5 yr) underwent 2 wk of -6 degrees head-down-tilt (HDT) bed rest to simulate hemodynamic changes that occur when humans are exposed to microG. CBF velocity in the middle cerebral artery (transcranial Doppler), blood pressure, cardiac output (acetylene rebreathing), and forearm blood flow were measured at each level of a ramped protocol of lower body negative pressure (LBNP; -15, -30, and -40 mmHg x 5 min, -50 mmHg x 3 min, then -10 mmHg every 3 min to presyncope) before and after bed rest. Orthostatic tolerance was assessed by using the cumulative stress index (CSI; mmHg x minutes) for the LBNP protocol. After bed rest, each individual's orthostatic tolerance was reduced, with the group CSI decreased by 24% associated with greater decreases in cardiac output and greater increases in systemic vascular resistance at each level of LBNP. Before bed rest, mean CBF velocity decreased by 14, 10, and 45% at -40 mmHg, -50 mmHg, and maximal LBNP, respectively. After bed rest, mean velocity decreased by 16% at -30 mmHg and by 21, 35, and 39% at -40 mmHg, -50 mmHg, and maximal LBNP, respectively. Compared with pre-bed rest, post-bed-rest mean velocity was less by 11, 10, and 21% at -30, -40, and -50 mmHg, respectively. However, there was no significant difference at maximal LBNP. We conclude that cerebral autoregulation during orthostatic stress is impaired by adaptation to simulated microG as evidenced by an earlier and greater fall in CBF velocity during LBNP. We speculate that impairment of cerebral autoregulation may contribute to the reduced orthostatic tolerance after bed rest.

  1. Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone

    Science.gov (United States)

    Matsumoto, Satoshi; Nakao, Shigeru; Ohkura, Takahiro; Miyazaki, Masahiro; Shimizu, Hiroshi; Abe, Yuki; Inoue, Hiroyuki; Nakamoto, Manami; Yoshikawa, Shin; Yamashita, Yusuke

    2015-10-01

    We investigated the spatial variation in the stress fields of Kyushu Island, southwestern Japan. Kyushu Island is characterized by active volcanoes (Aso, Unzen, Kirishima, and Sakurajima) and a shear zone (western extension of the median tectonic line). Shallow earthquakes frequently occur not only along active faults but also in the central region of the island, which is characterized by active volcanoes. We evaluated the focal mechanisms of the shallow earthquakes on Kyushu Island to determine the relative deviatoric stress field. Generally, the stress field was estimated by using the method proposed by Hardebeck and Michael (2006) for the strike-slip regime in this area. The minimum principal compression stress ( σ3), with its near north-south trend, is dominant throughout the entire region. However, the σ 3 axes around the shear zone are rotated normal to the zone. This result is indicative of shear stress reduction at the zone and is consistent with the right-lateral fault behavior along the zone detected by a strain-rate field analysis with global positioning system data. Conversely, the stress field of the normal fault is dominant in the Beppu-Shimabara area, which is located in the central part of the island. This result and the direction of σ3 are consistent with the formation of a graben structure in the area.

  2. A coupled global-local shell model with continuous interlaminar shear stresses

    Science.gov (United States)

    Gruttmann, F.; Wagner, W.; Knust, G.

    2016-02-01

    In this paper layered composite shells subjected to static loading are considered. The theory is based on a multi-field functional, where the associated Euler-Lagrange equations include besides the global shell equations formulated in stress resultants, the local in-plane equilibrium in terms of stresses and a constraint which enforces the correct shape of warping through the thickness. Within a four-node element the warping displacements are interpolated with layerwise cubic functions in thickness direction and constant shape throughout the element reference surface. Elimination of stress, warping and Lagrange parameters on element level leads to a mixed hybrid shell element with 5 or 6 nodal degrees of freedom. The implementation in a finite element program is simple. The computed interlaminar shear stresses are automatically continuous at the layer boundaries. Also the stress boundary conditions at the outer surfaces are fulfilled and the integrals of the shear stresses coincide exactly with the independently interpolated shear forces without introduction of further constraints. The essential feature of the element formulation is the fact that it leads to usual shell degrees of freedom, which allows application of standard boundary or symmetry conditions and computation of shell structures with intersections.

  3. Some constraints on levels of shear stress in the crust from observations and theory.

    Science.gov (United States)

    McGarr, A.

    1980-01-01

    In situ stress determinations in North America, southern Africa, and Australia indicate that on the average the maximum shear stress increases linearly with depth to at least 5.1 km measured in soft rock, such as shale and sandstone, and to 3.7 km in hard rock, including granite and quartzite. Regression lines fitted to the data yield gradients of 3.8 MPa/km and 6.6 MPa/km for soft and hard rock, respectively. Generally, the maximum shear stress in compressional states of stress for which the least principal stress is oriented near vertically is substantially greater than in extensional stress regimes, with the greatest principal stress in a vertical direction. The equations of equilibrium and compatibility can be used to provide functional constrains on the state of stress. If the stress is assumed to vary only with depth z in a given region, then all nonzero components must have the form A + Bz, where A and B are constants which generally differ for the various components. - Author

  4. Identification of two novel shear stress responsive elements in rat angiotensin I converting enzyme promoter.

    Science.gov (United States)

    Miyakawa, Ayumi Aurea; de Lourdes Junqueira, Maria; Krieger, José Eduardo

    2004-04-13

    Mechanical forces contribute to maintenance of cardiovascular homeostasis via the control of release and production of vasoactive substances. We demonstrated previously that shear stress decreases rat ACE activity and expression. Using a reporter gene approach and mutagenesis, we show now that the classic shear stress responsive element or SSRE (GAGACC) contained within 1,274 bp of this promoter is not functional in response to shear stress (15 dyn/cm2, 18 h) [for the wild-type ACE promoter (WLuc), static control (C) = 107 +/- 6.5%, shear stress (SS) = 65.9 +/- 9.4%, n = 8; for the promoter with the classic SSRE mutated (WSS-mut), C = 100 +/- 8.2%, SS = 60.2 +/- 5.2%, n = 10, respectively]. Analysis of progressive deletion mutants unraveled a 57-bp fragment, position -251 to -195, from the transcription start site, containing functional SSRE (for WLuc, C = 107 +/- 6.5%, SS = 65.9 +/- 9.4%, n = 8; for 378, C = 100 +/- 6.4%, SS = 60.4 +/- 4.3%, n = 11; for 251, C = 99.7 +/- 2.6%, SS = 63.2 +/- 5.5%, n = 7; for 194, C = 104.6 +/- 8.1%, SS = 92.4 +/- 6.9%, n = 9). This fragment responded to shear stress even in the context of a heterologous promoter. Finally, functional analysis of mutated candidate regulatory elements identified by gel shift, DNase I footprint, and conservation of aligned sequences revealed that only the double mutant (Barbie/GAGA-mut) but not isolated disruption of the Barbie (WBarbie-mut) or the GAGA (WGAGA-mut) prevented the shear-stress-induced response (for Barbie/GAGA-mut, C = 97.9 +/- 5%, SS = 99.4 +/- 7.2%, n = 6; for WBarbie-mut, C = 106.1 +/- 8.6%, SS = 65.9 +/- 9.4%, n = 6; for WGAGA-mut, C = 100.1 +/- 2.9%, SS = 66.7 +/- 1.6, n = 6;). Taken together, these data provide direct evidence for the new role of Barbie and GAGA boxes in mediating the shear-stress-induced downregulation of rat ACE expression and demonstrate that the classic SSRE (GAGACC) is not functional under the experimental conditions tested. PMID:14872008

  5. A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow.

    Science.gov (United States)

    Dupire, Jules; Abkarian, Manouk; Viallat, Annie

    2015-11-14

    An analytical model was proposed by Keller and Skalak in 1982 to understand the motion of red blood cells in shear flow. The cell was described as a fluid ellipsoid of fixed shape. This model was extended in 2007 to introduce shear elasticity of the red blood cell membrane. Here, this model is further extended to take into account that the cell discoid shape physiologically observed is not a stress-free shape. The model shows that spheroid stress-free shapes allow us to fit the experimental data with the values of shear elasticity typical to that found with micropipette and optical tweezer experiments. In the range of moderate shear rates (for which RBCs keep their discoid shape) this model enables us to quantitatively determine (i) an effective cell viscosity, which combines membrane and hemoglobin viscosities and (ii) an effective shear modulus of the membrane that combines the shear modulus and the stress-free shape. This model can also be used to determine RBC mechanical parameters not only in the tanktreading regime when cells are suspended in medium of high viscosity but also in the tumbling regime characteristic of cells suspended in media of low viscosity. In this regime, a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. PMID:26352875

  6. Shear-banding and Taylor-Couette instability in thixotropic yield stress fluids

    CERN Document Server

    Jenny, Mathieu; Louvet, Nicolas; Skali-Lami, Salahedine

    2016-01-01

    In the present work, we study the flow of thixotropic yield stress fluids between two concentric cylinders. In order to take into account the thixotropy, the constitutive relation uses a structural parameter which is driven by a kinetic equation. Here, the Houska's model is considered. Depending on the breakdown rate of the structural parameter, localization or shear-banding are observed. We show that for fragile structures, a shear-banding flow may be observed although for stronger structures, only localisation of the flow is observed such as in Bingham fluids. Physical explanations of the shear-banding discussed by several authors in the literature highlight that the shear-banding may be associated with a discontinuity into the structure of the material and a non-monotonic evolution of the stress according to the constitutive relation with the strain rate. Solving numerically the flow, we show that such a rheological model based on the existence of a structural parameter is able to predict shear-banding. Mo...

  7. IQ domain GTPase-activating protein 1 is involved in shear stress-induced progenitor-derived endothelial cell alignment.

    Directory of Open Access Journals (Sweden)

    Lila Rami

    Full Text Available Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs. To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1 is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs, transfected (or not with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m(2 and AJ proteins (VE-cadherin and β-catenin and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This "switch" was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.

  8. IQ Domain GTPase-Activating Protein 1 is Involved in Shear Stress-Induced Progenitor-Derived Endothelial Cell Alignment

    Science.gov (United States)

    Rami, Lila; Auguste, Patrick; Thebaud, Noélie B.; Bareille, Reine; Daculsi, Richard; Ripoche, Jean; Bordenave, Laurence

    2013-01-01

    Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress. PMID:24278215

  9. Fracture transmissivity as a function of normal and shear stress: first results in Opalinus Clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Rock-mass failure around openings is usually observed in the form of a highly complex fracture network (EDZ), which is heterogeneous in distribution around a circular tunnel opening because of the heterogeneous stress distribution. The orientation of stress with respect to the fracture network is known to be important. The complex heterogeneous stress trajectory and heterogeneous fracture network results in a broad range of stresses and stress directions acting on the open fracture network. During the open stage of a repository, stress will slowly alter as shear movements occur along the fractures, as well as other time-dependent phenomena. As the repository is back filled, the stress field is further altered as the backfill settles and changes volume because of re-saturation. Therefore, a complex and wide ranging stress regime and stress history will result. In a purely mechanical sense, fracture transmissivity is a function of normal stress, shear stress, and fracture aperture. The Selfrac test from Mont Terri showed the change in transmissivity with effective normal stress. This work showed that fracture transmissivity decreased with increasing normal load and that an effective normal stress of 2.5 MPa is sufficient to yield a transmissivity similar to that seen in intact Opalinus clay (OPA). Therefore fracture closure because of normal stresses has been proven to be a quite efficient mechanism in OPA. A new shear rig was designed to investigate the detail of fracture transmissivity in OPA. The experimental configuration uses two prepared blocks that are 60 x 60 mm in size and approximately 20 mm thick. The first test sample had machine ground surfaces in contact with each other, with pore fluid being delivered through the centre of the top block directly to the fracture surface. The experimental programme included two distinct stages. In the first normal load was altered to investigate fracture transmissivity

  10. Effect of solid contents on the controlled shear stress rheological properties of different types of sludge

    Institute of Scientific and Technical Information of China (English)

    Ting Li; Yili Wang; Yujing Dong

    2012-01-01

    Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge.Three types of sludge with or without conditioning,including activated sludge (AS),anaerobic digested sludge (ADS),and water treatment residuals (WTRs),were collected for the CSS test.Results showed that the yield stress and the cohesion energy of the sludge networks were improved with increased total suspending solid (TSS) contents in most cases.For the conditioned AS/ADS and the raw WTRs,exponential law was observed in the relationships between cohesion energy of material networks or yield stress and the TSS contents,whereas for the conditioned WTRs,only exponential law dependence was found between the parameters of shear modulus or critical strain and the TSS contents.

  11. Effect of simulated microgravity on osteocytes responding to fluid shear stress

    Science.gov (United States)

    Yang, Xiao; Sun, Lian-Wen; Wu, Xin-Tong; Wang, Xiao-Nan; Fan, Yu-Bo

    2013-03-01

    Osteocytes, as most abundant cells and major mechanical sensor in bone, play an important role in the mechanism of microgravity-induced bone loss. The response of osteocytes to fluid flow stress under simulated microgravity was investigated in this study. MLO-Y4, an osteocyte-like cell line, was cultured under simulated microgravity condition for 5 days. Then cells were sheared at 15 dyn/cm2 in flow chamber. After 15 min shear, nitric oxide (NO) was examined by Griess Reagent and prostaglandin E2 (PGE2) by ELISA. After 6 h shear, alkaline phosphatase (ALP) was examined by PNPP, osteocalcin (OC) and procollagen type I N propeptide (PINP) by ELISA. Cells were divided into four groups: CON (1 G with no shear), CON-S (1 G with shear), SM (simulated microgravity with no shear) and SM-S (simulated microgravity with shear). The results showed that (1) NO, ALP activity, OC and PINP increased significantly while PGE2 showed no change in SM compared with CON. (2) NO, PGE2, ALP activity and PINP increased significantly while OC decreased significantly in CON-S compared with CON. (3) NO in SM-S had no significant difference compared to SM, PGE2 and OC increased while ALP activity and PINP decreased significantly in SM-S compared with SM. (4) The increasing amplitude of PGE2 and OC, the decreasing amplitude of ALP activity in SM-S to SM was lower than that in CON-S to CON. In addition, some changes of F-actin cytoskeleton were observed by confocal microscopy. All results indicated that the response induced by fluid shear in osteocytes could be inhibited by simulated microgravity, namely the mechanosensibility of osteocytes decreased under simulated microgravity. This may partly contribute to the mechanism of microgravity-induced osteoporosis and will be helpful to find out effective description.

  12. Acoustically induced shear stresses in the vicinity of microbubbles in tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1982-01-01

    been considered, and within these limits, it appears that the steady stresses produced may lie above reported thresholds for biological effects. It would appear from the data in the literature that not all the biological effects reported may be caused by stresses resulting from acoustic streaming.......The shear stresses in the vicinity of gaseous microbubbles in tissue irradiated by continuous and transient ultrasonic fields typical of those used in diagnostic practice have been calculated from a solution of the equation of motion of the bubble. The assumptions and limitations of the model have...

  13. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung

    Science.gov (United States)

    Dingemans, Jozef; Monsieurs, Pieter; Yu, Sung-Huan; Crabbé, Aurélie; Förstner, Konrad U.; Malfroot, Anne

    2016-01-01

    ABSTRACT Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. PMID:27486191

  14. Effect of shear components on stress values in plywood panel subjected to tensile load

    Directory of Open Access Journals (Sweden)

    Jaroslav Kljak

    2007-11-01

    Full Text Available This paper analyses individual stress components that appear in plywood panels subjected to tensile load. The analysis was conducted on a seven-layer beech plywood panel, 10.52 mm in thickness. Tensile load was applied on the plywood panel according to the guidelines of the European Norm HRN EN 789. Measurement results obtained by empirical measurement methods were used as the basis for developing a simulation model using the finite elements method (FEM. The study results show that there are substantial differences in the distribution of stress between the parallel- and perpendicular-oriented veneer layers. In parallel layers, the highest values of the s vm (Von Mises stress were distributed along the narrow or central region of the test piece, which also represents the desired stress distribution. Contrary to this, in perpendicular layers, the stress distribution is concentrated at the transition between the narrow and wider areas, which indicates the presence of a significant problem in determining the tensile properties of plywood panels. The study results also indicate that the shear component t xy accounts for a significant share of the total stress and that its influence on the overall stress is significantly more pronounced in perpendicular layers. The values of the remaining two shear components t xz and t yz are virtually negligible, which is reasonable considering that the numerical model was subjected to in-plane load.

  15. STRESS-METAMORPHISM AND ISOTOPIC AGE OF SHEAR ZONE GRANITOID TECTONITES OF IRTYSH SHEAR ZONE (ALTAI REGION)

    Institute of Scientific and Technical Information of China (English)

    B.M. Chikov; V.A. Ponomachuk; S.V. Zinoviev; B.N. Lapin; A.T. Titov; A.V. Travin; S.V. Palessky

    2002-01-01

    The Irtysh shear zone (ISZ) of Altai region is the lineament structure of the collision-suture type, where granites of Kalba complex and granodiorites of Zmeinogorsk complex are exposed to regional gneiss-formation and stress-metamorphic alterations. This study is based on detailed structural observations at special grounds using optical and electron microscopy, and on the behavior analysis of isotopic systems from altered granitoids.Within the ISZ area we have established the continuous rows of granitoid stress-metamorphism from initial recrystallization of protolite, its cataclasis and mechanical flaring up to complete recrystallization with alteration of mineral composition and formation of the streaky complexes of granite tectonites of blastomylonite and blastocataclasite types. The directed alteration of rocks has several impulse and is expressed by a change in morphology of mineral grains and their relations, magnification of deformation component in the rock structure, and formation of new mineral phases on the basis of initial ones without surface fluidization. At transformation of isotopic systems from granitoid, their feldspars,biotite and hornblende, we can observe "rejuvenation" of the rock substrate from 270- 290 Ma for Kalba granitoids to 220-235 Ma for their tectonites, and for Rudny Altai granodiorites, their ages changes from 285-317 Ma to 232-257 Ma for their tectonites.

  16. Racial differences in the responses to shear stress in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Feairheller DL

    2011-07-01

    Full Text Available Deborah L Feairheller1,4, Joon-Young Park2, Victor Rizzo3, Boa Kim2, Michael D Brown1,31Hypertension, Molecular and Applied Physiology Laboratory, 2Cardiovascular Genomics Laboratory, Department of Kinesiology, 3Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA, USA; 4Exercise and Metabolic Disease Research Laboratory, School of Nursing, University of California Los Angeles, Los Angeles, CA, USABackground: African American ethnicity is an independent risk factor for exaggerated oxidative stress, which is related to inflammation, hypertension, and cardiovascular disease. Recently, we reported that in vitro oxidative stress and inflammation levels differ between African American and Caucasian human umbilical vein endothelial cells (HUVECs, African American HUVECs having higher levels of both. However, it remains to be shown whether the cells would respond differently to external stimuli.Methods: We used a cone and plate viscometer to apply laminar shear stress (LSS as an aerobic exercise mimetic to compare the responses by race. HUVECs were exposed to static conditions (no LSS, low LSS (5 dyne/cm2, and moderate LSS (20 dyne/cm2.Results: It was found that African American HUVECs had higher levels of oxidative stress under static conditions, and when LSS was applied protein expression levels (NADPH oxidase NOX2, NOX4 and p47phox subunits, eNOS, SOD2, and catalase and biomarkers (NO, SOD, and total antioxidant capacity were modulated to similar levels between race.Conclusion: African American HUVECs may be more responsive to LSS stimulus indicating that aerobic exercise prescriptions may be valuable for this population since the potential exists for large in vivo improvements in oxidative stress levels along the endothelial layer in response to increased shear flow.Keywords: shear stress, African American, NADPH oxidase, HUVECs, oxidative stress

  17. Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications

    Science.gov (United States)

    Lin, Qiao; Jiang, Fukang; Wang, Xuan-Qi; Xu, Yong; Han, Zhigang; Tai, Yu-Chong; Lew, James; Ho, Chih-Ming

    2004-12-01

    MEMS thermal shear-stress sensors exploit heat-transfer effects to measure the shear stress exerted by an air flow on its solid boundary, and have promising applications in aerodynamic control. Classical theory for conventional, macroscale thermal shear-stress sensors states that the rate of heat removed by the flow from the sensor is proportional to the 1/3-power of the shear stress. However, we have observed that this theory is inconsistent with experimental data from MEMS sensors. This paper seeks to develop an understanding of MEMS thermal shear-stress sensors through a study including both experimental and theoretical investigations. We first obtain experimental data that confirm the inadequacy of the classical theory by wind-tunnel testing of prototype MEMS shear-stress sensors with different dimensions and materials. A theoretical analysis is performed to identify that this inadequacy is due to the lack of a thin thermal boundary layer in the fluid flow at the sensor surface, and then a two-dimensional MEMS shear-stress sensor theory is presented. This theory incorporates important heat-transfer effects that are ignored by the classical theory, and consistently explains the experimental data obtained from prototype MEMS sensors. Moreover, the prototype MEMS sensors are studied with three-dimensional simulations, yielding results that quantitatively agree with experimental data. This work demonstrates that classical assumptions made for conventional thermal devices should be carefully examined for miniature MEMS devices.

  18. Three-Dimensional Analysis of Rolling by Twin Shear Stress Yield Criterion

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; XIE Ying-jie; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.

  19. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    Science.gov (United States)

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-01

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. PMID:26626828

  20. Periodontal Treatment Elevates Carotid Wall Shear Stress in the Medium Term

    Science.gov (United States)

    Carallo, Claudio; Franceschi, Maria Serena De; Tripolino, Cesare; Iovane, Claudio; Catalano, Serena; Giudice, Amerigo; Crispino, Antonio; Figliuzzi, Michele; Irace, Concetta; Fortunato, Leonzio; Gnasso, Agostino

    2015-01-01

    Abstract Periodontal disease is associated with endothelial dysfunction of the brachial artery and hemodynamic alterations of the common carotid artery. Periodontal therapy improves endothelial function. It is not known if it is able also to improve the hemodynamics of the carotid artery. The aim of the current study was to evaluate the efficacy of 2 different periodontal treatments on carotid hemodynamics: scaling and root planing (SRP) alone or together with low-level laser therapy (LLLT). Forty patients were recruited and randomly treated with SRP (n = 20) or SRP + LLLT (n = 20). Periodontal indices (plaque, gingival, and probing depth indices) were measured before and 5 months after treatment. Blood viscosity, common carotid wall shear stress, circumferential wall tension, and Peterson elastic modulus were evaluated before, soon after and 5 months after treatment. It was found that the periodontal indices improved in both groups, but significantly more so for SRP + LLLT than for SRP (decrease in gingival index 69.3% versus 45.4%, respectively, P = 0.04). In the SRP + LLLT group, after a transient reduction by 5% immediately after therapy, shear stress increased by 11% after 5 months. In SRP only group, however, shear stress variations were less marked. No significant changes were found for the other hemodynamic parameters in either of the groups. Periodontal disease treatment by SRP + LLLT can therefore be said to improve common carotid wall shear stress. This suggests a possible mechanism by which the treatment of periodontal disease has beneficial effects on the cardiovascular system. PMID:26496285

  1. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  2. Fractal scaling and simulation of velocity components and turbulent shear stress in open channel flow

    International Nuclear Information System (INIS)

    Fully developed turbulent flow indeed consists of a hierarchy of eddies or scales of various disorders. Due to the complexity of turbulence, the turbulent flow structure has not been completely understood. Thus, abundant empirical observations have been made about fractality in hydrodynamic turbulence. In this study, the fractal scaling of velocity components (u', v') and Reynolds shear stress (u'v') for fully developed flow in an open channel were studied for Reynolds number in the range of 29,000-85,000. An efficient algorithm was developed to construct Fractal Interpolation Functions (FIF). The algorithm was used to simulate more than 200,000 time series of u', v', and u'v' that were measured in a laboratory flume. The algorithm was also used to compute fractal dimension. The fractal dimensions of the turbulent data were accurately obtained by applying only as few as 500 data points. It was found that the fractal dimension of u', v', and u'v' were 1.615, 1.657, and 1.559, respectively. The relationships between the fractal dimension and Froude number (Fr) and Reynolds number (Re) were also investigated. It was found that the fractal dimension of turbulent data and Re and Fr were reasonably correlated. Moreover, the fractal dimension of Reynolds shear stress in bursting events (outward interaction, ejection, inward interaction, and sweep) was calculated and compared with each other. There were some differences among the fractal dimension of Reynolds shear stress for four quadrants of bursting process. The fractal dimension of u'v' in sweep and ejection events were more than the fractal dimension of the overall Reynolds shear stress

  3. he dependence of response spectrum on the tectonic ambient shear stress field

    Institute of Scientific and Technical Information of China (English)

    LI Bao-kun; CHEN Pei-shan; BAI Tong-xia

    2005-01-01

    It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from extensional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94's prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99's one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the prediction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then regional differences of prediction equation will become much less, even vanish, and it can be constructed the universal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).

  4. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    OpenAIRE

    Dag Myrhaug

    1988-01-01

    A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974) measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  5. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    : 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  6. Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids

    OpenAIRE

    Lagger, H.G.; Breinlinger, T.; Korvink, J. G.; Moseler, M.; Renzo, A. di; Maio, F. di; Bierwisch, C.

    2015-01-01

    Simulations of magnetorheological fluids are performed with different models for the hydrodynamic drag law. The shear stress predictions from two coupled discrete element - smoothed particle hydrodynamics models with different drag laws are compared to pure discrete element simulations for a wide range of Mason numbers. The discrete element model has a higher computational efficiency but the treatment of the hydrodynamic drag force involves some rough approximations. Based on the results of t...

  7. Wall Shear Stress under Large Bubbles Rising in an Inclined Channel

    Czech Academy of Sciences Publication Activity Database

    Tihon, Jaroslav; Pěnkavová, Věra; Vejražka, Jiří

    Liberec: Technical university of Liberec, 2009 - (Dančová, P.; Dvořák, V.), s. 357-367 ISBN 978-80-7372-538-9. [Experimental Fluid Mechanics 2009. Liberec (CZ), 25.11.2009-27.11.2009] R&D Projects: GA ČR GA104/08/0428 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor bubbles * wall shear stress * channel flow Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. Effects of Flow-Induced Shear Stress on Limbal Epithelial Stem Cell Growth and Enrichment

    OpenAIRE

    Kang, Yun Gyeong; Shin, Ji Won; Park, So Hee; Oh, Min-Jae; Park, Hyo Soon; Shin, Jung-Woog; Kim, Su-Hyang

    2014-01-01

    The roles of limbal epithelial stem cells (LESCs) are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together ...

  9. On-Chip Evaluation of Shear Stress Effect on Cytotoxicity of Mesoporous Silica Nanoparticles

    OpenAIRE

    Kim, Donghyuk; Lin, Yu-Shen; Haynes, Christy L.

    2011-01-01

    In this work, nanotoxicity in the bloodstream was modeled and the cytotoxicity of sub-50 nm mesoporous silica nanoparticles to human endothelial cells was investigated under microfluidic flow conditions. Compared to traditional in vitro cytotoxicity assays performed under static conditions, unmodified mesoporous silica nanoparticles show higher and shear stress-dependent toxicity to endothelial cells under flow conditions. Interestingly, even under flow conditions, highly organo-modified meso...

  10. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  11. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    Science.gov (United States)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  12. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2013-01-01

    Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  13. On the yielding behaviour in magnetorheology using ultrasounds, shear and normal stresses, and optical microscopy

    Science.gov (United States)

    Rodríguez-López, Jaime; Castro Blázquez, Pedro; Elvira, Luis; Montero de Espinosa, Francisco; Ramírez, Javier; de Vicente, Juan

    2015-11-01

    The yielding behaviour of magnetorheological fluids has been investigated by videomicroscopy, ultrasonic and rheometry techniques simultaneously. Particularly, the effect of different factors such as, the magnetic field strength, particle size, surface chemistry of the particles, particle concentration and carrier fluid viscosity has been studied. Special attention has been paid to correlate the yielding information obtained by acoustical, optical and mechanical techniques. As a general trend, independently of the particular field strength and suspension formulation, the steady shear flow curve exhibits three well differentiated regions. In the first region, at small stresses, field-induced structures remain quasistatic and all magnitudes remain constant. For larger stresses the number of aggregates decreases but their size increases. This is identified with the onset of flow, and corresponds to the classical static yield stress and a decrease in time-of-flight and normal stresses. For even larger stress values, the suspensions fully flow. This stress value corresponds to the classical dynamic yield stress and is associated to a minimum in the time-of-flight and normal stresses.

  14. Design of Reduced Shear Stress with High-Viscosity Flow Using Characteristics of Thin Film Flow on Solid Surfaces

    International Nuclear Information System (INIS)

    The shear stress on a surface due to the thin film fluid flow is an important issue. In case of a rotating disk, the fluid is delivered to the edge of the disk by centrifugal force, which acts as a body force on the fluid.. Wear of a surface is affected by the shear stress acting on the surface and curvature. In this study, we utilize computational fluid dynamics software to model the ratio of curvature and local shear stress on solid surfaces. The key goal of the study is to determine an optimized curvature for the thin film fluid flow on a solid surface in order to minimize the local shear stress affecting the wear of this surface. Our results on the effects of curvature will be utilized for the design of devices that utilize thin film fluid flow on a solid surface, such as rotating-disk spray systems and thin film coating

  15. Predicting the stress-strain state for the beds of heavy structures

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Martirosyan, Z.G.; Turaev, K.S. [Moscow Civil Engineering Inst. (Russian Federation)

    1992-01-01

    During the construction and occupancy of heavy structures (nuclear power plants, hydroelectric power plants, etc.), which are built on a compressible bed, the need arises to predict their settlements and tilting. The solution of this problem requires a large volume of long-term experimental studies and calculation of the stress-strain state (SSS) of the bed. Successful solution of this problem is governed by both the correct selection of the geochemical model of the bed, and the accuracy with which the rheologic properties of the bed soils and the effectiveness of the adopted computational method are described. Studies conducted in recent years have shown that a rheologic model of the bed in the form of a layer of limited thickness is most optimal. Investigation of clayey soils suggests that a rheologic model where the deformations are logarithmically proportional with time is effective for predicting long-term deformations. A theoretical solution of the problem of predicting the SSS of a soil layer, which is inhomogeneous with respect to depth, under a local load with allowance for the rheologic properties of the soils is proposed below on the basis of these two premises, using Vlasov`s variational method, which ensures sufficient accuracy and practicality. 11 refs., 4 figs.

  16. SALT-4, Temperature and Stress from Radioactive Waste Disposal in Bedded Salts

    International Nuclear Information System (INIS)

    1 - Description of program or function: SALT4 is a two-dimensional, analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. SALT4 takes into account viscoelastic behavior in the pillars adjacent to excavations, transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock, and excavation sequence. SALT4 can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. 2 - Method of solution: In SALT4, the temperature distribution and associated thermal stresses are approximated by analytic solutions for a line heat source in an elastic medium. The mechanical effects due to excavation of the repository openings are treated by the displacement-discontinuity method. 3 - Restrictions on the complexity of the problem: Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. The main disadvantage of SALT4 is that some of the assumptions made, i.e. temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars

  17. High shear stress influences plaque vulnerability Part of the data presented in this paper were published in Stroke 2007;38:2379-81.

    OpenAIRE

    Groen, H. C.; Gijsen, F. J. H.; van der Lugt, A.; Ferguson, M. S.; Hatsukami, T.S.; Yuan, C; van der Steen, A. F. W.; Wentzel, J.J.

    2008-01-01

    Shear stress of the blood at the vessel wall plays an important role in many processes in the cardiovascular system primarily focused on the regulation of vessel lumen and wall dimensions. There is ample evidence that atherosclerotic plaques are generated at low shear stress regions in the cardiovascular system, while high shear stress regions are protected. In the course of plaque progression, advanced plaques start to encroach into the lumen, and thereby start to experience high shear stres...

  18. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    Science.gov (United States)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  19. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice

    OpenAIRE

    Yu, Ying; Cai, Zhaohua; CUI, MINGLI; Nie, Peng; Sun, Zhe; SUN, SHIQUN; CHU, SHICHUN; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2015-01-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partia...

  20. Numerical study of stress distribution in sheared granular material in two dimensions

    International Nuclear Information System (INIS)

    We simulate the response of dense granular material to shear. Our simulations use a micromechanical model which includes realistic material models for each deformable grain, and a Coulomb friction model for interactions between grains. We measure the probability density function (PDF) governing the volume distribution of stress for monodisperse and polydisperse samples, circular and polygonal grains, and various values of microscopic friction coefficients, yield stresses, and packing fractions. Remarkably, PDF's are similar in form for all cases simulated, and similar to those observed in experiments with granular materials under both compression and shear. Namely, the simulations yield an exponential probability of large stresses above the mean. The relationship between distributions of boundary tractions and volume distributions of stress is discussed. The ratio of normal and tangential components of traction on the boundary defines a bulk frictional response, which is shown to increase with the intergranular friction coefficient. However, the bulk friction is always larger than the intergranular friction for densely packed samples. Bulk friction is also strongly dependent on grain size distribution and shape. New observations of force-chain banding during recrystallization, of slip systems in monodisperse samples, and of the effects of plastic yield, are also presented. (c) 2000 The American Physical Society

  1. Numerical study of wall shear stress-based descriptors in the human left coronary artery.

    Science.gov (United States)

    Pinto, S I S; Campos, J B L M

    2016-10-01

    The present work is about the application of wall shear stress descriptors - time averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residence time (RRT) - to the study of blood flow in the left coronary artery (LCA). These descriptors aid the prediction of disturbed flow conditions in the vessels and play a significant role in the detection of potential zones of atherosclerosis development. Hemodynamic descriptors data were obtained, numerically, through ANSYS® software, for the LCA of a patient-specific geometry and for a 3D idealized model. Comparing both cases, the results are coherent, in terms of location and magnitude. Low TAWSS, high OSI and high RRT values are observed in the bifurcation - potential zone of atherosclerosis appearance. The dissimilarities observed in the TAWSS values, considering blood as a Newtonian or non-Newtonian fluid, releases the importance of the correct blood rheologic caracterization. Moreover, for a higher Reynolds number, the TAWSS values decrease in the bifurcation and along the LAD branch, increasing the probability of plaques deposition. Furthermore, for a stenotic LCA model, very low TAWSS and high RRT values in front and behind the stenosis are observed, indicating the probable extension, in the flow direction, of the lesion. PMID:26883291

  2. Wall Shear Stress Induced by Taylor Bubbles in Inclined Flow Channels

    Directory of Open Access Journals (Sweden)

    Vejražka J.

    2013-04-01

    Full Text Available The motion of single air bubbles in flat channels is experimentally investigated. The electrodiffusion technique of near-wall flow diagnostics is applied to measure the wall shear stress distribution under large rising bubbles. The measurements are synchronized with the visual observation of bubble movement by a high-speed camera. The analysis of video records provides information on the bubble shape and terminal velocity. The experiments are carried out for three different channel configuration (with heights of 1.5, 4, and 8 mm, cover a wide range of channel inclination angles (from horizontal to vertical position, and dealing with both the bubbles in stagnant and in co-flowing water. The directionally sensitive, two-strip electrodiffusion probe is proved to be an effective tool to investigate the near-wall flow response to translating bubbles. It provides information not only on the wall shear rate distribution, but also detects the location of near-wall flow reversal, gives an estimate of the thickness of liquid film separating the large bubble from the wall, and provides also the characteristics of capillary waves appearing in the bubble tail region. The effect of channel inclination angle on the modification of wall shear stress distribution along the upper and bottom wall is also discussed.

  3. Estimation of gas wall shear stress in horizontal stratified gas-liquid pipe flow

    International Nuclear Information System (INIS)

    Two-phase pipe flows occur in many industrial applications, such as condensers and evaporators, chemical processing equipment, nuclear reactors, and oil pipelines. A variety of basic mechanistic flow models for predicting the pressure gradient and liquid loading characteristics of these types of flows to assist in design calculations has emerged over the past two decades, especially for the stratified and slug flow regimes. These models generally rely on a number of basic assumptions and empirical closure equations. Possibly the most notable of these relates to the evaluation of interfacial shear stresses. However, one of the most important yet least discussed assumptions used in most of these models is that the phase wall shear stresses can be accurately estimated from correlations developed for single-phase pipe flows. The object of this article is to present measurements of gas wall shear up to locations in close proximity to the gas-liquid interface for a variety of interface conditions in developed flow, and to determine the effects of the interface on average gas wall friction factors. In this context the interface may be smooth, rippled or wavy

  4. Inter-laminar shear stress in hybrid CFRP/austenitic steel

    Directory of Open Access Journals (Sweden)

    J. Lopes

    2015-01-01

    Full Text Available Bolted joints are the most common solution for joining composite components in aerospace structures. Critical structures such as wing to fuselage joints, or flight control surface fittings use bolted joining techniques. Recent research concluded that higher bearing strengths in composite bolted joints can be achieved by a CFRP/ Titanium hybrid lay-up in the vicinity of the bolted joint. The high costs of titanium motivate a similar research with the more cost competitive austenitic steel. An experimental program was performed in order to compare the apparent inter-laminar shear stress (ILSS of a CFRP reference beam with the ILSS of hybrid CFRP/Steel beams utilizing different surface treatments in the metallic ply. The apparent ILSS was determined by short beam test, a three-point bending test. Finite element models using cohesive elements in the CFRP/Steel interface were built to simulate the short beam test in the reference beam and in the highest interlaminar shear stress hybrid beam. The main parameters for a FEM simulation of inter laminar shear are the cohesive elements damage model and appropriate value for the critical energy release rate. The results show that hybrid CFRP/Steel have a maximum ILSS very similar to the ILSS of the reference beam. Hybrid CFRP/Steel is a competitive solution when compared with the reference beam ILSS. FEM models were able to predict the maximum ILSS in each type of beam.

  5. Regulation of shear stress on rolling behaviors of HL-60 cells on P-selectin

    Science.gov (United States)

    Ling, YingChen; Fang, Ying; Yang, XiaoFang; Li, QuHuan; Lin, QinYong; Wu, JianHua

    2014-10-01

    Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm2. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing fractional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mechanism for most cell rolling events through P-selectin.

  6. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus

    Directory of Open Access Journals (Sweden)

    Mickleborough Timothy D

    2008-09-01

    Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.

  7. A comparison of tectonic ambient shear stress value in China with that in western USA

    Institute of Scientific and Technical Information of China (English)

    陈培善; 白彤霞; 李保昆

    2002-01-01

    A method is proposed to estimate average tectonic ambient shear stress value for a region. Thus the average stress values of 19 regions in western USA, and 43 regions (each region is 10((10() in Chinese mainland and its surroundings have been obtained. The data of 15 993 earthquakes are from the Internet Centroid Moment Tensor solution made by Harvard University from 1997 to 1999. The results demonstrate that there are highest average stress values in the regions of south California of USA and its off coast sea, reach to 12.0 MPa and 13.7 MPa respectively, then gradually decrease toward north, south, and east. The lowest value is 8.7 MPa and 63% of highest value. The average stress values in northern Xinjiang and in the Chayu region of Tibet are 17.2 and 12.9 MPa respectively. They are highest values in China and higher than USA(s. The average stress value in North China, Yunnan, Sichuan, Taiwan is similar to south California of USA. The average stress value in South-North seismic zone is about 13 MPa, a little higher than south California. The distribution of average stress value for two important regions provides basic data for geology. These results are useful to research earthquake activity background and attenuation relation of strong ground motion parameters (e.g. peak acceleration and response spectra).

  8. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    International Nuclear Information System (INIS)

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less

  9. Behavior of Three Metallic Alloys under Combined Axial-Shear Stresses at Elevated Temperature

    Science.gov (United States)

    Colaiuta, J. F.; Lissenden, C. J.; Lerch, B. A.

    2003-01-01

    Type 316 stainless steel, Haynes 188, and Inconel 718 samples were subjected to an axial-shear strain controlled loading history while the specimen temperature was held at 650 C to quantify the evolution of material state under a complex biaxial load path when the material is in the viscoplastic domain. Yield surfaces were constructed in the axial-shear stress plane using a sensitive, 30 x 10(exp -6)m/m, equivalent offset strain definition for the yield strain. Subsequent yield surfaces were constructed at various points along the strain path to define the material evolution. These subsequent yield surface translated, expanded, and distorted relative to the initial yield surface. Each of these very different materials exhibited components of isotropic, kinematic and distortional hardening. Furthermore, subsequent yield surfaces for each material have a very well defined front face and a poorly defined, flattened, back side.

  10. DRAG REDUCTION OF A CATIONIC SURFACTANT SOLUTION AND ITS SHEAR STRESS RELAXATION

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng

    2012-01-01

    In order to study the mechanisms of the turbulent frictional drag reduction by surfactant additives,the drag reduction,the shear viscosity and the shear stress relaxation were measured for solutions of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) with the same molar sodium salicylate as a counter-ion.It is found that the first step relaxation time decreases with increasing concentration and,thus,with the maximum drag-reducing rates,which indicates that the stiffness of the micellar structures with the first relaxation time,increases with the increase of the concentration of CTAB.Furthermore,for this surfactant,a viscoelastic property is necessary for reducing drag,while a stronger viscoelasticity characterized by a tail relaxation time does not necessartly mean a higher drag-reducing rate.

  11. A control systems approach to quantify wall shear stress normalization by flow-mediated dilation in the brachial artery.

    Directory of Open Access Journals (Sweden)

    Frank C G van Bussel

    Full Text Available Flow-mediated dilation is aimed at normalization of local wall shear stress under varying blood flow conditions. Blood flow velocity and vessel diameter are continuous and opposing influences that modulate wall shear stress. We derived an index FMDv to quantify wall shear stress normalization performance by flow-mediated dilation in the brachial artery. In 22 fasting presumed healthy men, we first assessed intra- and inter-session reproducibilities of two indices pFMDv and mFMDv, which consider the relative peak and relative mean hyperemic change in flow velocity, respectively. Second, utilizing oral glucose loading, we evaluated the tracking performance of both FMDv indices, in comparison with existing indices [i.e., the relative peak diameter increase (%FMD, the peak to baseline diameter ratio (Dpeak/Dbase, and the relative peak diameter increase normalized to the full area under the curve of blood flow velocity with hyperemia (FMD/shearAUC or with area integrated to peak hyperemia (FMD/shearAUC_peak]. Inter-session and intra-session reproducibilities for pFMDv, mFMDv and %FMD were comparable (intra-class correlation coefficients within 0.521-0.677 range. Both pFMDv and mFMDv showed more clearly a reduction after glucose loading (reduction of ~45%, p≤0.001 than the other indices (% given are relative reductions: %FMD (~11%, p≥0.074; Dpeak/Dbase (~11%, p≥0.074; FMD/shearAUC_peak (~20%, p≥0.016 and FMD/shearAUC (~38%, p≤0.038. Further analysis indicated that wall shear stress normalization under normal (fasting conditions is already far from ideal (FMDv << 1, which (therefore does not materially change with glucose loading. Our approach might be useful in intervention studies to detect intrinsic changes in shear stress normalization performance in conduit arteries.

  12. Numerical model of saltation in open channel with rough bed

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2012 - (Jonáš, P.; Uruba, V.), s. 13 ISBN 978-80-87012-42-0. [Colloquium FLUID DYNAMICS 2012. Praha (CZ), 24.10.2012-26.10.2012] R&D Projects: GA ČR GA103/09/1718 Institutional support: RVO:67985874 Keywords : saltation length * saltation height * bed roughness * bed shear stress * shear velocity Subject RIV: BK - Fluid Dynamics

  13. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  14. Purinergic Signaling is Required for Fluid Shear Stress-Induced NF-kB Translocation in Osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-kB. We examined whether this process was under control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-kB inhibitory protein IkB alpha and exhibited cytosolic localization of NF-kB. Under fluid shear stress, IκBα levels decreased, and concomitant nuclear localization of NF-kB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in IκBα, and NF-kB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced IκBα degradation and nuclear accumulation of NF-kB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IkB alpha degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-kB activity through the P2Y6 and P2X7 receptor.

  15. Wing crack propagation model under high hydraulic pressure in compressive-shear stress state

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-lin; WANG Wen-jun

    2011-01-01

    A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip.With the equivalent crack length leq of the wing crack introduced, the stress intensity factor K1 at the wing crack tip was assumed to the sum of two terms: on one hand a component K(1)1 for a single isolated straight wing crack of length 2l, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K(2)1 due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.

  16. Realtime Surface Shear Stress Control with MEMS Sensors/Actuators in Turbulent Boundary Layers

    Science.gov (United States)

    Huang, Adam; Lew, James; Ho, Chih-Ming; Xu, Yong; Tai, Yu-Chong

    2003-11-01

    High-speed surface streaks in turbulent boundary layers have been attributed to approximately 40friction drag. A real-time control system for reducing surface shear stress has being developed. The system consists of two linear arrays of MEMS surface shear stress imagers for providing control and feedback measurements and a recently developed, micro-machined flap-type actuator for interaction with the streak structures. Driven by a constant temperature anemometry circuit with an overheat ratio of 12sensitivity of 100 mV/Pa and frequency response of 20 kHz. The micro-machined bubble-flap actuator is essentially a thin silicon cantilever beam which hangs/sits on top of a silicone diaphragm molded into a bulk etched silicon cavity. The flap shape used is a 3mm long (streamwise) by 1mm wide rectangular beam, with a thickness of 40 um. Actuation is achieved by pneumatically inflating the silicone diaphragm, which then pushes up the silicon beam. The current flap can achieve off-plane deflections of over 130 um at frequencies up to 150 Hz, with a rise time of 2ms and a fall time of 4ms. Experiments are carried out with the system installed onto the wall of a 2-D turbulent wind tunnel. At Re 10k, corresponding to flow velocity of 10 m/s, time-averaged reduction of 4achieved continuous actuation at 130 um and 150 Hz. Furthermore, in offline data processing, it has been found that the actuator interacting with the streak structures has reduce the peak shear stress of a streak by an additional 0.2 Pa, or about 50

  17. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    Directory of Open Access Journals (Sweden)

    Joshua B. Benoit

    2011-04-01

    Full Text Available Recent emergence of bed bugs (Cimex spp. has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h to temperatures below −16 to −18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40–45 °C for the common (Cimex lectularius and tropical (C. hemipterus bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps. Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ

  18. Wall Shear Stress Induced by Taylor Bubbles in Inclined Flow Channels

    Czech Academy of Sciences Publication Activity Database

    Tihon, Jaroslav; Pěnkavová, Věra; Vejražka, Jiří

    Liberec: Technical University of Liberec, 2012 - (Vít, T.; Danč ová, P.; Novotný, P.), s. 723-728 ISBN 978-80-7372-912-7. [Experimental Fluid Mechanics 2012 /7./. Hradec Králové (CZ), 20.11.2012-23.11.2012] R&D Projects: GA ČR(CZ) GAP101/12/0585 Institutional support: RVO:67985858 Keywords : Taylor bubble * electrodiffusion method * wall shear stress Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://efm.kez.tul.cz/

  19. Research of the Effect of the Shear Stress on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionCellular mechanism is one of the foundations of regenerating medicine and tissue engineering, which is also an advanced subject in cell mechanism in recent years~([1]). The form and function of a cell, and the growing, reproducing and death, even canceration are related to the characteristics of cell mechanism. While the research of the shear stress on endothelial cells is an important field in cell mechanism. The main bio-functions of endothelial cells are as follows: anti-cruor, regulating t...

  20. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    Science.gov (United States)

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-01

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the

  1. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  2. Wall Shear Stress Prediction Using Computational Simulation on Patient Specific Artery with Aneurysm

    Directory of Open Access Journals (Sweden)

    Yunus Muhamad

    2014-07-01

    Full Text Available An aneurysm is formed when a blood vessel becomes dilated or distorted. It will cause the vessel to expand to a size greater than its original diameter. In this study, Wall Shear Stress (WSS of cerebral artery with aneurysm was predicted using Computational Fluid Dynamics (CFD. WSS in the artery is one of the indicators for brain artery disease progression. Based on the results, the maximum value of blood velocity and WSS on patient specific artery with aneurysm are 3.23 m/s and 60.1 Pa, respectively. The location of high WSS is before and after the aneurysm bulge. The WSS is above the normal physiological value where the artery wall is exposed to high stress. Hence, the vessel at this location is anticipated to become weaker and could be further dilated.

  3. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.

    Science.gov (United States)

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries. PMID:26600266

  4. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    Science.gov (United States)

    Liu, Y.; Bhamji, I.; Withers, P. J.; Wolfe, D. E.; Motta, A. T.; Preuss, M.

    2015-11-01

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr-Nb-Sn-Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  5. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.

    2014-09-14

    © 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.

  6. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2014-04-15

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  7. Implementation of wall shear stress model for a thin liquid film in CUPID

    International Nuclear Information System (INIS)

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed at Korea Atomic Energy Research Institute. It has been validated against various conceptual problems and experimental results, but mainly focused on the low void fraction flows such as a bubbly flow. In the present study, one of the required constitutive models of the two-phase equations, a wall shear stress model for a thin liquid film, was implemented and tested. This paper introduces the mechanistic wall shear stress model for a liquid film and then, presents the simulation result using CUPID with the model for a conceptual problem of a downward liquid film flow. The simulation result was compared with the analytical solution and the STAR-CCM+ calculation result for the verification and validation. From this validation against the conceptual problem, it was found that the implemented model can reproduce the downward liquid film behavior, such as the film thickness and the velocity appropriately. However, the present work is limited to the downward liquid film merely, so that more validations for high void fraction flows are required with various flow conditions. Moreover, since the model is evaluated for the laminar liquid film, the influence of the turbulence on the film behavior needs to be tested

  8. miR-126 Is Involved in Vascular Remodeling under Laminar Shear Stress

    Directory of Open Access Journals (Sweden)

    Ana Mondadori dos Santos

    2015-01-01

    Full Text Available Morphology and changes in gene expression of vascular endothelium are mainly due to shear stress and inflammation. Cell phenotype modulation has been clearly demonstrated to be controlled by small noncoding micro-RNAs (miRNAs. This study focused on the effect of laminar shear stress (LSS on human endothelial cells (HUVECs, with an emphasis on the role of miRNA-126 (miR-126. Exposure of HUVECs in vitro to LSS modified the shape of HUVECs and concomitantly regulated the expression of miR-126, vascular cell adhesion molecule 1 (VCAM-1, and syndecan-4 (SDC-4. A significant upregulation of miR-126 during long-term exposure to flow was shown. Interestingly, LSS enhanced SDC-4 expression on the HUVEC membranes. Overexpression of miR-126 in HUVECs decreased the levels of targets stromal cell-derived factor-1 SDF-1/CXCL12 and VCAM-1 but increased the expression of RGS16, CXCR4, and SDC-4. No significant difference in terms of cell proliferation and apoptosis was observed between scramble, anti-miR-126, and pre-miR-126 transfected HUVECs. In Apo-E KO/CKD mice aortas expressing a high level of miR-126, SDC-4 was concomitantly increased. In conclusion, our results suggest that miR-126 (i is overexpressed by long-term LSS, (ii has a role in up- and downregulation of genes involved in atherosclerosis, and (iii affects SDC-4 expression.

  9. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    International Nuclear Information System (INIS)

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  10. The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress

    Directory of Open Access Journals (Sweden)

    Alexander L. Rivera

    2015-03-01

    Full Text Available Tissue engineering is viewed as a promising option for long-term repair of cartilage lesions, but current engineered cartilage constructs fail to match the mechanical properties of native tissue. The extracellular matrix of adult human articular cartilage contains highly organized collagen fibrils that enhance the mechanical properties of the tissue. Unlike articular cartilage, mesenchymal stem cell (MSC based tissue engineered cartilage constructs lack this oriented microstructure and therefore display much lower mechanical strength. The goal of this study was to investigate the effect of biomolecular gradients and shear stress on MSCs undergoing chondrogenesis within a microfluidic device. Via poly(dimethyl siloxane soft-lithography, microfluidic devices containing a gradient generator were created. Human MSCs were seeded within these chambers and exposed to flow-based transforming growth factor β1 (TGF-β1 gradients. When the MSCs were both confluent and exposed to shear stress, the cells aligned along the flow direction. Exposure to TGF-β1 gradients led to chondrogenesis of MSCs, indicated by positive type II collagen staining. These results, together with a previous study that showed that aligned MSCs produce aligned collagen, suggest that oriented cartilage tissue structures with superior mechanical properties can be obtained by aligning MSCs along the flow direction and exposing MSCs to chondrogenic gradients.

  11. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology

    Science.gov (United States)

    Ou, Yi; Qu, Furong; Wang, Guanya; Nie, Mengyan; Li, Zhigang; Ou, Wen; Xie, Changqing

    2016-07-01

    By combining substrate-free structures with anodic bonding technology, we present a simple and efficient micro-electro-mechanical system (MEMS) thermal shear stress sensor. Significantly, the resulting depth of the vacuum cavity of the sensor is determined by the thickness of the silicon substrate at which Si is removed by the anisotropic wet etching process. Compared with the sensor based on a sacrificial layer technique, the proposed MEMS thermal shear-stress sensor exhibits dramatically improved sensitivity due to the much larger vacuum cavity depth. The fabricated MEMS thermal shear-stress sensor with a vacuum cavity depth as large as 525 μm and a vacuum of 5 × 10-2 Pa exhibits a sensitivity of 184.5 mV/Pa and a response time of 180 μs. We also experimentally demonstrate that the sensor power is indeed proportional to the 1/3-power of the applied shear stress. The substrate-free structures offer the ability to precisely measure the shear stress fluctuations in low speed turbulent boundary layer wind tunnels.

  12. Decreases in fluid shear stress due to microcracks: a possible primary pathogenesis of Kümmell's disease.

    Science.gov (United States)

    Li, Hao; Liang, Cheng-zhen; Shen, Cheng-chun; Chen, Qi-xin

    2011-11-01

    The German doctor Hermann Kümmell described Kümmell's disease as the clinical scenario in which patients suffer a trivial spinal trauma, but develop a symptomatic, progressive, angular kyphosis after a symptom-free period of months to years. Since an intravertebral vacuum phenomenon, which is considered indicative of ischemic osteonecrosis, is often seen in the radiographs of patients with Kümmell's disease, most authors regard ischemic necrosis of the vertebral body as the primary pathogenesis of Kümmell's disease. However, we argue that Kümmell's disease is not commonly associated with typical avascular osteonecrosis of the femoral head and the intravertebral vacuum phenomenon is also present in other diseases. We postulated that even if ischemia plays a role in the pathogenesis of Kümmell's disease, it would not be the proximal cause of Kümmell's disease. In this article, we review the role of fluid shear stress in bone remolding and propose a microcosmic hypothesis in which microcracks lead to decreased fluid shear stress, which acts as the primary cause of Kümmell's disease. This was supported by conclusions drawn from a literature review: (1) fluid shear stress plays a crucial role in bone remodeling, and the osteocyte network is the main sensor of this mechanical stimulus; (2) decreased fluid shear stress will cause disequilibration of bone homeostasis, increasing bone resorption and reducing bone formation; and (3) the fluid flow of lacunar-canalicular porosity (PLC) and fluid shear stress near the microcracks decreases. PMID:21873000

  13. Development of a fiber Bragg grating sensor for in-shoe shear stress measurement: design and preliminary results

    Science.gov (United States)

    Koulaxouzidis, Andreas V.; Roberts, V. C.; Holmes, Melanie J.; Handerek, Vincent A.

    2000-08-01

    In-shoe shear stress sensors are a required tool for the investigation of plantar ulcer development after the onset of diabetes. Recently, several transducers have been developed for measuring in-shoe shear stress using magneto- resistive technology, light intensity modulation, and copolymer piezoelectric materials. Common drawbacks in the previous methods are the relatively large size of the sensors and the difficulty in interrogating many sensors simultaneously in order to achieve distributed sensing. In this paper we demonstrate for the first time a shear stress sensor using Fiber Bragg gratings (FBGs). The small size and the multiplexing capability of FBGs enables quasi- distributed sensing of shear stress on the plantar surface by interrogating a large number of identical sensors. The sensor design is based on the theory of elastic bending of columns. The sensor consists of two FBGs fitted inside a metallic structure which is able to deform elastically under shear stress. This elastic deformation produces strain on the FBGs, which can be detected by measuring the Bragg wavelength shift of the reflected light of each FBG using a CCD spectrometer. Preliminary results on an enlarged version of the sensor have shown the applicability of FBGs for the implementation of the in-shoe sensor.

  14. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation.

    Directory of Open Access Journals (Sweden)

    Kyung Min Kim

    Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

  15. Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner-Mindlin formulation

    OpenAIRE

    Brank, Boštjan; Carrera, Erasmo

    2000-01-01

    A finite element formulation for refined linear analysis of multilayered shell structures of moderate thickness is presented. An underlying shell model is a direct extension of the first-order shear-deformation theory of Reissner–Mindlin type. A refined theory with seven unknown kinematic fields is developed: (i) by introducing an assumption of a zig-zag (i.e. layer-wise linear) variation of displacement field through the thickness, and (ii) by assuming an independent transverse shear stress ...

  16. Development of joints and shear fractures in the Kuqa depression and its implication to regional stress field switching

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhongpei; WANG Qingchen

    2004-01-01

    The superimposed basin must have undergone the changes of regional stress field. Study on the nature and switch of regional stress field of superimposed basin is very useful to understanding its stress state and tectonic events during its formation and evolution. As sensitive markers of small stress changes, joint and shear fracture, characterized by consistency of orientation over wide area, can be used to reconstruct paleostress state and its evolution. Detailed observations and analysis on the orientations, geometrical patterns, sequences of joints and shear fractures and their chronological relation to faults and folds show that, the NEE-SWW systematic joints and NNW-SSE systematic joints developed in the Mesozoic and Cenozoic strata are much more prominent than NW-SE systematic joints and shear fractures with different orientations. And the NWW-SEE and NW-SE systematic joints formed later than NEE-SWW systematic joints but earlier than shear fractures with different orientations. According to the relationships between joint and shear fractures and stress, the NEE-SWW systematic joints are inferred to result from lateral weak extension caused by the late Cretaceous regional uplift, while the NNW-SSE and NW-SE systematic joints are interpreted as syn-tectonic deformation relating to strong N-S compression in the Neogene. But some conjugate shear fractures occur probably due to sinistral strike-slip faulting in the Kuqa depression. At the beginning of the Neogene, the stress field changed and the maximal principal stress σ1 switched from vertical to horizontal.

  17. Experimental and CFD simulation studies of wall shear stress for different impeller configurations and MBR activated sludge.

    Science.gov (United States)

    Ratkovich, N; Chan, C C V; Bentzen, T R; Rasmussen, M R

    2012-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment for effective solids-liquid separation. However, a common problem encountered with MBR systems is fouling of the membrane resulting in frequent membrane cleaning and replacement which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the shear stress in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results were obtained with the CFD model (<9% error), it was extrapolated to include the non-Newtonian behaviour of activated sludge. PMID:22592479

  18. An approximate semi-analytical method for prediction of interlaminar shear stresses in an arbitrarily laminated thick plate

    Science.gov (United States)

    Chaudhuri, Reaz A.; Seide, Paul

    1987-01-01

    An approximate semianalytical method for determination of interlaminar shear stress distribution through the thickness of an arbitrarily laminated thick plate has been presented. The method is based on the assumptions of transverse inextensibility and layerwise constant shear angle theory (LCST) and utilizes an assumed quadratic displacement potential energy based finite element method (FEM). Centroid of the triangular surface has been proved from a rigorous mathematical point of view (Aubin-Nitsche theory), to be the point of exceptional accuracy for the interlaminar shear stresses. Numerical results indicate close agreement with the available three-dimensional elasticity theory solutions. A comparison between the present theory and that due to an assumed stress hybrid FEM suggest that the (normal) traction-free-edge condition is not satisfied in the latter approach. Furthermore, the present paper is the first to present the results for interlaminar shear stresses in a two-layer thick square plate of balanced unsymmetric angle-ply construction. A comparison with the recently proposed Equilibrium Method (EM) indicates the superiority of the present method, because the latter assures faster convergence as well as simultaneous vanishing of the transverse shear stresses on both of the exposed surfaces of the laminate. Superiority of the present method over the EM, in the case of a symmetric laminate, is limited to faster convergence alone. It has also been demonstrated that the combination of the present method and the reduced (quadratic order) numerical integration scheme yields convergence of the interlaminar shear stresses almost as rapidly as that of the nodal displacements, in the case of a thin plate.

  19. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    International Nuclear Information System (INIS)

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm2) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that

  20. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  1. Quantitative Assessment of Wall Shear Stress in an Aortic Coarctation - Impact of Virtual Interventions

    Science.gov (United States)

    Karlsson, Matts; Andersson, Magnus; Lantz, Jonas

    2014-11-01

    Turbulent and wall impinging blood flow causes abnormal shear forces onto the lumen and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, wall shear stress (WSS) and related flow parameters were studied in a pre-treated aortic coarctation (CoA) as well as after several virtual interventions using computational fluid dynamics (CFD). Patient-specific geometry and flow conditions were derived from magnetic resonance imaging (MRI) data. Finite element analysis was performed to acquire six different dilated CoAs. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Pre-intervention, the presence of jet flow wall impingement caused an elevated WSS zone, with a distal region of low and oscillatory WSS. After intervention, cases with a more favorable centralized jet showed reduced high WSS values at the opposed wall. Despite significant turbulence reduction post-treatment, enhanced regions of low and oscillatory WSS were observed for all cases. This numerical method has demonstrated the morphological impact on WSS distribution in an CoA. With the predictability and validation capabilities of a combined CFD/MRI approach, a step towards patient-specific intervention planning is taken.

  2. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design.

    Science.gov (United States)

    Bark, David L; Yousefi, Atieh; Forleo, Marcio; Vaesken, Antoine; Heim, Frederic; Dasi, Lakshmi P

    2016-07-01

    The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry, along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves involving different fabric designs. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics. PMID:26919564

  3. Design of a squeeze film magnetorheological brake considering compression enhanced shear yield stress of magnetorheological fluid

    Science.gov (United States)

    Sarkar, C.; Hirani, H.

    2013-02-01

    A magnetorheological brake, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnet, is proposed to replace the conventional heavy weight low response hydraulic disk brake. The frictional characteristics of the proposed brake can be controlled by regulating the yield stress of the MR fluid as function of magnetic field and normal compressive force. The controllable yield stress retards the surfaces of rotating disks, thus MR fluid can be used as a brake lining material. The present research work attempts designing a squeeze film MR brake by accounting compression enhanced shear yield stress of magnetorheological fluid. Theoretical calculations indicate that the estimated braking torque of the six plate squeeze film MR brake, under compression, is in the order of 600Nm. To validate the theoretical design and its findings, a prototype of single-plate squeeze film MR disk brake has been developed. Experimental test setup helps to illustrate braking torque under different control currents (0.0 to 1.25 A).

  4. Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing

    DEFF Research Database (Denmark)

    Dahl, Jonas; Nielsen, Kim Lau; Tvergaard, Viggo

    2012-01-01

    contact and to avoid unphysical material overlap of the void surface. This simplification is clearly an approximation, which is improved in the present study. The objective of this paper is threefold: (i) to analyze the effect of fully accounting for contact as voids collapse to micro-cracks during...... intense shear deformation, (ii) to quantify the accuracy of the pseudo-contact approach used in previous studies, and (iii) to analyze the effect of including friction at the void surface with the main focus on its effect on the critical strain at coalescence. When accounting for full contact at the void...... material and loading conditions, such as various stress triaxialities, void sizes, and friction coefficients....

  5. Helical flows of second grade fluid due to constantly accelerated shear stresses

    Science.gov (United States)

    Jamil, M.; Rauf, A.; Fetecau, C.; Khan, N. A.

    2011-04-01

    The helical flows of second grade fluid between two infinite coaxial circular cylinders is considered. The motion is produced by the inner cylinder that at the initial moment applies torsional and longitudinal constantly accelerated shear stresses to the fluid. The exact analytic solutions, obtained by employing the Laplace and finite Hankel transforms and presented in series form in term of usual Bessel functions of first and second kind, satisfy both the governing equations and all imposed initial and boundary conditions. In the limiting case when α → 0, the solutions for Newtonian fluid are obtained for the same motion. The large-time solutions and transient solutions for second grade fluid are also obtained, and effect of material parameter α and kinematic viscosity ν is discussed. In the last, the effects of various parameters of interest on fluid motion as well as the comparison between second grade and Newtonian fluids are analyzed by graphical illustrations.

  6. Computational and Experimental Models of Cancer Cell Response to Fluid Shear Stress

    Directory of Open Access Journals (Sweden)

    MichaelR.King

    2013-03-01

    Full Text Available It has become evident that mechanical forces play a key role in cancer metastasis, a complex series of steps that is responsible for the majority of cancer-related deaths. One such force is fluid shear stress, exerted on circulating tumor cells (CTCs by blood flow in the vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in the tumor microenvironment. Computational and experimental models have the potential to elucidate metastatic cell behavior exposed to such forces. Here, we review the fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments, and discuss recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process.

  7. Micro thermal shear stress sensor based on vacuum anodic bonding and bulk-micromachining

    Institute of Scientific and Technical Information of China (English)

    Yi Liang; Ou Yi; Shi Sha-Li; Ma Jin; Chen Da-Peng; Ye Tian-Chun

    2008-01-01

    This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μmx100μm, is deposited on the top of a thin silicon nitride diaphragm and functioned as the thermal sensor element. By using vacuum anodic bonding and bulk-si anisotropic wet etching process instead of the sacrificial-layer technique, a cavity, functioned as the adiabatic vacuum chamber, 200μm×200μm×400μm, is placed between the silicon nitride diaphragm and glass (Corning 7740). This method totally avoid adhesion problem which is a major issue of the sacrificial-layer technique.

  8. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    Science.gov (United States)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  9. Experimental study on time-dependent stress and strain of in-plane shear(ModeⅡ) fracture process of rock

    Institute of Scientific and Technical Information of China (English)

    王志; 饶秋华; 谢海峰

    2008-01-01

    Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock.

  10. Reynolds Stress and Sheared Poloidal Flow in the Edge Plasma Region of the HT-6M Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Hao; YU Chang-Xuan; XU Yu-Hong; LING Bi-Li; GONG Xian-Zu; LIU Bao-Hua; WAN Bao-Nian

    2001-01-01

    High spatial resolution measurements of the electrostatic Reynolds stress, radial electric field and poloidal phase velocity of fluctuations in the edge region of the HT-6M tokamak are carried out. The Reynolds stress shows a radial gradient in proximity to the poloidal velocity shear. A comparison of the profiles between the Reynolds stress gradient and the poloidal velocity damping reveals some similarity in their magnitude and radial structure. These facts suggest that the turbulence-induced Reynolds stress may play a significant role in generating the poloidal flow in the plasma edge region.

  11. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    NARCIS (Netherlands)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resol

  12. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress.

    Science.gov (United States)

    Blecha, L D; Rakotomanana, L; Razafimahery, F; Terrier, A; Pioletti, D P

    2010-03-22

    An analytical model of the fluid/cell mechanical interaction was developed. The interfacial shear stress, due to the coupling between the fluid and the cell deformation, was characterized by a new dimensionless number N(fs). For N(fs) above a critical value, the fluid/cell interaction had a damping effect on the interfacial shear stress. Conversely, for N(fs) below this critical value, interfacial shear stress was amplified. As illustration, the role of the dynamic fluid/cell mechanical coupling was studied in a specific biological situation involving cells seeded in a bone scaffold. For the particular bone scaffold chosen, the dimensionless number N(fs) was higher than the critical value. In this case, the dynamic shear stress at the fluid/cell interface is damped for increasing excitation frequency. Interestingly, this damping effect is correlated to the pore diameter of the scaffold, furnishing thus target values in the design of the scaffold. Correspondingly, an efficient cell stimulation might be achieved with a scaffold of pore size larger than 300 microm as no dynamic damping effect is likely to take place. The analytical model proposed in this study, while being a simplification of a fluid/cell mechanical interaction, brings complementary insights to numerical studies by analyzing the effect of different physical parameters. PMID:20004397

  13. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Rasmussen, Michael R.

    2012-01-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...

  14. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors Used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.;

    2011-01-01

    Two types of submerged membrane bioreactors (MBR): Hollow Fiber (HF) and Hollow Sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...

  15. Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes

    Science.gov (United States)

    Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

    2012-10-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

  16. Stress results from two-dimensional granular shear flow simulations using various collision models.

    Science.gov (United States)

    Ketterhagen, William R; Curtis, Jennifer S; Wassgren, Carl R

    2005-06-01

    Collision resolution is one of the key elements in a discrete element method algorithm for modeling granular flows. Several collision models have been proposed for this process. The hard-particle collision approach is typically used for dilute systems, or for those in which the assumption of binary and instantaneous particle-particle contact remains valid. As the solids fraction increases, however, multiple, enduring collisions can occur and a soft-particle approach is more appropriate for resolving the collision dynamics. In this work, the delineation between dilute and dense systems and the suitability of contact models are explored for a range of solid fractions. Stress results for two-dimensional shear flow simulations are compared using several collision models including an event-driven hard-particle model, a hysteretic spring soft-particle collision model following Walton and Braun [J. Rheol. 30, 949 (1986)], and a hybrid hard-particle-with-overlap model following Hopkins and Louge [Phys. Fluids A 3, 47 (1991)]. Results show that stresses are accurately predicted for a range of solids fractions, coefficients of restitution, and friction coefficients by both the hard-particle-with-overlap and soft-particle models so long as a sufficiently large loading stiffness is used for the soft-particle model. Additional results investigating the accuracy of the collision models and the amount of collisional overlap are presented as functions of the simulation time step and model parameters. PMID:16089735

  17. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  18. The average stress in a suspension of cube-shaped magnetic particles subject to shear and magnetic fields

    Science.gov (United States)

    Mallavajula, Rajesh K.; Archer, Lynden A.; Koch, Donald L.

    2015-09-01

    The effect of a homogeneous magnetic field (H) on the bulk stress in a dilute suspension of weakly Brownian, magnetic cubes suspended in a Newtonian fluid subjected to a linear shear flow is studied. The stresslet on each cube is anisotropic and depends on its orientation. Application of a magnetic field results in anisotropy in the orientation distribution. The steady-state orientation distribution is derived as a function of the angle between the directions of the magnetic field and the fluid vorticity vector and the ratio of the magnetic torque to the viscous torque. Knowledge of the distribution function is used to derive a general expression for the bulk stress in a general linear flow field and a magnetic field. Specific numerical results are obtained for the intrinsic viscosity in a simple shear flow when the magnetic field is either parallel or perpendicular to the vorticity. When the magnetic field is perpendicular to vorticity, we find that the intrinsic viscosity increases at first with increasing shear rate passes through a maximum and then shear thins. The intrinsic viscosity can vary from 3.25 to 5.5 in response to changes in the relative strengths of the shear and magnetic fields. The maximum value of 5.5 is obtained when the magnetic moment of the cube, which is assumed to be parallel to the normal of one of the faces, lies in the flow gradient plane at an angle of π/4 from the flow direction.

  19. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    Science.gov (United States)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  20. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray Angiography and Intravascular Ultrasound

    OpenAIRE

    Balocco, Simone; Gatta, Carlo; Alberti, Marina; Carrillo, Xavier; Rigla, Juan; Radeva, Petia

    2012-01-01

    Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiograph...

  1. Measurements of wall-shear-stress distribution on an NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s−1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV

  2. New explicit algebraic stress and flux model for active scalar and simulation of shear stratified cylinder wake flow

    Institute of Scientific and Technical Information of China (English)

    HUA ZuLin; GU Li; XING LingHang; DAI WenHong

    2009-01-01

    On the numerical simulation of active scalar, a new explicit algebraic expression on active scalar flux was derived based on Wikstrom, Wallin and Johansson model (aWWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with Laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux, and is also a further modification of the aWWJ model for complex situations such as a shear stratified flow.

  3. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  4. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    Science.gov (United States)

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  5. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.

    Science.gov (United States)

    Vitzthum, Constanze; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells. PMID:26357939

  6. Wall shear stress manifolds and near wall flow topology in aneurysms

    Science.gov (United States)

    Arzani, Amirhossein; Gambaruto, Alberto M.; Chen, Guoning; Shadden, Shawn C.

    2015-11-01

    Transport of atherogenic and thrombogenic chemicals near the vessel wall highly influences atherosclerosis and thrombosis. The high Schmidt number of these species leads to a thin concentration boundary layer near the wall. The wall shear stress (WSS) vector field can be scaled to obtain the near wall velocity in this region, thus providing first order approximation to near wall transport. In this study, the complex blood flow in patient-specific abdominal aortic aneurysms was considered. Lagrangian tracking of surface-bound tracers representing near wall species was employed to identify Lagrangian coherent structures (LCS) for the WSS surface vector field. The WSS LCS matched the stable and unstable manifolds of saddle type fixed points of the time-average WSS vector field, due to the quasi-steady nature of these near wall transport processes. A WSS exposure time measure is introduced to quantify the concentration of near wall species. The effect of diffusion and normal flow on these structures is investigated. The WSS LCS highly influence the concentration of near wall species, and provide a template for near-wall transport.

  7. FBG sensor networks for the estimation of boundary shear stress around the novel piers

    Science.gov (United States)

    Lü, Chengang; Zhang, Ruifeng; Li, Kejia; Wu, Xing; Ge, Chunfeng

    2010-10-01

    The paper reports results obtained from a field test site in structural monitoring-a "test-to-failure," measuring strain using Fiber Bragg gratings (FBGs) sensor networks on a novel drilled concrete test pier in Huaihe river zone,Anhui province,China. To undertake the study, FBG-based sensors were chosen ,metallic recoated ,steel-tube packaged , and incorporated with steel rebars in this concrete structure. The sensors were interrogated using a compact system based on wavelength-division multiplexing (WDM) and F-P scanning approach. Throughout the test, the FBG sensors were continuously monitored, the incremental increases in the strain caused by boundary shear stress could be seen. The sensors were able to follow the resulting induced changes in load of over a range in excess of 2.5M Newton just prior to failure of the pier and representing extreme levels of strain for such a novel mechanical structure. The measurements made with the FBG-based system were found to be in agreement with the changes expected in the structure, produced by the self-balanced loading applied. The study has demonstrated the successful use of FBG sensor networks used in a test of this root type pier foundation, consequently made assessment about the health and security of the highway bridge.

  8. Connexin 43 is a potential regulator in fluid shear stress-induced signal transduction in osteocytes.

    Science.gov (United States)

    Li, Xiaoting; Liu, Chenglin; Li, Ping; Li, Shengnan; Zhao, Zhihe; Chen, Yangxi; Huo, Bo; Zhang, Ding

    2013-12-01

    Connexin 43 (Cx43), a gap junctional protein, regulates osteocyte viability, and modulates mechanical stimulation-induced bone remodeling. However, the underlying mechanisms of its action remain unclear. In the current study, osteocyte-like MLO-Y4 cells were exposed to fluid shear stress (FSS) of 16 (physiological) or 30 (high) dyne/cm(2) for the indicated time points. Cx43 gene (Gja1) was silenced using siRNA or the protein was blocked chemically. The signaling molecules related to osteocyte apoptosis, osteogenesis, or osteoclastogenesis were detected at mRNA or protein levels. The results showed that physiological FSS significantly upregulated Cx43, which further inhibited apoptosis pathways (e.g., caspase-3) and osteoclastogenesis signaling (e.g., RANKL), but activated osteogenesis signaling (Sost/sclerostin). Suppressing Cx43 gene (Gja1) by siRNA or chemically blocking gap junction communication enhanced caspase-3, RANKL, and Sost/sclerostin, which could be restored with physiological FSS over 8 h. In addition, high FSS decreased Cx43 expression and adversely affected signaling molecules compared with physiological FSS. The findings indicate the involvement of Cx43 in mechanotransduction of FSS and in the modulation of mechanical loading-related apoptosis, osteogenesis, and osteoclastogenesis of osteocytes. This may provide a cellular and molecular basis for interpreting the biomechanical mechanism of bone absorption and remodeling. PMID:23878018

  9. Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation

    International Nuclear Information System (INIS)

    One of the main limiting factors in the development of new magnesium (Mg) alloys with enhanced mechanical behavior is the need to use vast experimental campaigns for microstructure and property screening. For example, the influence of new alloying additions on the critical resolved shear stresses (CRSSs) is currently evaluated by a combination of macroscopic single-crystal experiments and crystal plasticity finite-element simulations (CPFEM). This time-consuming process could be considerably simplified by the introduction of high-throughput techniques for efficient property testing. The aim of this paper is to propose a new and fast, methodology for the estimation of the CRSSs of hexagonal close-packed metals which, moreover, requires small amounts of material. The proposed method, which combines instrumented nanoindentation and CPFEM modeling, determines CRSS values by comparison of the variation of hardness (H) for different grain orientations with the outcome of CPFEM. This novel approach has been validated in a rolled and annealed pure Mg sheet, whose H variation with grain orientation has been successfully predicted using a set of CRSSs taken from recent crystal plasticity simulations of single-crystal experiments. Moreover, the proposed methodology has been utilized to infer the effect of the alloying elements of an MN11 (Mg–1% Mn–1% Nd) alloy. The results support the hypothesis that selected rare earth intermetallic precipitates help to bring the CRSS values of basal and non-basal slip systems closer together, thus contributing to the reduced plastic anisotropy observed in these alloys

  10. Quantification of disturbed wall shear stress patterns in complex cardiovascular flows

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn C.

    2014-11-01

    Wall shear stress (WSS) affects the cardiovascular system in numerous ways, and is thought to play an important role in the pathology of many cardiovascular diseases. The (endothelial) cells lining the inner wall of blood vessels, and perhaps the cells inside the vessel wall, can actively sense WSS and respond both chemically and mechanically. The complexity of WSS in cardiovascular flows extends both spatially and temporally. Furthermore, WSS has magnitude and direction. These facets make simple quantification of WSS in cardiovascular applications difficult. In this study we propose a framework to quantify measures such as WSS angle gradient, WSS magnitude gradient, WSS angle time derivative and WSS magnitude time derivative. We will explain the relation of these parameters to the tensorial WSS gradient and WSS vector time derivative, and propose a new methodology to unify these concepts into a single measure. The correlation between these metrics and more common WSS metrics used in the literature will be demonstrated. For demonstration, these methods will be used for the quantification of complex blood flow inside abdominal aortic aneurysms.

  11. Development of Bragg Gratings as Shear Stress Monitors in Aerodynamic >Facilities

    Science.gov (United States)

    Parmar, Devandra S.

    1998-04-01

    Two Bragg gratings centered at 1289.565 nm and 1299.432 nm were co-written in the core of a 9/125 telecommunications fiber doped with 10 weight percent germanium. The fiber was mounted in a 126 deep groove, with a 127 diameter semicircular bottom, etched in a flat metal plate used as the test model. A 1 thick epoxy layer bonded the fiber to the metal plate. A thermocouple was also attached to the metal plate in the vicinity of the Bragg fiber. The metal plate was next mounted in the test section of a subsonic wind tunnel. A skin friction balance was also mounted on the wall of the test section. As the wind speed in the tunnel was increased from 0 to 90 m/sec, reflected Bragg wavelengths and the fiber temperatures were recorded continuously. At a windspeed of 38.89 m/sec, the tunnel flow experienced a fan-induced turbulence registered by the skin friction balance as well as the Bragg signals. This commonality of the turbulence signal registration provided a unique calibration datum for the modulus of rigidity of the Bragg fiber assembly. This value of h has been used to calculate the values of shear stress at various tunnel speeds on the basis of Bragg wavelength changes at those speeds.

  12. Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Science.gov (United States)

    Lobo, Daniela P.; Wemyss, Alan M.; Smith, David J.; Straube, Anne; Betteridge, Kai B.; Salmon, Andrew H. J.; Foster, Rebecca R.; Elhegni, Hesham E.; Satchell, Simon C.; Little, Haydn A.; Pacheco-Gómez, Raúl; Simmons, Mark J.; Hicks, Matthew R.; Bates, David O.; Dafforn, Timothy R.; Arkill, Kenton P.

    2016-01-01

    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature’s primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics.

  13. Plasma functionalization of polycarbonaturethane to improve endothelialization--Effect of shear stress as a critical factor for biocompatibility control.

    Science.gov (United States)

    Lukas, Karin; Thomas, Ulrich; Gessner, André; Wehner, Daniel; Schmid, Thomas; Schmid, Christof; Lehle, Karla

    2016-04-01

    Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts. PMID:26762398

  14. Investigation of hydride powder bed swelling and shrinking during hydrogen absorption/desorption cycles under different compressive stresses

    International Nuclear Information System (INIS)

    Highlights: ► Decrepitation creates hydride bed densification while cycling under hydrogen. ► Axial compressive stress decreases the ability of a hydride bed to change its volume. ► Internal friction increases along with cycles. ► Friction of the hydride with the side walls increases the powder density. -- Abstract: The solid storage through hydrides allows good compactness and safety due to low pressure. Intermetallic hydride materials have a significant volume increase and decrease (10–35%) upon absorption/desorption respectively. The measurement of the mechanical behavior of these materials is of major interest for the design of H2 storage tanks. In the present work, Ti–V–Cr hydride powder beds underwent hydrogen absorption/desorption cycles in a cylindrical instrumented cell with a mobile upper piston. Different compressive stresses have been applied by the piston and a spring on the powder bed. The variations of samples volume were measured upon cycling and analyzed while considering the mechanical behavior of this granular medium. In particular, part of the volume change is balanced by the variation of the intergranular porosity of the granular media. Changing upper stress reveals the combined importance of the powder sample friction on the cell side walls, and of internal friction strongly influenced by the grains interlocking in the cyclic powder densification process observed

  15. Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow

    CERN Document Server

    Kidanemariam, Aman G

    2014-01-01

    A numerical method based upon the immersed boundary technique for the fluid-solid coupling and on a soft-sphere approach for solid-solid contact is used to perform direct numerical simulation of the flow-induced motion of a thick bed of spherical particles in a horizontal plane channel. The collision model features a normal force component with a spring and a damper, as well as a damping tangential component, limited by a Coulomb friction law. The standard test case of a single particle colliding perpendicularly with a horizontal wall in a viscous fluid is simulated over a broad range of Stokes numbers, yielding values of the effective restitution coefficient in close agreement with experimental data. The case of bedload particle transport by laminar channel flow is simulated for 24 different parameter values covering a broad range of the Shields number. Comparison of the present results with reference data from the experiment of Aussillous et al. (J. Fluid Mech. 2013) yields excellent agreement. It is confir...

  16. Effects of PVA and PEG on pH Dependent Shear Yield Stress of Concentrated Alumina Suspensions

    Institute of Scientific and Technical Information of China (English)

    ZHENGRenjie; B.RAND

    2002-01-01

    The pH dependence of the extrapolated shear yield stress for Alcoa A16 α-Al2O3 suspensions at the powder volume fraction of 0.27 with and without addition of both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) each at fixed 0.18% of the powder mass was studied. Whith the polymer added, the full deflocculation of the suspension shifts from about pH=4 to around pH=1.5, at which the minimum value of shear yied stress is higher than that at pH=4. The addition of both PVA and PEG was found to prevent the filter cake from cracking.

  17. Mechanisms for three kinds of limiting shear stresses appearing in the traction modes of viscous, viscoelastic, and glassy states of lubricants

    Science.gov (United States)

    Kobayashi, H.; Fujita, Y.

    2014-06-01

    We present that the tractional flow of a lubricant shows three kinds of limiting shear stresses at which the shear stresses take place independently of the shear rates in its viscous, viscoelastic, and glassy states. We propose three models on the mechanisms for the limiting shear stresses, based on the data of Brillouin spectra and viscosity of viscoelastic liquids previously reported by us and based on the data of the deformation of glassy polymers referred from others. The Brillouin spectra of a viscoelastic lubricant measured at up to 5 GPa at 25 and 80 °C show that we could not observe a frequency dispersion in sound waves below 0.8 GPa at 80 °C, while we can observe the frequency dispersion above 0.1 MPa at 25 °C owing to the viscosity of the lubricant. This result predicts the viscous limiting shear stress in the viscous state owing to the disappearance of meso-structures by heating and shearing under pressure. The viscosity of a polymer measured around the glass transition temperature (Tg) shows that Tg determined by the viscosity measurement is 27 K lower than that determined by calorimetry. This result predicts the elastic limiting shear stress in the viscoelastic state near the glass transition pressure (Pg) owing to the shear thinning effect by shearing a lubricant film. In addition, there is the plastic limiting shear stress in the glassy state owing to the yield stress at which the tractional flow of a glassy lubricant behaves as a plastic solid.

  18. A New Modified Conductivity Model for Prediction of Shear Yield Stress of Electrorheological Fluids Based on Face-center Square Structure

    Institute of Scientific and Technical Information of China (English)

    TAN Zhu-hua; ZHANG Qing-jie; LIU Li-sheng; ZHAI Peng-cheng

    2004-01-01

    A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structure of ERF. Combining the scheme of the classical conductivity model for the single-chain structure, a new formula for the prediction of the shear yield stress of ERF was set up. The influences of the separation distance of the particles, the volume fraction of the particles and the applied electric field on the shear yield stress were investigated.

  19. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse

    OpenAIRE

    Choon Hwai Yap; Xiaoqin Liu; Kerem Pekkan

    2014-01-01

    Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...

  20. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model

    OpenAIRE

    Nordgaard, Havard; Swillens, Abigaïl; Nordhaug, Dag; Kirkeby-Garstad, Idar; Van Loo, Denis; Vitale, Nicola; Segers, Patrick; Haverstaad, Rune; Lovstakken, Lasse

    2010-01-01

    Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. Using computational fluid dynamics, WSS was calculated in ...

  1. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenetal mouse

    OpenAIRE

    Pekkan, Kerem; Yap, C.H.; Liu, X.

    2014-01-01

    Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...

  2. Stress singularity analysis of anisotropic multi-material wedges under antiplane shear deformation using the symplectic approach

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Symplectic approach has emerged a popular tool in dealing with elasticity problems especially for those with stress singularities. However, anisotropic material problem under polar coordinate system is still a bottleneck. This paper presents a subfield method coupled with the symplectic approach to study the anisotropic material under antiplane shear deformation. Anisotropic material around wedge tip is considered to be consisted of many subfields with constant material properties which can be handled by th...

  3. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    Science.gov (United States)

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-01-01

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices. PMID:27435456

  4. Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space

    Science.gov (United States)

    Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Ren, Jie; Behringer, R. P.; Chakraborty, Bulbul

    2016-04-01

    Solids are distinguished from fluids by their ability to resist shear. In equilibrium systems, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern that is persistent, which in turn results from minimizing the free energy. In this work, we focus on a class of systems where this paradigm is challenged. We show that shear-driven jamming in dry granular materials is a collective process controlled by the constraints of mechanical equilibrium. We argue that these constraints can lead to a persistent pattern in a dual space that encodes the statistics of contact forces and the topology of the contact network. The shear-jamming transition is marked by the appearance of this persistent pattern. We investigate the structure and behavior of patterns both in real space and the dual space as the system evolves through the rigidity transition for a range of packing fractions and in two different shear protocols. We show that, in the protocol that creates homogeneous jammed states without shear bands, measures of shear jamming do not depend on strain and packing fraction independently but obey a scaling form with a packing-fraction-dependent characteristic strain that goes to zero at the isotropic jamming point ϕJ. We demonstrate that it is possible to define a protocol-independent order parameter in this dual space, which provides a quantitative measure of the rigidity of shear-jammed states.

  5. Role of symmetry-breaking induced by Er × B shear flows on developing residual stresses and intrinsic rotation in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the Er × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k∥ symmetry breaking. These findings provide the first experimental evidence of the role of Er × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)

  6. Wall shear stress as a stimulus for carotid atherosclerotic plaque progression: An MRI-based CFD pilot study

    Science.gov (United States)

    Canton, Gador; Chiu, Bernard; Hatsukami, Tom; Kerwin, William; Yuan, Chun

    2010-11-01

    The aim of this study was to explore the hypothesis that intra-plaque hemorrhage, a feature associated with adverse outcomes and atherosclerotic plaque progression and destabilization, is more likely to occur in plaques with elevated levels of wall shear stress (WSS). We used multi-sequence in-vivo magnetic resonance imaging (MRI) to characterize ten human carotid atherosclerotic plaques and an MRI-based computational fluid dynamics (CFD) model to solve the equations governing the blood flow. Hemorrhage was detected within the necrotic core (intra-plaque hemorrhage) in five of these ten cases. WSS data were extracted from the results of the CFD simulations to compare patterns between the cases with and without hemorrhage. We computed the mean value of the WSS (for each time point of the cardiac cycle) at the region where a necrotic core was detected. The results from this pilot study indicate a possible link between the presence of hemorrhage within a lipid-rich necrotic core in human carotid atherosclerotic plaques and elevated levels of shear stress force acting on the luminal surface. Thus, elevated wall shear stress may be used as a high risk feature in advanced carotid atherosclerotic plaques.

  7. Revealing stiffening and brittling of chronic myelogenous leukemia hematopoietic primary cells through their temporal response to shear stress

    Science.gov (United States)

    Laperrousaz, B.; Berguiga, L.; Nicolini, F. E.; Martinez-Torres, C.; Arneodo, A.; Maguer Satta, V.; Argoul, F.

    2016-06-01

    Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.

  8. THE BEHAVIOR OF TWO COLLINEAR CRACKS IN MAGNETO-ELECTRO-ELASTIC COMPOSITES UNDER ANTI-PLANE SHEAR STRESS LOADING

    Institute of Scientific and Technical Information of China (English)

    Sun Yuguo; Zhou Zhengong

    2005-01-01

    In this paper, the behavior of two collinear cracks in magneto-electro-elastic composite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress field is independent of the electric field and the magnetic flux.

  9. Evolution of crustal stress, pressure and temperature around shear zones during orogenic wedge formation: a 2D thermo-mechanical numerical study

    Science.gov (United States)

    Markus Schmalholz, Stefan; Jaquet, Yoann

    2016-04-01

    We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and

  10. Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.

    Directory of Open Access Journals (Sweden)

    Yun Gyeong Kang

    Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby

  11. Transverse shear effects on the stress-intensity factor for a circumferentially cracked, specially orthotropic cylindrical shell

    Science.gov (United States)

    Delale, F.; Erdogan, F.

    1977-01-01

    The problem of a cylindrical shell containing a circumferential through crack is considered by taking into account the effect of transverse shear deformations. The formulation is given for a specially orthotropic material within the confines of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions regarding moment and stress resultants on the crack surface. Consequently, aside from multiplicative constants representing the stress intensity factors, the membrane and bending components of the asymptotic stress fields near the crack tip are found to be identical. The stress intensity factors are calculated separately for a cylinder under a uniform membrane load, and that under a uniform bending moment. Sample results showing the nature of the out-of-plane crack surface displacement and the effect of the Poisson's ratio are presented.

  12. Generation of sheared poloidal flows by electrostatic and magnetic Reynolds stress in the boundary plasma of HT-7 tokamak

    International Nuclear Information System (INIS)

    The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)

  13. GMEX_hIPR: The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  14. Median of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_median.SHP)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  15. GMEX_median: The median of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  16. GMEX_95th_perc: The 95th percentile of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  17. 95th percentile of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_95th_perc.SHP)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  18. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    Science.gov (United States)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  19. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  20. Quantifying Stream Bed Gravel Mobility from Friction Angle Measurements

    Science.gov (United States)

    Meyers, M. A.; Dunne, T.

    2012-12-01

    A method to measure friction angles using force gauges was field tested to determine its utility at quantifying critical shear stress in a gravel bedded reach of the San Joaquin River in California. Predictions of mobility from friction angles were compared with observations of the movement of tagged particles from locations for which local shear stress was quantified with a validated 2-D flow model. The observations of movement, distance of travel, and location of the end of travel were made after extended flow releases from Friant dam. Determining the critical shear stress for gravel bed material transport currently depends upon bedload sampling or tracer studies. Often, such measurements can only be made during occasional and untimely flow events, and at limited, suboptimal locations. Yet, theoretical studies conclude that the friction angle is an important control on the critical shear stress for mobility of any grain size, and therefore of the excess shear stress which strongly influences bedload transport rate. The ability to predict bed mobility at ungauged and unmonitored locations is also an important requirement for planning of flow regimes and channel design. Therefore, a method to measure friction angles that can be performed quickly in low flow conditions would prove useful for river management and research. To investigate this promising method friction angle surveys were performed at two riffle sites where differences in bed material size and distribution, and channel slope were observed. The friction angle surveys are sensitive enough to detect differences between the sites as well as spatially and temporally within a single riffle. Low friction angles were observed along the inside of a long bend where sand content was greater (by ~20%) than other surveyed locations. Friction angles decreased slightly after a depositional event associated with transient large woody debris and bank erosion, and increased again after a 5 year return interval flow

  1. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  2. Currents induced by vertical varied radiation stress in standing waves and evolution of the bed composed of fine sediments

    Institute of Scientific and Technical Information of China (English)

    Jing-Xin ZHANG; Hua LIU

    2009-01-01

    This paper extends the conventional concept of radiation stress (Longuet-Higgins and Stewart, 1964)in progressive water waves to standing waves, so that its vertical profile could be defined and calculated in a new technical way. The hydrodynamic numerical model being coupled with the vertically varying radiation stress in standing waves is used to simulate the currents being induced by standing waves in the vertical section. Numerical modeling of suspended sediment transport is then carried out to simulate the evolution of the bed composed of fine sediments by the currents. The scour and deposition patterns simulated are in qualitative agreement with prior laboratory and field observations.

  3. Interaction of slurry pipe flow with a stationary bed

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    2007-01-01

    Roč. 107, č. 6 (2007), s. 365-372. ISSN 0038-223X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : sheet flow * particle dispersion * suspension * concentration profile * bed shear stress Subject RIV: BK - Fluid Dynamics Impact factor: 0.108, year: 2007

  4. The Lineage Specification of Mesenchymal Stem Cells Is Directed by the Rate of Fluid Shear Stress.

    Science.gov (United States)

    Lu, Juan; Fan, Yijuan; Gong, Xiaoyuan; Zhou, Xin; Yi, Caixia; Zhang, Yinxing; Pan, Jun

    2016-08-01

    The effective regulation of fluid shear stress (FSS) on the lineage specification of mesenchymal stem cells (MSCs) remains to be addressed. We hypothesized that when MSCs are recruited to musculoskeletal system following stimulation, their differentiation into osteogenic or chondrogenic cells is directed by the rate of FSS (ΔSS) through modulation of the mechanosensitive, cation-selective channels (MSCCs), intracellular calcium levels, and F-actin. To this end, MSCs were exposed to laminar FSS linearly increased from 0 to 10 dyn/cm(2) in 0, 2, or 20 min and maintained at 10 dyn/cm(2) for a total of 20 min (termed as ΔSS 0-0', 0-2', and 0-20', respectively, representing more physiological (0-0') and non-physiological (0-2' and 0-20') ΔSS treatments). Our results showed 0-0' facilitated MSC differentiation towards chondrogenic and not osteogenic phenotype, by promoting moderate intracellular calcium concentration ([Ca(2+) ]i ) increase from the calcium channels with the exception of MSCCs or intracellular calcium stores, and F-actin organization. In contrast, 0-2' promoted MSCs towards osteogenic and not chondrogenic phenotype, by inducing significant [Ca(2+) ]i increase mainly from the MSCCs, and F-actin assembly. However, 0-20' elicited the modest osteogenic and chondrogenic phenotypes, as it induced the lowest [Ca(2+) ]i increase mainly from MSCCs, and F-actin assembly. Our results suggest that compared to the more physiological ΔSS, the non-physiological ΔSS favors [Ca(2+) ]i influx from MSCCs. An appropriate non-physiological ΔSS (0-2') even elicits a large [Ca(2+) ]i influx from the MSCCs that reverses the lineage specification of MSCs, providing validation for the high mechanosensitivity of MSCs and guidance for training osteoporosis and osteoarthritis patients. J. Cell. Physiol. 231: 1752-1760, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636289

  5. Non-constrictive bead immobilization leading to decreased and uniform shear stress in microfluidic bead-based ELISA

    CERN Document Server

    Mitra, Kinshuk; Chidambaram, Preethi; Maharry, Aaron P; Xu, Ronald X; Tweedle, Michael F

    2014-01-01

    Microfluidic biosensors have been utilized for sensing a wide range of antigens using numerous configurations. Bead based microfluidic sensors have been a popular modality due to the plug and play nature of analyte choice and the favorable geometry of spherical sensor scaffolds. While constriction of beads against fluid flow remains a popular method to immobilize the sensor, it results in poor fluidic regimes and shear conditions around sensor beads that can affect sensor performance. We present an alternative means of sensor bead immobilization using poly-carbonate membrane. This system results in several orders of magnitude lower variance of flow radially around the sensor bead. Shear stress experienced by our non-constrictive immobilized bead was three orders of magnitude lower. We demonstrate ability to quantitatively sense EpCAM protein, a marker for cancer stem cells and operation under both far-red and green wavelengths with no auto-fluorescence.

  6. Changes of cytosolic [Ca2+]i in neutrophils in pancreatic microcirculation of rats with caerulein-induced acute pancreatitis under fluid shear stress

    Institute of Scientific and Technical Information of China (English)

    Zong-Guang Zhou; You-Qin Chen; Xu-Bao Liu; Wei-Ming Hu; Bo-Le Tian; Huai-Qing Chen

    2004-01-01

    AIM: To investigate the fluid shear stress induced changes of [Ca2+]i in neutrophils in pancreatic microcirculation of experimental acute pancreatitis (AP).METHODS: Wistar rats (n = 36) were randomized into three groups. A model of AP was established by subcutaneous injection of caerulein. Low-shear 30 viscometer was used to provide steady fluid shear stress on separated neutrophils.The mean fluorescent intensity tested by flow cytometry was used as the indication of [Ca2+]i quantity.RESULTS: Under steady shear, cytosolic [Ca2+]i showed biphasic changes. The shear rate changed from low to high,[Ca2+]i in different groups decreased slightly and then increased gradually to a high level (P<0.05). A close correlation was observed between the cytosolic [Ca2+]i level and the alteration of fluid shear stress in regional microcirculation of AP.CONCLUSION: The increase of [Ca2+]i is highly related to the activation of neutrophils, which contributes to neutrophil adhesion to endothelium in the early phase of AP. The effect of fluid shear stress on [Ca2+]i may play a crucial role in pancreatic microcirculatory failure of AP.

  7. Frequency- and stress-dependent changes in shear-wave velocity dispersion in water-saturated, unconsolidated sand

    Science.gov (United States)

    Ghose, R.

    2009-04-01

    Anelastic processes in the earth causes dissipation of seismic energy. Because of the fundamental laws of causality, the dissipation effects demand a frequency-dependent change of elastic moduli, and therefore, dispersion in elastic wave velocities. Assessing the dispersion of seismic shear waves in the unconsolidated subsoil is important for at least 3 reasons: 1) shear-wave velocity (Vs) is a key parameter in all dynamic loading problems; the frequency of the observed shear waves in field, downhole and laboratory measurements varies widely (20 Hz - 10 kHz), and consequently an uncertainty resulting from an unknown or poorly known estimate of dispersion may translate into erroneous evaluation and potential risks, 2) generally Vs-dispersion is considered negligible for the frequency range of practical interest; it is important to check this assumption and modify the site evaluation results, if necessary, and 3) the underlying soil-physics of any observed dispersion can be useful in estimating an unknown soil physical parameter. In the present research, we have concentrated on Vs dispersion in saturated sand in laboratory, under varying vertical and horizontal stress levels that are realistic in the context of shallow subsoil investigations. We explored theoretical models to obtain insight from our experimental findings. Laboratory experiments involving array seismic measurements and accurate stress control present clear evidence of dispersive shear-wave velocity in saturated sand in the frequency range 2-16 kHz. The change of Vs as a function of frequency is clearly nonlinear. For low frequencies, as observed in the field data, our result indicates significant dispersion and, therefore, nonlinear variation of attenuation. This has important implication on site evaluation using Vs. Significantly, the data allows us to distinguish a frequency-dependence of the velocity dispersion. The relative importance of fluid motion relative to the skeleton frame (Biot theory

  8. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical "yield" value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In the Appendix, we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations. © 2012 American Institute of Physics.

  9. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    Science.gov (United States)

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-01-01

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput. PMID:27584698

  10. Travelling-Wave Similarity Solutions for an Unsteady Shear-Stress-Driven Dry Patch in a Flowing Film

    International Nuclear Information System (INIS)

    We investigate unsteady flow of a thin film of Newtonian fluid around a symmetric slender dry patch moving with constant velocity on an inclined planar substrate, the flow being driven by a prescribed constant shear stress at the free surface of the film (which would be of uniform thickness in the absence of the dry patch). We obtain a novel unsteady travelling-wave similarity solution which predicts that the dry patch has a parabolic shape and that the film thickness increases monotonically away from the dry patch. (author)

  11. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  12. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    Science.gov (United States)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  13. INFLUENCE OF REINFORCEMENT ANISOTROPY ON THE STRESS DISTRIBUTION IN TENSION AND SHEAR OF A FUSION MAGNET INSULATION SYSTEM

    International Nuclear Information System (INIS)

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1x1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes

  14. Use of shear-stress-sensitive, temperature-insensitive liquid crystals for hypersonic boundary-layer transition detection

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Croll, R.H.; Kuntz, D.W.

    1997-04-01

    The use of shear-stress-sensitive, temperature-insensitive (SSS/TI) liquid crystals (LCs) has been evaluated as a boundary-layer transition detection technique for hypersonic flows. Experiments were conducted at Mach 8 in the Sandia National Laboratories Hypersonic Wind Tunnel using a flat plate model at near zero-degree angle of attack over the freestream unit Reynolds number range 1.2-5.8x10{sup 6}/ft. Standard 35mm color photography and Super VHS color video were used to record LC color changes due to varying surface shear stress during the transition process for a range of commercial SSS liquid crystals. Visual transition data were compared to an established method using calorimetric surface heat-transfer measurements to evaluate the LC technique. It is concluded that the use of SSS/TI LCs can be an inexpensive, safe, and easy to use boundary-layer transition detection method for hypersonic flows. However, a valid interpretation of the visual records requires careful attention to illumination intensity levels and uniformity, lighting and viewing angles, some prior understanding of the general character of the flow, and the selection of the appropriate liquid crystal for the particular flow conditions.

  15. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.

    Science.gov (United States)

    Soulis, Johannes V; Giannoglou, George D; Chatzizisis, Yiannis S; Seralidou, Kypriani V; Parcharidis, George E; Louridas, George E

    2008-01-01

    The capabilities and limitations of various molecular viscosity models, in the left coronary arterial tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, wall shear stress (WSS) and wall shear stress gradient (WSSG). The vessel geometry was acquired using geometrically correct 3D intravascular ultrasound (3D IVUS). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. The WSS distribution yielded a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS and low WSSG values occurred at the outer walls of the major bifurcation in proximal LCA regions. The Newtonian blood flow was found to be a good approximation at mid- and high-strain rates. The non-Newtonian Power Law, Generalized Power Law, Carreau and Casson and Modified Cross blood viscosity models gave comparable molecular viscosity, WSS and WSSG values. The Power Law and Walburn-Schneck models over-estimated the non-Newtonian global importance factor I(G) and under-estimated the area averaged WSS and WSSG values. The non-Newtonian Power Law and the Generalized Power Law blood viscosity models were found to approximate the molecular viscosity and WSS calculations in a more satisfactory way. PMID:17412633

  16. Natural vibration of pre-twisted shear deformable beam systems subject to multiple kinds of initial stresses

    Science.gov (United States)

    Leung, A. Y. T.; Fan, J.

    2010-05-01

    Free vibration and buckling of pre-twisted beams exhibit interesting coupling phenomena between compression, moments and torque and have been the subject of extensive research due to their importance as models of wind turbines and helicopter rotor blades. The paper investigates the influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The derivation begins with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry are employed to treat the pre-twist. The strain energy due to elasticity and the linear kinetic energy are obtained in classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are derived. It is noted that the first mode increases together with the pre-twisted angle but the second decreases seeming to close the first two modes together for natural frequencies and compressions. The gaps close monotonically as the angle of twist increases for natural frequencies and buckling compressions. However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling shears, moments and torques.

  17. Microfluidic device to study cell transmigration under physiological shear stress conditions

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Kiilerich-Pedersen, Katrine; Moresco, Jacob Lange;

    2011-01-01

    the membrane under flow conditions. The 3D environment of migrating cells is imitated by injecting cell adhesion proteins to coat the membrane in the device. We tested the developed device with Jurkat cells migration towards medium supplemented with serum, and with chemokine induced lymphocytes...... natural migration process. Here we describe a novel in vitro cell transmigration microfluidic assay, which mimicks physiological shear flow conditions in blood vessels. The device was designed to incorporate the principles of both the Boyden chamber and the shear flow chamber assay, i.e. migration through...... migration. The applied continuous flow of cell suspension and chemoattractant ensures that the concentration gradient is maintained in time and space. The cell adhesion proteins used to enhance cell migration in the device were fibronectin and VCAM-1. We successfully observed a multistep transmigration...

  18. Transverse shear and normal stresses in the nonlinear analysis of reinforced shells

    OpenAIRE

    Santisi D'Avila, Maria Paola; Schulz, Mauro

    2012-01-01

    This research investigates the simultaneous effect of in-plane and transverse loads in reinforced concrete shells. The infinitesimal shell element is divided into layers with triaxial behavior that are analyzed according to the smeared rotating crack approach. The transverse shear strength of shell elements is associated to an "equivalent" surface, which takes into account the nonlinear material behavior, using traditionally accepted hypotheses for shells. The set of internal forces includes ...

  19. Assessment of Immune Status, Latent Viral Reactivation and Stress during Long Duration Bed Rest as an Analog for Spaceflight

    Science.gov (United States)

    Crucian, Brian E.; Stowe, Raymond P.; Mehta, Satish K.; Yetman, Deborah L.; Leaf, Melanie J.; Pierson, Duane L.; Sams, Clarence F.

    2007-01-01

    As logistical access for in-flight space research becomes more limited, the use of ground based spaceflight analogs for life science studies will increase. These studies are particularly important as NASA progresses towards the Lunar and eventually Mars missions outlined in the 2005 Vision for Space Exploration. Countermeasures must be developed to mitigate the clinical risks associated with exploration class space missions. In an effort to coordinate studies across multiple disciplines, NASA has selected 90-day bed rest as the analog of choice, and initiated the Flight Analogs Project to implement research studies with or without the evaluation of countermeasures. Although bed rest is not the analog of choice to evaluate spaceflight-associated immune dysfunction, a standard Immune Assessment was developed for subjects participating in the 90-day bed best studies. The Immune Assessment consists of: leukocyte subset distribution, T cell functional responses, intracellular cytokine production profiles, latent viral reactivation, virus specific T cell levels, virus specific T cell function, stress hormone levels and a behavioral assessment using stress questionnaires. The purpose of the assessment during the initial studies (without countermeasure) is to establish control data against which future studies (with countermeasure) will be evaluated. It is believed that some of the countermeasures planned to be evaluated in future studies, such as exercise, pharmacologic intervention or nutritional supplementation, have the ability to impact immune function. Therefore immunity will likely be monitored during those studies. The data generated during the first three control studies showed that the subjects in general did not display altered peripheral leukocyte subsets, constitutive immune activation, significant latent viral reactivation (EBV, VZV) or altered T cell function. Interestingly, for some subjects the level of constitutively activated T cells (CD8+/CD69+) and

  20. Stress in a dilute suspension of spheres in a dilute polymer solution subject to simple shear flow at finite Deborah numbers

    Science.gov (United States)

    Koch, Donald L.; Lee, Eric F.; Mustafa, Ibrahim

    2016-05-01

    The influence of particle-polymer interactions on the ensemble average stress is derived as a function of the Deborah number for a dilute suspension of spheres in an Oldroyd-B fluid in the limit of small polymer concentrations. The slow rate of decay of the particle-induced polymer stress with separation from a particle presents a challenge to the derivation of the average stress, which can be overcome by removing the linearized polymer stress disturbance before computing the bulk average stress from the particle-induced disturbance. The linearized stress can be shown to have zero ensemble average. The polymer influence on the particle's stresslet is computed with the aid of a generalized reciprocal theorem based on a regular perturbation from Newtonian flow for small polymer concentration. The analysis shows that the particle-polymer contributions to the shear stress and first normal stress difference shear thicken as has been observed in the experiments of Scirocco et al. [Shear thickening in filled Boger fluids, J. Rheol. 49, 551 (2005), 10.1122/1.1849185]. The particle-polymer contribution to the second normal stress difference is positive at small Deborah numbers but changes sign at a Deborah number of about 2.3.

  1. Serotonin, cortisol, and stress-related psychopathology: from bench to bed

    OpenAIRE

    Tanke, Marit Aline Christine

    2009-01-01

    Stress has been implicated in the etiology of many psychiatric disorders, the most common stress-related disorder being major depressive disorder. However, stressful events do not automatically lead to psychopathology, important is the interaction between the stressor and someone’s vulnerability to stress and psychiatric disorders. This vulnerability is individual and likely to be determined by genetic, psychosocial, and biological factors. Two biological systems that have been related to the...

  2. Serotonin, cortisol, and stress-related psychopathology : from bench to bed

    NARCIS (Netherlands)

    Tanke, Marit Aline Christine

    2009-01-01

    Stress has been implicated in the etiology of many psychiatric disorders, the most common stress-related disorder being major depressive disorder. However, stressful events do not automatically lead to psychopathology, important is the interaction between the stressor and someone’s vulnerability to

  3. Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems

    OpenAIRE

    Ratkovich, Nicolas Rios; Nopens, Ingmar

    2012-01-01

    The main drawback of Membrane Bioreactors (MBRs) is the fouling of the membrane. One way to reduce this fouling is through controlling the hydrodynamics of the two-phase slug flow near the membrane surface. It has been proven in literature that the slug flow pattern has a higher scouring effect to remove particulates due to the high shear rates and high mass transfer between the membrane surface and the bulk region. However, to calculate the mass transfer coefficient in an efficient and accur...

  4. In situ transmission electron microscopy observation of dislocation motion in 9Cr steel at elevated temperatures: influence of shear stress on dislocation behavior.

    Science.gov (United States)

    Yamada, Susumu; Sakai, Takayuki

    2014-12-01

    To elucidate high-temperature plastic deformation (creep) mechanism in materials, it is essential to observe dislocation motion under tensile loading. There are many reports on in situ transmission electron microscopy (TEM) observations in the literature; however, the relationship between the dislocation motion and shear stress in 9Cr steel is still not clear. In this study, in order to evaluate this relationship quantitatively, in situ TEM observations were carried out in conjunction with finite element method (FEM) analysis. A tensile test sample was strained at an elevated temperature (903 K) inside a transmission electron microscope, and the stress distribution in the strained sample was analyzed by FEM. The dislocation behavior was clearly found to depend on the shear stress. At a shear stress of 66 MPa, both the dislocation velocity and mobile dislocation density were low. However, a high shear stress level of 95 MPa caused a noticeable increase in the dislocation velocity and mobile dislocation density. Furthermore, in this article, we discuss the dependence of the dislocation behavior on stress. The results presented here also indicate that the relationship between the microstructure and the strength of materials can be revealed by the methods used in this work. PMID:25298228

  5. Study on the one-dimensional flow characteristics of the counter-current flow in debris beds

    International Nuclear Information System (INIS)

    The debris bed must be cooled to avoid further degradation of the core since the degraded core still releases decay heat. Even if the degraded core is in water, it cannot be assumed that the coolability of the degraded core would be maintained, since the degraded core may be melted again if dryout occurs. It is thus necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. Dryout phenomena in the debris bed is dominated by two-phase flow behavior in the debris bed. Especially, it is indicated that dryout phenomena in debris bed is strongly affected by counter-current flow limitation (CCFL) in the debris bed. Therefore, it is important to know the CCFL characteristics in the debris bed. If one hope to analyze counter-current flow in the debris bed by using the same method as usual two-fluid model, it is necessary to know the interfacial and wall friction factors. However, it is not clear that the correlations for interfacial and wall friction factor for a pipe can be used for counter-current flow in the debris bed. In order to determine the interfacial and wall friction factors, it is necessary to obtain wall and interfacial shear stresses. The wall and interfacial shear stresses are depend on the void fraction and differential pressure. At present, there is no available data for local void fraction and local pressure distribution in the debris bed at CCFL since it is very difficult to measure the flow characteristics in the complex geometry such as the debris bed. In the present study, local void fraction and local pressure distributions are measured simultaneously as well as the flow rates for gas and liquid. From the measurement data, the wall and interfacial shear stress are estimated. Finally the wall and interfacial shear stress are determined from the experimental data. (J.P.N.)

  6. Effects of potassium channel on shear stress - induced signal transduction in vascular endothelial cells%K离子通道在剪切力诱导血管内皮细胞信号转导中的作用

    Institute of Scientific and Technical Information of China (English)

    胡金麟

    1999-01-01

    Fluid shear stress play an important role in many physiological and pathophysiological processes of cardiovascular system. Shear stress - induced signal transduction throughout the vascular endothelial cell includes ion channels,G- protein linked receptors, tyrosine kinase receptors and integrins. The one impossible pathway of shear stress - induced signal transduction was biochemical reaction through second messenger, activating protein kinases and cytosolic transcription factors, and then regulating gene transcription . The other pathway was cytoskeletal system. This article reviewed the cellular and molecular mechanism of potassium channel signal transduction resulting from shear stress.

  7. Optimizing Shear Stresses at the Tip of a Hydraulic Fracture - What Is the Ideal Orientation of Natural Fractures with respect to Hydraulic Fracture?

    Science.gov (United States)

    Sheibani, F.; Hager, B. H.

    2015-12-01

    While many shale and unconventional plays are naturally fractured (or contain planes of weakness), these are often cemented and effectively impermeable to flow. Stress shadow behind the tip of a hydraulic fracture stablizes natural fractures. It essentially means that if impermeable natural fractures and weakness planes are not opened when the hydraulic fracture tip passes, they will remain closed and impermeable to flow. In this work a detailed and comprehensive evaluation of tip shear stresses and associated natural fracture or weakness plane shear is presented. From analytical work, the theoretical shear stresses from a fracture tip are first presented. The effect of fracture length, in-situ pore pressure, maximum horizontal remote stress, net pressure, natural fracture friction coefficient and the direction of natural fracture with respect to the hydraulic fracture on shear stimulation at the tip are calculated using the plane strain analytical solution of a 2-D fracture, and assuming simple linear coulomb friction law. Since slippage along natural fractures will locally violate the assumptions used in the analytical solutions and to incorporate the effect of weakness planes on stress-strain and displacement field, 2-D and 3-D finite element model (FEM) simulations are presented that build upon both the analytical and continuum solutions. FEM models are capable of numerically simulating the slippage through weakness planes by using contact elements. This advantage makes FEM tools very appropriate for synthetically generating microseismicity, which can then be evaluated for mode, focal mechanism, and magnitude. The results of the simulations highlight the critical parameters involved in shearing and opening cemented natural fractures in unconventionals - which is a critical component of stimulation and production optimization for these plays. According to the results, the ideal orientation of natural fractures with respect to hydraulic fracture from shear

  8. Frequency response analysis of guard-heated hot-film wall shear stress sensors for turbulent flows

    International Nuclear Information System (INIS)

    Highlights: • Wall shear stress fluctuations in turbulent flow are difficult to measure accurately. • New design of thermal sensor with guard-heating proposed to remove large errors. • Analysis: large dynamic errors of standard thermal sensors in air can be eliminated. • Accurate thermal anemometry, with its many advantages, enabled by this new design. - Abstract: Guard-heated thermal sensors were recently proposed for the measurement of wall shear stress (or “skin friction”) fluctuations in turbulent flow, to overcome the severe errors due to substrate heat conduction encountered in conventional single-element (SE) hot-film sensors. An earlier computational study of steady-state performance showed that a sensor with guard-heating in two-planes (GH2P) can eliminate errors due to spatial averaging and axial heat conduction in the fluid, both of which limit the spatial resolution of conventional SE sensors. Here we present analytical and numerical results comparing the dynamic behavior – frequency response and phase lag – of the guard-heated and conventional designs. For the water–glass fluid-substrate combination, sensor amplitude and phase errors begin only at a frequency (fc) near the onset of attenuation due to boundary layer thermal inertia. In this case, although the SE sensor suffers spatial averaging errors, it shows low amplitude attenuation and phase lag, close to that of the GH2P sensors, up to fc. For air-glass, analysis suggests and numerical results confirm, that the response of the conventional SE sensor is dominated by unwanted substrate heat transfer, with rapid signal attenuation beginning at frequencies that are five orders of magnitude smaller than fc. In this case, guard-heating enables strong improvement in the dynamic response, with a small drop in the amplitude response ratio from 0.95 to 0.85 (compared to 0.95 to 0.06 for the SE sensor) and negligible phase lag errors over an additional five decades of frequency. For the

  9. A flow adhesion assay to study leucocyte recruitment to human hepatic sinusoidal endothelium under conditions of shear stress.

    Science.gov (United States)

    Shetty, Shishir; Weston, Christopher J; Adams, David H; Lalor, Patricia F

    2014-01-01

    Leucocyte infiltration into human liver tissue is a common process in all adult inflammatory liver diseases. Chronic infiltration can drive the development of fibrosis and progression to cirrhosis. Understanding the molecular mechanisms that mediate leucocyte recruitment to the liver could identify important therapeutic targets for liver disease. The key interaction during leucocyte recruitment is that of inflammatory cells with endothelium under conditions of shear stress. Recruitment to the liver occurs within the low shear channels of the hepatic sinusoids which are lined by hepatic sinusoidal endothelial cells (HSEC). The conditions within the hepatic sinusoids can be recapitulated by perfusing leucocytes through channels lined by human HSEC monolayers at specific flow rates. In these conditions leucocytes undergo a brief tethering step followed by activation and firm adhesion, followed by a crawling step and subsequent transmigration across the endothelial layer. Using phase contrast microscopy, each step of this 'adhesion cascade' can be visualized and recorded followed by offline analysis. Endothelial cells or leucocytes can be pretreated with inhibitors to determine the role of specific molecules during this process. PMID:24686418

  10. Choice of blood rheology model has minor impact on computational assessment of shear stress mediated vascular risk

    CERN Document Server

    Bernabeu, Miguel O; Groen, Derek; Carver, Hywel B; Hetherington, James; Krüger, Timm; Coveney, Peter V

    2012-01-01

    Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies including intracranial aneurysms and atherosclerosis. Recent computational work suggests that in order to correctly characterise such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In the current work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that the differences between the wall shear stress predicted by a Newtonian model and the well known Carreau-Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94 Pa to 1.56 Pa, where the results of the T...

  11. Temperature-Dependent Fatigue Strength of Diamond Coating-Substrate Interface Quantified via the Shear Failure Stress

    Science.gov (United States)

    Skordaris, G.

    2015-09-01

    A dynamic 3D-finite element method (FEM) thermomechanical model is employed for quantifying the temperature-dependent fatigue strength of nanocrystalline diamond (NCD) coating-substrate interface. This model simulates dynamically the inclined impact test on NCD-coated cemented carbide inserts considering the temperature-dependent residual stresses in the NCD coating structure. A fatigue damage of the NCD coating-substrate interface develops after a certain number of repetitive impacts depending on the applied impact load and temperature. After the interface fatigue failure, the high compressive residual stresses of the NCD coating structure are released, and the detached coating hikes up at a certain maximum height (bulge formation). The critical impact forces for avoiding the fatigue failure of the NCD coating-substrate interface, and the subsequent film detachment after 106 impacts at various temperatures were determined by conducting inclined impact tests up to 400 °C. Considering the critical impact forces, using the mentioned FEM model, the related shear failure stresses in the NCD coating-substrate interface at various temperatures were predicted.

  12. Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Mascotte-Cruz, Juan Uriel; Ríos, Amelia; Escalante, Bruno

    2016-01-01

    Differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into neural phenotype has been induced by either flow-induced shear stress (FSS) or electromagnetic fields (EMF). However, procedures are still expensive and time consuming. In the present work, induction for 1 h with the combination of both forces showed the presence of the neural precursor nestin as early as 9 h in culture after treatment and this result lasted for the following 6 d. In conclusion, the use of a combination of FSS and EMF for a short-time renders in neurite-like cells, although further investigation is required to analyze cell functionality. PMID:26325339

  13. Torsional nodeless vibrations of quaking neutron star restored by combined forces of shear elastic and magnetic field stresses

    CERN Document Server

    Bastrukov, S I; Chang, H -K; Molodtsova, I V; Podgainy, D V

    2008-01-01

    Within the framework of Newtonian magneto-solid-mechanics, relied on equations appropriate for a perfectly conducting elastic continuous medium threaded by a uniform magnetic field, an asteroseismic model of a neutron star undergoing global differentially rotational, torsional, nodeless vibrations under the combined action of Hooke's elastic and Lorentz magnetic forces is considered with emphasis on toroidal Alfven mode. The obtained spectral equation for frequency is applied to l-pole identification of quasi-periodic oscillations (QPOs) of X-ray flux during flare of SGR 1806-20 and SGR 1900+14. Our calculations suggest that detected QPOs can be consistently interpreted as produced by global torsional nodeless vibrations of quaking magnetar if they are considered to be restored by joint action of bulk forces of shear elastic and magnetic field stresses.

  14. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    Science.gov (United States)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  15. Phosphorothioate oligonucleotide inhibits tissue factor expression in endothelial cells induced by blood flow shear stress in rats

    Institute of Scientific and Technical Information of China (English)

    Li Qianning; Yang Yimin; Ying Dajun; Cheng Rongchuan; Gong Zili; Liu Yong; Zhou Zhujuan; Zheng Jian

    2008-01-01

    Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO),which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene promoter region, on the expression of endothelial TF in carotid artery stenosis rats. Methods: Rat model of severe carotid artery stenosis were inflicted by silica gel tube ligation. Half an hour before the model infliction, GT20-apsTFO, GT20-psTFO and GT21-apsTFO labeled with green fluorescence (FITC) were injected into the vena caudalis of rat at a dose of 0.5 mg/kg.Half an hour, 4 or 9 h after the ligation, the distribution of TFO in the common carotid artery, the liver and the kidney was detected with aid of fluorescence microscopy. And the mRNA and protein expressions of TF, Egr-1 and Spl in the above-mentioned organs were determined with in situ hybridization and immunohistoehemical assay respectively in 6 h after the model establishment, and the results were analyzed with an image analysis system. Results: Only in 1 h after TFO injection, fluorescent granules appeared in the liver, the kidney and the vascular wall and lumen of carotid artery,and then in 4.5 h, they still deposited in above sites except the vascular lumen. GT20-apsTFO and GT21-apsTFO significant down-regulated the mRNA and protein expressions of TF compared to the rats without treatment (P0.05).The 3 TFOs had no inhibition on the mRNA and protein expressions of Egr-I and Spl. Conclusion: Pretreated apsTFO can partly come into the vascular endothelial cells, and inhibit TF expression induced by shear stress, but had no effect on Egr-1 and Spl gene expressions.

  16. A kind of simple device controlling shear stress in direct shear creep experiment%一种控制直剪蠕变试验剪应力的简易装置

    Institute of Scientific and Technical Information of China (English)

    滕超; 王卫; 谢鲁钧; 王伟; 闫东洋

    2014-01-01

    土的蠕变是指土在保持应力不变的条件下,应变随时间延长而增加的现象。研究土的蠕变性质对于确定土的长期强度有重要意义,土的蠕变研究也是近几年的研究热点。然而,土的蠕变试验周期特别长,因此简便、易行又有一定可信度的蠕变试验仪器,对于土蠕变性质的研究有较大的推动意义。直剪蠕变试验是研究确定土的蠕变性质的一种最简单、最直观的试验方法。但由于该试验只是控制剪切力不变,剪切过程中,试样受剪面积逐渐减小,剪应力持续增大,整个过程并不是蠕变。通过在传统仪器上附加一个简单装置,利用液体的浮力来控制试验剪切力,从而使得试样在剪切过程中的剪应力不变。在对仪器进行相应改进后,做了对比试验,检验该装置对剪应力的控制效果,试验结果表明,该简易装置可在一定程度上控制剪应力。%Soil’s creep indicates a phenomenon that strain increases with time while keeping soil’s stress stable. Researching soil’s creep properties is very important for confirming soil’s long-term strength;and it is quite popular in recent years. However, a creep experiment costs a lot of time;therefore a simple, feasible and reliable device for soil’s creep properties will boost the research. The soil’s direct shear creep experiment is the simplest and the most intuitive way to research soil’s creep properties. But the experiment just keeps the shearing force stable, in the shearing process, the effective area reduces gradually and the shear stress increases continuously with the shear strain developing, this process is not a proper creep. By adding a simple device on the traditional experiment, the liquid’s buoyancy is used to control the shear stress to keep the shear stress stable in the shearing process. After the corresponding modification of the instrument, we had done a group of contrast

  17. Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses

    Energy Technology Data Exchange (ETDEWEB)

    Goto, M. [Department of Mechanical Engineering, Oita University, Oita 870-1192 (Japan)]. E-mail: masagoto@cc.oita-u.ac.jp; Han, S.Z. [Materials Engineering Department, Korea Institute Machinery and Materials, Changwon, Kyungnam 641-010 (Korea, Republic of); Yakushiji, T. [Department Mechanical Engineering, Oita National College of Technology, Maki, Oita 870-0152 (Japan); Lim, C.Y. [Materials Engineering Department, Korea Institute Machinery and Materials, Changwon, Kyungnam 641-010 (Korea, Republic of); Kim, S.S. [Department of Materials Science and Engineering, Gyeongsang National University, Chinju 660-701 (Korea, Republic of)

    2006-06-15

    afine grained copper processed by equal channel angular pressing was fatigued at two constant stress amplitudes: {sigma} {sub a} = 240 and 120 MPa (corresponding fatigue lives were N {sub f} = 2 x 10{sup 5}, and 4 x 10{sup 6} cycles, respectively). Significant differences in the morphological features of post-fatigued surfaces between the high and low cyclic stress amplitudes were observed. To clarify the formation process of the surface damage, the morphological changes in the surface damage caused by the cyclic stresses were monitored successively by an optical microscope. Putting the optical microscopy and scanning electron microscopy observations of the post-fatigued surfaces together, the formation process of surface damage was discussed.

  18. Influence of decelerating flow on incipient motion of a gravel-bed stream

    Indian Academy of Sciences (India)

    Hossein Afzalimhr; Subhasish Dey; Pooneh Rasoulianfar

    2007-10-01

    An experimental study on incipient motion of gravel-bed streams under steady-decelerating flow is presented. Experiments were carried out in a flume with two median grain sizes, $d_{50} =$ 16·7 mm for a fixed-bed case and $d_{50} =$ 8 mm for a mobile bed case. In addition, an effort is made to determine a simplified method for the estimation of bed shear stress in decelerating flow over fixed and mobile beds for use in field situations. From the observation of eleven fixed-bed and nine mobile-bed velocity profiles, it is revealed that the parabolic law method (PLM) and the Reynolds stress method are comparable for estimation of shear velocity in general. Also, the results show that the shear stress distribution adopts a convex form over fixed and mobile beds. Due to this form the critical Shields parameter value for decelerating flow is less than the reported values in literature. This paper supports Buffington & Montgomery (1997) statement that less emphasis should be given on choosing a universal shields parameter, and more emphasis should be given on choosing defendable values based on flow structure.

  19. Site characterization and validation - measurement of flowrate, solute velocities and aperture variation in natural fractures as a function of normal and shear stress, stage 3

    International Nuclear Information System (INIS)

    Laboratory tests have been completed on natural fracture planes in three, 200 mm diameter, cores, to determine the effect of changes in normal and shear stress on fracture permeability and porosity. In each core, a single fracture plane was oriented parallel to the core axis and the flow and tracer tests were completed under linear flow boundary conditions. At the completion of the full stressflow test cycle, the fracture plane was impregnated with resin and, after the resin had hardened, the fracture plane was sectioned and the structure of the pore space characterized. The test data showed that there is linear relationship between the logarithm of flowrate and the logarithm of normal stress. For shear tests on the two main samples, which were conducted at shear stresses less than the peak shear strength, the flowrates decreased slightly with increase in shear displacement. The porosities determined from the resin data and the fluid velocities determined from the tracer tests show that the volume of fluid in the fracture plane is much greater than that predicted using equivalent smooth parallel plate model. (authors)

  20. Analysis of the yielding behavior of electrorheological suspensions by controlled shear stress experiments

    Czech Academy of Sciences Publication Activity Database

    Pavlínek, V.; Sáha, P.; Perez-Gonzales, K.; de Vargas, L.; Stejskal, Jaroslav; Quadrat, Otakar

    2006-01-01

    Roč. 16, 1-2 (2006), s. 14-18. ISSN 1430-6395 R&D Projects: GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * yield stress * suspensions * polyaniline Subject RIV: CD - Macromolecular Chemistry

  1. Lateral erosion in an experimental bedrock channel: The influence of bed roughness on erosion by bed load impacts

    Science.gov (United States)

    Fuller, Theodore K.; Gran, Karen B.; Sklar, Leonard S.; Paola, Chris

    2016-05-01

    Physical experiments were conducted to evaluate the efficacy of bed load particle impacts as a mechanism of lateral bedrock erosion. In addition, we explored how changes in channel bed roughness, as would occur during development of an alluvial cover, influence rates of lateral erosion. Experimental channels were constructed to have erodible walls and a nonerodible bed using different mixtures of sand and cement. Bed roughness was varied along the length of the channel by embedding sediment particles of different size in the channel bed mixture. Lateral wall erosion from clear-water flow was negligible. Lateral erosion during periods in which bed load was supplied to the channel removed as much as 3% of the initial wetted cross-sectional area. The vertical distribution of erosion was limited to the base of the channel wall, producing channels with undercut banks. The addition of roughness elements to an otherwise smooth bed caused rates of lateral erosion to increase by as much as a factor of 7 during periods of bed load supply. However, a minimum roughness element diameter of approximately half the median bed load particle diameter was required before a substantial increase in erosion was observed. Beyond this minimum threshold size, further increases in the relative size of roughness elements did not substantially change the rate of wall erosion despite changes in total boundary shear stress. The deflection of saltating bed load particles into the channel wall by fixed roughness elements is hypothesized to be the driver of the observed increase in lateral erosion rates.

  2. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study

    OpenAIRE

    Fan, Rui; Tang, Dalin; Yang, Chun; Zheng, Jie; Bach, Richard; WANG, LIANG; Muccigrosso, David; Billiar, Kristen; Zhu, Jian; Ma, Genshan; Maehara, Akiko; Mintz, Gary S

    2014-01-01

    Background Atherosclerotic plaque progression and rupture are believed to be associated with mechanical stress conditions. In this paper, patient-specific in vivo intravascular ultrasound (IVUS) coronary plaque image data were used to construct computational models with fluid-structure interaction (FSI) and cyclic bending to investigate correlations between plaque wall thickness and both flow shear stress and plaque wall stress conditions. Methods IVUS data were acquired from 10 patients afte...

  3. On hydraulic roughness of top of stationary bed in pressurized pipes

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan

    Saint Petersburg, Russia : Saint Petersburg Mining Institute, 2008 - (Sobota, J.; Ivanov, S.; Alexandrov, V.), s. 213-221 ISBN 978-5-94211-350-6. [International Conference on Transport and Sedimentation of Solid Particles /14./. Saint Petersburg (RU), 23.06.2008-27.06.2008] R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : bed shear stress * erosion * pick up * bed friction Subject RIV: BK - Fluid Dynamics

  4. Hydrodynamic Shear Stress Affects Cell Growth and Metabolite Production by Medicinal Mushroom Ganoderma lucidum

    Institute of Scientific and Technical Information of China (English)

    龚海刚; 钟建江

    2005-01-01

    By investigating the shear effect on submerged cultivation of a traditional Chinese medicinal herb Ganoderma lucidum, a relatively high cell concentration of 13.8 g·L-1 by dry mass was obtained in bioreactor at an impeller tip speed (ITS) of 0.51m·s-1. At an ITS of 0.51,1.02 and 1.53m·s-1, a maximal production titer of intracellular polysaccharide was 2.64, 2.20 and 2.28g·L-1 and that of ganoderic acid was 306, 299 and 273g·L-1, respectively. Under these ITSs, the maximal mean projected area of dispersed hypheue was 3.70, 2.54 and 2.13 × 104μm2, and that of pellets was 0.91, 0.67 and 0.55 mm2, respectively. The information obtained is useful for efficient submerged cultivation of mushrooms on a large scale.

  5. Identification of vascular responses to exercise and orthostatic stress in bed rest-induced cardiovascular deconditioning.

    Science.gov (United States)

    Aletti, Federico; Ferrario, Manuela; Tam, Enrico; Cautero, Michela; Cerutti, Sergio; Capelli, Carlo; Baselli, Giuseppe

    2009-01-01

    In this paper, the effects of bed rest-induced cardiovascular deconditioning were investigated by means of a previously developed multivariate model for the assessment of arterial control of circulation. The vascular response to exercise and tilt, before and after a 14-day head down tilt bed rest, was identified and disentangled from the main mechanisms due to global, neural control of circulation. Results of the decomposition of diastolic pressure and pulse pressure beat-by-beat series and the relevant spectral analysis suggested that the autoregulation-related response is not affected by prolonged exposition to microgravity. As to the complex regulation of arterial blood pressure, a maintained responsiveness to sympathetic stimuli was found, even in presence of indications of the cardiovascular deconditioning, such as tachycardia, reset of baroreflex, cardiopulmonary unloading. These preliminary results emphasized the necessity for more complex analyses of the main alterations and compensatory mechanisms elicited by microgravity-induced-cardiovascular deconditioning, in order to develop more effective long term strategies to prevent it. PMID:19963898

  6. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  7. Correlation between wall shear stress and the rupture of saccular intracranial aneurysms: the initial experimental results with patient-specific 3-D computational model

    International Nuclear Information System (INIS)

    Objective: To find out the hemodynamic factors relating to the rupture of intracranial aneurysm by comparing the hemodynamic parameters of the asymptomatic intracranial aneurysms with that of symptomatic ones. Methods: Eight intracranial aneurysms in five patients were discovered on DSA. By using rotational DSA, 3-D models of the intracranial aneurysms were established, and the numerical simulation of the hemodynamics parameters was performed with finite volume method. The hemodynamics parameters between the aneurysms and the parent arteries were statistically analyzed and compared. Results The average shear stress of the neck and the close parent artery in asymptomatic group was (5.54 ± 2.89) Pa and (6.6 ± 3.47) Pa respectively, while it was (4.78 ± 3.84) Pa and (7.30 ± 3.80) Pa respectively in symptomatic group. No significant difference in the average shear stress of both the aneurysmal neck and its close parent artery existed between two groups (P < 0.05). The low shear stress region of asymptomatic group and symptomatic group was (0.33 ± 0.57)% and (4.72 ± 5.31)% respectively, with a significant difference between the two (P < 0.05). Conclusion: The size of low shear stress region of aneurysmal wall may be one of the main factors causing the rupture of the saccular intracranial aneurysms. (authors)

  8. The relationship between the vortical structure and the wall shear stress in a blind trough cavity subject to a jet impingement

    Czech Academy of Sciences Publication Activity Database

    Knob, Martin; Uruba, Václav

    Bremen : Universität Bremen, 2008. s. 1-1. ISBN N. [GAMM 2008. 31.03.2008-04.04.2008, Bremen] R&D Projects: GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : jet * cavity * vortex * shear stress Subject RIV: BK - Fluid Dynamics

  9. Effect of shear components on stress values in plywood panel subjected to tensile load

    OpenAIRE

    Jaroslav Kljak

    2007-01-01

    This paper analyses individual stress components that appear in plywood panels subjected to tensile load. The analysis was conducted on a seven-layer beech plywood panel, 10.52 mm in thickness. Tensile load was applied on the plywood panel according to the guidelines of the European Norm HRN EN 789. Measurement results obtained by empirical measurement methods were used as the basis for developing a simulation model using the finite elements method (FEM). The study results show that there are...

  10. Crack growth time dependence analysis of granite under compressive-shear stresses state

    Institute of Scientific and Technical Information of China (English)

    LI Jiang-teng; CAO Ping; Gu De-sheng; Wu Chao

    2008-01-01

    The curves of crack relative length //b and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxa-tion method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length //b and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastro-phically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length //b and crack growth time t of granite move to right with decrease of stress σ1 or crack length a, which implies that limit time increases consequently. The results correspond to practicality.

  11. Analysis of TNF-α-induced Leukocyte Adhesion to Vascular Endothelial Cells Regulated by Fluid Shear Stress Using Microfluidic Chip-based Technology

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; YANG De-yu; LIAO Juan; GONG Fang; HE Ping; LIU Bei-zhong

    2015-01-01

    This paper aims to the research of the impact of fluid shear stress on the adhesion between vascular endothelial cells and leukocyte induced by tumor necrosis factor-α(TNF-α) by microfliudic chip technology. Microfluidic chip was fabricated by soft lithograph;Endothelial microfluidic chip was constructed by optimizing types of the extracellular matrix proteins modified in the microchannel and cell incubation time;human umbilical vein endothelial cells EA.Hy926 lined in the microchannel were exposed to fluid shear stress of 1.68 dynes/cm2 and 8.4 dynes/cm2 respectively. Meanwhile, adhesion between EA.Hy926 cells and leukocyte was induced by TNF-αunder a flow condition. EA. Hy926 cell cultured in the static condition was used as control group. The numbers of fluorescently-labeled leukocyte in microchannel were counted to quantize the adhesion level between EA. Hy926 cells and leukocyte; cell immunofluorescence technique was used to detect the intercellular adhesion molecule (ICAM-1) expression. The constructed endothelial microfluidic chip can afford to the fluid shear stress and respond to exogenous stimulus of TNF-α;compared with the adhesion numbers of leukocyte in control group, adhesion between EA. Hy926 cells exposed to low fluid shear stress and leukocyte was reduced under the stimulus of TNF-α at a concentration of 10 ng/ml(P<0.05);leukocyte adhesion with EA. Hy926 cells exposed to high fluid shear stress was reduced significantly than EA. Hy926 cells in control group and EA.1Hy926 cells exposed to low fluid shear stress ( P<0.01); the regulation mechanism of fluid shear stress to the adhesion between EA. Hy926 cells and leukocyte induced by TNF-αwas through the way of ICAM-1. The endothelial microfluidic chip fabricated in this paper could be used to study the functions of endothelial cell in vitro and provide a new technical platform for exploring the pathophysiology of the related cardiovascular system diseases under a flow environment.

  12. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  13. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    Directory of Open Access Journals (Sweden)

    Jared C Weddell

    Full Text Available Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  14. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    Science.gov (United States)

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  15. Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery.

    Science.gov (United States)

    Doutel, E; Pinto, S I S; Campos, J B L M; Miranda, J M

    2016-08-01

    Murray developed two laws for the geometry of bifurcations in the circulatory system. Based on the principle of energy minimization, Murray found restrictions for the relation between the diameters and also between the angles of the branches. It is known that bifurcations are prone to the development of atherosclerosis, in regions associated to low wall shear stresses (WSS) and high oscillatory shear index (OSI). These indicators (size of low WSS regions, size of high OSI regions and size of high helicity regions) were evaluated in this work. All of them were normalized by the size of the outflow branches. The relation between Murray's laws and the size of low WSS regions was analysed in detail. It was found that the main factor leading to large regions of low WSS is the so called expansion ratio, a relation between the cross section areas of the outflow branches and the cross section area of the main branch. Large regions of low WSS appear for high expansion ratios. Furthermore, the size of low WSS regions is independent of the ratio between the diameters of the outflow branches. Since the expansion ratio in bifurcations following Murray's law is kept in a small range (1 and 1.25), all of them have regions of low WSS with similar size. However, the expansion ratio is not small enough to completely prevent regions with low WSS values and, therefore, Murray's law does not lead to atherosclerosis minimization. A study on the effect of the angulation of the bifurcation suggests that the Murray's law for the angles does not minimize the size of low WSS regions. PMID:27157126

  16. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    Science.gov (United States)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  17. Emerging Role for Corticotropin Releasing Factor Signaling in the Bed Nucleus of the Stria Terminalis at the Intersection of Stress and Reward

    OpenAIRE

    Silberman, Yuval; Winder, Danny G.

    2013-01-01

    Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neurop...

  18. Stress-induced Alterations in Anxiety-like Behavior and Adaptations in Plasticity in the Bed Nucleus of the Stria Terminalis

    OpenAIRE

    Conrad, Kelly L.; Louderback, Katherine M; Gessner, Caitlin P; Winder, Danny G.

    2011-01-01

    In vulnerable individuals, exposure to stressors can result in chronic disorders such as generalized anxiety disorder (GAD), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). The extended amygdala is critically implicated in mediating acute and chronic stress responsivity and anxiety-like behaviors. The bed nucleus of the stria terminalis (BNST), a subregion of the extended amygdala, serves as a relay of corticolimbic information to the paraventricular nucleus of the...

  19. Optimal bounds with semidefinite programming: an application to stress driven shear flows

    CERN Document Server

    Fantuzzi, G

    2015-01-01

    We introduce an innovative numerical technique based on convex optimization to solve a range of infinite dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. The formulation is rigorous, meaning that a solution of the SDP gives a certifiably feasible solution for the infinite dimensional problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times, and show that the bounds become independent of the domai...

  20. Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 C

    Science.gov (United States)

    Colaiuta, Jason F.; Lerch, Bradley (Technical Monitor)

    2001-01-01

    Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.

  1. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    Science.gov (United States)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  2. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.

    Science.gov (United States)

    Ye, Swe Soe; Ju, Meongkeun; Kim, Sangho

    2016-07-01

    Unequal RBC partitioning at arteriolar bifurcations contributes to dissimilar flow developments between daughter vessels in a bifurcation. Due to the importance of the cell-free layer (CFL) and the wall shear stress (WSS) to physiological processes such as vasoregulation and gas diffusion, we investigated the effects of a bifurcation disturbance on the development of the CFL width and WSS in bifurcation daughter branches. The analysis was performed on a two-dimensional (2-D) computational model of a transverse arteriole at three different flow rates corresponding to parent branch (PB) pseudoshear rates of 60, 170 and 470s(-1), while maintaining a 2-D hematocrit of about 55% in the PB. Flow symmetry was defined using the statistical similarity of the CFL and WSS distributions between the two walls of the vessel branch. In terms of the flow symmetry recovery, higher flow rates caused larger reductions in the flow symmetry indices in the MB and subsequently required longer vessel lengths for complete recovery. Lower tube hematocrits in the SB led to complete symmetry recovery for all flow rates despite the higher initial asymmetry in the SB than in the MB. Arteriolar bifurcations produce unavoidable local CFL asymmetry and the persistence of the asymmetry downstream may increase effective blood viscosity which is especially significant at higher physiological flow rates. PMID:26969106

  3. PEG-albumin plasma expansion increases expression of MCP-1 evidencing increased circulatory wall shear stress: an experimental study.

    Directory of Open Access Journals (Sweden)

    C Makena Hightower

    Full Text Available Treatment of blood loss with plasma expanders lowers blood viscosity, increasing cardiac output. However, increased flow velocity by conventional plasma expanders does not compensate for decreased viscosity in maintaining vessel wall shear stress (WSS, decreasing endothelial nitric oxide (NO production. A new type of plasma expander using polyethylene glycol conjugate albumin (PEG-Alb causes supra-perfusion when used in extreme hemodilution and is effective in treating hemorrhagic shock, although it is minimally viscogenic. An acute 40% hemodilution/exchange-transfusion protocol was used to compare 4% PEG-Alb to Ringer's lactate, Dextran 70 kDa and 6% Hetastarch (670 kDa in unanesthetized CD-1 mice. Serum cytokine analysis showed that PEG-Alb elevates monocyte chemotactic protein-1 (MCP-1, a member of a small inducible gene family, as well as expression of MIP-1α, and MIP-2. MCP-1 is specific to increased WSS. Given the direct link between increased WSS and production of NO, the beneficial resuscitation effects due to PEG-Alb plasma expansion appear to be due to increased WSS through increased perfusion and blood flow rather than blood viscosity.

  4. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    Science.gov (United States)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  5. Time-resolved particle image velocimetry measurements with wall shear stress and uncertainty quantification for the FDA benchmark nozzle model

    CERN Document Server

    Raben, Jaime S; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2014-01-01

    We present validation of benchmark experimental data for computational fluid dynamics (CFD) analyses of medical devices using advanced Particle Image Velocimetry (PIV) processing and post-processing techniques. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Time-resolved PIV analysis was performed in five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2,000, 5,000, and 8,000. Images included a two-fold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were comput...

  6. Stabilization of thin liquid films lining a tube by oscillatory shear stress

    Science.gov (United States)

    Halpern, David; Grotberg, James B.

    2002-11-01

    The airways of the lungs are coated with a thin viscous film. Under certain conditions, a meniscus can form due to a surface tension instability which plugs an airway. We model airway closure by considering the stability of a thin film coating the inner surface of a rigid tube. We consider the effects of an oscillatory core flow and surfactant which exert tangential and normal stresses on the air-liquid interface. By assuming that the characteristic core time scale is much shorter than the capillary time scale of the film, the effect of the core flow on the film can be modeled by considering an uncoupled problem, where the low-viscosity core fluid perceives the thin, highly-viscous film as a rigid boundary. Lubrication theory is used to derive evolution equations for the position of the air-liquid interface and the surfactant concentration, taking into account the effects of the core flow. Scaling analysis reveals several dimensionless parameters involving the frequency and amplitude of the core flow rate, the thickness of the film, the tube radius, the viscosities of the fluids, and the surface tension. When the core is passive, closure is possible provided the ratio of the unperturbed film thickness to tube radius exceeds a critical value. For the non-zero frequency case, it is shown that the core flow can stabilize the capillary instability and prevent closure. We find that there is a critical frequency above which closure does not occur, and that this critical frequency increases as the amplitude of the core flow decreases.

  7. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    Science.gov (United States)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  8. Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

    Science.gov (United States)

    Park, George Ilhwan; Moin, Parviz

    2016-06-01

    We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Reτ=2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure fluctuations is more stringent than that for predicting the velocity. At least δ /Δ x >20 and δ /Δ z >30 are required to marginally resolve the integral length scales of the pressure-producing eddies near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to significant overprediction of the second-order pressure statistics. When these conditions are met, the pressure statistics and spectra at low wave number or low frequency agree well with the DNS and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely through the RANS-based wall models, are largely underpredicted and relatively insensitive to the grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor modeled adequately in the wall models, seem to be important for accurate prediction of the wall shear-stress fluctuations.

  9. Shear wave splitting as a proxy for stress forecast of the case of the 2006 Manyas-Kus Golu (Mb = 5.3 earthquake

    Directory of Open Access Journals (Sweden)

    S. Ergintav

    2012-04-01

    Full Text Available The 2006 Mb = 5.3 Manyas-Kus Golu (Manyas earthquake has been retrospectively "stress-forecasted" using variations in time-delays of seismic shear wave splitting to evaluate the time and magnitude at which stress-modified microcracking reaches fracture criticality within the stressed volume where strain is released. We processed micro earthquakes recorded by 29 TURDEP (Multi-Disciplinary Earthquake Research in High Risk Regions of Turkey and 33 KOERI (Kandilli Observatory and Earthquake Research Institute stations in the Marmara region by using the aspect-ratio cross-correlation and systematic analysis of crustal anisotropy methods. The aim of the analysis is to determine changes in delay-times, hence changes in stress, before and after the 2006 Manyas earthquake. We observed that clear decreases in delay times before the impending event, especially at the station GEMT are consistent with the anisotropic poro-elasticity (APE model of fluid-rock deformation, but we could not observe similar changes at other stations surrounding the main event. The logarithms of the duration of the stress-accumulation are proportional (self-similar to the magnitude of the impending event. Although time and magnitude of th 2005 Manyas earthquake could have been stress-forecasted, as has been recognized elsewhere, shear-wave splitting does not appear to provide direct information about the location of impending earthquakes.

  10. Hydrostatic and triaxial compression experiments on unpoled PZT 95/5--2Nb ceramic: The effects of shear stress on the FR1→A0 polymorphic phase transformation

    International Nuclear Information System (INIS)

    We conducted a series of hydrostatic and constant shear stress experiments at room temperature on three different sintering runs of unpoled, niobium-doped lead-zirconate-titanate ceramic (PZT 95/5--2Nb) in order to quantify the influence of shear stress on the displacive (possibly martensitic), first-order, rhombohedral→orthorhombic phase transformation. Inter- and intra-batch variations were detected, but some generalizations can be made. In hydrostatic compression at room temperature, the transformation began at approximately 260 MPa, and was usually incompletely reversed upon return to ambient conditions. Strains associated with the transformation were isotropic, both on the first and subsequent hydrostatic cycles. Results for the constant shear stress tests were very different. First, the confining pressure and mean stress at which the transition begins decreased systematically with increasing shear stress. Second, we observed that the rate of transformation decreased with increasing shear stress and the associated elastic shear strain. This result contrasts with the typical observation that shear stresses increase reaction and transformation kinetics. Third, strain was not isotropic during the transformation: axial strains were greater and lateral strains smaller than for the hydrostatic case, though volumetric strain behavior was comparable for the two types of tests. However, this effect does not appear to be an example of transformational plasticity: no additional unexpected strains accumulated during subsequent cycles through the transition under deviatoric loading. If subsequent hydrostatic cycles were performed on samples previously subjected to shear stress, strain anisotropy was again observed, indicating that the earlier superimposed shear stress produced a permanent mechanical anisotropy in the material

  11. Investigation of the Influence of Glucose Concentration on Cancer Cells by Using a Microfluidic Gradient Generator without the Induction of Large Shear Stress

    Directory of Open Access Journals (Sweden)

    Tadashi Ishida

    2016-09-01

    Full Text Available A microfluidic device capable of precise chemical control is helpful to mimic tumor microenvironments in vitro, which are closely associated with malignant progression, including metastasis. Cancer cells under a concentration gradient of oxygen and other sustenance materials inside a tumor in vivo have recently been reported to increase the probability of metastasis. The influence of glucose concentration on cancer cells has not been measured well, whereas that of oxygen concentration has been thoroughly examined using microfluidic devices. This is because glucose concentrations can be controlled using microfluidic concentration gradient generators, which trade off temporal stability of the glucose concentration and shear stress on the cells; by contrast, oxygen concentration can be easily controlled without microfluidic device-induced shear stresses. To study cell division and migration responses as a function of glucose concentration, we developed a microfluidic device to observe cell behaviors under various chemical conditions. The device has small-cross-section microchannels for generating a concentration gradient and a large-cross-section chamber for cell culture. With this design, the device can achieve both a cell culture with sufficiently low shear stress on cell activity and a stable glucose concentration gradient. Experiments revealed that a low glucose concentration increased the total migration length of HeLa cells and that HeLa cells under a glucose concentration gradient exhibit random motion rather than chemotaxis.

  12. Reynolds shear-stress and velocity: positive biological response of neotropical fishes to hydraulic parameters in a vertical slot fishway

    Directory of Open Access Journals (Sweden)

    Bernardo Alan de Freitas Duarte

    2012-10-01

    Full Text Available The barriers created by dams can cause negative impacts to aquatic communities, and migratory fish species are directly affected. Fishways have been developed to allow the upstream passage of fishes through dams. In Brazil, after the implementation of environmental laws, these structures have been built based on European and American fishway designs. Studies have shown selectivity for different neotropical fishes in some Brazilian fishways, and the main challenge has been to promote upstream passage of a large number of diverse fish species. The patterns of flow circulation within the fish ladder may explain fish selectivity although few studies detail the fish response to hydraulic characteristics of fish ladder flow. This paper presents a laboratory study, where a vertical slot fishway was built in a hydraulic flume and the behavior of two neotropical fish species (Leporinus reinhardti and Pimelodus maculatus were analyzed. The structure of flow was expressed in terms of mean velocity, Reynolds shear-stress and velocity fluctuation fields. The individuals of Leporinus reinhardti had higher passage success than Pimelodus maculatus in the laboratory flume. Both species preferred areas of low to zero Reynolds shear-stress values. In addition, different preferences were observed for these species concerning the horizontal components of velocity fluctuation.Interrupções em rios, como as causadas por barragens, provocam impactos negativos sobre as comunidades aquáticas e as espécies migratórias de peixes são diretamente afetadas. A fim de permitir a passagem de peixes, mecanismos de transposição são construídos junto a barramentos. No Brasil, após a implantação de leis ambientais, estas estruturas passaram a ser amplamente construídas e foram baseadas em projetos desenvolvidos na Europa e na América do Norte. Análises de mecanismos já construídos têm mostrado grande seletividade para espécies neotropicais e as demandas da diversa

  13. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    Science.gov (United States)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium. PMID:26416763

  14. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. ► miR-101 represses mTOR expression through a specific 3′UTR binding site. ► Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. ► Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3′-untranslated region (3′UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm2 laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3′UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC proliferation. These studies advance our understanding of the posttranscriptional mechanisms by which shear stress modulates

  15. The Effect of Varied Support Models of BJUT-IIVAD on Coronary Arterial blood flow and wall shear stress: A Primary CFD Study.

    Science.gov (United States)

    Zhang, Qi; Gao, Bin; Gu, Kaiyun; Chang, Yu; Xu, Jinchao; Deuflhard, Peter

    2014-09-17

    BJUT-II VAD is a novel left ventricular assist devices. Because of the special connection between the pump and native heart, the hemodynamic effects of BJTU-II VAD on coronary artery are still unclear. Hence, numerical simulations have conducted to clarify changes in hemodynamic effects of different support modes. A patient specific left coronary arterial geometric model is reconstructed based on the CT data. And 3 support modes, "constant speed mode", "co-pulse modes" and "counter pulse mode" are used in this study. The wall shear stress (WSS), wall shear stress gradient (WSSG), cycle averaged wall shear stress (avWSS), oscillatory shear index (OSI) and the flow pattern are calculated to evaluate the hemodynamic states of coronary artery. The computational results demonstrate that the hemodynamic states of coronary artery are directly affected by the support modes. The co-pulse modes could achieve the highest blood perfusion (constant speed: 153ml/min vs. co-pulse: 775ml/min vs. counter pulse: 140ml/min) and the highest avWSS (constant speed: 18.1Pa vs. co-pulse: 42.6Pa vs. counter pulse: 22.6Pa). In addition, the WSS and WSSG at the time of peak blood velocity under the constant speed mode are both lower than those under other two support modes. In contrast, the counter pulse mode generates the highest OSI value (constant speed: 0.365 vs. co-pulse: 0.379 vs. counter pulse: 0.426). In brief, BJUT-II VAD under co-pulse mode may have benefits for improving coronary perfusion and preventing the development of atherosclerosis, however, the constant speed mode may have benefit for preventing the development of plaque vulnerability. PMID:25232766

  16. Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  17. The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  18. The median of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_median.shp, Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  19. U.S. Geological Survey calculated median of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_median, polygon shapefile, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  20. The half interpercentile range of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_hIPR, Geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  1. U.S. Geological Survey calculated 95th percentile of wave-current bottom shear stress for the South Atlantic Bight for May 2010 to May 2011 (SAB_95th_perc, polygon shapefile, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  2. Measurement of wall and interfacial friction factors for counter-current flow in porous bed

    International Nuclear Information System (INIS)

    In the course of a severe accident, a debris bed is formed from once molten and fragmented fuel elements as observed in the Three-Mile Island unit-2 accident. The debris bed must be cooled to avoid further degradation of the core, since the degraded core releases decay heat. Even if the degraded core is in water, it cannot be judged that the degraded core would be coolable, since the degraded core may be melted again if dryout occurs. It is thus necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. Dryout phenomena in the debris bed is dominated by two-phase flow behavior in the debris bed. Especially, it is strongly affected by counter-current flow limitation (CCFL) in the debris bed. Therefore, it is important to know the flow characteristics of CCFL in the debris bed. If one hopes to analyze counter-current flow in the debris bed by using the same method as usual two-fluid model, it is necessary to know the interfacial and the wall friction factors. However, it is not clear that the correlations for interfacial and wall friction factor for a pipe can be used for counter-current flow in the debris beds. In order to determine the interfacial and wall friction factors, it is necessary to obtain wall and interfacial shear stresses. The wall and the interfacial shear stresses depend on the void fraction and differential pressure. However, at present, there is no available data for local void fraction and local pressure distribution in the debris bed at CCFL, since it is very difficult to measure the flow characteristics in the complex geometry such as the debris bed. In the present study, air-water CCFL experiment was conducted with a debris bed simulated with glass particles to measure the local void fraction and the local pressure distributions simultaneously as well as the flow rates for gas and liquid. The present experimental research succeed to measure the local void fraction under CCFL in

  3. Central stress-integrative circuits: Forebrain glutamatergic and GABAergic projections to the dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria terminalis

    OpenAIRE

    Myers, Brent; Dolgas, C. Mark; Kasckow, John; Cullinan, William E.; Herman, James P.

    2013-01-01

    Central regulation of hypothalamo-pituitary-adrenocortical (HPA) axis stress responses is mediated by a relatively circumscribed group of projections to the paraventricular hypothalamus (PVN). The dorsomedial hypothalamus (DMH), medial preoptic area (mPOA), and bed nucleus of the stria terminalis (BST) provide direct, predominantly inhibitory, innervation of the PVN. These PVN-projecting neurons are controlled by descending information from limbic forebrain structures, including the prefronta...

  4. Stress and recovery assessment during simulated microgravity: Effects of exercise during a long-term head down tilt bed rest in women.

    OpenAIRE

    Karine, Weiss; Nicolas, Michel

    2009-01-01

    The aim of this study was to determine the effects of a 60-day head-down tilt long-term bed rest (HDT) on stress and recovery in sixteen healthy female volunteers. Participants were randomly assigned to either an exercise group (Exe) that followed a training program combining resistive and aerobic exercises, or to a no-exercise control group (Ctl). Psychological states were assessed using the Rest-Q, a validated questionnaire based on stress-recovery responses. A longitudinal analysis reveale...

  5. Flow resistance in a compound gravel-bed bend

    Indian Academy of Sciences (India)

    Hossein Afzalimehr; Manouchehr Heidarpour; Alireza Salimi

    2006-12-01

    In this paper, the effect of a gravel-bed in a compound bend (similar to sinusoidal top view) of a natural river (Zayandehrud River flowing through Isfahan, Iran) has been investigated for flow resistance analysis, measuring the velocity with a micro current meter. The data were analysed and the following observations were made. In a compound bend, the law of the wall can be valid for up to 66% of the flow depth from the bed. The parabolic law is the most effective method for the determination of shear velocity. Based on the existing criteria for verifying the equilibrium boundary layer, the flow cannot be in equilibrium. The shear stress distribution and the sediment transport parameters have considerable influence on resistance to flow. Froude number and the flow depth relative to the representative gravel size have little effect on the flow resistance estimation.

  6. In-situ investigation of the influence of the long-term shear strength of faults on the regional stress field in a granite rock mass

    Science.gov (United States)

    Figueiredo, Bruno; Cornet, Francois; Lamas, Luís; Muralha, José

    2016-04-01

    A case study is presented to show how stress field measurements may be used to assess the long-term rheological behaviour of an equivalent geo-material. The example concerns a granitic rock mass at the km3 scale, where an underground hydropower scheme including a new 10 km long power conduit and a powerhouse complex will be constructed. For design of the underground cavern and hydraulic pressure tunnel, several in situ stress measurements were carried out, using hydraulic borehole testing, overcoring and flat jack techniques. A first continuum mechanics model, with a homogenous material, was developed to integrate the several in situ test results and to assess the regional stress field. This model is based on elasticity and relaxation of the elastic properties measured through laboratory tests conducted on cores. Results of integration show that the long-term behavior of this granite rock mass differs markedly from the short-term behaviour as defined by laboratory tests. This suggests that the in-situ stress field depends mostly on the softer material that fills up the faults and hence results from the shear stress relaxation over a large number of pre-existing fractures and faults. A second continuum mechanics model, with consideration of two fault planes located nearby the hydraulic tests, was studied. This model is based on elasticity for the overall rock mass, with the elastic properties extracted from laboratory measurements, and visco-elasticity with small long-term shear strength for the two fault planes. Results show that the overall granite rock mass may be viewed as a combination of stiff elastic blocks separated by soft low strength material, leading to a fairly large scale homogeneous axisymmetrical stress field with vertical axis. Advantages and limitations of the two modelling approaches are discussed.

  7. Bicontinuous Microemulsions under Steady Shear Flow

    OpenAIRE

    Kodama, Hiroya; Komura, Shigeyuki

    1997-01-01

    Dynamic response of microemulsions to shear deformation on the basis of two-order-parameter time dependent Ginzburg-Landau model is investigated by means of cell dynamical system approach. Time evolution of anisotropic factor and excess shear stress under steady shear flow is studied by changing shear rate and total amount of surfactant. As the surfactant concentration is increased, overshoot peak height of the anisotropic factor increases whereas that of the excess shear stress is almost unc...

  8. The Role of Shear in the Onset of Iron's bcc to hcp Stress--Induced Phase Transition

    Science.gov (United States)

    Lew, A.; Caspersen, K.; Ortiz, M.; Carter, E.

    2003-12-01

    Iron presents a martensitic phase transition from bcc to hcp at an approximate pressure of 13 GPa. The exact onset pressure has been determined to have values ranging from 9 to 16 GPa by several different experimental results. We propose a multiscale model for Iron, with all necessary quantities computed exclusively from first--principles. In this model, we account for all shear components of the deformation, finding that they play a crucial role in its onset, even for very small amounts of shear. Briefly, the model consists of constructing the energy landscape in all six-components of strain. Then, for a given deformation of a representative sample, we minimize its energy by possibly accomodating martensitic laminates inside it, in the spirit of a spinodal decomposition. We will describe the model in detail and show how the onset pressure varies when shear is present, as well as the mixed states encoutered upon transformation.

  9. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    OpenAIRE

    Liu, Li; Cai, Siyi; Qiu, Guixing; Lin, Jin

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolin...

  10. High Shear Stress at the Surface of Enhancing Plaque in the Systolic Phase is Related to the Symptom Presentation of Severe M1 Stenosis

    International Nuclear Information System (INIS)

    The computational fluid dynamics methods for the limited flow rate and the small dimensions of an intracranial artery stenosis may help demonstrate the stroke mechanism in intracranial atherosclerosis. We have modeled the high wall shear stress (WSS) in a severe M1 stenosis. The high WSS in the systolic phase of the cardiac cycle was well-correlated with a thick fibrous cap atheroma with enhancement, as was determined using high-resolution plaque imaging techniques in a severe stenosis of the middle cerebral artery.

  11. Comments on the transition between cohesive and cohesionless sediment bed exchange

    Science.gov (United States)

    Mehta, Ashish J.; Letter, Joseph V.

    2013-10-01

    The presence of both cohesive and cohesionless particles in estuarine and lacustrine sediments makes it essential to model bed exchange of both types of particles. The usual practice is to select a purely empirical estimate of particle diameter marking the transition between the two behaviors. Based on available data on particle erosion and deposition in non-oscillating flows and viscoplastic properties of bed sediment, we have attempted to examine the likelihood of identifying the transition diameter within a less empirical framework. From the relationship between diameter and bed shear stress for a variety of cohesive and cohesionless sediments, it appears that two transition diameters can be defined. One is the largest diameter of clay mineral particles at which cohesion is considered to vanish. The other is the smallest diameter at which cohesionless behavior is assumed to end at the limit of the well-known Shields' relationship extended to very fine particles. These two diameters appear to be reasonably close for mainly inorganic mineral sediments. Assuming they are equal, six zones of bed exchange are identified in terms of diameter and bed shear stress. Depending on these two variables, zones of only erosion, no erosion or deposition, and only deposition can be designated. Realistic modeling of bed exchange of multi-size sediments requires that the full range of diameters be considered. Extension of this analysis to organic-rich sediments is pending better understanding of their rheological properties.

  12. Bed slope effects on turbulent wave boundary layers: 1. Model validation and quantification of rough-turbulent results

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model...... diagrams. A local similarity condition is derived for relating oscillatory flow in a convergent-divergent tunnel, as considered herein, to shoaling shallow-water waves by matching spatial gradients in the free stream orbital length....

  13. Evaluation of stress distribution due to shearing in non-oriented electrical steel by using synchrotron radiation

    Science.gov (United States)

    Zaizen, Yoshiaki; Omura, Takeshi; Fukumura, Masaru; Senda, Kunihiro; Toda, Hiroaki

    2016-05-01

    The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.

  14. Anti-oxidation actions of curcumin in two forms of bed rest:oxidative stress serum and salivary markers

    Institute of Scientific and Technical Information of China (English)

    Balwant Rai; Jasdeep Kaur; Maria Catalina

    2010-01-01

    Objective:To determine the preventive effects of curcumin on peroxidative damage under two bed rest conditions.Methods:20healthy male (10 with curcumin and10without curcumin ) volunteers were selected. They were studied before, during, and just on bed rest conditions at -6° head-down-tilt(HDT)bed rest and bed rest position(BD)for10 days. We measured the salivary and serum oxidative markers such as Malonaldehyde, 8-hydroxydeoxyguanosine, vitamin C and E just beforeHDT & BD, duringHDT & BD experiment, and in course time of recovery with curcumin and without curcumin groups.Results:The values of serum and salivary vitaminC & Eshowed statistically significant decrease in both bed rest conditions as compared to those of the conditions before and during the recovery stage. However, these levels were not significantly lowered in curcumin groups in contrast to the groups without curcumin (P>0.05) .MDA and8-OHdG levels showed significant increase in simulating microgravity and zero gravity conditions as compared to those before and in the recovery stage. However, these levels were lower in curcumin groups in contrast to the groups without curcumin(P<0.05). Serum and salivary correlation analysis revealed a strong and highly significant correlation forMDA, vitaminC & E and 8 dihydro-2 deoxyguanosine(8-OHdG) in the conditions before, during and in the recovery periods in both bed rest conditions. Since saliva collection is easy and non-invasive, measurements of salivary marker levels may prove to be useful in the space research. Conclusions: Curcumin prevents peroxidative damage in both bed rest conditions. Further study is required on antioxidation actions of curcumin in space microgravity conditions.

  15. Verification of the Shear-Stress Transfer Model and its Modifications in the Calculation of a Turbulent Flow Around a Semicircular Airfoil with a Zero Angle of Attack

    Science.gov (United States)

    Isaev, S. A.; Baranov, P. A.; Zhukova, Yu. V.; Kalinin, E. I.; Miau, J. J.

    2016-01-01

    A comparative analysis of different versions of the Menter shear-stress transfer model, including with correction for the curvature of streamlines, has been performed as applied to a periodic flow around a semicircular airfoil with a zero angle of attack at Re = 45,000. A comparison of the calculated aerodynamic coefficients Cx and Cy and the surface distribution of the pressure coefficient, averaged over the period of oscillations of the lift coefficient Cy, with the corresponding experimental data has shown that the Menter shear-stress transfer model modified within the framework of the Rody-Leshtsiner-Isaev approach with the use of the inverse function of the Richardson number correcting the eddy viscosity of a flow with a semiempirical Isaev-Kharchenko-Usachov constant equal to 0.02 is preferred compared to the other versions of this model. The errors of the calculations performed with the use of the multiblock computational technologies based on intersecting structured meshes of different scales were analyzed. The interrelation between the evolution of the structure of the periodic flow around the semicircular airfoil and the distribution of its integral force characteristics in the period of Cy oscillations is discussed.

  16. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    Science.gov (United States)

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth. PMID:26758425

  17. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    Directory of Open Access Journals (Sweden)

    Chia-Wei Huang

    2015-01-01

    Full Text Available Neonatal hypoxic-ischemic (HI brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs from adipose-derived stem cells (ASCs and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1 and vascular endothelial growth factor receptor 2 (VEGFR2 was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.

  18. About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter

    OpenAIRE

    Катюхин, Лев Николаевич

    2014-01-01

    It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin) and occlusion (PbCl2) of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small di...

  19. Effects of relative submergence and bed slope on sediment incipient motion under decelerating flows

    Directory of Open Access Journals (Sweden)

    Bolhassani Ramin

    2015-12-01

    Full Text Available This paper presents the results of an experimental study to quantify the effects of bed slope and relative submergence on incipient motion of sediment under decelerating flows. Experiments were conducted in an experimental tilting-flume of 8 m long 0.4 m wide and 0.6 m deep with glass-walls. Three uniform sediments with median grain sizes of 0.95, 1.8 and 3.8 mm and three bed slopes of 0.0075, 0.0125 and 0.015 were used under decelerating flow. The main conclusion is that the Shields diagram, which is commonly used to evaluate the critical shear stress, is not suitable to predict the critical shear stress under decelerating flows.

  20. Global- and local-scale characterisation of bed surface structure in coarse-grained alluvial rivers

    Science.gov (United States)

    Powell, Mark; Ockelford, Annie; Nguyen, Thao; Wood, Jo; Rice, Steve; Reid, Ian; Tate, Nick

    2013-04-01

    It is widely recognised that adjustments in bed surface grain size (texture) and grain arrangement (structure) exert significant controls on the stability of coarse-grained alluvial rivers. Modifications to bed surface texture and structure occur during active sediment transport and are mediated by the process of mobile armouring which concentrates coarser-than-average particles on the surface and organises them into a variety of grain- and bedform-scale configurations. Textural aspects of surface armouring are well understood to the extent that sediment transport models can be used to predict the size distribution of armours that develop under different sediment supply regimes and shear stresses. Research has also found that the adjustment of bed surface grain size is often patchy and that the development of finer-grained and coarser-grained areas of the bed has important implications for both the rate and grain size of transported sediment. The structural aspects of stream-bed armouring, however, are less well understood, largely because of the difficulty of recognising and characterising bedforms and bed-structures that have dimensions similar to their constituent particles. Moreover, bed structure is generally parameterised using global scale descriptors of the bed surface such that information on the spatial heterogeneity of the structure is lost. The aim of this poster is to characterise the structural characteristics of water-worked river gravels, paying particular attention to quantifying the spatial heterogeneity of those characteristics using local scale descriptors. Results reported from a number of flume experiments designed to simulate the spatio-temporal evolution of bed configurations (surface texture and structure) as the system adjusts to a condition of equilibrium transport are used to evaluate the spatial variability of bed surface structure and explore its significance for modelling sediment transport rates in gravel-bed rivers. Keywords: bed

  1. The space and time distribution characteristics of the shear stress field for the sequence of the Wuding earthquake

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Follow Chen and Duda's model of spectral fall-off of (3, the dependence of peak parameters of ground motion, peak displacement dm, peak velocity vm and peak acceleration am, upon the environment stress (0-values are studied using near source seismic digital recordings for the sequence of the Wuding, Yunnan, M = 6.5 earthquake, in which, as a new thought, the peak parameters are assumed to be related to the medium Q-value. Three formulae for estimating the environment stress (0-values by the peak parameters of three types of ground motions are derived. Using these formulae, the environment stress (0-values are calculated for the sequence of the Wuding earthquake. The result show that (0-values calculated by the three formulae are constant largely, the averages of (0 are in the range of 5.0~35 MPa for most earthquakes. It belongs to the high-stress earthquakes sequence: the high-stress values are restricted to the relatively small area closely near to the epicenter of the main shock. The fine distribution structure for the contours of the environment stress (0-values is related closely to the strong aftershocks. The analysis of spatial and temporal feature of (0-values suggests that the earthquakes sequence in a rupture process generated at the specific intersection zone of seismo-tectonics under high-stress background.

  2. Cyclic Shearing Deformation Behavior of Saturated Clays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay's strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The deformations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deformation and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.

  3. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region

    DEFF Research Database (Denmark)

    Linsbauer, A.; Frey, H.; Haeberli, W.;

    2016-01-01

    Surface digital elevation models (DEMs) and slope-related estimates of glacier thickness enable modelling of glacier-bed topographies over large ice-covered areas. Due to the erosive power of glaciers, such bed topographies can contain numerous overdeepenings, which when exposed following glacier...... retreat may fill with water and form new lakes. In this study, the bed overdeepenings for ∼28000 glaciers (40 775km2) of the Himalaya-Karakoram region are modelled using GlabTop2 (Glacier Bed Topography model version 2), in which ice thickness is inferred from surface slope by parameterizing basal shear...... stress as a function of elevation range for each glacier. The modelled ice thicknesses are uncertain (±30%), but spatial patterns of ice thickness and bed elevation primarily depend on surface slopes as derived from the DEM and, hence, are more robust. About 16 000 overdeepenings larger than 104m2 were...

  4. H-22细胞声孔效应的应力阈值%Threshold value of shear stress in H-22 cells generated sonoporation

    Institute of Scientific and Technical Information of China (English)

    莫润阳; 林书玉; 王成会

    2011-01-01

    理论和实验研究了超声空化场中的H-22型肝癌细胞产生可逆声孔效应的剪应力阈值.本文用1.37MHz的聚焦声场,当超顺磁性纳米氧化铁在细胞悬液中的终浓度为410μg/mL,换能器负载电功率为2W,超声辐照60s,细胞存活率90%以上时,有45.9±13.5%的细胞显示普鲁士蓝染阳性,暗示超声作用下,这些细胞表面曾出现可逆性微孔而使磁性微粒由此进入细胞内.利用无界自由空间微泡运动方程的球对称稳态解对实验条件下细胞膜表面的切变应力进行数值估算,结果表明,使H-22细胞产生可逆性声孔效应的微流剪应力阈值为697Pa.%Based on a spherically symmetric bubble model,the threshold shear stress for H-22 cells which are irradiated by continuous focused ultrasound is estimated.On the condition that the final concentration of the superparamagnetic iron oxide (SPIO) in the cell suspension is 410 μg/mL,the focused ultrasound sonication is at a frequency of 1.37 MHz,the power from amplifer is 2 W,and H-22 cells are exposed to the ultrasound for 60 s,the labeling efficiency is about 45.9%±13.5%.Prussian blue staining confirms iron uptake and shows numerous blue-stained iron particles in the cytoplasm,while more than 90% labeled cells remained viable.The results show that the reparable sonoporation arises in plasma membrane and SPIO nanoparticles enter into the H-22 cells.Numerical calculations show that the shear stress acting on the cell is 697 Pa,which is the threshold shear stress for H-22 cell sonoporation.

  5. Study of velocity and shear stress distributions in the impeller passages and the volute of a bio-centrifugal ventricular assist device.

    Science.gov (United States)

    Chua, Leok Poh; Ong, Kang Shiu; Song, Guoliang

    2008-05-01

    The velocity fields within the impeller passages of three different impellers of the Kyoto-NTN bio-centrifugal ventricular assist device are measured using laser Doppler velocimetry in this study. The 16 forward-swept-blade impeller has better performance than the 16 straight-blade and 8 backward-swept-blade impellers in terms of smooth flow pattern, and has less high-shear-stress regions in the passages. The flow distributions are found to be similar with those measured by Yu et al. Through-flow characteristics are found in the impeller when the passages open to the biggest volute space. The flow fields in the blade channels of the impeller were found to be axis symmetrical due to the double volute design with the objective of minimizing the imbalance of the radial thrust when the impeller is magnetically suspended. In addition, the high-intensity vortex which was detected by Yu et al. at the discharge channel of the pump is effectively reduced when the end of the splitter plate is modified by increasing the taper ratio from 4 to 20. The new design would reduce the hemolysis of blood due to the high shear rate of the vortex. PMID:18471167

  6. Temperature dependence of critical shear stress of monocrystals of Kh18N15 metastable alloy with low energy of stacking faults

    International Nuclear Information System (INIS)

    A study was made on temperature dependence of tau0 critical shear stress of monocrystals of Kh18n15 metastable alloy in 1.8-300 K range. For crystals of certain orientations to tau0(T) dependence in 150-70 K range a plateau was observed. It was determined that occurance of plateau on tau0(T) dependence is related to epsilon-phase formation during loading, disappearing during crystal warming up to room temperature. Revealed sharp growth of tau0 values below 60 K, which is not typical of Fcc crystals is probably related to delaying #betta→#epsilon-transformation and change of austenite magnetic structure in this temperature range

  7. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    Science.gov (United States)

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment. PMID:19453112

  8. Solids distribution in current above stationary bed in slurry pipe

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    Wroclaw : Zeszyty Naukowe Akademii Rolniczej ve Wroclawiu, 2006 - (Gochitashvili, T.; Sobota, J.), s. 195-202 ISBN 83-60574-00-6. ISSN 0867-7964. [13th International Conference on Transport and Sedimentation of Solid Particles. Tbilisi (GE), 18.09.2006-20.09.2006] R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : sheet flow * particle dispersion * suspension * concentration profile * bed shear stress Subject RIV: BK - Fluid Dynamics

  9. Monotonic direct simple shear tests on sand under multidirectional loading

    OpenAIRE

    Li, Yao; Yang, Yunming; Yu, Hai-Sui; Roberts, Gethin Wyn

    2016-01-01

    Stress–strain responses of Leighton Buzzard sand are investigated under bidirectional shear. The tests are conducted by using the variable direction dynamic cyclic simple shear (VDDCSS), which is manufactured by Global Digital Systems (GDS) Instruments Ltd., U.K. Soil samples are anisotropically consolidated under a vertical normal stress and horizontal shear stress and then sheared in undrained conditions by applying a horizontal shear stress acting along a different direction from the conso...

  10. Strength regain in soil aggregate beds by swelling and shrinkage

    Directory of Open Access Journals (Sweden)

    R. Horn

    2006-06-01

    Full Text Available Strength regain in aggregate beds as a consequence of wetting and drying cycles was studied in two Andisols and one Mollisol from Chile, collected at two depths (0-10 and 40-60 cm. In the Mollisol, wetting and drying cycles promoted an increase of mechanical parameters (cohesion and precompression stress value, associated with increase of bulk density. The Andisols showed the same tendency, but in some coarse aggregate beds the measured values decreased or remained constant. After six cycles of wetting and drying, the restructuring of the aggregate beds from the Mollisol resembled more the measured properties of non-disturbed samples than the identically prepared samples from the Andisols. The change of pore water pressure during mechanical tests depends on the soil development: the Mollisol is sensitive to external load, during compression and shear tests the pore water pressure changed intensely, while in the younger Andisol, irrespective of the stress applied, the pore water pressure did not change significantly. It is possible to find a strength regain in natural aggregate beds, but further investigations are necessary to understand the processes of pore formation and functioning in Andisols and their role in the pore water pressure behaviour.

  11. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  12. Front tracking for shear bands in an antiplane shear model

    International Nuclear Information System (INIS)

    In this paper we describe a numerical algorithm for the study of shear band, formation and growth in two-dimensional antiplane shear. The constitutive model uses a non-associative flow rule. The numerical scheme is based on a Godunov method for updating the velocity, while the stress is updated via integration along particle paths. The scheme is coupled with a front tracking algorithm for careful evolution of the shear bands. The main challenges are the non-hyperbolicity of the shear band formation and growth (front tracking avoids the catastrophic effects of the loss of hyperbolicity in the Godunov-type numerical scheme), the existence of endpoints for the shear band (the tracked front does not separate the computational domain into disconnected regions), and the non-hyperbolic rate of growth of the shear band. We give examples of the success of the algorithm and show convergence tests. 69 refs., 13 figs

  13. Title: Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    Directory of Open Access Journals (Sweden)

    Gian David Greenberg

    2014-01-01

    Full Text Available Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus, a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF protein but not mRNA in the bed nucleus of the stria terminalis (BNST in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc. The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  14. Altered Anxiety-like Behavior and Long-term Potentiation in the Bed Nucleus of the Stria Terminalis in Adult Mice Exposed to Chronic Social Isolation, Unpredictable Stress and Ethanol Beginning in Adolescence

    OpenAIRE

    Conrad, Kelly L; Winder, Danny G.

    2010-01-01

    Alcohol and chronic stress exposure, especially during adolescence, can lead to an increased risk in adulthood of developing alcohol use disorders (AUDs). To date, however, no study has assessed the potential long-term effects of chronic intermittent and unpredictable ethanol (EtOH) exposure in mice chronically stressed beginning in adolescence on brain function and anxiety-like behaviors in adulthood. In particular, alterations in function of the bed nucleus of the stria terminalis (BNST), a...

  15. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  16. Shear instabilities in granular flows.

    Science.gov (United States)

    Goldfarb, David J; Glasser, Benjamin J; Shinbrot, Troy

    2002-01-17

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows. PMID:11797003

  17. Experimental Research on Stress Behavior of Stud Shear Connector in Tower Anchorage Area of Cable-stayed Bridge%斜拉桥锚固区栓钉剪力键力学特性研究

    Institute of Scientific and Technical Information of China (English)

    吴秀发; 张小亭

    2014-01-01

    针对栓钉剪力键用于斜拉桥索塔锚固区连接部位时的应力应变特性,以中部横梁均匀加载为思路,建立局部试验模型,以栓钉剪力键的极限承载力为依据,设计加载方案,通过试验获取栓钉的应变随荷载变化的基本特征,并分析了破坏机理。结果表明:中部加载使模型两侧剪力键受力均匀,设计更为合理;栓钉剪力键的剪应力以加载梁为中心向两侧逐渐降低;高度方向,第7排栓钉受力最大,长度方向,单钉根部受到的剪力最大,应作为控制截面;破坏时,栓钉弯曲变形,根部发生45°剪切破坏,混凝土局部产生裂缝或压碎破坏。%This article mainly studied the stud shear connector for anchorage zone of pylon cable-stayed bridge connecting parts when subject to stress-strain characteristics.Taking central uniform load for ideas established local test model.Loading program was designed which based on the ultimate bearing ca-pacity of stud shear connector.It has acquired the basic characteristics of stud strain with load variation and analyzed the failure mechanism.The results showed that:The model adopts central loaded design is more reasonable because it makes shear connector force uniform on both sides of the model.The shear stress of stud shear connector decreased gradually from the center to both ends of the load beam.In the height direction,the 7th rows of pegs subject the maximum shear stress.In the longitudinal direction,sin-gle nail roots subject the maximum shear stress.It should be used as the control section.When the stud destruction,the stud bending deformation occurs,peg roots shear failure in direction of 45 °,the partial concrete will produce cracks or be crushed.

  18. Flow structure of the solids in a three-dimensional liquid fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Kiared, K.; Chaouki, J. [Ecole Polytechnique de Montreal, Quebec (Canada). Dept. of Chemical Engineering; Larachi, F. [Laval Univ., Quebec (Canada); Cassanello, M. [Univ. de Buenos Aires (Argentina). Dept. Industrias FCEyN

    1997-11-01

    The motion of solids in a cylindrical liquid fluidized bed was experimentally characterized by means of a noninvasive radioactive particle tracking technique (RPT) for two monosized bed inventories, spherical glass beads (3 mm GB, density = 2,500 kg/m{sup 3}) and nonspherical poly-(vinyl chloride) particles (5.5 mm PVC, density = 1,300 kg/m{sup 3}). RPT-monitoring of a single radioactive solid tracer mimicking faithfully the characteristics of the solids revealed the detailed solids flow features by determining the tracer instantaneous 3-D Lagrangian trajectory and then its local instantaneous velocities. Transverse solids dispersion coefficients were an order of magnitude lower than their axial counterpart. Time, longitudinal, and circumferential averaging of local velocities in the fully developed region of the fluidized bed revealed a weak gulf streaming characterized by axial velocities positive (respectively negative) in the core and negative (respectively positive) near the vessel walls for the GBs (respectively for the PVCs). The measured mean circumferential ensemble-averaged radial velocity was essentially zero in the fully developed region. The solids flow turbulence field was anisotropic, but the less dense the particles, the closer to isotropy was the solids flow. Computed shear stress profiles showed that PVC particles exhibited a higher shear stress than GB particles. The dynamic solids flow structure inside a 3-D liquid fluidized bed can be viewed as a core-annulus structure with axially-dispersed plug-flow and radial dispersion in each of the upward and downward zones.

  19. Development and stability of bed forms: a numerical analysis of dune pattern coarsening and giant dunes

    Science.gov (United States)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2015-04-01

    We investigate the development and stability of transverse dunes for ranges of flow depths and velocities using a cellular automaton dune model. Subsequent to the initial bed instability, dune pattern coarsening is driven by bed form interactions. Collisions lead to two types of coalescence associated with upstream or downstream dominant dunes. In addition, a single collision-ejection mechanism enhances the exchange of mass between two consecutive bed forms (through-passing dunes). The power-law increases in wavelength and amplitude exhibit the same exponents, which are independent of flow properties. Contrary to the wavelength, dune height is not only limited by flow depth but also by the strength of the flow. Superimposed bedforms may propagate and continuously destabilize the largest dunes. Then, we identify three classes of steady-state transverse dune fields according to the periodicity in crest-to-crest spacing and the mechanism of size limitation. In all cases, the steady state is reached when the bed shear stress in the dune trough regions is close to its critical value for motion inception. Such a critical shear stress value is reached and maintained through the dynamic equilibrium between flow strength and dune aspect ratio. Comparisons with natural dune fields show that many of them may have reached such a steady state. Finally, we infer that the sedimentary patterns in the model may be used to bring new constraints on the stability of modern and ancient dune fields.

  20. Comparison between Doppler echocardiography and hot-film anemometry in measuring the turbulent shear stress downstream of artificial mitral valves: a methodological study

    Institute of Scientific and Technical Information of China (English)

    SUN Yi; LI Rui-jie; LI Gan-niu; LI Bin; WANG Yu; MA Run-wei; YANG Bai-hui

    2013-01-01

    Background Turbulent shear stress (TSS) plays an important role in the research of fluid dynamics of heart valves.This study aimed to perform a quantitative study of TSS downstream of porcine artificial mitral valves in order to verify the correlation of hot-film anemometry (HFA) and Doppler echocardiography combined with computer-aided image analysis for the detection of TSS.Methods A porcine model of mitral valve replacement was established.HFA and Doppler ultrasound techniques were used to directly and indirectly measure TSS-relevant parameters of the artificial mitral valve following different mitral valve replacements:different approaches were used to reserve the subvalvular apparatus of the mitral valve.A correlation analysis was then carried out.Results There was a significant correlation between the HFA and Doppler ultrasound combined with computer-aided image analysis of the TSS at the same time and at the same site.No significant difference was found in the TSS measured by the two methods.Conclusions Compared with HFA,Doppler echocardiography combined with computer-aided image analysis is a safe,non-invasive,and real-time method that enables accurate and quantitative detection of TSS downstream in vivo,objectively reflecting the flow field downstream of the artificial mitral valve.Doppler ultrasound combined with computeraided image analysis can be employed for quantitatively evaluating the downstream hemodynamic performance of the mitral valve.

  1. Evaluation of the effect of expansion and shear stress on a self-assembled endothelium mimicking nanomatrix coating for drug eluting stents in vitro and in vivo

    International Nuclear Information System (INIS)

    Coating stability is increasingly recognized as a concern impacting the long-term effectiveness of drug eluting stents (DES). In particular, unstable coatings have been brought into focus by a recently published report (Denardo et al 2012 J. Am. Med. Assoc. 307 2148–50). Towards the goal of overcoming current challenges of DES performance, we have developed an endothelium mimicking nanomatrix coating composed of peptide amphiphiles that promote endothelialization, but limit smooth muscle cell proliferation and platelet adhesion. Here, we report a novel water evaporation based method to uniformly coat the endothelium mimicking nanomatrix onto stents using a rotational coating technique, thereby eliminating residual chemicals and organic solvents, and allowing easy application to even bioabsorbable stents. Furthermore, the stability of the endothelium mimicking nanomatrix was analyzed after force experienced during expansion and shear stress under simulated physiological conditions. Results demonstrate uniformity and structural integrity of the nanomatrix coating. Preliminary animal studies in a rabbit model showed no flaking or peeling, and limited neointimal formation or restenosis. Therefore, it has the potential to improve the clinical performance of DES by providing multifunctional endothelium mimicking characteristics with structural integrity on stent surfaces. (paper)

  2. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    Science.gov (United States)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  3. Periodic Exponential Shear of Complex Fluids

    OpenAIRE

    Kalelkar, Chirag; McKinley, Gareth

    2012-01-01

    We define a class of flows with exponential kinematics termed Periodic Exponential Shear (PES) flow which involve periodic exponential stretching of fluid elements along with their rotation. We exhibit analytical and numerical results for PES flow by using the Oldroyd-B model for viscoelastic fluids. We calculate the growth in the shear and the normal stresses analytically as well as demonstrate that repeated application of the flow leads to stable oscillatory shear and normal stresses. We de...

  4. Bed slope effects on turbulent wave boundary layers: 2. Comparison with skewness, asymmetry, and other effects

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    contributions believed to play a prominent role in cross-shore boundary layer and sediment transport processes: (1) converging-diverging effects from bed slope, (2) wave skewness, (3) wave asymmetry, and (4) waves combined with superposed negative currents (intended to loosely represent, for example, return...... currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...

  5. Dynamic Theory of Die Swell for Entangled Polymeric Liquids in Tube Extrusion: Correlations of Total and Ultimate Extrudate Swell Effects to Growth Time,Shear Stress and Aspect Ratio Under the Free States

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Ming-shi Song; Chang-wei Zhu; Gui-xian Hu; Ke-jian Wang; Da-ming Wu

    2008-01-01

    The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids(HDPE and PBD) in a simple shear flow at steady shear stress.The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the flee recovery and dynamic states.It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages(instantaneous,delayed,and ultimate extrudate swelling stages).The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress.The correlations of instantaneous,delayed,total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell.Also,two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect(UESE) were deduced.The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states;the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables.The second equation was verified by experimental data of HDPE at two temperatures and different operational variables.An excellent agreement result was obtained.The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time,the molecular parameters,and the operational variables under the dynamic and equilibrium states.

  6. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.; Schieber, Jay D.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data, and...... suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively by...

  7. Grafted polymer under shear flow

    Science.gov (United States)

    Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay

    2016-04-01

    A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.

  8. Dynamics and mechanics of bed-load tracer particles

    Science.gov (United States)

    Phillips, C. B.; Jerolmack, D. J.

    2014-12-01

    Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve - despite more than an order of magnitude difference in channel slope - when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  9. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.; Schieber, Jay D.

    2000-01-01

    suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively by......A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data, and...... stressmeasurements taken during inception of steady shear. Information taken from the model about chain stretching suggests thatnormal stress measurements are strong indications of stretching, whereas shear stress measurements are indicative of bothchain stretching and segment orientation....

  10. A dynamic jamming point for shear thickening suspensions

    Science.gov (United States)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  11. Activation of β–catenin Signaling in MLO-Y4 Osteocytic Cells versus 2T3 Osteoblastic Cells by Fluid Flow Shear Stress and PGE2: Implications for the Study of Mechanosensation in Bone

    OpenAIRE

    Kamel, Mohamed A; Picconi, Jason L; Lara-Castillo, Nuria; Johnson, Mark L.

    2010-01-01

    The osteocyte is hypothesized to be the mechanosensory cell in bone. However, osteoblastic cell models have been most commonly used to investigate mechanisms of mechanosensation in bone. Therefore, we sought to determine if differences might exist between osteocytic and osteoblastic cell models relative to the activation of β-catenin signaling in MLO-Y4 osteocytic, 2T3 osteoblastic and primary neonatal calvarial cells (NCCs) in response to pulsatile fluid flow shear stress (PFFSS). β–catenin ...

  12. Transcriptional and Physiological Characterizations of Escherichia coli MG1655 that have been grown under Low Shear Stress Environment for 1000 Generations

    Science.gov (United States)

    Karouia, Fathi; Tirumalai, Madhan R.; Nelman-Gonzalez, Mayra A.; Sams, Clarence F.; Ott, Mark C.; Pierson, Duane L.; Fofanov, Yuriy; Willson, Richard C.; Fox, George E.

    Human space travelers experience a unique environment that affects homeostasis and physio-logic adaptation. One of the important regulatory biology interactions affected by space flight is the alteration of the immune response. As such, the impairment of the immune system may lead to higher risk of bacterial and/or viral infection during human space flight missions. Mi-crobiological contaminants have been a source of concern over the years for NASA and there is evidence to suggest that microbes in space do not behave like they do on Earth. Previ-ous studies have examined the physiological response of bacteria when exposed to short-term microgravity either during spaceflight or in a Low Shear Modeled Microgravity (LSMMG) en-vironment. Exposure to these environments has been found to induce increased resistance to stresses and antibiotics, and in one case increase of virulence. As NASA increases the duration of space flight missions and is starting to envision human presence on the lunar surface and Mars, it becomes legitimate to question the long-term effects of microgravity on bacteria. The effect of long-term exposure to LSMMG on microbial gene expression and physiology in Escherichia coli (E. coli) is being examined using functional genomics, and molecular tech-niques. In previous E. coli short term studies, reproducible changes in transcription were seen but no direct responses to changes in the gravity vector were identified. Instead, absence of shear and a randomized gravity vector appeared to cause local extra-cellular environmental changes, which elicited cellular responses. In order to evaluate the long-term effects of micro-gravity on bacteria, E. coli was grown under simulated microgravity for 1000 generations and gene expression patterns and cellular physiology were analyzed in comparison with short-term exposure. The analysis revealed that the long-term response differed significantly from the short-term exposure and 357 genes were expressed

  13. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  14. Mitogen-activated Protein Kinase (MAPK) Activated by Prostaglandin E2 Phosphorylates Connexin 43 and Closes Osteocytic Hemichannels in Response to Continuous Flow Shear Stress.

    Science.gov (United States)

    Riquelme, Manuel A; Burra, Sirisha; Kar, Rekha; Lampe, Paul D; Jiang, Jean X

    2015-11-20

    Cx43 hemichannels serve as a portal for the release of prostaglandins, a critical process in mediating biological responses of mechanical loading on bone formation and remodeling. We have previously observed that fluid flow shear stress (FFSS) opens hemichannels; however, sustained FFSS results in hemichannel closure, as continuous opening of hemichannels is detrimental to cell viability and bone remodeling. However, the mechanism that regulates the closure of the hemichannels is unknown. Here, we show that activation of p44/42 ERK upon continuous FFSS leads to Cx43 phosphorylation at Ser(279)-Ser(282), sites known to be phosphorylated sites by p44/42 MAPK. Incubation of osteocytic MLO-Y4 cells with conditioned media (CM) collected after continuous FFSS increased MAPK-dependent phosphorylation of Cx43. CM treatment inhibited hemichannel opening and this inhibition was reversed when cells were pretreated with the MAPK pathway inhibitor. We found that prostaglandin E2 (PGE2) accumulates in the CM in a time-dependent manner. Treatment with PGE2 increased phospho-p44/42 ERK levels and also Cx43 phosphorylation at Ser(279)-Ser(282) sites. Depletion of PGE2 from CM, and pre-treatment with a p44/42 ERK pathway-specific inhibitor, resulted in a complete inhibition of ERK-dependent Cx43 phosphorylation and attenuated the inhibition of hemichannels by CM and PGE2. Consistently, the opening of hemichannels by FFSS was blocked by PGE2 and CM and this blockage was reversed by U0126 and the CM depleted of PGE2. A similar observation was also obtained in isolated primary osteocytes. Together, results from this study suggest that extracellular PGE2 accumulated after continuous FFSS is responsible for activation of p44/42 ERK signaling and subsequently, direct Cx43 phosphorylation by activated ERK leads to hemichannel closure. PMID:26442583

  15. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  16. Long-time behavior of sand ripples induced by water shear flow.

    Science.gov (United States)

    Betat, A; Kruelle, C A; Frette, V; Rehberg, I

    2002-08-01

    The formation of sand ripples under water shear flow in a narrow annular channel and the approach of the ripple pattern towards a steady state were studied experimentally. Four results are obtained: i) The mean amplitude, the average drift velocity and the mean sediment transport rate of the evolving bed shape are strongly related. A quantitative characterization of this relation is given. ii) The ripple pattern reaches a stationary state with a finite ripple amplitude and wavelength. The time needed to reach the state depends on the shear stress and may be several days. iii) The onset of ripple formation is determined by the bed shear stress, but it seems neither to depend on the grain diameter nor on the depth of the water layer. iv) The ripple amplitude, drift velocity and sediment transport in this stationary state depend on the grain size. This dependency is neither captured by the particle Reynolds number nor by the Shields parameter: an empirical scaling law is presented instead. PMID:15015119

  17. Transient dynamics in dense colloidal suspensions under shear: shear rate dependence

    International Nuclear Information System (INIS)

    A combination of confocal microscopy and rheology experiments, Brownian dynamics (BD) and molecular dynamics (MD) simulations and mode coupling theory (MCT) have been applied in order to investigate the effect of shear rate on the transient dynamics and stress-strain relations in supercooled and glassy systems under shear. Immediately after shear is switched on, the microscopic dynamics display super-diffusion and the macroscopic rheology a stress overshoot, which become more pronounced with increasing shear rate. MCT relates both to negative sections of the generalized shear modulus, which grow with increasing shear rate. When the inverse shear rate becomes much smaller than the structural relaxation time of the quiescent system, relaxation through Brownian motion becomes less important. In this regime, larger stresses are accumulated before the system yields and the transition from localization to flow occurs earlier and more abruptly.

  18. Sheared solid materials

    Indian Academy of Sciences (India)

    Akira Onuki; Akira Furukawa; Akihiko Minami

    2005-05-01

    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  19. Erodibilidade e tensão crítica de cisalhamento em solos de estradas não pavimentadas Erodibility and critical shear stress on unpaved road soils

    Directory of Open Access Journals (Sweden)

    João F. de Oliveira

    2009-12-01

    Full Text Available A falta de um sistema adequado para drenagem de águas pluviais em estradas não pavimentadas é um dos principais fatores que causam a sua degradação e, para que referidos sistemas possam ser adequadamente planejados e dimensionados é necessário o conhecimento de parâmetros de resistência dos solos. Com este trabalho se teve, por objetivo, determinar a erodibilidade e a tensão crítica de cisalhamento para diferentes solos de estradas não pavimentadas. Utilizou-se um simulador de escoamento superficial instalado diretamente nos canais das estradas, sob condição natural e se determinou a perda de solo para diferentes lâminas de escoamento. A erodibilidade e a tensão crítica de cisalhamento foram determinadas por meio do ajuste de curvas relacionando-se a perda de solo em função da tensão cisalhante provocada pelo escoamento. Os resultados alcançados mostraram variações nos valores de erodibilidade e de tensão crítica de cisalhamento das estradas avaliadas. Os valores de erodibilidade encontrados mostraram, quando comparados com valores observados na literatura, elevada suscetibilidade à erosão para as condições de estradas, sendo mais elevados nos solos de textura mais arenosa e siltosa. Os valores de tensão crítica se mostraram bastante próximos aos observados em outros trabalhos.The absence of an adequate drainage system in unpaved roads is one of the main factors for their degradation. For adequate planning knowledge of the resistance parameters of soil is necessary. This study had as its objective the determinatiom of the erodibility and critical shear stress of unpaved road soils. For this work, a runoff simulator was directly installed on road channels, under natural conditions. Different flow depths were applied and the soil loss was measured for each depth. The erodibility and the critical shear stress were determined through adjusted curves relating soil disaggregation and flow shear stress. The results

  20. Shear Behavior of Reinforced Concrete Shear Walls under Tensile Axial Force with Eccentricity

    OpenAIRE

    MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; KUCHIJI, Hideki

    2000-01-01

    A lateral loading test of six reinforced concrete shear walls subjected to an eccentric tensile axial force was carried out to examine their shear behavior. Next facts ware confirmed on the shear strength of the walls subjected to an eccentric tensile axial force. The test results can be evaluat by the shear strength equation [2] considering axial tensile stress. The calculated values given by the (AIJ "Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelasti...

  1. Coupling channel evolution monitoring and RFID tracking in a large, wandering, gravel-bed river: Insights into sediment routing on geomorphic continuity through a riffle-pool sequence

    Science.gov (United States)

    Chapuis, Margot; Dufour, Simon; Provansal, Mireille; Couvert, Bernard; de Linares, Matthieu

    2015-02-01

    Bedload transport and bedform mobility in large gravel-bed rivers are not easily monitored, especially during floods. Large reaches present difficulties in bed access during flows for flow measurements. Because of these logistical issues, the current knowledge about bedload transport processes and bedform mobility lacks field-based information, while this missing information would precisely match river management needs. The lack of information linking channel evolution and particle displacements is even more striking in wandering reaches. The Durance River is a large, wandering, gravel-bed river (catchment area: 14,280 km2; mean width: 240 m), located in the southern French Alps and highly impacted by flow diversion and gravel mining. In order to improve current understanding of the link between sediment transport processes and river bed morphodynamics, we set up a sediment particle survey in the channel using Radio Frequency Identification (RFID) tracking and topographic surveys (GPS RTK and scour chains) for a 4-year recurrence interval flood. By combining topographic changes before and after a flood, intraflood erosion/deposition patterns from scour chains, differential routing of tracer particles, and spatial distribution of bed shear stress through a complex reach, this paper aims to define the critical shear stress for significant sediment mobility in this setting. Gravel tracking highlights displacement patterns in agreement with bar downstream migration and transport of particles across the riffle within this single flood event. Because no velocity measurements were possible during flood, a TELEMAC three-dimensional model helped interpret particle displacements by estimating spatial distribution of shear stresses and flow directions at peak flow. Although RFID tracking in a large, wandering, gravel-bed river does have some technical limitations (burial, recovery process time-consuming), it provides useful information on sediment routing through a riffle

  2. Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress

    OpenAIRE

    Hammack, Sayamwong E.; Roman, Carolyn W.; Lezak, Kimberly R.; Kocho-Shellenberg, Margaret; Grimmig, Bethany; Falls, William A; Braas, Karen; May, Victor

    2010-01-01

    Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucle...

  3. U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....

  4. Inherent Shear-Dilatation Coexistence in Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JIANG Min-Qiang; JIANG Si-Yue; DAI Lan-Hong

    2009-01-01

    Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003) 449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

  5. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low shear stress: implications for rheology and transport properties

    Science.gov (United States)

    Desbois, G.; Urai, J. L.; De Bresser, J. H. P.

    2012-04-01

    We used a combination of broad ion beam (BIB) cross-sectioning and high resolution (cryogenic) SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary (GB) microstructures and fluid distribution in naturally deformed halite from a salt glacier (Kum Quh, central Iran). At the scale of observations, four types of fluid or gas filled grain boundaries can be distinguished: (1) straight boundaries with thick (up to 10 µm) GB tubes (2) straight boundaries with narrow (about 50 nm) GB tubes (3) wavy (tens of µm wavelength) GB with isolated inclusions of a few µm, and (4) wavy (µm wavelength) GB with small (µm) isolated inclusions. Grain boundary fluid inclusions can have three types of morphologies: the inclusion of Type 1 is intruded completely in one grain, inclusion of Type 2 has its major part included in one grain with a minor part in the second grain and the inclusion of Type 3 is located in both grains. Solid second phases in GB are mainly euhedral anhydrite crystals. The mobility of the brine is shown after cutting the inclusions by BIB in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, in-situ brine is seen as continuous film in GB of type (1) and (2), and in isolated inclusions in GB of type (3) and (4). The structure of halite-halite contact between isolated fluid inclusions in GB of type (3) and (4) is below the resolution of SEM. GB of type (3) and (4) are interpreted to have formed by healing of mobile fluid films. First results of deformation experiments on the same samples under shear stress corresponding to conditions of natural salt glacier, show very low strain rates (7.43x10-10 s-1 and 1x10-9 s-1), up to one order of magnitude below of expected strain rates by solution precipitation creep. Both microstructures and deformation experiments suggest interfacial energy-driven GB healing, in agreement with the

  6. Wave-Current Interactions in the Vicinity of the Sea Bed

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lars Erik

    2002-01-01

    The intention of the work carried out in the present thesis is to span a part of the range of sea bed boundary layer research by three separate parts. The two first parts deal with the sea bed boundary layer beneath random waves and current, while the third part represents a more fundamental approach towards the smooth turbulent boundary layer under a horizontally uniform sinusoidal plus steady forcing. The first part focuses on the bottom shear stress amplitudes under random waves plus current. Shear stresses on a rough seabed under irregular waves plus current are calculated. Parameterized models valid for regular waves plus current have been used in Monte Carlo simulations, assuming the wave amplitudes to be Rayleigh distributed. Numerical estimates of the probability distribution functions are presented. For waves only, the shear stress maxima follow a two-parameter Weibull distribution, while for waves plus current, both the maximum and time-averaged shear stresses are well represented by a three-parameter Weibull distribution. The behaviour of the maximum shear stresses under a wide range of wave-current conditions has been investigated, and it appears that under certain conditions the current has a significant influence on the maximum shear stresses. Results of comparison between predictions and measurements of the maximum bottom shear stresses from laboratory and field experiments are presented. The second part extends the first approach by applying a dynamic eddy viscosity model; the boundary layer under random waves alone as well as under random waves plus current have been examined by a dynamic turbulent boundary layer model based on the linearized boundary layer equations with horizontally uniform forcing. The turbulence closure is provided by a high Reynolds number k - {epsilon} model. The model appears to be verified as far as data exists, i.e., for sinusoidal waves alone as well as for sinusoidal waves plus a mean current. The time and space

  7. Undrained shear strength determination of structured clays based on effective consolidation stress method%基于有效固结应力法确定结构性黏性土不排水抗剪强度

    Institute of Scientific and Technical Information of China (English)

    曹宇春; 杨建辉

    2013-01-01

    由于结构性的存在使得很多天然黏性土的强度和变形特性不同于重塑土和非结构性土。首先回顾了适用于确定重塑土和非结构性土不排水抗剪强度的有效固结应力法,并推导了相应的方程。在此基础上,对于结构性黏性土,采用两段不同斜率(内摩擦角正切)和截距(黏聚力)的直线模拟其抗剪强度包络线,建立了确定其不排水抗剪强度的有效固结应力法方程;当有效应力小于结构屈服应力时,有效固结应力方程中有效应力部分需乘以0.8的修正系数;只要已知剪切前的有效应力,利用相应的有效固结应力法公式,可确定结构性土体的不排水抗剪强度。利用连云港结构性软黏土的等压固结三轴试验数据,验证了有效固结应力法的适用性。分析表明:对于连云港软黏土的不排水抗剪强度,有效固结应力法的计算结果与试验结果吻合较好;对于结构屈服应力,有效固结应力法的预测结果与试验数据点的拟合结果有一定偏差,但并不明显。%The behaviors of strength and deformation of natural soils differ from that of remolded and unstructured soils due to structural property. The effective consolidation stress method for the undrained shear strength evaluation of remolded and unstructured soils is reviewed and the corresponding equations are derived. The equations of the method for the undrained shear strength evaluation of structured clays are hereafter established in terms of the strength envelopes simulated by two segment lines with different slopes (tangents of internal friction angles) and intercepts (cohesions). The component of effective stress in the equation of effective consolidation stress method should be multiplied by a revised coefficient of 0.8 for the effective stress range less than the yielding stress. The undrained shear strengths of structured soils can be then determined if the

  8. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts

    Directory of Open Access Journals (Sweden)

    Poulikakos Dimos

    2007-09-01

    Full Text Available Abstract Purpose Coronary artery bypass graft (CABG surgery represents the standard treatment of advanced coronary artery disease. Two major types of anastomosis exist to connect the graft to the coronary artery, i.e., by using an end-to-side or a side-to-side anastomosis. There is still controversy because of the differences in the patency rates of the two types of anastomosis. The purpose of this paper is to non-invasively quantify hemodynamic parameters, such as mass flow and wall shear stress (WSS, in end-to-side and side-to-side anastomoses of patients with CABG using computational fluid dynamics (CFD. Methods One patient with saphenous CABG and end-to-side anastomosis and one patient with saphenous CABG and side-to-side anastomosis underwent 16-detector row computed tomography (CT. Geometric models of coronary arteries and bypasses were reconstructed for CFD analysis. Blood flow was considered pulsatile, laminar, incompressible and Newtonian. Peri-anastomotic mass flow and WSS were quantified and flow patterns visualized. Results CFD analysis based on in-vivo CT coronary angiography data was feasible in both patients. For both types of CABG, flow patterns were characterized by a retrograde flow into the native coronary artery. WSS variations were found in both anastomoses types, with highest WSS values at the heel and lowest WSS values at the floor of the end-to-side anastomosis. In contrast, the highest WSS values of the side-to-side anastomosis configuration were found in stenotic vessel segments and not in the close vicinity of the anastomosis. Flow stagnation zones were found in end-to-side but not in side-to-side anastomosis, the latter also demonstrating a smoother stream division throughout the cardiac cycle. Conclusion CFD analysis of venous CABG based on in-vivo CT datasets in patients was feasible producing qualitative and quantitative information on mass flow and WSS. Differences were found between the two types of anastomosis

  9. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall.

    Directory of Open Access Journals (Sweden)

    Dalit Shav

    Full Text Available Vascular functions are affected by wall shear stresses (WSS applied on the endothelial cells (EC, as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC. The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm(2 for 30 min increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm(2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm(2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.

  10. Intense transport of bed load - modeling based on experimentally observed flow structure

    Science.gov (United States)

    Matoušek, Václav

    2016-04-01

    A modeling approach is discussed which enables to predict characteristics of steady uniform open-channel flow carrying a large amount of sediment (bed load). The approach considers a layered structure of the sediment-laden flow and employs conditions at layer interfaces to evaluate the flow slope, depth, the thickness of the layers and flow rates of both the sediment and sediment-water mixture. It is based on experimental observations obtained for lightweight granular materials in a laboratory tilting flume. Besides visual observations of a development of the layered structure of the flow, detailed profiles of the longitudinal velocity were collected together with integral characteristics of the flow (depths and slopes, flow rates) in the flume. Values of the grain velocity and concentration at the interfaces were determined from the measurements and observations. In the upper plane bed regime of bed load transport, the flow structure appears to be composed of up to three distinct layers (water layer, linear collisional layer and dense sliding layer). Depending on a value of the bed Shields parameter (and associated flow conditions) the number of layers may change and the thicknesses of the particular layers vary. It appears that collisional layers in flows in which they dominate the flow depth (typically Shields bigger than 1) exhibit a virtually constant value of the collisional-layer Richardson number. Velocity and concentration profiles across the collisional layer can be considered linear. At the bottom of the flow, the Coulomb yield criterion with the assumption of the zero fluid contribution balances the bed shear stress applied by the flowing mixture of water and sediment. These features are employed in the discussed modeling approach and lead to a depth-averaged flow model composed of a set of balance and constitutive equations. A kinetic-theory based formula for granular shear stress at the bottom of the collisional layer is added to close the set of

  11. Hysteresis and Lubrication in Shear Thickening of Cornstarch Suspensions

    OpenAIRE

    Chu, Clarence E.; Groman, Joel A.; Sieber, Hannah L.; Miller, James G.; Okamoto, Ruth J.; Katz, Jonathan I.

    2014-01-01

    Aqueous and brine suspensions of corn starch show striking discontinuous shear thickening. We have found that a suspension shear-thickened throughout may remain in the jammed thickened state as the strain rate is reduced, but an unjamming front may propagate from any unjammed regions. Transient shear thickening is observed at strain rates below the thickening threshold, and above it the stress fluctuates. The jammed shear-thickened state may persist to low strain rates, with stresses resembli...

  12. Shear banding in mesoscopic dusty plasma liquids

    International Nuclear Information System (INIS)

    We experimentally demonstrate shear banding and construct a microscopic dynamic picture of a sheared 2D mesoscopic dust Coulomb liquid at the kinetic level. Under the topological constraints from the discreteness and finite boundary, the nonlinear threshold-type response of motion to the local stress induced by thermal and external drives leads to shear thinning and the enhanced avalanche-type local topological transitions with stress relaxation in the form of clusters. It causes the formation of the outer shear bands in which the mean shear rate, the velocity fluctuations, and the structural rearrangement rate are all enhanced, and leaves a weakly perturbed center band. The typical size of the cooperative hopping vortex (about three interparticle distance) sets up a common length scale for the widths of the confinement induced layering and the shear band

  13. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests%动力离心模型试验循环剪应力-剪应变反演方法对比

    Institute of Scientific and Technical Information of China (English)

    王永志; Daniel W Wilson; Mohammad Khosravi; 袁晓铭; C Guney Olgum

    2016-01-01

    介绍了基于加速度阵列建立的3种循环剪应力–剪应变反演方法,分析了应用条件和影响因素。基于一组软黏土场地加固动力离心模型试验,探讨了试验加速度记录反演位移的信号处理方法,与多状态下实测位移对比,验证了有效性与可靠性。运用3种反演方法分别求取了两次试验、多种波激励下,自由场地和加固场地内土体剪应力–剪应变动态响应过程。结果表明,在传感器布设间距和采样率满足应用条件下,3种反演方法可获得基本一致结果并反映基本规律,上层土体剪应力小、剪应变大,土体剪切模量与围压密切联系;自由场地剪应变远大于加固场地,并因土体软化呈现强非线性。3种方法对比,三次样条法反演结果准确性对传感器布设间距和采样率较为敏感。%Evaluation of shear stress-strain characteristics in soils is paramount to the fundamental understanding of soil behavior in dynamic centrifuge tests. Three inverse analysis techniques for evaluating cyclic shear stress-strain response using data from accelerometer arrays are introduced and key factors that require consideration in the applied condition are discussed. Using a series of dynamic centrifuge tests on soft soil sites with stiff ground reinforcement, the data process for back-calculated displacements from acceleration records is presented. The back calculated displacements are compared to the recorded displacements in several cases with excellent agreements. The three inverse analysis techniques are used to estimate the dynamic shear stress-strain responses in the free field and with in the reinforced ground in two centrifuge tests with different shaking motions of varying magnitudes. The results demonstrate that as long as accelerometer spacing and sampling frequency are sufficient to the active mechanics, the calculated shear stress-strain responses from three inverse techniques are

  14. Changes in Bedform Shape at the Transition Between Upper Plane-Bed and Sheet-Flow Bedload Transport Regimes

    Science.gov (United States)

    Hernandez Moreira, R. R.; Huffman, B.; Vautin, D.; Viparelli, E.

    2015-12-01

    The interactions between flow hydrodynamics and bedform characteristics at the transition between upper plane-bed bedload transport regime and sheet-flow have not yet been thoroughly described and still remain poorly understood. The present study focuses on the experimental study of this transition in open channel mode. The experiments were performed in the hydraulic laboratory of the Department of Civil and Environmental Engineering of the University of South Carolina in a sediment-feed flume, 9-m long by 19-cm wide with uniform material sediment of geometric mean grain size diameter of 1.11 mm. Sediment feed rates ranged between 0.5 kg/min and 20 kg/min with two different flow rates of 20 l/s and 30 l/s. We recorded periodic measurements of water surface and bed elevation to estimate the global flow parameters, e.g. mean flow velocity and bed shear stress, and to determine when the flow and the sediment transport reached conditions of mobile bed equilibrium. We define mobile bed equilibrium as a condition in which the mean bed elevation does not change in time. At equilibrium, measurements of bed elevation fluctuations were taken with an ultrasonic transducer system at six discrete locations. In the runs with low and medium feed rates, i.e. smaller than ~12 kg/min, the long wavelength and small amplitude bedforms typical of the upper plane bed regime, which were observed in previous experimental work, formed and migrated downstream. In particular, with increasing feed rates, the amplitude of the bedforms decreases and their geometry changes, from well-defined triangular shapes, to rounded shapes to flat bed with very small amplitude, long wavelength undulations. The decrease in amplitude corresponds to a decrease in form drag and an increase in the thickness of the bedload layer. The ultrasonic measurements are analyzed to statistically describe the observed transition in terms of probability distribution functions of the bed elevation fluctuations.

  15. Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments

    Science.gov (United States)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2016-04-01

    Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.

  16. Geomorphological implications of engineering bed sediments by lotic animals

    Science.gov (United States)

    Statzner, Bernhard

    2012-07-01

    Recent developments in zoogeomorphology in combination with the increasing interest of ecologists in ecosystem engineering by organisms initiated considerable research on the impact of running water (i.e., lotic) animals (and other organisms) on fluvial bed sediments and the transport of solids. This research provided multiple evidence from field and laboratory observations and experiments that many species among mammals, amphibians, fish, insects, crustaceans, mollusks, and worms engineer bed sediments of running waters with diverse mechanistic "tools", thereby perturbing or consolidating the sediments in many types of running waters across continents, seasons, habitat types, particle sizes, and discharge levels (baseflow vs. flood). Furthermore, many animals modify the bed-sediment engineering by plants (algae, larger macrophytes, riparian vegetation). Modeling effects of bioturbating lotic animals across species and relatively simple environmental conditions (in mesocosms) provided highly significant results (P-range: interact non-linearly in a patchy pattern in small parts of real river beds, where baseflow bed-sediment engineering by lotic animals prevents or fosters mass erosion during subsequent floods. Despite these complications, these problems must be solved, as bioturbators such as crayfish and bioconsolidators such as silk-spinning caddisflies may locally modify (i) rates of transport of fluvial sediments over three orders of magnitude and (ii) frequencies of mass transport events over five orders of magnitude. The fastest way to identify promising subsequent research routes in this field would be through a variety of abundance manipulations of lotic organisms (animals and plants having different mechanistic sediment-engineering abilities) in real rivers in combination with a simple approach to assess the critical shear stress in situ for varying types of sediments. This would require joint research by fluvial geomorphologists, hydrologists, and

  17. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  18. Bed forms created by simulated waves and currents in a large flume

    Science.gov (United States)

    Lacy, Jessica R.; Rubin, David M.; Ikeda, Hiroshi; Mokudai, Kuniyasu; Hanes, Daniel M.

    2007-01-01

    The morphology and evolution of bed forms created by combinations of waves and currents were investigated using an oscillating plate in a 4-m-wide flume. Current speed ranged from 0 to 30 cm/s, maximum oscillatory velocity ranged from 20 to 48 cm/s, oscillation period was 8 s (except for one run with 12 s period), and the median grain size was 0.27 mm. The angle between oscillations and current was 90°, 60°, or 45°. At the end of each run the sand bed was photographed and ripple dimensions were measured. Ripple wavelength was also determined from sonar images collected throughout the runs. Increasing the ratio of current to wave (i.e., oscillatory) velocity decreased ripple height and wavelength, in part because of the increased fluid excursion during the wave period. Increasing the ratio of current to waves, or decreasing the angle between current and waves, increased the three-dimensionality of bed forms. During the runs, ripple wavelength increased by a factor of about 2. The average number of wave periods for evolution of ripple wavelength to 90% of its final value was 184 for two-dimensional ripples starting from a flat bed. Bed form orientations at the end of each run were compared to four potential controlling factors: the directions of waves, current, maximum instantaneous bed shear stress, and maximum gross bed form normal transport (MGBNT). The directions of waves and of MGBNT were equally good predictors of bed form orientations, and were significantly better than the other two factors.

  19. Probing the shear-band formation in granular media with sound waves

    OpenAIRE

    KHIDAS, Yacine; Jia, X.

    2012-01-01

    We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry ...

  20. Theory and technique of permeability enhancement and coal mine gas extraction by fracture network stimulation of surrounding beds and coal beds

    Directory of Open Access Journals (Sweden)

    Ma Geng

    2014-12-01

    Full Text Available The existing reservoir stimulating technologies are only applicable to hard coal but helpless for soft coal, which is one of the main factors hindering the CBM industrialization in China. Therefore, it is urgent to develop a universal stimulating technology which can increase the permeability in various coal reservoirs. Theoretical analysis and field tests were used to systematically analyze the mechanical mechanisms causing the formation of various levels and types of fractures, such as radial tensile fractures, peripheral tensile fractures, and shear fractures in hydraulic fracturing, and reveal the mechanism of permeability enhancement by fracture network stimulating in surrounding beds and coal reservoirs. The results show that multi-staged perforation fracturing of horizontal wells, hydraulic-jet staged fracturing, four-variation hydraulic fracturing and some auxiliary measures are effective technical approaches to fracture network stimulation, especially the four-variation hydraulic fracturing can stimulate the fracture network in vertical and cluster wells. It is concluded that the fracture network stimulating technology for surrounding beds has significant advantages, such as safe drilling operation, strong stimulation effect, strong adaptability to stress-sensitive and velocity-sensitive beds, and is suitable for coal reservoirs of any structure. Except for the limitation in extremely water-sensitive and high water-yield surrounding beds, the technology can be universally used in all other beds. The successful industrial tests in surface coal bed methane and underground coal mines gas extraction prove that the theory and technical system of fracture network stimulating in surrounding beds and coal reservoirs, as a universally applicable measure, will play a role in the CBM development in China.

  1. Shear banding in thixotropic and normal emulsions

    International Nuclear Information System (INIS)

    When made to flow, yield stress materials rarely flow homogeneously. This is mostly attributed to the fact that such materials show a transition from a solid- to a liquid-like state when the stress exceeds some critical value: the yield stress. Thus, if the stress is heterogeneous, so is the flow. Here we consider emulsion flows in a cone-plate geometry that, for Newtonian fluids, correspond to a homogeneous stress situation and show that shear banding can also be observed either due to wall slip or to the existence of a critical shear rate. By means of velocity profiles obtained using a confocal laser scanning microscope combined with a rheometer we conclude that the last type of shear banding occurs only in thixotropic yield stress materials.

  2. Shear banding in thixotropic and normal emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Jose; Bonn, Daniel [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Shahidzadeh-Bonn, Noushine [Institut Navier, ENPC-IFSTTAR-CNRS, 6 et 8 Avenue Blaise-Pascal, F-77455 Champs-sur-Marne Cedex 2 (France)

    2011-07-20

    When made to flow, yield stress materials rarely flow homogeneously. This is mostly attributed to the fact that such materials show a transition from a solid- to a liquid-like state when the stress exceeds some critical value: the yield stress. Thus, if the stress is heterogeneous, so is the flow. Here we consider emulsion flows in a cone-plate geometry that, for Newtonian fluids, correspond to a homogeneous stress situation and show that shear banding can also be observed either due to wall slip or to the existence of a critical shear rate. By means of velocity profiles obtained using a confocal laser scanning microscope combined with a rheometer we conclude that the last type of shear banding occurs only in thixotropic yield stress materials.

  3. A New Monitoring Method of Individual Particles During Bed Load Transport in a Gravel Bed River.

    Science.gov (United States)

    Tremblay, M.; Marquis, G.; Roy, A.; Lamarre, H.

    2009-05-01

    Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult however to document resting and moving periods and to know how particles travel from one sedimentation site to another. We have developed a new tracking method using the Hobo Pendant G acceleration Data Logger, to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen frequency. Hobo Pendant G Acceleration data logger were inserted into 11 artificial rocks and seeded in Ruisseau Béard, a small gravel river in the Yamaska drainage basin (Québec). The hydraulics, particle sizes and bed characteristics of this site are well known. Controlled tests have been performed before the field experiment to understand the response of the instrument. The results allow us to develop an algorithm which classifies the signal into periods of rest and motion. The algorithm can also differentiate the type of motion: vibration, rolling and sliding of the particles. The data allow us to describe the time of movement, the path length and the velocity of the particles. The comparison of the movement and rest periods to the hydraulic conditions (discharge, shear stress, stream power) established the movement threshold and response times. Relations with bed roughness and morphology were also established. Finally, the development of a 2-dimension model helps visualizing the angular variation motion and a 3D model allows the reconstitution of the particle trajectories on the bed. This method offers great potential to track individual particles and to study bedload transport in rivers. This first attempt needs to be further improved especially to retire the degree of precision of the movement detection. The method should also be tested with frequencies higher than one minute, with more particles of

  4. Shear behavior of sand-expanded polystyrene beads lightweight fills

    Institute of Scientific and Technical Information of China (English)

    邓安; 肖杨

    2008-01-01

    Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials’ shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb’s envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.

  5. von Willebrand disease type 2A phenotypes IIC, IID and IIE: A day in the life of shear-stressed mutant von Willebrand factor.

    Science.gov (United States)

    Brehm, M A; Huck, V; Aponte-Santamaría, C; Obser, T; Grässle, S; Oyen, F; Budde, U; Schneppenheim, S; Baldauf, C; Gräter, F; Schneider, S W; Schneppenheim, R

    2014-07-01

    The bleeding disorder von Willebrand disease (VWD) is caused by mutations of von Willebrand factor (VWF), a multimeric glycoprotein essential for platelet-dependent primary haemostasis. VWD type 2A-associated mutations each disrupt VWF biosynthesis and function at different stages, depending on the VWF domain altered by the mutation. These effects cause considerable heterogeneity in phenotypes and symptoms. To characterise the molecular mechanisms underlying the specific VWF deficiencies in VWD 2A/IIC, IID and IIE, we investigated VWF variants with patient-derived mutations either in the VWF pro-peptide or in domains D3 or CK. Additionally to static assays and molecular dynamics (MD) simulations we used microfluidic approaches to perform a detailed investigation of the shear-dependent function of VWD 2A mutants. For each group, we found distinct characteristics in their intracellular localisation visualising specific defects in biosynthesis which are correlated to respective multimer patterns. Using microfluidic assays we further determined shear flow-dependent characteristics in polymer-platelet-aggregate formation, platelet binding and string formation for all mutants. The phenotypes observed under flow conditions were not related to the mutated VWF domain. By MD simulations we further investigated how VWD 2A/IID mutations might alter the ability of VWF to form carboxy-terminal dimers. In conclusion, our study offers a comprehensive picture of shear-dependent and shear-independent dysfunction of VWD type 2A mutants. Furthermore, our microfluidic assay might open new possibilities for diagnosis of new VWD phenotypes and treatment choice for VWD patients with shear-dependent VWF dysfunctions that are currently not detectable by static tests. PMID:24598842

  6. Hydraulic fracturing model featuring initiation beyond the wellbore wall for directional well in coal bed

    Science.gov (United States)

    Li, Yuwei; Jia, Dan; Wang, Meng; Liu, Jia; Fu, Chunkai; Yang, Xinliang; Ai, Chi

    2016-08-01

    In developing internal fracture systems in coal beds, the initiation mechanism differs greatly from that of conventional ones and initiations may be produced beyond the wellbore wall. This paper describes the features of the internal structure of coal beds and RFPA2D simulation is used to attest the possible occurrence of initiation beyond the wellbore wall in coal bed hydraulic fracturing. Using the theory of elasticity and fracture mechanics, we analyse the stress distribution in the vicinal coal rock. Then by taking into consideration the effects of the spatial relationship between coal bed cleats and the wellbore, we establish a model for calculating both tensile and shear initiation pressure that occur along cleats beyond the wellbore wall. The simulation in this paper indicates that for shear initiations that happen along coal cleats, the pressure required to initiate fracture for cleats beyond the wellbore wall is evidently lower than that on the wellbore wall, thus it is easier to initiate shear fractures for cleats beyond the wellbore wall. For tensile failure, the pressure required to initiate tensile fracture for cleats beyond the wellbore wall is obviously higher than that for cleats at the wellbore wall, thus it is easier to initiate tensile fractures for cleats at the wellbore wall. On the one hand, this paper has proved the possible occurrence of initiations beyond the wellbore wall and has changed the current assumption that hydraulic fractures can only occur at the wellbore wall. On the other hand, the established theoretical model provides a new approach to calculating the initiation pressure in hydraulic fracturing.

  7. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling.

    Science.gov (United States)

    Du, Xing; Qu, Fangshu; Liang, Heng; Li, Kai; Chang, Haiqing; Li, Guibai

    2016-05-01

    In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane. PMID:26810663

  8. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  9. Model Behavior and Sensitivity in an Application of the Cohesive Bed Component of the Community Sediment Transport Modeling System for the York River Estuary, VA, USA

    Directory of Open Access Journals (Sweden)

    Kelsey A. Fall

    2014-05-01

    Full Text Available The Community Sediment Transport Modeling System (CSTMS cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1 describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2 compare calculations to observations, and (3 investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  10. Anisotropic thermal conductivity in sheared polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shao Cong; Tanner, Roger I. [The University of Sydney, Rheology Research Group, School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia)

    2006-01-01

    We discuss the anisotropy of the thermal conductivity tensor in polymer flow in this paper. Isotactic polypropylene (iPP) specimens were deformed by injection moulding at high shear rates and by steady shear at low shear rates, and were then quenched. The thermal conductivities parallel and perpendicular to the shear direction were measured using modulated differential scanning calorimetry (MDSC) in accordance with the ASTM E1952-01. The measured results showed that the thermal conductivity of the sheared polymer was anisotropic with an increase in the shear direction. The thermal conductivity can be regarded as varying either with the strain or the stress, as suggested by Van den Brule (1989). In addition to the Van den Brule mechanism, crystallization during flow also changes the thermal conductivity and this effect may often be dominant. Suggestions for procedures in processing computations, based on both effects, are given. (orig.)

  11. Schematic mode coupling theories for shear thinning, shear thickening, and jamming

    OpenAIRE

    Cates, Michael E.; Holmes, Colin B.; Fuchs, Matthias; Henrich, Oliver

    2003-01-01

    Mode coupling theory (MCT) appears to explain several, though not all, aspects of the glass transition in colloids (particularly when short-range attractions are present). Developments of MCT, from rational foundations in statistical mechanics, account qualitatively for nonlinear flow behaviour such as the yield stress of a hard-sphere colloidal glass. Such theories so far only predict shear thinning behaviour, whereas in real colloids both shear thinning and shear thickening can be found. Th...

  12. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict v...... simple way of accounting for damage development under low triaxiality shearing, without further increasing the damage rate in regions of moderate to high stress triaxiality.......For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...... void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since, this...

  13. EXPERIMENTAL STUDY ON BED-LOAD SEDIMENT TRANSPORT IN IRREGULAR WAVE-CURRENT COEXISTENT FIELD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to evaluate bed-load sediment transport in an irregular wave-current coexistent field, a series of experiments were completed in laboratory with an irregularly oscillating tray, which was specially designed to simulate the irregular wave-current coexistent field. Experimental results are presented on the initial motion of sediment and the rates of transport over flat horizontal bed. Testing conditions included three interaction angles, 0°, 45°, 90° and six kinds of grain sizes. Four kinds (0.2mm, 0.46mm, 0.85mm and 1.3mm) were used for the tests of initial motion, while the other two kinds (0.38mm and 1.1mm) for the tests of transport rate. Comparisons between experimental results of initial motion and modified Shields curve indicate that the Shields curve is still valid for the case of irregular wave-current coexistent field. Analysis of flow regime shows that initial conditions fall within smooth-turbulent transitional region. The results of transport rate show us that net sediment transport rate can be expressed approximately as the function of the maximum bottom shear stress and mean shear stress. A dimensionless formula is proposed on the basis of mechanism "Waves erode sediments, tides transport sediments".

  14. Flood duration and chute cutoff formation in a wandering gravel-bed river

    Science.gov (United States)

    Sawyer, A.; Wilcox, A. C.

    2015-12-01

    Chute cutoffs occur when a bypass or "chute" channel incises across a bar or low floodplain area, re-distributing water and sediment. Cutoffs result from a setup and a triggering event, typically during overbank flow, but the combined effect of magnitude and duration on potential erosion in in-channel and overbank areas is still poorly constrained. Here we investigated how overbank flow duration impacts cutoff formation and spatiotemporal shear stress patterns in a wandering gravel-bed river. We applied a two-dimensional hydraulic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood in 2011. Hydrographs with increasing durations exceeding overbank were simulated; for each magnitude-duration combination, various metrics were quantified for in-channel and overbank areas separately. We confirm the hypothesized importance of floodplain elevation, vegetation presence, chute-channel inlet entrance location, and high overbank shear stress zones at bend apexes on cutoff occurrence. Floodplain width plays an important role in controlling unit discharge such that overbank areas are more competent in a narrower floodplain conveyance corridor. Duration controls cumulative flow exceeding sediment mobility thresholds, having the largest effect in overbank areas. Side channels at the reconstructed study site act like naturally formed incipient chutes. This work describes a complex floodplain system characteristic of wandering gravel-bed rivers with implications for understanding morphodynamic evolution, river restoration, and flow management in regulated rivers.

  15. Analysis of interfacial shear stress effects on vapor downward condensation heat transfer%界面剪切力对蒸汽垂直下流膜状凝结传热的影响分析

    Institute of Scientific and Technical Information of China (English)

    张俊霞; 王立; 李运刚; 黄建

    2011-01-01

    Interfacial shear stress has an important influence on the vapor downward condensation heat transfer in a smaller diameter condenser tube. At the present work, a volume of fluid (VOF) method based on the vapor-liquid interfacial capturing technique was used to numerically analyze the effects of interfacial shear stress on local condensation heat transfer coefficients (HTC) during the vapor downflow condensation. Because vapor condenses on the vapor-liquid interface, the condensation mass and energy source items were introduced into the volume fraction and energy governing equations of the VOF model. In addition, the condenser tube wall temperature was acquired by a coupling calculation of cooling water forced convection heat transfer. The parameters were obtained, including velocity, interfacial shear stress and local condensation HTC. The computations show that interfacial stress shear degrades along thetube length, obviously improving the condensation heat transfer at the condenser tube front. At the condenser tube rear, the vapor-liquid interfacial shear stress decreases, having a drag force to condensate. Therefore, the liquid-film gravity plays an important role in local condensation HTC at the condenser tube rear. Local condensation HTC obtained by the VOF method is compared with the Nusselt analytic solution. At the condenser tube front, the vapor-liquid interfacial shear stress is higher and has the same direction as condensate velocity, which enhances the condensation heat transfer by reducing the liquid film thickness. So local condensation HTC obtained by the VOF method is higher than the Nusselt analytic solution. However, at the condenser tube rear, the computing result is almost equal to the Nusselt analytic solution as a result of both lower interfacial shear stress and increasing the liquid film thickness. Furthermore, a comparison of local condensation HTC acquired by the VOF method to the experimental data of Goodykoontz et al. Was performed, good

  16. The suspended sediment transport equation and its near-bed sediment flux

    Institute of Scientific and Technical Information of China (English)

    LI RuiJie; LUO Feng; ZHU WenJin

    2009-01-01

    The suspended sediment transport equation and its near-bed sediment flux are one of the key prob-lems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper ana-lyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of sus-pended sediment transport and exchange flux of near-bed water sediment.

  17. The suspended sediment transport equation and its near-bed sediment flux

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The suspended sediment transport equation and its near-bed sediment flux are one of the key problems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper analyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of suspended sediment transport and exchange flux of near-bed water sediment.

  18. Non-Newtonian steady shear flow characteristics of waxy crude oil

    Institute of Scientific and Technical Information of China (English)

    黄树新; 陈鑫; 鲁传敬; 侯磊; 范毓润

    2008-01-01

    The experimental research on the non-Newtonian flow characteristic of a waxy crude oil was conducted through a rotational parallel-plates rheometer system.The test temperature is about 6.5 ℃ higher than its gel point.The shear stress and viscosity of the waxy crude oil show sophisticate non-Newtonian characteristics in the shear rate of 10-4-102 s-1,in which the shear stress can be divided into three parts qualitatively,i.e.stress-up region,leveling-off region,and stress-up region.This indicates that there is a yielding process in shearing for the waxy crude oil at the experimental temperature,which is similar to the yield phenomenon in thixotropy-loop test discussed by CHANG and BOGER.Furthermore,the steady shear experiment after the pre-shear process shows that the stress leveling-off region at low shear rate disappears for the waxy crude oil and the stress curve becomes a monotonic climbing one,which demonstrates that the internal structure property presenting through yielding stress at low shear rate can be changed by shearing.The experimental results also show that the internal structure of waxy crude oil presenting at low shear rate has no influence on the shear viscosity obtained at the shear rate higher than 0.1 s-1.The generalized Newtonian model is adopted to describe the shear-thinning viscosity property of the waxy crude oil at high shear rate.

  19. Insitu observation of shear stress-induced perovskite to post-perovskite phase transition in CaIrO3 and the development of its deformation texture in a diamond-anvil cell up to 30 GPa

    Science.gov (United States)

    Niwa, Ken; Miyajima, Nobuyoshi; Seto, Yusuke; Ohgushi, Kenya; Gotou, Hirotada; Yagi, Takehiko

    2012-03-01

    The perovskite (Pv) to post-perovskite (PPv) phase transition and the deformation texture of the PPv phase were investigated on the basis of a high-pressure X-ray diffraction (XRD) study of CaIrO3 using a diamond-anvil cell in a pressure range up to 31 GPa. The development of a crystallographic preferred orientation (CPO) in the PPv phase was observed after the plastic deformation from 8 or 9 GPa to 31 GPa at both room and high (˜1500 K) temperatures. The observed CPOs in the present study indicate that the (0 1 0) plane worked as an active slip plane in the PPv phase over the entire pressure and temperature range of the present experiment. We also confirmed that the Pv to PPv phase transition proceeds at room temperature under high-stress conditions. The phase transition under high-stress condition is in stark contrast to the results of a previous hydrostatic experiment in which the Pv-CaIrO3 remained stable in a helium media at 31 GPa and room temperature. This indicates that shear stress plays an important role in the Pv to PPv phase transition, and this effect should be taken into account when the thermal structure at the D″ layer is discussed on the basis of the high-pressure experiments.

  20. Sand Bed Morphodynamics under Standing Waves and Vegetated Conditions

    Science.gov (United States)

    Landry, B. J.; Garcia, M. H.

    2010-12-01

    Littoral processes such as sediment transport, wave attenuation, and boundary layer development are governed by the presence of bathymetric features, which include large-scale sand bars upon which smaller-scale sand ripples are superimposed, as well as the presence of submarine vegetation. Numerous studies on sand ripples and bars have aided to elucidate the dynamics in oscillatory flows; however, the effect of vegetation on the system is less understood. Recent laboratory studies have focused on quantifying wave attenuation by emergent vegetation as a natural method to mitigate storm surges. The emergent vegetation, while promising for coastal protection, alters sediment transport rates directly by the physical presence of the plants near the bed and indirectly from reduction in near-bed shear stresses due to attenuated wave energy. The experimental work herein focuses on the area near the deeply submerged vegetated canopy limit (current work has a ratio of mean still water depth to plant height, H/h, = 7.9) to minimize the effect on the surface waves and discern the direct impact vegetation has on sand bed morphodynamics. Experiments were conducted in the large wave tank (49-m long by 1.83-m wide by 1.22-m deep) in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois in which a high reflection wave forcing was used over a uniform sand bed with a 0.25-mm median sediment diameter in which staggered and uniform arrangements of idealized vegetation (i.e., 6.35-mm diameter rigid wooden cylinders) were positioned along the bed (e.g., at predetermined sand bar troughs and over an entire sand bar). The resulting bathymetric evolution from the vegetated case experiments were compared to the base case of no vegetation using two optical methods: a high-resolution laser displacement sensor for three-dimensional surveys and digitized profiles via high-definition panoramic images of the entire test section. The experimental findings illustrate the profound