WorldWideScience

Sample records for bed reactors importance

  1. The importance of the AVR pebble-bed reactor for the future of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, P. [Arbeitsgemeinschaft Versuchsreaktor AVR GmbH, Postfach 1160, 52412 Juelich (Germany)

    2006-07-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  2. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  3. Fluidized Bed Reactor as Solid State Fermenter

    OpenAIRE

    Krishnaiah, K.; Janaun, J.; Prabhakar, A.

    2005-01-01

    Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kerne...

  4. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  5. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2011-07-01

    Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads reactor R2 had a 61% lower volumetric specific nitrogen removal rate than reactor R1. The low pH and the associated low free ammonia (FA) concentrations were found to be critical to stable anammox activity in the MBBR. Nitrite enhanced the nitrogen removal rate in the conditions of low pH, all the way up to the investigated level of 50mg NO(2)-N/L. At low FA levels nitrite concentrations up to 250 mg NO(2)-N/L did not cause inactivation of anammox consortia over a 2-days exposure time.

  6. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2011-07-01

    Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads reactor R2 had a 61% lower volumetric specific nitrogen removal rate than reactor R1. The low pH and the associated low free ammonia (FA) concentrations were found to be critical to stable anammox activity in the MBBR. Nitrite enhanced the nitrogen removal rate in the conditions of low pH, all the way up to the investigated level of 50mg NO(2)-N/L. At low FA levels nitrite concentrations up to 250 mg NO(2)-N/L did not cause inactivation of anammox consortia over a 2-days exposure time. PMID:21565492

  7. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  8. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  9. Reaction engineering simulations of oxidative coupling of methane in a circulating fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, U.; Mleczko, L. [Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie

    1998-10-01

    Oxidative coupling of methane in a circulating fluidized-bed reactor was investigated by means of reaction engineering modeling and simulations. A model of the reactor that combines comprehensive kinetics of the OCM and a model for the description of the bed hydrodynamics was developed and applied to predict the reactor performance. The important goal of the simulations was a better understanding of the effect of the hydrodynamic conditions in the riser reactor on the reaction pathway and the product distribution. (orig.)

  10. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  11. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  12. Effect of calcium on moving-bed biofilm reactor biofilms.

    Science.gov (United States)

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  13. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  14. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, Fausto; Sint Annaland, van Martin; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  15. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    OpenAIRE

    Gallucci, Fausto; Sint Annaland, van, Martin; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given conversion and the prevailing temperature profiles have been compared. The extent of mass and heat transfer limitations in the different reactors have been evaluated, and strategies to decrease (or avoid) ...

  16. Hydrodynamics of multi-phase packed bed micro-reactors

    OpenAIRE

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the mass-transfer processes are fast in respect to the reaction-rate, then the reaction-rate is under kinetic control over the entire range of conversion and it is possible to measure intrinsic kineti...

  17. Feedback linearizing control of a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoufoussi, H.; Perrier, M.; Chaouki, J.; Chavarie, C.; Dochain, D. (Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Dept. de Genie Chimique)

    1992-04-01

    A linearized technique has been applied to temperature control for a fluidized bed reactor. A nonlinear antiwindup mechanism for the reset action is used. Simulation tests show that the controller provides good setpoint tracking. 24 refs.; 11 figs.; 4 tabs.

  18. Nonlinear dynamics and control of a recycle fixed bed reactor

    OpenAIRE

    Recke, Bodil; Jørgensen, Sten Bay

    1997-01-01

    The purpose of this paper is twofold. Primarily to describe the dynamic behaviour that can be observed in a fixed bed reactor with recycle of unconverted reactant. Secondly to describe the possibilities of model reduction in order to facilitate control design. Reactant recycle has been shown to introduce periodic solution to the fixed bed reactor, a phenomenon which is not seen for the system without the recycle, at least not within the Peclet number range investigated in the present work. Th...

  19. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, H.P.; Gallucci, F.; Van Sint Annaland, M. [Multiphase Reactor Group, Chemical Process Intensification, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Cobden, P.D. [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Kimball, E. [TNO Gas Treatment, P.O. Box 6000, 2600 JA Delft (Netherlands)

    2013-08-15

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed operation. However, high pressure operation allows the use of inherently more efficient power cycles than low pressure fluidized bed solutions. This paper quantifies the challenges in high pressure operation and introduces a novel reactor concept with which those challenges can be addressed. Continuous cyclic operation of a packed bed CLC system is simulated in a 1D numerical reactor model. Importantly, it is demonstrated that the temperature profiles that can occur in a packed bed reactor as a result of the different process steps do not accumulate, and have a negligible effect on the overall performance of the system. Moreover, it has been shown that an even higher energy efficiency can be achieved by feeding the syngas from the opposite direction during the reduction step (i.e. countercurrent operation). Unfortunately, in this configuration mode, more severe temperature fluctuations occur in the reactor exhaust, which is disadvantageous for the operation of a downstream gas turbine. Finally, a novel reactor configuration is introduced in which the desired temperature rise for obtained hot pressured air suitable for a gas turbine is obtained by carrying out the process with two packed bed reactor in series (two-stage CLC). This is shown to be a good alternative to the single bed configuration, and has the added advantage of decreasing the demands on both the oxygen carrier and the reactor materials and design specification.

  20. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  1. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  2. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  3. Intensification of Deep Hydrodesulfurization Through a Two-stage Combination of Monolith and Trickle Bed Reactors

    Institute of Scientific and Technical Information of China (English)

    Min Xu; Hui Liu⁎; Shengfu Ji; Chengyue Li

    2014-01-01

    Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul-fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/or new types of reactors. In this work, the kinetics of dibenzothiophene (DBT) hydrodesulfurization over Ni-P/SBA-15/cordierite catalyst was investigated at 340-380 °C and 3.0-5.0 MPa. The first-order reaction model with respect to both DBT and H2 was used to fit the kinetics data in a batch recycle operation system. It is found that both the activation energy and rate constant over the Ni-P monolithic catalyst under our operating conditions are close to those over conventionally used HDS catalysts. Comparative performance studies of two types of reactors, i.e., trickle bed reactor and monolithic reactor, were performed based on reactor modeling and simulation. The results indicate that the productivity of the monolithic reactor is 3 times higher than that of the trickle bed reactor on a catalyst weight basis since effective utilization of the catalyst is higher in the monolithic reactor, but the volumetric productivity of the monolithic reactor is lower for HDS of DBT. Based on simulation results, a two-reactor-in-series configuration for hydrodesulfurization is proposed, in which a monolithic reactor is followed by a tickled bed reactor so as to attain intensified performance of the system converting fuel oil of different sulfur-containing compounds. It is il ustrated that the two reactor scheme outperforms the trickle bed reactor both on reactor volume and catalyst mass bases while the content of sulfur is reduced from 200μg·g-1 to about 10μg·g-1.

  4. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, Sander; Sint Annaland, van Martin; Kuipers, Hans

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical expressi

  5. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    International Nuclear Information System (INIS)

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability

  6. Pebble Bed Reactor review update. Fiscal year 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Updated information is presented on the Pebble Bed Reactor (PBR) concept being developed in the Federal Republic of Germany for electricity generation and process heat applications. Information is presented concerning nuclear analysis and core performance, fuel cycle evaluation, reactor internals, and safety and availability.

  7. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  8. A Fixed Bed Barrier Reactor with Separate Feed of Reactants

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; Saracco, G.; Versteeg, G.F.

    2001-01-01

    A new type of gas-solid reactor was developed and characterised in the series of reactor configurations with separate feed of reactants studied by our group. The novelty in the proposed design lies in the use of a fixed bed of small catalytic particles instead of a porous catalytic membrane. The maj

  9. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    Science.gov (United States)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  10. Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor

    Science.gov (United States)

    Alireza Shirvanian, Pezhman; Calo, Joseph

    2002-08-01

    An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.

  11. Water desalination by a fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    The great need for potable water in the world motivated the International Atomic Energy Agency (IAEA) to study the feasibility of nuclear seawater desalination. The consensus reached is that nuclear desalination is technically feasible, though cost and social acceptability are recognized as major problems to overcome. Here an inherently safe reactor with reduced cost is proposed to overcome these barriers. The reactor is a simple small modular nuclear reactor based on fluidized bed concept with passive cooling characteristics. (orig.)

  12. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    Science.gov (United States)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  13. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  14. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  15. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    Science.gov (United States)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  16. Bed-to-wall heat transfer in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Wirth, K-E. [Erlangen-Nuremberg Univ., Lehrstuhl Mechanische Verfahrenstechnik, Erlangen (Germany)

    1999-04-01

    The effects of superficial gas velocity, solid circulating rate, suspension density and particle sizes on the bed-to-wall heat transfer coefficient have been determined in a downer reactor 3.5 m high , with an internal diameter of 0.1 m. Results showed an increase in the bed-to-wall heat transfer coefficient with increasing suspension density. The heat transfer coefficient by gas convection was found to play a significant role, especially at lower solid circulation rates or suspension densities and larger particle sizes. It was determined that at a given particle suspension density in the downer reactor, the heat transfer coefficient increase with decreasing particle size. A model was proposed to determine the bed-to-wall heat transfer coefficient in a downer reactor. 24 refs., 1 tab., 8 figs.

  17. DESIGN AND APPLICATION OF FLUIDIZED BED PHOTOCATALYTIC REACTOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Photocatalytic degradation of organic pollutant is a new and potential method to transform it to harmless inorganic material, such as CO2 and H2O. So far, most of photocatalytic reactors were cylinder or tabulate photoreactor. The relevant photocatalyst was TiO2 nanometer powder. Although a few investigators had aimed their research field to fluidized bed reactor, their reaction systems were of biphase, such as solid-liquid or solid-gas. Few people focused their research on the triphasic fluidized bed photocatalytic reactor[1]. Compared with traditional photoreactors, a triphasic fluidized bed photoreactor has more advantages[2]: (1) The solid photocatalyst can be separated easily. (2) Its configuration meets the requirement of higher surface area-to-volume ratio of photocatalytic, which is much lower in a fixed bed or a plate photoreactor. (3) The UV light can be used more efficiently. (4) The mass transfer conditions can be controlled and improved easily. (5) It suited to pilot-scale or large-scale operations. For the UV light penetration and photon efficiency should be considered, the photocatalytic reactor differed greatly from a typical fluidized bed reactor.

  18. Nonlinear dynamics and control of a recycle fixed bed reactor

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1997-01-01

    The purpose of this paper is twofold. Primarily to describe the dynamic behaviour that can be observed in a fixed bed reactor with recycle of unconverted reactant. Secondly to describe the possibilities of model reduction in order to facilitate control design. Reactant recycle has been shown...... to introduce periodic solution to the fixed bed reactor, a phenomenon which is not seen for the system without the recycle, at least not within the Peclet number range investigated in the present work. The possibility of model reduction by the methods of modal decomposition, and by characteristics...

  19. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  20. Automation of a fixed-bed continuous–flow reactor

    OpenAIRE

    Alcántara, R.; Canoira, L.; R. Conde; Fernández-Sánchez, J. M.; Navarro, A.

    1994-01-01

    This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. Thi...

  1. COPROX fixed bed reactor - temperature control schemes

    Energy Technology Data Exchange (ETDEWEB)

    Giunta, P.; Moreno, M.; Marino, F.; Amadeo, N.; Lobarde, M. [Laboratorio de Procesos Cataliticos, Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2012-06-15

    Different temperature control schemes for the COPROX stage of a 5-kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co- and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  3. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  4. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  5. Dynamic stability of a fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Recent advances in the study of a fluidized-bed nuclear reactor's stability, due to short and long time transients, are discussed. The point-kinetic model, which considers flux variation in the axial direction, is applied to study short time transients, and the theory of bifurcation is used for long time transients. Numerical results are presented for both transients. The preliminary results indicate that this concept of a nuclear reactor has a behavior similar to that of a conventional reactor regarding its dynamic stability

  6. Initial prediction of dust production in pebble bed reactors

    Directory of Open Access Journals (Sweden)

    M. Rostamian

    2011-09-01

    Full Text Available This paper describes the computational simulation of contact zones between pebbles in a pebble bed reactor. In this type of reactor, the potential for graphite dust generation from frictional contact of graphite pebbles and the subsequent transport of dust and fission products can cause significant safety issues at very high temperatures around 900 °C in HTRs. The present simulation is an initial attempt to quantify the amount of nuclear grade graphite dust produced within a very high temperature reactor.

  7. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi

  8. The performance of structured packings in trickle-bed reactors.

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, van W.P.M.

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi

  9. Circulating fluidized bed biological reactor for nutrients removal

    Institute of Scientific and Technical Information of China (English)

    Yubo CUI; Hongbo LIU; Chunxue BAI

    2008-01-01

    A new biological nitrogen removal process, which is named herein "The circulating fluidized bed bio-reactor (CFBBR)", was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation rate was 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recir-culation rate of 400% based on the intluent flow rate, the average removal efficiencies of total nitrogen (TN) and sol-uble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentra-tions of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentra-tion, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4+-N/g VSS.d, and 0.016-0.074 g NOx--N/g VSS.d, respectively.

  10. Numerical Simulation of Accident Scenario in High Temperature Gas Cooled (Pebble Bed) Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Geoffrey J. [Oregon Institute of Technology - Portland Center, Portland (United States)

    2012-03-15

    The accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors is considered in this paper. The next generation of Advanced High Temperature Reactors (AHTR), are considered for nuclear power production, and for high-temperature hydrogen production using nuclear reactors to reduce the carbon footprint. Blockages can cause LOCA variations in flow and heat transfer that may lead to hot spots within the bed that could compromise reactor safety. Therefore, it is important to know the void fraction distribution and the interstitial velocity field in the packed bed. The blockage for this numerical study simulated a region with significantly lower void than that in the rest of the bed. Finite difference technique solved the simplified continuity, momentum, and energy equations. Any meaningful outcome of the solution depended largely upon the validity of the boundary conditions. Among them, the inlet and outlet velocity profiles required special attention. Thus, a close approximation to these profiles obtained from an experimental set-up established the boundary conditions. This paper presents the development of the elliptic-partial equation for a bed of a bed of pebbles, and the solution procedure. The paper also discusses velocity and temperature profiles obtained from both numerical and experimental set-up, with and without effect of blockage. Based on the studies it is evident that knowledge of LOCA velocity and temperature distribution within the fuel element in a Pebble Bed Nuclear Reactor or AHTR is essential for reactor safety.

  11. Chemical Looping Reactor System Design : Double Loop Circulating Fluidized Bed (DLCFB)

    OpenAIRE

    Bischi, Aldo

    2012-01-01

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the ...

  12. Torrefaction of sawdust in a fluidized bed reactor.

    Science.gov (United States)

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors.

  13. 滴流床反应器中液体扩散的分形表征%FRACTAL CHARACTERIZATION OF LIQUID DISPERSION IN TRICKLE BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    朱慧铭; 刘秀凤; 李冬; 张宝泉

    2004-01-01

    @@ INTRODUCTION Dispersion is very important to the design of trickle bed reactor for both chemical and biochemical processes. The degree of dispersion often influences reactor performance and scale-up.

  14. Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing

    International Nuclear Information System (INIS)

    Highlights: • A mathematical model for the rotating CLC reactor has been developed. • The model reflects the gas distribution in the reactor during CLC operation. • Radial dispersion in the rotating bed is the main cause for internal gas mixing. • The model can be used to optimize the reactor design and particle characteristics. - Abstract: A newly designed continuous lab-scale rotating bed reactor for chemical looping combustion using CuO/Al2O3 oxygen carrier spheres and methane as fuel gives around 90% CH4 conversion and >90% CO2 capture efficiency based on converted methane at 800 °C. However, from a series of experiments using a broad range of operating conditions potential CO2 purities only in the range 20–65% were yielded, mostly due to nitrogen slip from the air side of the reactor into the effluent CO2 stream. A mathematical model was developed intending to understand the air-mixing phenomena. The model clearly reflects the gas slippage tendencies observed when varying the process conditions such as rotation frequency, gas flow and the flow if inert gas in the two sectors dividing the air and fuel side of the reactor. Based on the results, it is believed that significant improvements can be made to reduce gas mixing in future modified and scaled-up reactor versions

  15. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  16. Hydrodynamics of gas-solids downflow fluidized bed (downer) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.

    1999-07-01

    This study presents a semi-empirical model for the hydrodynamic flow structure in a circulating fluidized bed downer reactor. Circulating fluidized bed, or riser reactors are used in the petroleum industry for many applications including catalytic cracking, polyethylene production, calcination operations and combustion of a variety of fuels. The work in this thesis involved the development of a circulating fluidized bed riser and downer system that enables hydrodynamic studies to be carried out. The system was designed to incorporate both a riser and a downer in the same circulating operation, making it possible to conduct experimental studies on the riser and the downer separately or simultaneously. The hydrodynamics of the gas-solids downflow fluidized bed reactor were studied in a 9.3 m tall and 0.1 m i.d. circulating fluidized bed downer reactor using fluidized cracking catalyst (FCC) particles. In order to characterize the gas-solids flow structures, the following three parameters were measured: the radial distributions of the local solids holdups, the local particle velocities, and the pressure gradients along the downer column. The hydrodynamics in the co-current downflow reactor was also studied under a wide range of operating conditions. The gas-solids flow structure under zero superficial gas velocity conditions was characterized by measuring the radial distribution of the local solids holdups and particle velocities along the downer column with the superficial gas velocity set to zero. The results indicate that two basic flow regimes exist in the FCC downer system depending on the superficial gas velocity. The downer reactor was shown to have a more uniform radial flow structure compared to the riser. It also has a more uniform radial distribution of solids holdup and particle velocity as well as solids flux in both the development and fully developed zones. The highly uniform radial flow structure provides a nearly ideal plug flow condition in the

  17. Gas Reactor International Cooperative Program: German Pebble Bed Reactor Technology review update

    International Nuclear Information System (INIS)

    This report provides a review of the German pebble bed reactor technology, and updates the information provided in the Gas Reactor International Cooperative Program Interim Report COO-4057-6, German Pebble Bed Reactor Design and Technology Review, dated September 1978. Most of the updated information is for the PNP-500 and the HHT-Prototype plants. The PNP-500 is a 500 MW(t) multi-purpose demonstration plant for coal conversion applications. The HHT-Prototype is a 1640 MWt reactor designed to produce 675 MWe of electricity using a direct cycle gas turbine. The report provides a description and evaluation of the overall plant and the nuclear reactor for both the PNP-500 and HHT-Prototype. A description and evaluation of the primary system components is presented for the process heat and gas turbine applications

  18. TREATMENT OF POME BY PILOT PLANT ANAEROBIC FLUIDISED BED REACTOR

    OpenAIRE

    Abdullah Al-Mamun; Azni Idris

    2010-01-01

    A pilot scale anaerobic fluidised bed reactor (AnFBR) of 2000 L capacity was studied to determine its performance to treat palm oil mill effluent (POME). The pilot plant was operated at ambient temperature with diluted POME as substrate. It took 17 days for the start-up of the reactor with pre-seeded sand media. The AnFBR was capable to remove a large portion of organics at relatively shorter retention time. Maximum and minimum COD removal efficiency of 85% and 65% were attained at a ...

  19. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  20. Development of the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.

    2012-01-01

    Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.

  1. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  2. Fluidization Characteristics of a Prototype Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    F. ABERUAGBA

    2005-01-01

    Full Text Available The fluidization characteristics of a prototype-fluidized bed laboratory reactor were understudied in order to investigate the suitable conditions at which the dehydrogenation reaction of butane could be carried out. To achieve this, a reactor with an effective volume of 1100ml was fabricated and coupled with temperature and pressure accessories.Zeolites were obtained from the market and clay obtained from different sources and pre-treated was used as catalyst. Airflow at high velocity between 3000-7000ml/hr was used as the fluidising medium to obtain the bed characteristics while butane gas was used to obtain the dehydrogenation kinetics.The temperature of the reactor system was varied between 353K and 413K while maintaining constant pressure of 1.5 105 N/m2 through a manifold gauge and a constant catalyst weight. Various methods such as pressure fluctuations, visual observations, and bed expansion were used to determine the transition velocity at which fluidization begins. It was observed that this depends on factors such as mean particle size, particle size distribution, and column diameter.The minimum fluidizing velocity obtained for zeolite was 0.0133m/s and 0.0102m/s for treated clay materials both for a particle size of 250μm. The conversion of butane over the catalysts showed an increase in both cases with a maximum at 0.9813 at 413K. This decreases as the reaction progresses.

  3. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of

  4. Pellet bed reactor concepts for nuclear propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Morley, N.J.; Pelaccio, D.G.; Juhasz, A. [Univ of New Mexico, Albuquerque, NM (United States)

    1994-11-01

    Pellet bed reactor (PeBR) concepts have been developed for nuclear thermal and nuclear electric propulsion, and bimodal applications. This annular core, fast spectrum reactor offers many desirable design and safety features. These features include high-power density, small reactor size, full retention of fission products, passive decay heat removal, redundancy in reactor control, negative temperature reactivity feedback, ground testing of the fully assembled reactor using electric heating and nonnuclear fuel elements, and the option of fueling on the launch pad or fueling and refueling in orbit. In addition to these features, the concepts for nuclear electric propulsion and for bimodal power and thermal propulsion have no single point failure. The average power density in the reactor for nuclear thermal propulsion ranges from 2.2 to 3.3 MW/I and for a 15-MWe nuclear electric propulsion system the total power system specific mass is about 3.3 kg/kWe. The bimodal-PeBR system concepts offer specific impulse in excess of 650 s, tens of Newtons of thrust, and total system specific power ranging from 11 to 21.9 We/kg at the 10- and 40-kWe levels, respectively. 35 refs.

  5. Design of fuzzy PID controller for high temperature pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Kushal D.; Satpute, Satchidanand R.; Revankara, Shripad T.; Lee, John C.; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2012-10-15

    Control system is most important characteristic to be considered to control spontaneous fission reaction in the design of the nuclear reactor. Recently fuzzy based control systems have been designed and applied as control system for nuclear plants. This article emphasize on controlling the power of the high temperature pebble bed reactor (HTPBR) with the design of Fuzzy proportional integral derivative (PID) controller. A simplified reactor model with point kinetics equation and reactor heat balance equation is used. The reactivity feedback arising from power coefficient of reactivity and Xenon poisoning is also considered. The reactor is operated at various power levels by using fuzzy PID controller. The fuzzy logic eliminates the necessity of the tuning the gains of PID controller each time by extending the finite sets of the PID controller gains.

  6. Trickle bed reactor model to simulate the performance of commercial diesel hydrotreating unit

    Energy Technology Data Exchange (ETDEWEB)

    C. Murali; R.K. Voolapalli; N. Ravichander; D.T. Gokak; N.V. Choudary [Bharat Petroleum Corporation Ltd., Udyog Kendra (India). Corporate R& amp; D Centre

    2007-05-15

    A two phase mathematical model was developed to simulate the performance of bench scale and commercial hydrotreating reactors. Major hydrotreating reactions, namely, hydrodesulphurization, hydrodearomatization and olefins saturation were modeled. Experiments were carried out in a fixed bed reactor to study the effect of different process variables and these results were used for estimating kinetic parameters. Significant amount of feed vaporization (20-50%) was estimated under normal operating conditions of DHDS suggesting the importance of considering feed vaporization in DHDS modeling. The model was validated with plant operating data, under close to ultra low sulphur levels by correctly accounting for feed vaporization in heat balance relations and appropriate use of hydrodynamic correlations. The model could predict the product quality, reactor bed temperature profiles and chemical hydrogen consumption in commercial plant adequately. 14 refs., 7 figs., 6 tabs.

  7. Investigation of Anaerobic Fluidized Bed Reactor Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR System for Treatment of Currant Wastewater

    Directory of Open Access Journals (Sweden)

    Jalil Jafari

    2013-08-01

    Full Text Available Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR-Aerobic Moving Bed Bio Reactor (MBBR in series arrangement to treat Currant wastewater.Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2-2.3 mm, particle density of 1250 kg/m3.The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3.Results: When system operated at 35 ºC, chemical oxygen demand (COD removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively.Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewate

  8. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    Science.gov (United States)

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  9. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2013-01-01

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed ope

  10. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  11. Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry

    OpenAIRE

    Hanlon-Hyssong, Jaime E.

    2008-01-01

    CIVINS The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and the US. To make smaller 120 Mwe reactors economically competitive with larger 1500 Mwe traditional light water reactors changes in the way these plants are built are needed. Economies of production need to be sufficiently large to compete with economies of sca...

  12. BIODEGRADATION OF AROMATIC AMINE COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    M. Delnavaz ، B. Ayati ، H. Ganjidoust

    2008-10-01

    Full Text Available Three moving bed biofilm reactors were used to treat synthesized wastewater of aromatic amine compounds including aniline, para-diaminobenzene and para-aminophenol that are found in many industrial wastewaters. The reactors with cylindrical shape had an internal diameter and an effective depth of 10 and 60 cm, respectively. The reactors were filled with light expanded clay aggregate as carriers and operated in an aerobic batch and continuous conditions. Evaluation of the reactors' efficiency was done at different retention time of 8, 24, 48 and 72 h with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. The maximum obtained removal efficiencies were 90% (influent COD=2000 mg/L, 87% (influent COD=1000 mg/L and 75% (influent COD=750 mg/L for aniline, para-diaminobenzene and para-aminophenol, respectively. In the study of decrease in filling ratio from 50 to 30 percent, 6% decrease for both para-diaminobenzene and para-aminophenol and 7% increase for aniline degradation were obtained. The removal efficiency was decreased to about 10% after 15 days of continuous loading for each of the above three substrates. In the shock loading test, initially the COD removal rate was decreased in all reactors, but after about 10 days, it has been approached to the previous values. Finally, biodegradability of aromatic amines has been proved by nuclear magnetic resonance system.

  13. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  14. TREATMENT OF POME BY PILOT PLANT ANAEROBIC FLUIDISED BED REACTOR

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2010-09-01

    Full Text Available A pilot scale anaerobic fluidised bed reactor (AnFBR of 2000 L capacity was studied to determine its performance to treat palm oil mill effluent (POME. The pilot plant was operated at ambient temperature with diluted POME as substrate. It took 17 days for the start-up of the reactor with pre-seeded sand media. The AnFBR was capable to remove a large portion of organics at relatively shorter retention time. Maximum and minimum COD removal efficiency of 85% and 65% were attained at a loading rate of 4.0 and 13.8 kgCOD/m3.d. BOD and TSS removal rates varied within the range of 64% - 91% and 68% - 89%, respectively. The AnFBR exhibited low sludge production with lower sludge volume indices (SVI. Maximum and minimum effluent indices for the effluent were 35 mL/g and 11 mL/g, respectively. Low SVI values indicated that, anaerobic fluidised bed reactors generate less sludge with fast settling properties. Promising performance at ambient temperature and for detention time shorter than the present practices supported the possibility of AnFBR to treat POME to meet the new requirement set by the DOE Malaysia.

  15. Pyrolysis of biomass in a jet spouted bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Olazar, M.; Aguado, R.; Bilbao, J. [Universidad del Pais Vasco, Bilbao (Spain)

    1996-12-31

    In this paper, the pyrolysis of sawdust and agroforest residues has been studied in a new reactor of conical geometry with the original regime of dilute spouted bed or jet spouted bed. On the basis of an experimental study in a wide range of conditions (temperature, biomass/nitrogen flowrate ratio, particle size and biomass nature) the good performance of the contactor has been proven. In addition to its great versatility, it is noteworthy that no inert material is needed (the char formed facilitates cyclic particle movement) and that a liquid product of high quality for its posterior use is obtained at low temperatures (down to 350 {degrees}C) and high conversion (up to 70%). The short gas residence time (10-100 milliseconds) minimizes the secondary decomposition reactions and the formation of gaseous and liquid byproducts. 14 refs., 1 fig., 1 tab.

  16. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  17. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  18. PEBBED ANALYSIS OF HOT SPOTS IN PEBBLE-BED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Hans D. Gougar; William K. Terry; Frederik Reitsma; Wessel Joubert

    2005-09-01

    The Idaho National Laboratory’s PEBBED code and simple probability considerations are used to estimate the likelihood and consequences of the accumulation of highly reactive pebbles in the region of peak power in a pebble-bed reactor. The PEBBED code is briefly described, and the logic of the probability calculations is presented in detail. The results of the calculations appear to show that hot-spot formation produces only moderate increases in peak accident temperatures, and no increases at all in normal operating temperatures.

  19. Computational prediction of dust production in pebble bed reactors

    International Nuclear Information System (INIS)

    Highlights: ► Finite element analysis of frictional contact. ► Plasticity taken into account for nuclear graphite at room temperature. ► Prediction of order of magnitude for dust loading in PBRs. ► Archard wear model for wear mass calculations. - Abstract: This paper describes the computational modeling and simulation of graphite pebbles in frictional contacts as anticipated in a pebble bed reactor. For the high temperature gas-cooled reactor, the potential dust generation from frictional contact at the surface of pebbles and the subsequent lift-off and transport of dust and absorbed fission products are of safety concern at elevated temperatures under an air ingress accident. The aim of this work is to perform a computational study to estimate the quantity of the nuclear grade graphite dust produces from a typical anticipated configuration.

  20. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Dmitry Yu. Murzin

    2008-09-01

    Full Text Available In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood, was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5°C/min was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  1. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  2. Characterization of Biofilm in 200W Fluidized Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more

  3. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  4. Cocurrent downflow circulating fluidized bed (downer) reactors - a state of the art review

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.-X.; Yu, Z.-Q.; Jin, Y.; Grace, J.R.; Issangya, A. [University of Western Ontario, London, ON (Canada). Department of Chemical and Biochemical Engineering

    1995-10-01

    A new type of chemical reactor known as the cocurrent downflow fluidized bed reactor (or reversed riser reactor or downer reactor), that overcomes some of the disadvantages of the riser reactor, is described. Since both the gas and solids flow directions are downwards in the cocurrent downflow fluidized bed reactor, particle residence times are uniform, and there is no backmixing. The literature on downer studies is reviewed. Laboratory results on axial voidage profiles, pressure profiles, radial flow, mixing and residence time distribution, heat transfer, and particle velocities are summarized. Suggestions are made both for possible industrial applications of downer reactors and for suitable research directions. 56 refs., 18 figs., 1 tab.

  5. Improving hydrolysis of food waste in a leach bed reactor

    International Nuclear Information System (INIS)

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB

  6. Improving hydrolysis of food waste in a leach bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Browne, James D.; Allen, Eoin; Murphy, Jerry D., E-mail: jerry.murphy@ucc.ie

    2013-11-15

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.

  7. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  8. Countercurrent multistage fluidized bed reactor for immobilized biocatalysts: II. Operation of a laboratory-scale reactor.

    Science.gov (United States)

    Vos, H J; Zomerdijk, M; Groen, D J; Luyben, K C

    1990-08-01

    In Part I of this series,(1) we derived a model and made simulations for a multistage fluidized bed reactor (MFBR). It was concluded that the MFBR can be an attractive alternative for a fixed bed reactor when operated with a deactivating biocatalyst. In Part II of this series, the design of a laboratory-scale MFBR and its evaluation to investigate the practical feasibility of this reactor type, will be described. Experiments with a duration as long as 10 days were carried out successfully using immobilized glucose isomerase as a model reaction system. The results predicted by the model are in good agreement with the measured glucose concentration and biocatalyst activity gradients, indicating perfect mixing of the particles in the reactor compartments.The diameters of the biocatalyst particles used in the experiments showed a large spread, with the largest being 1.7 times the smallest. Therefore, an additional check was carried out, to make sure that the particles were not segregating according to size. Particles withdrawn from the reactor compartments were investigated using an image analyzer. Histograms of particle size distribution do not indicate segregation and it is concluded that the particles used have been mixed completely within the compartments. As a result, transport of biocatalyst is nearly plug flow. PMID:18595091

  9. Some Movement Mechanisms and Characteristics in Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available The pebblebed-type high temperature gas-cooled reactor is considered to be one of the promising solutions for generation IV advanced reactors, and the two-region arranged reactor core can enhance its advantages by flattening neutron flux. However, this application is held back by the existence of mixing zone between central and peripheral regions, which results from pebbles’ dispersion motions. In this study, experiments have been carried out to study the dispersion phenomenon, and the variation of dispersion region and radial distribution of pebbles in the specifically shaped flow field are shown. Most importantly, the standard deviation of pebbles’ radial positions in dispersion region, as a quantitative index to describe the size of dispersion region, is gotten through statistical analysis. Besides, discrete element method has been utilized to analyze the parameter influence on dispersion region, and this practice offers some strategies to eliminate or reduce mixing zone in practical reactors.

  10. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas.

  11. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    S. Yamoah

    2012-06-01

    Full Text Available The pebble bed type high temperature gas cooled nuclear reactor is a promising option for next generation reactor technology and has the potential to provide high efficiency and cost effective electricity generation. The reactor unit heat transfer poses a challenge due to the complexity associated with the thermalflow design. Therefore to reliably simulate the flow and heat transport of the pebble bed modular reactor necessitates a heat transfer model that deals with radiation as well as thermal convection and conduction. In this study, a model with the capability to simulate fluid flow and heat transfer in the pebble bed modular reactor core has been developed. The developed model was implemented on a personal computer using FORTRAN 95 programming language. Several important fluid flow and heat transfer parameters have been examined: including the pressure drop over the reactor core, the heat transfer coefficient, the Nusselt number and the effective thermal conductivity of the fuel pebbles. Results obtained from the simulation experiments show a uniform pressure in the radial direction for a core to fuel element diameter (D/d ratio>20 and the heat transfer coefficient increases with increasing temperature and coolant mass flow rate. The model can adequately account for the flow and heat transfer phenomenon and the loss of pressure through friction in the pebble bed type high temperature nuclear reactor.

  12. Development of a generic engineering model for packed bed reactors using computational fluid dynamics

    NARCIS (Netherlands)

    Tuinstra, B.F.

    2008-01-01

    Packed bed reactors are used in many chemical processes. With the advent of modern computers, flow simulation (Computational Fluid Dynamics, CFD) can be an aid in the design of process equipment. For particulate systems like packed bed reactors, simulation of the flow around the particles is very co

  13. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Science.gov (United States)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  14. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best perf

  15. Evaluation of Fluidized Bed Reactor in treating Dyeing effluent

    Directory of Open Access Journals (Sweden)

    S. Poongoth

    2012-07-01

    Full Text Available Textile dyeing industries one of the complicated industries which use many chemicals like dyes, starch, acids, alkalis, surfactants and refractory organics for their process. As it is a wet process it requires more amount of water ranging 65-104 L/Kg of product and it discharges 52-95 L/Kg of product as wastewater. The COD, BOD,TDS, Colour and SS are the major pollutants from these industries to the receiving streams. Biological treatment is employed mostly when compared to the physicochemical treatment. More sludge, toxic bye products and cost for the treatment are the reasons for not employing the physiochemical treatment processes. Biological treatments like aerobic and anaerobic processes overcome the disadvantages of physicochemical treatment. The present study evaluates the Aerobic Fluidized bed Reactor for the treatment of Dyeing effluent. It has been observed through this study that 89% colour removal and 83.3% COD removal were achieved.

  16. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  17. Pebble Bed Reactor Plant screening evaluation. Volume 1. Overall plant and reactor system

    International Nuclear Information System (INIS)

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW/sub t/ Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system. Core scoping studies were performed which evaluated the effects of annular and cyclindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations

  18. Characteristics of convective heat transport in a packed pebble-bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  19. Moving bed biofilm reactor technology: process applications, design, and performance.

    Science.gov (United States)

    McQuarrie, James P; Boltz, Joshua P

    2011-06-01

    The moving bed biofilm reactor (MBBR) can operate as a 2- (anoxic) or 3-(aerobic) phase system with buoyant free-moving plastic biofilm carriers. These systems can be used for municipal and industrial wastewater treatment, aquaculture, potable water denitrification, and, in roughing, secondary, tertiary, and sidestream applications. The system includes a submerged biofilm reactor and liquid-solids separation unit. The MBBR process benefits include the following: (1) capacity to meet treatment objectives similar to activated sludge systems with respect to carbon-oxidation and nitrogen removal, but requires a smaller tank volume than a clarifier-coupled activated sludge system; (2) biomass retention is clarifier-independent and solids loading to the liquid-solids separation unit is reduced significantly when compared with activated sludge systems; (3) the MBBR is a continuous-flow process that does not require a special operational cycle for biofilm thickness, L(F), control (e.g., biologically active filter backwashing); and (4) liquid-solids separation can be achieved with a variety of processes, including conventional and compact high-rate processes. Information related to system design is fragmented and poorly documented. This paper seeks to address this issue by summarizing state-of-the art MBBR design procedures and providing the reader with an overview of some commercially available systems and their components. PMID:21751715

  20. Moving bed biofilm reactor technology: process applications, design, and performance.

    Science.gov (United States)

    McQuarrie, James P; Boltz, Joshua P

    2011-06-01

    The moving bed biofilm reactor (MBBR) can operate as a 2- (anoxic) or 3-(aerobic) phase system with buoyant free-moving plastic biofilm carriers. These systems can be used for municipal and industrial wastewater treatment, aquaculture, potable water denitrification, and, in roughing, secondary, tertiary, and sidestream applications. The system includes a submerged biofilm reactor and liquid-solids separation unit. The MBBR process benefits include the following: (1) capacity to meet treatment objectives similar to activated sludge systems with respect to carbon-oxidation and nitrogen removal, but requires a smaller tank volume than a clarifier-coupled activated sludge system; (2) biomass retention is clarifier-independent and solids loading to the liquid-solids separation unit is reduced significantly when compared with activated sludge systems; (3) the MBBR is a continuous-flow process that does not require a special operational cycle for biofilm thickness, L(F), control (e.g., biologically active filter backwashing); and (4) liquid-solids separation can be achieved with a variety of processes, including conventional and compact high-rate processes. Information related to system design is fragmented and poorly documented. This paper seeks to address this issue by summarizing state-of-the art MBBR design procedures and providing the reader with an overview of some commercially available systems and their components.

  1. Optimization of Moving Bed Biofilm ReactorUsing Taguchi Method

    Directory of Open Access Journals (Sweden)

    R Nabizadeh Nodehi

    2009-07-01

    Full Text Available "n "nBackgrounds and Objectives: in recent years, mobile bed biological reactors have been used progressively for municipal and industrial wastewaters treatment. Dissented experiment is a trial that significant changes will accrue for influent variables in the process, and generally used for identification of the effective factors and optimization of the process. The scope of this study was determination of the optimized conditions for the MBBR process by using of Taguchi method. "nMaterials and Methods: Reactor start up was done by using of the recycled activated sludge from Ahwaz wastewater treatment plant. After that and passing the acclimation period, with hydraulic residence time equal to 9 hours matched for 1000, 2000 and 3000 mg/l based on COD respectively, for optimization determination of the acclimated microbial growth, the variables change (pH, nitrogen source, chemical oxygen demand and salinity were determined in 9 steps, and all of the results were analyzed by Qualitek -4 (w32b."nResults:In this study, organic load removal based on COD was 97% and best optimized condition for MBBR were (inf. COD=1000 mg/l, pH= 8, salinity = 5% and the Nitrogen source= NH4CL"nConclusion: Based on our finding, we may conclude that Taguchi method is on of the appropriate procedure in determination the optimized condition for increasing removal efficiency of MBBR.

  2. Thermal modeling of microwave heated packed and fluidized bed catalytic reactors.

    Science.gov (United States)

    Thomas, J R; Faucher, F

    2000-01-01

    Thermal models of small-scale, microwave-heated, packed-bed and fluidized-bed catalytic chemical reactors were developed to investigate the possibility of selectively heating the catalyst sites or the catalyst pellets with microwaves. Results indicate catalyst sites may be selectively heated under special conditions in a packed or fluidized bed, and catalyst pellets may be heated above the temperature of the cooling(and reacting) gas under certain conditions in a fluidized bed. PMID:11098441

  3. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, Joao P. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Dezotti, Marcia, E-mail: mdezotti@peq.coppe.ufrj.br [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Sant' Anna, Geraldo L. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl{sup -}/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  4. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    Science.gov (United States)

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  5. Gas-solid hydroxyethylation of potato starch in a stirred vibrating fluidized bed reactor

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    1996-01-01

    A novel reactor for modifying cohesive C-powders such as in the gas-solid hydroxyethylation of semidry potato starch is characterized, the so-called stirred vibrating fluidized bed reactor. Good fluidization characteristics are obtained in this reactor for certain combinations of stirring and vibrat

  6. Performance evaluation of cigarette filter rods as a biofilm carrier in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2012-01-01

    Biocarriers are an important component of anaerobic moving bed biofilm reactors (AMBBRs). In this study, the capability of cigarette filter rods (CFRs) as a biocarrier in an anaerobic moving bed biofilm reactor was evaluated. Two similar lab-scale anaerobic moving bed biofilm reactors were undertaken using Kaldnes-K3 plastic media and cigarette filter rods (wasted filters from tobacco factories) as biofilm attachment media for wastewater treatment. Organic substance and total posphours (TP) removal was investigated over 100 days. Synthetic wastewater was prepared with ordinary water and glucose as the main sources of carbon and energy, plus balanced macro- and micro-nutrients. Process performance was studied by increasing the organic loading rate (OLR) in the range of 1.6-4.5 kg COD/m3 x d. The COD average removal efficiency were 61.3% and 64.5% for AMBBR with cigarette filter rods (Reactor A) and AMBBR with Kaldnes plastic media (Reactor B), respectively. The results demonstrate that the performance of the AMBBR containing 0.25 litres of cigarette filters was comparable with a similar reactor containing 1.5 litres of Kaldnes plastic media. An average phosphorus removal of 67.7% and 72.9% was achieved by Reactors A and B, respectively.

  7. Sludge combustion in fluidized bed reactors at laboratory scale

    International Nuclear Information System (INIS)

    The combustion of a dried sewage sludge in laboratory scale fluidized bed has been studied in Naples by the Istituto di ricerche sulla combustione (Irc) in the framework of a National project named Thermal Process with Energy Recovery to be used in laboratory and pre-pilot scale apparatus. The attention has been focused on emissions of unreacted carbon as elutriated fines, on the emissions of pollutant gases and on the assessment of the inventory of fly- and bottom ashes. The combustion behaviour of sewage sludge has been compared with those of a market available Tyre Derived Fuel (TDF) and a biomass from Mediterranean area (Robinia Pseudoacacia) and with that of a South African bituminous coal. Stationary combustion tests were carried out at 8500 C by feeding particles in the size range 0-1 mm into a bed of silica sand without any sorbent addition. The fluidized bed combustor has been operated, at a superficial gas velocity of 0.4 m/s and different excesses of air ranging between 14 and 98%. Relatively high combustion efficiency, larger than 98.9% has been obtained in experiments carried out with sewage sludge and excess of air larger than 20%. These values, are comparable with those obtained in previously experimental activity carried out under similar operative conditions with a South Africa Bituminous coal (97-98%). It is larger than those obtained by using a Tyre Derived Fuel (89-90%) and the Robinia Pseudoacacia Biomass (93-93%). The relative importance of carbon fines elutriation, CO emissions and volatile bypassing the bed in determining the loss of combustion efficiency has been evaluated for the different fuels tested

  8. Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment

    Science.gov (United States)

    Pérez-Moreno, L.; Soler, J.; Herguido, J.; Menéndez, M.

    2013-12-01

    The Two Zone Fluidized Bed Reactor concept is proposed for hydrogen production via the steam reforming of methane (SRM) including integrated catalyst regeneration. In order to study the effect of the contact mode, the oxidative SRM has been carried out over a Ni/Al2O3 catalyst using a fixed bed reactor (fBR), a conventional fluidized-bed reactor (FBR) and the proposed two-zone fluidized bed reactor (TZFBR). The technical feasibility of these reactors has been studied experimentally, investigating their performance (CH4 conversion, CO and H2 selectivity, and H2 global yield) and stability under different operating conditions. Coke generation in the process has been verified by several techniques. A stable performance was obtained in the TZFBR, where coke formation was counteracted with continuous catalyst regeneration. The viability of the TZFBR for carrying out this process with a valuable global yield to hydrogen is demonstrated.

  9. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  10. Steady-state thermal-hydraulic of pebble bed blanket on hybrid reactor

    International Nuclear Information System (INIS)

    This paper gives thermal-hydraulic studies of pebble bed blanket on Hybrid Reactor. The concept of whole pebble bed blanket and the cooling methods are presented. The thermal-hydraulic characteristics of pebble bed are summarized. The theoretical model and code for solving heat transfer and flowing are presented. By using this code the calculation and analysis of thermal hydraulic of pebble bed Blanket of Hybrid Reactor are also given. In order to improve the flexibility, safety and economy, the authors select pebble beds not only to breed Tritium, but also to breed fission material and to multiply neutron. 5 MPa Helium is used as coolant and 0.05 MPa-0.1 MPa Helium is used as Purge gas. The heat transfer mechanisms of pebble bed are very complicated which include conduction, convection and radiation. In order to study the thermal-hydraulic of the bed, the authors just simply consider it as homogeneous and continuous binary phase medium as that used in the porous medium at the condition that the size of the bed is much greater than that of the balls. The coolant or the purge gas flowing through the bed is just considered existing a cooling source in the bed. It also significantly influences the effective conductivity's of the bed. Porous fraction, the main factor of the bed depends on the geometry position and parameters. From this model, one can obtain the thermal-hydraulic governing equations of the bed

  11. Thermal-hydraulic transient analysis of a packed particle bed reactor fuel element

    OpenAIRE

    Casey, William Emerson

    1990-01-01

    Title as it appears in the M.I.T. Graduate List, Jun. 4, 1990: Transient thermal-hydraulic analysis of a packed particle bed reactor fuel element A model which describes the thermal-hydraulic behavior of a packed particle bed reactor fuel element is developed and compared to a reference standard. The model represents a step toward a thermal-hydraulic module for a real-time, autonomous reactor powder controller. The general configuration of the fuel element is a bed of small (diameter about...

  12. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  13. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  14. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    Science.gov (United States)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  15. Beckmann rearrangement of cyclohexanone oxime to {epsilon}-caprolactam using a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhoff, G.; Hoelderich, W.F. [Technische Hochschule Aachen (Germany)

    1999-07-01

    The application of a fluidized bed reactor on the heterogeneously catalyzed Beckmann rearrangement of cyclohexanone oxime to {epsilon}-caprolactam is presented. For this purpose the classic industrial synthesis route is compared to the new route catalyzed by [B]-MFI zeolite which proved to be the most suitable. To prepare the use of the catalyst the thermodynamics were calculated showing that the residence time of the reactants are of great importance. A regeneration model was developed resulting in a mathematical equation for the regeneration time calculated to seven hours under oxidative conditions. A 40 day regeneration experiment demonstrated the excellent regeneration behaviour of the chosen catalyst showing no decrease in activity after 40 recycle treatments. Finally, the experiments in a constructed non circulating fluidized bed showed good yields and selectivities (99%/91%) completely comparable to the actual synthesis route but avoiding 4 t ammonia sulphate/t product. (orig.)

  16. Packed bed reactor treatment of liquid hazardous and mixed wastes

    International Nuclear Information System (INIS)

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl4), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO2 is not released to the environment

  17. Biohydrogen production from tequila vinasses using a fixed bed reactor.

    Science.gov (United States)

    Buitrón, Germán; Prato-Garcia, Dorian; Zhang, Axue

    2014-01-01

    In Mexico, the industrial production of tequila leads to the discharge of more than 31.2 million of m(3) of vinasse, which causes serious environmental issues because of its acidity, high organic load and the presence of recalcitrant compounds. The aim of this research was to study the feasibility of a fixed bed reactor for the production of biohydrogen by using tequila vinasse as substrate. The experiments were carried out in a continuous mode under mesophilic and acidic conditions. The maximum hydrogen yield and hydrogen production rate were 1.3 mol H2 mol/mol glucose and 72 ± 9 mL H2/(Lreactor h), respectively. Biogas consisted of carbon dioxide (36%) and hydrogen (64%); moreover methane was not observed. The electron-equivalent mass balance fitted satisfactorily (sink of electrons from 0.8 to 7.6%). For vinasses, hydrogen production accounted for 10.9% of the total available electron-equivalents. In the liquid phase, the principal metabolites identified were acetic, butyric and iso-butyric acids, which indicated a butyrate-acetate type fermentation. Tequila vinasses did not result in potential inhibition of the fermentative process. Considering the process as a water treatment system, only 20% of the original carbon was removed (as carbon dioxide and biomass) when the tequila vinasses are used.

  18. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  19. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane

    Institute of Scientific and Technical Information of China (English)

    Ali Darvishi; Razieh Davand; Farhad Khorasheh; Moslem Fattahi

    2016-01-01

    An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re-actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of smal diameter tubes immersed in a shel through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa-rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run-away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl-ene production in an industrial scale reactor.

  20. Raising distillate selectivity and catalyst life time in Fischer-Tropsch synthesis by using a novel dual-bed reactor

    International Nuclear Information System (INIS)

    In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diff rent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Raiment promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed reactor system. The methane selectivity in the dual-bed reactor was about 18.9% less compared to that of the single-bed reactor. The C5+ selectivity for the dual-bed reactor was 10.9% higher than that of the single-bed reactor. Accelerated deactivation of the catalysts in the dual-bed reactor was 42% lower than that of the single-bed reactor. It was revealed that the amount of catalysts activity recovery after regeneration at 400degC in the dual-bed system is higher than that of the single-bed system

  1. The effect of bubble plume on oxygen transfer for moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; LIU Hu; WANG Meng; WANG Min

    2014-01-01

    The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration tank and also the oxygen transfer from the gas phase to the liquid phase. In this study, the velocity field is determined by a 4-frame PTV as well as the time-averaged and time- dependent velocity distributions. The velocity distribution of the bubble plume is analyzed to evaluate the operating efficiency of the MBBR. The results show that the aeration rate is one of the main factors that sway the velocity distribution of the bubble plumes and affect the operating efficiency of the reactor.

  2. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  3. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Lemire, Joe A.; Marc A Demeter; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  4. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  5. Particle agglomeration during energy recovery from plastic wastes by means of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arena, U.; Mastellone, M.L.

    1999-07-01

    The occurrence and the significance of agglomeration phenomena during thermal treatments in a fluidized bed reactor of a couple of plastic wastes were studied. A small scale bubbling fluidized bed, made of quartz, was charged with pellets obtained from mono-material collections of polyethylene and polyethylene terephtalate. Batchwise and continuous experiments were carried out at different bed temperatures (from 450 to 850 C), under inert and oxidizing conditions and by operating the reactor with silica sand having a size range of 0.3--0.4 mm. Different mechanisms of defluidization were identified and characterized. The time at which the phenomena occurred, for each of bed temperatures used, was also determined. In particular, the continuous experiments showed that defluidization can occur, with different mechanisms, at temperatures lower than 850 C. An increase of bed temperature as well as that of oxygen content strongly reduces the potential concern of particle agglomeration and bed defluidization.

  6. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  7. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yangming [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Wenhua [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-10-15

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H{sub 2}O{sub 2} production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H{sub 2}O{sub 2} was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H{sub 2}O{sub 2} generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L{sup −1} of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h.

  8. Fluidized bed as a solid precursor delivery system in a chemical vapor deposition reactor

    OpenAIRE

    Vahlas, Constantin; Caussat, Brigitte; Senocq, François; Gladfelter, Wayne L.; Sarantopoulos, Christos; Toro, David; Moersch, Tyler

    2005-01-01

    Chemical vapor deposition (CVD) using precursors that are solids at operating temperatures and pressures, presents challenges due to their relatively low vapor pressures. In addition, the sublimation rates of solid state precursors in fixed bed reactors vary with particle and bed morphology. In a recent patent application, the use of fluidized bed (FB) technology has been proposed to provide high, reliable, and reproducible flux of such precursors in CVD processes. In the present contribution...

  9. Synthesis of Petroleum Sulfonate Surfactant with Ultra-Low Interfacial Tension in Rotating Packed Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    Weng Zhan; Zhang Pengyuan; Chu Guangwen; Zou Haikui; Jimmy Yun; Chen Jianfeng

    2015-01-01

    Petroleum sulfonate is one of the most important surfactants used in surfactant lfooding for enhanced oil recov-ery, which is mainly obtained by treating high-boiling petroleum fractions in a stirred tank reactor (STR) or in a falling-iflm reactor (FFR). The synthesis of petroleum sulfonate with ultra-low interfacial tension from viscous petroleum fractions was carried out in a rotating packed bed (RPB) reactor using dilute liquid sulfur trioxide as the sulfonating agent in this study. The effects of various experimental conditions on components content and oil-water interfacial tension (IFT) were investigated. Under the optimum conditions, the active matter content could reach up to 50.3% and the IFT could be equal to 4.7×10−3 mN/m. Compared with the traditional reactor, the active matter content is by 14.12% higher in the RPB as compared to that obtained in the STR. The uneven change of the test oil droplets during the IFT measurement was also dis-cussed. The increase of heavy components content not only can eliminate the contraction phenomenon, but also can reduce the IFT to a minimum. This can be conducive to explaining the reason for producing IFT and the preparation of proper for-mulations for practical application.

  10. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  11. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  12. Metal supplementation to anaerobic granular sludge bed reactors: an environmental engineering approach

    NARCIS (Netherlands)

    Gonzalez Fermoso, F.

    2008-01-01

    The objective of this research is the optimization of essential metal dosing in upflow anaerobic sludge bed (UASB) reactors used for methanogenic wastewater treatment. Optimization of essential metal dosing in UASB reactors is a compromise between achieving the maximal biological activity of the bio

  13. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using on

  14. Conceptual design of a fluidized bed nuclear reactor: statics, dynamics and safety-related aspects

    NARCIS (Netherlands)

    Agung, A.

    2007-01-01

    In this thesis a conceptual design of an innovative high temperature reactor based on the fluidization principle (FLUBER) is proposed. The reactor should satisfy the following requirements: (a) modular and low power, (b)) large shutdown margin, (c) able to produce power when the bed of particles exp

  15. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  16. Design of particle bed reactors for the space nuclear thermal propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G. [Brookhaven National Lab., Upton, NY (United States)

    1996-02-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author).

  17. Designing reverse-flow packed bed reactors for stable treatment of volatile organic compounds.

    Science.gov (United States)

    Chan, Fan Liang; Keith, Jason M

    2006-02-01

    Reverse-flow packed bed reactors can be used to treat gaseous pollutants from chemical plants. This article describes the design and operation of a modified reverse-flow reactor (MRFR) which has a recuperator on each end of the reactor and a reaction zone in the middle. The recuperators have low thermal dispersion and the reaction zone has a high thermal dispersion, obtained by placing metal inserts into the bed, parallel with the gas flow. Performance of the MRFR during extended lean and rich conditions is determined with analytical analysis and compares well with numerical simulations of CO oxidation; however, the theory is expected to be useful for any reaction kinetics. A major advantage of this MRFR design is an extended time for the reactor to extinguish during lean conditions. This work also describes MRFR performance with internal reactor cooling, which can be used as a control mechanism to maintain reactor temperature for proper removal of volatile organic compounds.

  18. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    The gas-solid reaction and breakthrough curve of CO2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  19. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  20. PARTICLE COATING BY CHEMICAL VAPOR DEPOSITION IN A FLUIDI7ED BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    Gregor; Czok; Joachim; Werther

    2005-01-01

    Aluminum coatings were created onto glass beads by chemical vapor deposition in a fluidized bed reactor at different temperatures. Nitrogen was enriched with Triisobutylaluminum (TIBA) vapor and the latter was thermally decomposed inside the fluidized bed to deposit the elemental aluminum. To ensure homogeneous coating on the bed material, the fluidizing conditions necessary to avoid agglomeration were investigated for a broad range of temperatures.The deposition reaction was modeled on the basis of a discrete particle simulation to gain insight into homogeneity and thickness of the coating throughout the bed material. In particular, the take-up of aluminum was traced for selected particles that exhibited a large mass of deposited aluminum.

  1. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  2. PORE-SCALE SIMULATION OF FLUID FLOW IN PACKED-BED REACTORS VIA RIGID-BODY SIMULATIONS AND CFD

    OpenAIRE

    Icardi, Matteo; Marchisio, Daniele,; Boccardo, Gianluca

    2014-01-01

    The problem of fluid flow in porous media is of paramount importance in the process, oil and metallurgical industries, since it is involved in the extraction of minerals and oil, in aquifer dynamics, as well as chemical reactions carried out in fixed bed catalytic reactors. Its CFD simulation is particularly interesting, as it offers the possibility of reducing the extent of costly experimental investigations, but presents a number of technical challenges. One of the main issues is the genera...

  3. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei

    2015-01-01

    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  4. Beneficiation of pulverized coal combustion fly ash in fluidised bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; Chirone, R.; Solimene, R.; Urciuolo, M. [Istituto di Ricerche sulla Combustione - C.N.R., P.le V. Tecchio 80, 80125 Napoli (Italy)

    2008-07-15

    The paper addresses the thermal treatment of pulverized coal combustion fly ash belonging to the group C of Geldart powder classification in unconventional configurations of fluidised bed reactors. A sound-assisted fluidised bed combustor operated at 850 and 750 C, and a fluidised bed combustor characterized by a conical geometry, operated at 850 C, are the two lab-scale reactors tested. Combustion experiments have been carried out at different air excesses, ranging between 10% and 170%, and in the case of the conical fluidization column with different bed inventory. Both tested configurations have been proved to be efficient to reduce the carbon content initially present in the fly ash of 11%{sub w}, to a very low level, generally smaller than 1%{sub w}. Both the fly ash residence time in the reactor and the air excess strongly influenced the reactor performance. Residence times of 3-4 min and 10-60 min have been estimated for experiments carried out with the sound-assisted fluidised bed combustor and with the conical fluidised bed combustor, respectively. Regarding the possibility of a concurrent reduction of unburned carbon in the ash and of a particle size separation of the beneficiated material, on the basis of the obtained experimental data, the sound-assisted fluidised bed combustor is not able to separate the broad particle size distribution of the fly ash in different outlet solid streams. The use of a conical fluidised bed combustor is promising to realize an efficient separation of the inlet broad particle size distribution of the fly ash fed to the reactor into narrower outlet solid streams extracted from different locations: combustor exit, top and bottom of the bed. In this framework a hydrodynamic characterization of binary mixtures in a conical fluidised bed column carried out at ambient and high temperature (850 C) has demonstrated that the operating conditions of the conical fluidised bed combustor can be chosen on the basis of a compromise

  5. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  6. CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Ren, Nan-Qi; Liu, Bing-Feng; Guo, Wan-Qian [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2009-12-15

    Understanding how a bioreactor functions is a necessary precursor for successful reactor design and operation. This paper describes a two-dimensional computational fluid dynamics simulation of three-phase gas-liquid-solid flow in an expanded granular sludge bed (EGSB) reactor used for biohydrogen production. An Eulerian-Eulerian model was formulated to simulate reaction zone hydrodynamics in an EGSB reactor with various hydraulic retention times (HRT). The three-phase system displayed a very heterogeneous flow pattern especially at long HRTs. The core-annulus structure developed may lead to back-mixing and internal circulation behavior, which in turn gives poor velocity distribution. The force balance between the solid and gas phases is a particular illustration of the importance of the interphase rules in determining the efficiency of biohydrogen production. The nature of gas bubble formation influences velocity distribution and hence sludge particle movement. The model demonstrates a qualitative relationship between hydrodynamics and biohydrogen production, implying that controlling hydraulic retention time is a critical factor in biohydrogen-production. (author)

  7. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Binlin; Song, Yongchen [School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2010-10-15

    Hydrogen production from steam reforming of glycerol in a fluidized bed reactor has been simulated using a CFD method by an additional transport equation with a kinetic term. The Eulerian-Eulerian two-fluid approach was adopted to simulate hydrodynamics of fluidization, and chemical reactions were modelled by laminar finite-rate model. The bed expansion and pressure drop were predicted for different inlet gas velocities. The results showed that the flow system exhibited a more heterogeneous structure, and the core-annulus structure of gas-solid flow led to back-mixing and internal circulation behaviour, and thus gave a poor velocity distribution. This suggests the bed should be agitated to maintain satisfactory fluidizing conditions. Glycerol conversion and H{sub 2} production were decreased with increasing inlet gas velocity. The increase in the value of steam to carbon molar ratio increases the conversion of glycerol and H{sub 2} selectivity. H{sub 2} concentrations in the bed were uneven and increased downstream and high concentrations of H{sub 2} production were also found on walls. The model demonstrated a relationship between hydrodynamics and hydrogen production, implying that the residence time and steam to carbon molar ratio are important parameters. The CFD simulation will provide helpful data to design and operate a bench scale catalytic fluidized bed reactor. (author)

  8. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  9. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    Science.gov (United States)

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  10. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  11. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    Science.gov (United States)

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. PMID:26077230

  12. Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

    2002-11-01

    This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

  13. Kinetic Model of Fixed Bed Reactor with Immobilized Microorganisms for Removing Low-Concentration SO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects of internal diffusion, cell concentration, and production yield of microorganisms but ignoring the effect of external diffusion. The results obtained from the model simulation show that this model can indicate the influence of the process factors, Cin, η, μmax, Cx, A, h, Km, and Q, on the removal of SO2 and that the prediction of the results by this model is also satisfactory. This kinetic model can also provide some very important indications regarding the preparation of immobilized microorganisms, selection and domestication of proper species of microorganisms, as well as the design of bioreactors.

  14. Biodegradation of pharmaceuticals from hospital wastewater in staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola, Monica; Kumar Chhetri, Ravi; Ooi, Gordon;

    2015-01-01

    Hospital wastewater may represent an important source of pharmaceuticals into wastewater treatment plants, which are usually inefficient for complete pharmaceuticals removal. Consequently, on-site treatment of hospital wastewater has been suggested. MBBRs (Moving Bed Biofilm Reactors) rely...... of pharmaceuticals in the system. The first was a batch experiment dedicated to study the degradation kinetics of spiked pharmaceuticals over one day in each of the tanks. The second campaign was conducted under continuous flow and the authentic concentrations of pharmaceuticals were monitored under operating...... conditions. In both campaigns general parameters DOC removal and nitrification mainly occurred in the first tank. In the batch campaign, first order kinetic degradation fitted the concentration of pharmaceuticals in each tank except for diclofenac, propranolol, citalopram and trimethoprim. These compounds...

  15. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  16. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Science.gov (United States)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  17. Carbon Shale Combustion in the Fluidized Bed Reactor

    OpenAIRE

    Olek Małgorzata; Kandefer Stanisław; Kaniowski Wiesław; Żukowski Witold; Baron Jerzy

    2014-01-01

    The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm) and VOC (30 mg/m3) have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the ...

  18. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  19. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  20. Propylene polymerization in a circulating slugging fluidized bed reactor

    NARCIS (Netherlands)

    Putten, van Inge Cornelia

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Propert

  1. Styrene biofiltration in a trickle-bed reactor

    Directory of Open Access Journals (Sweden)

    V. Novak

    2008-04-01

    Full Text Available The biological treatment of styrene waste gas in a trickle-bed filter (TBF was investigated. The bioreactor consisted of a two-part glass cylinder (ID 150 mm filled with 25 mm polypropylene Pall rings serving as packing material. The bed height was 1m. Although the laboratory temperature was maintained at 22 ºC, the water temperature in the trickle-bed filter was slightly lower (about 18 ºC.The main aim of our study was to observe the effect of empty-bed residence time (EBRT on bioreactor performance at a constant pollutant concentration over an extended time period. The bioreactor was inoculated with a mixed microbial consortium isolated from a styrene-degrading biofilter that had been running for the previous two years. After three weeks of acclimation period, the bioreactor was loaded with styrene (100 mg.m-3. EBRT was in the range of 53 s to 13 s. A maximum elimination capacity (EC of 11.3 gC.m-3.h-1 was reached at an organic loading (OL rate of 18.6 gC.m-3.h-1.

  2. Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor.

    Science.gov (United States)

    Martins, Rosimeire; Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2012-06-01

    This work investigates the removal of metal ions from synthetic aqueous effluents using a spouted bed electrochemical reactor whose cathode was composed of 1.0 mm copper particles. Using a Box-Behnken factorial design, the effects of current (I), electrode thickness (L), draught distance (d) and support electrolyte concentration (C(s)) on current efficiency (CE), space-time yield (Y) and energy consumption (EC) were analysed. The results were statistically analysed and the effect of each variable was evaluated using the surface response methodology. The results showed that C(s) is the most important variable to consider in the process optimization. A current of 8.0 A can be applied in order to obtain high Y and CE with an acceptable EC. Electrode thicknesses greater than 1.3 cm are not recommended because the irregular potential distribution leads to a Y drop owing to the low CE observed for this condition. The draught distance does not have statistical significance; therefore, the particle circulation rate is not important in this kind of electrochemical reactor. PMID:22856281

  3. Modeling of a fluidized bed reactor for the ethylene-propylene copolymerization

    Directory of Open Access Journals (Sweden)

    Juan Guillermo Cadavid Estrada

    2010-04-01

    Full Text Available A mathematical model for the ethylene - propylene copolymerization with a Ziegler - Natta catalyst in a gas phase fludized bed reactor is presented. The model includes a two active site kinetic model with spontaneous transfer reactions and site deactivation. Also, it is studied and simulated the growth of a polymeric particle which is exposed to an outside atmosphere (monomers concentrations and temperature that represent the emulsion phase conditions of the reactor. Particle growth model is the basis for the study of the sizes distribution into the reactor. Two phase model of Kunii-Levenspiel is the basis for the modelling and simulation of the fluid bed reactor, the models developed consider two extreme cases for the gas mixed grade in emulsion phase (perfectly mixed and plug flow. The solution of the models includes mass (for the two monomers and energy balances, coupled with the particle growth and residence time distribution models.

  4. Performance of a magnetically stabilized bed reactor with immobilized yeast cells.

    Science.gov (United States)

    Ivanova, V; Hristov, J; Dobreva, E; al-Hassan, Z; Penchev, I

    1996-05-01

    This paper is focused on the possibility to apply the magnetic stabilization technique in bioprocessing. The feasibility of a continuous ethanol fermentation process with immobilized Saccharomyces cerevisiae cells in a magnetically stabilized bed (MSB) was demonstrated. The fermentation processes were carried out in an external magnetic field, transverse to the fluid flow. The flexibility to change the bed expansion owing to the independent change of the fluid flow and the field intensity (the "magnetization FIRST" mode) permitted the creation of fixed beds with different particle arrangements, which affected the bed porosity, the effective fluid-particle contact area, and the mass transfer processes on the particle-fluid interface. As a result, higher ethanol concentration, ethanol production, and glucose uptake rates than in conventional packed bed reactor were reached.

  5. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    OpenAIRE

    Farhana Tisa; Abdul Aziz Abdul Raman; Wan Mohd Ashri Wan Daud

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simp...

  6. Influence of dissolved oxygen in nitrification kinetics in a circulating bed reactor

    OpenAIRE

    V. Lazarova; R. Nogueira; J. Manem; Melo, L. F.

    1997-01-01

    The influence of dissolved oxygen concentration in nitrification kinetics was studied in a new biofilm reactor, the circulating bed reactor (CBR). The study was carried out partly at laboratory scale with synthetic water containing inorganic carbon and nitrogen compounds, and partly at pilot scale for secondary and tertiary nitrification of municipal wastewater. The experimental results showed that, either the ammonia or the oxygen concentration could be limiting for the nitrification rate...

  7. COMPARISON OF PHENOL REMOVAL IN ANAEROBIC FLUIDIZED BED REACTORS WITH SAND AND GAC MEDIA

    Directory of Open Access Journals (Sweden)

    A.R. Yazdanbakhsh; A.R. Mesdaghinia; A. Torabian; M. Shariat

    1997-08-01

    Full Text Available In this study two identical anaerobic completely mixed fluidized bed reactors with GAC and sand media were employed for COD & phenol removal. At loading rate of 1.6 g phenol L-1d-1, the efficiency of phenol removal in GAC & sand reactors were 97.7% & 74%, respectively. At high loading rate of phenol (6.09 g phenol I: 1d1 the efficiency of phenol removal in GAC reactor was better than 95%. In GAC reactor, the main mechanism for phenol removal at steady state condition was biological process; this was concluded through balance of gas production and COD removal. Better efficiency of GAC reactor comparing with sand reactor was because of resistance to fluctuations, higher surface for biomass growth and adsorption capacity of activated carbon.

  8. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  9. A Pebble-Bed Breed-and-Burn Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  10. A Pebble-Bed Breed-and-Burn Reactor

    International Nuclear Information System (INIS)

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  11. Method for loading, operating, and unloading a ball-bed nuclear reactor

    International Nuclear Information System (INIS)

    This patent describes a method of operating a ball-bed nuclear reactor with fuel element balls. Some have a fissionable material content different from that of others of the balls. It consists of: initially partly filling a reactor core with fuel balls of sufficient fissionable material content for establishing criticality and a desired level of power production at the completion of the partial filling and then, without any further filling of the reactor cavern, starting reactor operation; thereafter without any removal of fuel balls from the reactor cavern, filling fuel balls continually or in groups at relatively short intervals into the reactor cavern during increasing burning up of the fuel balls already, for compensation of the diminishing fissionable material content of the reactor core constituted by the fuel balls until a final total quantity of filling is reached; after the final filling quantity is reached and burning up has occurred, shutting down the reactor, cooling it off, releasing the pressure in the cavern, and thereafter unloading all the fuel balls from the reactor cavern, unloading being begun when the reactor is shut down and being completed before the reactor is restarted

  12. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  13. Mathematical model of processes of reactor with gasified fluidized bed

    International Nuclear Information System (INIS)

    An original scheme of steam generator with gasifying fluidized bed has been presented as a possible solution for reconstruction of furnace with pulverized burning of coal. The method is effective when applied in combination with desulfurization for the purpose of reducing the CO2 emissions level. A mathematical model has been developed, which determines the correlation primary (fluidizing) and (burning out) secondary air with sufficient for the practice accuracy

  14. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T.; Frankenhaeuser, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  15. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  16. The development and use of a laboratory scale reactor to study aspects of gasification in an air blown fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, A.; Zhuo, Y.; Reed, G.P.; Paterson, N.; Dugwell, D.R.; Kandiyoti, R. [Imperial College London, London (United Kingdom). Dept of Chemical Engineering

    2006-07-01

    A laboratory scale reactor has been used to study aspects of air blown, spouted bed gasifiers. The effects of operating conditions on the release of fuel-N has been studied using both coal and sewage sludge. The work has clarified the reactions involved and shown that steam has an important effect on the formation of NH{sub 3} from both volatile-N and char-N. The HCN concentration depends strongly on the residence time at temperature and on the presence (and depth) of a char bed. Trace element results indicate that bed temperatures above 900{sup o}C enhanced depletion of Ba, Pb and Zn from the bed residue and their enrichment in the fines. Mercury and selenium were released and their subsequent capture required low temperature filters operating below 120{sup o}C. The reactor was modified to enable char samples to be prepared and collected under controlled conditions. Results show the decreasing reactivity of the char with increasing temperature, time, pressure and particle size. There appears to be an initial decrease in reactivity during pyrolysis and a further longer- term decrease caused by graphitisation. 10 refs., 8 figs., 6 tabs.

  17. CFD Simulation of Pilot HDS Trickle-Bed Reactor

    OpenAIRE

    Tukač, V.

    2012-01-01

    The goal of this study is to compare experimental measurement obtained by RTD method with result of computational model. The goal of this work is to evaluate influence of dilution extent on operation of pilot test reactor and to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  18. A comparative study of sequencing batch reactor and moving-bed sequencing batch reactor for piggery wastewater treatment

    Directory of Open Access Journals (Sweden)

    Kwannate Sombatsompop

    2011-06-01

    Full Text Available This research aims to comparatively study the efficiency of piggery wastewater treatment by the moving-bed sequencing batch reactor (moving-bed SBR system with held medium, and the conventional sequencing batch reactor (SBR system, by varying the organic load from 0.59 to 2.36 kgCOD/m3.d. The COD treatment efficiency of the SBR and moving-bed SBR was higher than 60% at an organic load of 0.59 kgCOD/m3.d and higher than 80% at the organic loads of 1.18-2.36 kgCOD/m3.d. The BOD removal efficiency was greater than 90% at high organic loads of 1.18-2.36 kgCOD/m3.d. The moving-bed SBR gave TKN removal efficiency of 86-93%, whereas the SBR system exhibited the removal efficiency of 75-87% at all organic loads. The amount of effluent suspended solids for SBR systems exceeded the piggery wastewater limit of 200 mg/L at the organic load of 2.36 kgCOD/m3.d while that for the moving-bed SBR system did not. When the organic load was increased, the moving-bed SBR system yielded better treatment efficiency than that of the SBR system. The wastewater treated by the moving-bed SBR system met the criteria of wastewater standard for pig farms at all organic loads, while that treated by the SBR system was not satisfactory at a high organic load of 2.36 kgCOD/m3.d.

  19. Loss-of-water accident analysis of the pebble-bed modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The high pressure helium and water/steam are respectively used as the primary and secondary coolant for the pebble-bed modular high temperature gas-cooled reactor (HTGR). Loss-of-water accident is one of the typical design basis accident (DBA), which would be caused by malfunction or current failure of the feed water pump, as well as the false action of the feed water valve. During the loss-of-water accident, due to the loss of the secondary heat sink, the temperature and pressure of primary coolant will increase. Subsequently, the reactor scram will be triggered by the protective signal of the “high flow rate proportion of primary circuit and secondary circuit” or the “high core inlet helium temperature”. For this type of the accident, the earlier open of the safety valve of the primary circuit should be avoided by reactor design. Based on the preliminary design of the 250 MW pebble-bed modular high temperature gas-cooled reactor (HTR-PM), with the coupled analysis code TINTE-BLAST, accidents with different slowdown rate of the feed water supply have been studied. The important parameters, including the reactor power, fuel element temperature, inlet/outlet helium temperature of the core, and especially the primary pressure, are analyzed. The consequences with first scram signal succeeding or failing are compared. The results can prove that, according to the current design of the protection system, this kind of accident can be detected in time. The scram signal will trigger the reactor shut down quickly, without causing the earlier open of the safety valve. After the reactor is successfully shut down, due to the inherent safety feature of the HTGR, the temperature and the pressure in the primary circuit will increase very slowly. The temperature of the fuel element, as well as that of the components, will not exceed the design limitations. (author)

  20. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  1. Magnetically stabilized bed reactor for selective hydrogenation of olefins in reformate with amorphous nickel alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    Xuhong; Mu; Enze; Min

    2007-01-01

    A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.

  2. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    Science.gov (United States)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-10-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ-1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ-1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ-1 higher, respectively, than in the PBD reactor at 53 J l-1. The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment.

  3. The effect of operational conditions on the hydrodynamic characteristics of the sludge bed in UASB reactors

    NARCIS (Netherlands)

    Leitao, R.C.; Santaellla, S.T.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2011-01-01

    This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the expansibility

  4. The influence of particle residence time distribution on the reactivity in fluidized bed reactors

    NARCIS (Netherlands)

    Heesink, A.B.M.; Klaus, J.; Swaaij, van W.P.M.

    1994-01-01

    The influence of particle residence time distribution on the average conversion rate (or reactivity) of particles undergoing a non-catalytic gas-solid reaction inside a continuously operated fluidized bed reactor is evaluated. A so called ß-factor is defined as the ratio of the actual reactivity in

  5. Fast Pyrolysis of Biomass in a Fluidized Bed Reactor: In Situ Filtering of the Vapors

    NARCIS (Netherlands)

    Hoekstra, Elly; Hogendoorn, Kees J.A.; Wang, Xiaoquan; Westerhof, Roel J.M.; Kersten, Sascha R.A.; Swaaij, van Wim P.M.; Groeneveld, Michiel J.

    2009-01-01

    A system to remove in situ char/ash from hot pyrolysis vapors has been developed and tested at the University of Twente. The system consists of a continuous fluidized bed reactor (0.7 kg/h) with immersed filters (wire mesh, pore size 5 μm) for extracting pyrolysis vapors. Integration of the filter s

  6. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at dif

  7. A two-stage ethanol-based biodiesel production in a packed bed reactor

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Woodley, John

    2012-01-01

    A two-stage enzymatic process for producing fatty acid ethyl ester (FAEE) in a packed bed reactor is reported. The process uses an experimental immobilized lipase (NS 88001) and Novozym 435 to catalyze transesterification (first stage) and esterification (second stage), respectively. Both stages...

  8. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Lucilla C.; Su, Jian, E-mail: lucillalmeida@gmail.com, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Aguirre, Joao, E-mail: aguirre@rocky-dem.com [Engineering Simulation and Scientific Software (ESSS), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  9. Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen

    NARCIS (Netherlands)

    Tiemersma, T.P.; Patil, C.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2006-01-01

    The conceptual feasibility of a packed bed membrane reactor for the autothermal reforming (ATR) of methane for the production of ultrapure hydrogen was investigated. By integrating H2 permselective Pd-based membranes under autothermal conditions, a high degree of process integration and intensificat

  10. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the si

  11. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, Salim Abdul Rashid Khan

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  12. Microbiological and chemical approaches to degradation of mecoprop in a Moving-Bed Biofilm-Reactor

    DEFF Research Database (Denmark)

    Escola, Monica; Tue Kjærgaard Nielsen, Tue; Hansen, Lars Hestbjerg;

    Micro-pollutants are ubiquitous in wastewater effluents. Therefore, in-situ treatments of highly polluted water or polishing treatments after classical wastewater treatment have been proposed as a solution. Moving Bed Biofilm-Reactors (MBBRs) are a recent-developed biofilm technology for wastewater...

  13. Post-treatment of Fly Ash by Ozone in a Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Melia, M. C.; Jensen, Anker Degn;

    2009-01-01

    prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found...

  14. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    OpenAIRE

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for CODtotal; 51-73% for CODcolloidal and 20-55% for CODsoluble was found at a total HRT of 5-10 h, respectively. By prolonging the HRT...

  15. Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer

    Institute of Scientific and Technical Information of China (English)

    Phavanee Narataruksa; Sabaithip Tungkamani; Karn Pana-Suppamassadu; Phongsak Keeratiwintakorn; Siriluck Nivitchanyong; Piyapong Hunpinyo; Hussanai Sukkathanyawat; Prayut Jiamrittiwong; Visarut Nopparat

    2012-01-01

    Recently,Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomassto-Liquids (BTL) processes.In Fischer-Tropsch (FT) section,biomass-derived syngas,mainly composed of a mixture of carbon monoxide (CO)and hydrogen (H2),is converted into various forms of hydrocarbon products over a catalyst at specified temperature and pressure.Fixed-bed reactors are typically used for these processes as conventional FT reactors.The fixed-bed or packed-bed type reactor has its drawbacks,which are heat transfer limitation,i.e.a hot spot problem involved highly exothermic characteristics of FT reaction,and mass transfer limitation due to the condensation of liquid hydrocarbon products occurred on catalyst surface.This work is initiated to develop a new chemical reactor design in which a better distribution of gaseous reactants and hydrocarbon products could be achieved,and led to higher throughput and conversion.The main goal of the research is the enhancement of a fixed-bed reactor,focusing on the application of KenicsTM static mixer insertion in the tubular packed-bed reactor.Two FTS experiments were carried out using two reactors i.e.,with and without static mixer insertion within catalytic beds.The modeled syngas used was a mixed gas composed of H2/CO in 2 ∶ 1 molar ratio that was fed at the rate of 30 mL(STP)·min-1 (GHSV ≈ 136 mL·g-1cat·h-1) into the fixed Ru supported aluminum catalyst bed of weight 13.3 g.The reaction was carried out at 180 ℃ and atmospheric pressure continuously for 36 h for both experiments.Both transient and steady-state conversions (in terms of time on stream) were reported.The results revealed that the steady-state CO conversion for the case using the static mixer was approximately 3.5 times higher than that of the case without static mixer.In both cases,the values of chain growth probability of hydrocarbon products (α) for Fischer-Tropsch synthesis were 0.92 and 0.89 for

  16. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  17. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    International Nuclear Information System (INIS)

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO2 particles have been coated with TiO2 using tetrakis-dimethylamino titanium (TDMAT) and H2O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO2 particles were coated with a 1.6 nm homogenous shell of TiO2

  18. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    OpenAIRE

    Lili Ren; Jin Zhang

    2012-01-01

    Trichloroethylene (TCE) decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  19. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  20. Chlorination of commercial molybdenite concentrate in a fluidized bed reactor

    Science.gov (United States)

    Nair, K. U.; Sathiyamoorthy, D.; Bose, D. K.; Sundaresan, M.; Gupta, C. K.

    1987-06-01

    Studies on recovery of molybdenum from commercial grade molybdenite using the technique of fluidized bed chlorination in the presence of oxygen are presented. Molybdenum recovery above 99 pct at a chlorine utilization efficiency of 84 pct has been achieved for a fluidizing gas flow-rate of 3 L/min of the gases Cl2, O2, and N2 mixed in the proportion of 2∶5∶23, respectively, at 300 °C. The investigations on kinetics showed that the overall oxychlorination reaction is controlled by chemical reaction and is of first order with respect to particle surface area.

  1. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad

    2013-01-01

    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  2. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  3. Cleaning of porous filters in fossilized bed reactors; Estudio de limpieza de filtros porosos en reactores de lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo Otero, A.; Sancho Rod, J.

    1965-07-01

    In this report are established the optimum working conditions of a filter cleaning system by blow back. For this purpose it was determined in the first place the blow back air rate necessary to have a good cleaning. The reasons for which it was not possible until now to control the pressure in a fluidized bed calcination reactor are analyzed and a criteria is established to calculate the optimum floe necessary to clean efficiently a porous by this procedures. (Author)

  4. Simultaneous measurement of x-ray absorption spectra and kinetics : a fixed-bed, plug-flow operando reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Fingland, B. R.; Ribeiro, F. H.; Miller, J. T.; Purdue Univ.

    2009-08-01

    An inexpensive fixed-bed, plug-flow operando reactor is described in which X-ray absorbance and kinetic data can be measured simultaneously. Pt L3 (11.56 keV) XANES and EXAFS data were obtained on a 1.5% Pt/silica catalyst in borosilicate glass reactors of different diameters, 3-6 mm, and thicknesses, 0.3-1.2 mm, some of which are capable of operation at pressures up to about 40 atm. Additionally, polyimide tubular reactors with low absorbance can be used for lower energy edges of the 3d transition metals, or fluorescence detection for low concentration or highly absorbing supports. With the polyimide reactor, however, the pressure is limited to {approx}3.5 atm and the reaction temperature to about 300 C. To validate the reactor, the rate and activation energies for the water-gas shift reaction on 2% Pd, 13.7% Zn on Al2O3 catalyst were within 15% of those obtained in a standard laboratory reactor, which is within laboratory reproducibility. In addition, the Pd K edge (24.35 keV) XANES and EXAFS data on pre-reduced catalyst were identical to that previously determined on a regular cell. The EXAFS data show that the degree of Pd-Zn alloy formation changes with reaction temperature demonstrating the importance of characterizing the catalyst under reaction conditions.

  5. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kürten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target pro

  6. Sludge Bed Granules’ Growth in the HUASB Reactor Treating High Strength Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Sinan Abood Habeeb

    2014-12-01

    Full Text Available The development of anaerobic sludge granules in a hybrid up-flow anaerobic sludge bed (HUASB reactor in terms of granular size and solids content was observed. After appropriate pre-treatment of the palm oil mill effluent (POME, it was continuously fed to the HUASB reactor under room temperature condition (27°C.  Particle size analysis and solids content examination were conducted for 196 days. A volatile solid ratio was ranging from 0.36 to 0.51 which was quite low, and granules particle size of less than 1 mm diameter was reported during the operating period. Results obtained in this study indicated that sludge bed development based on the sludge particle size distribution and the volatile solid ratio, was quite slow due to the bulk solids that entering the reactor resulting in certain inhibition of the anaerobes’ activity. It has been concluded that anaerobic wastewater treatment process in anaerobic reactors such as the HUASB reactor, can be significantly affected by the organic loading rate, hydraulic retention time applied to the reactor and the wastewater characteristics.

  7. Synthesis gas and zinc production in a noncatalytic packed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, A.A.; Ebrahim, H.A.; Jamshidi, E.; Faramarzi, A.H. [Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2010-12-15

    A noncatalytic packed-bed reactor has been constructed for management of the reduction of ZnO by methane, which leads to co-production of synthesis gas and zinc. The reactor consisted of a simple vertical pipe filled with ZnO pellets. These pellets underwent reaction with a pure methane flow. Experimental tests were conducted in the temperature range 860-995 C at atmospheric pressure in an electrically heated reactor. The results showed complete chemical conversion of methane to synthesis gas in the aforementioned temperature range. In addition, analysis of the product solids indicated that the collected solids in the outlet of the reactor were entirely zinc. The maximum methane flow rates (149-744 mL min{sup -1}) were adjusted to ensure complete chemical conversion of methane. These adjustments were performed for different bed heights at various operating temperatures. Analysis of the product gases revealed high quality synthesis gas production without the influence of methane cracking or other undesired side reactions in the experimental tests. Finally, the governing partial differential equations of the reactor modeling were solved by the finite element method. Consequently, the gaseous profiles along the reactor and the breakthrough curves were predicted and compared with the experimental tests. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Dynamics and Predictive Control of Gas Phase Propylene Polymerization in Fluidized Bed Reactors

    Institute of Scientific and Technical Information of China (English)

    Ahmad Shamiri; Mohamed azlan Hussain; Farouq sabri Mjalli; Navid Mostoufi; Seyedahmad Hajimolana

    2013-01-01

    A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus-tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central-ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre-sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro-duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari-ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceptable for both controlled variables.

  9. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  10. Comparison of waste water treatment between completely mixed and fluidised bed reactor; development and structure of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Toman, M.; Mejac, B.

    1988-08-01

    The aerobic biological treatment of waste water from production of semisynthetic antibiotics in a completely mixed reactor and in a fluidised bed reactor was studied. The formation and development of new biomass on the sand of a fluidised bed was observed, so that differences in the structure of organisms of the concomitant biocenosis could be detected. In a fluidised bed reactor the same quality of treatednwater was gained on account of a 4-5 times higher volumetric and hydraulic loading as it was the case with a conventional activated sludge plant. The biocenosis of the fluidised bed was abundant in individua and species. The biofilm of the sand depended on substrate degradation rate as well as on rubbing among the sand particles. An optimal biofilm developed on the sand of a fluidised bed reactor 10 to 15 days after the experiment had began, and that condition remained unchanged as the experiment continued.

  11. Effect of static bed height in the upper fluidized bed on flow behavior in the lower riser section of a coupled reactor

    Institute of Scientific and Technical Information of China (English)

    Dewu Wang; Chunxi Lu; Chaoyu Yan

    2009-01-01

    To study olefin reduction by using an auxiliary reactor for FCC naphtha upgrading, a large-scale cold model of a riser-bed coupled to an upper fluidized bed was established. The effect of static bed height in the upper fluidized bed on particle flow behavior in the lower riser was investigated experimentally. A restriction index of solids holdup was used to evaluate quantitatively the restrictive effect of the upper fluidized bed. Experimental results show that, under the restrictive effect of the upper fluidized bed, the riser could be divided into three regions in the longitudinal direction: accelerating, fully developed and restriction. The axial distribution of solids holdup in the riser is characterized by large solids holdup in the top and bottom sections and small solids holdup in the middle section. Overall solids holdup increased with increasing static bed height in the upper fluidized bed, while particle velocity decreased. Such restrictive effect of the upper fluidized bed could extend from the middle and top sections to the whole riser volume when riser outlet resistance is increased, which increases with increasing static bed height in the upper fluidized bed. The upper bed exerts the strongest restriction on the area close to the riser outlet.

  12. Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water Treatment

    Directory of Open Access Journals (Sweden)

    K.Vaidhegi

    2016-06-01

    Full Text Available The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. In this work, experiments were conducted to treat the pulp and paper mill effluent using moving bed biofilm reactor (MBBR.The wastewater generated by these industries contains high COD, BOD, colour, organic substances and toxic chemicals. This study was carried out on laboratory scale Moving Bed Biofilm Reactor with proflex type biocarriers, where the biofilm grows on small, free floating plastic elements with a large surface area and a density slightly less than 1.0 g/cm3 . The reactor was operated continuously at 50% percentages filling of biocarriers. During the filling percentage, the removal efficiencies of COD & BOD were monitored at the time period of 2h, 4h, 6h and 8h. The result showed that the maximum COD and BOD removal of 87% were achieved for the 50 percent filling of biocarriers at the HRT of 8 h. From the experimental results, the moving bed biofilm reactor could be used as an ideal and efficient option for the organic and inorganic removal from the wastewater of pulp and paper industry

  13. Effect of wall structure on pebble stagnation behavior in pebble bed reactor

    International Nuclear Information System (INIS)

    Highlights: • DEM study of wall structure role in preventing near wall crystallization is carried out. • Suggestions on pebble’s kinematic parameters and wall structure design are provided. • Triangle is better than arc and sawtooth shapes for wall structure design. • Wall structure size should be close to the scale of pebble diameter. • Suitable intervals can prevent crystallization without significantly increasing the flow resistance. - Abstract: Crystallization of pebbles in pebble bed is a crucial problem in high temperature gas-cooled pebble-bed reactors. This phenomenon usually happens along the internal surface and leads to a large number of stagnated pebbles, which poses a threat to reactor safety. In real reactor engineering, wall structures have been utilized to avoid this problem. This article verifies the crystallization phenomenon through DEM (discrete element method) simulation, and explains how wall structures work in preventing crystallization. Moreover, several kinematic parameters have been adopted to evaluate wall structures with different shapes, sizes and intervals. Detailed information shows the impact of wall structure on flow field in pebble bed. Lastly, the preferred characteristics of an effective wall structure are suggested for reactor engineering

  14. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.J.; Jin, H.; Guo, L.J.; Zhang, X.M.; Cao, C.Q.; Guo, X. [State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi' an Jiaotong University, 28 Xianning West Road, Xi' an 710049, Shaanxi (China)

    2008-11-15

    Hydrogen production by biomass gasification in supercritical water (SCW) is a promising technology for utilizing high moisture content biomass, but reactor plugging is a critical problem for biomass gasification in the tubular reactor. A novel SCW fluidized bed system for biomass gasification was developed successfully in State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF) to prevent the plugging and it was designed for the temperature up to 923 K and the pressure up to 30 MPa. Model compound (glucose) and real biomass (corn cob) were gasified under SCW conditions to generate hydrogen-rich fuel gas and a performance testing of the new SCW fluidized bed system was conducted. The product gas composed of H{sub 2}, CH{sub 4}, CO{sub 2}, CO and small amount of C{sub 2}H{sub 4} and C{sub 2}H{sub 6} was obtained. The effects of solution concentration, temperature, pressure and oxidant concentration on gasification were studied. 30 wt% glucose and 18 wt% corn cob feedstocks were continually and stably gasified and reactor plugging was not observed. The results showed that using fluidized bed reactor for biomass gasification in SCW has many advantages and good prospects. (author)

  15. CO2 Absorption in a Lab-Scale Fixed Solid Bed Reactor: Modelling and Experimental Tests

    Directory of Open Access Journals (Sweden)

    Roberto Gabbrielli

    2004-09-01

    Full Text Available The CO2 absorption in a lab-scale fixed solid bed reactor filled with different solid sorbents has been studied under different operative conditions regarding temperature (20-200°C and input gas composition (N2, O2, CO2, H2O at 1bar pressure. The gas leaving the reactor has been analysed to measure the CO2 and O2 concentrations and, consequently, to evaluate the overall CO2 removal efficiency. In order to study the influence of solid sorbent type (i.e. CaO, coal bottom ash, limestone and blast furnace slag and of mass and heat transfer processes on CO2 removal efficiency, a one-dimensional time dependent mathematical model of the reactor, which may be considered a Plug Flow Reactor, has been developed. The quality of the model has been confirmed using the experimental results.

  16. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong;

    2015-01-01

    for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted...... during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly....... The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h− 1, from 0 to 7.78 × 10− 1 h− 1, from 0 to 7.86 × 10− 1 h− 1 and from 0 to 1.07 × 10− 1 h...

  17. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Directory of Open Access Journals (Sweden)

    R.K. Thapa, C. Pfeifer, B. M. Halvorsen

    2014-01-01

    Full Text Available Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Güssing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2. The combustible gases are mainly hydrogen (H2, carbon monoxide (CO and methane (CH4. The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  18. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  19. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  20. Rotating-bed reactor as a power source for EM gun applications

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.; Botts, T.; Stickley, C.M.; Meth, S.

    1980-01-01

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m/sup 3/), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 300/sup 0/K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications.

  1. Synthesis of dimethyl carbonate from methyl carbamate and methanol using a Fixed-Bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Zaozhuang University, College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang (China); Zhang, X. [Zaozhuang University, College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang (China); Chinese Academy of Sciences, Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Taiyuan (China); Wei, W.; Sun, Y. [Chinese Academy of Sciences, Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Taiyuan (China)

    2012-12-15

    Several mixed oxide catalysts were prepared by coprecipitation for dimethyl carbonate (DMC) synthesis from methyl carbamate and methanol. During the batch process, the DMC yield was below 35 %. In order to minimize the unfavorable thermodynamic equilibrium and side reactions for the DMC synthesis, a fixed-bed reactor was designed. A maximum DMC yield of {proportional_to} 73 % could be realized over a ZnO-Al{sub 2}O{sub 3} catalyst. The effects of reaction conditions for this type of reactor were investigated in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Modeling of sorption enhanced steam methane reforming in an adiabatic fixed bed reactor

    OpenAIRE

    Fernández García, José Ramón; Abanades García, Juan Carlos; Murillo Villuendas, Ramón

    2012-01-01

    Sorption enhanced methane reforming (SER), employing a CaO-based solid as a high temperature CO2 sorbent, is generally considered to be a promising route for H2 production. In this paper we present a dynamic pseudo-homogeneous model to describe the operation of a packed bed reactor in which the SER reaction is carried out under adiabatic conditions. This reactor can be implemented according to several process schemes, including a novel Ca/Cu looping process for hydrogen generation with inhere...

  3. Rotating-bed reactor as a power source for EM gun applications

    International Nuclear Information System (INIS)

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m3), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 3000K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications

  4. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  5. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding

  6. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  7. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten

  8. Microstructure of multicrystalline silicon seeded by polysilicon chips and fluidized bed reactor granules

    Science.gov (United States)

    Ekstrøm, K. E.; Stokkan, G.; Autruffe, A.; Søndenå, R.; Dalaker, H.; Arnberg, L.; Di Sabatino, M.

    2016-05-01

    Multicrystalline silicon displays a considerable smaller average grain size and reduced dislocation generation when being seeded by polycrystalline silicon chips or fluidized bed reactor silicon granules. A simple texture analysis shows how the initially random grain structure of the seeds develops a weak preference for near- and near- oriented grains upwards in the ingot. Closer investigations reveal a considerable coarsening of the initial microstructure of the seeds during the directional solidification process, especially for small fluidized bed reactor granules. The irregular shape of polysilicon chips allows for melt penetration into the seeding structure and potential indentation effects that may account for the increased dislocation generation observed in this case. The increased generation may, however, also be related to a higher ratio of ∑27 grain boundaries.

  9. Modeling of Isobutane/Butene Alkylation Using Solid Acid Catalysts in a Fixed Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Tang Xiaojin; Hu Lifeng; Hou Shuandi

    2016-01-01

    A dynamic mass transfer model of isobutane/butene alkylation over solid acid catalysts in a ifxed bed reactor was established. In the model, a modiifed equation for the relationship between point activity and effective diffusion coefifcient was proposed. It is found that the simulation results ift the experimental data well and the breakthrough time of the bed layer is predicted accurately. By modeling the alkylation process, the time-space distribution of butene and point activity proifles of catalysts can be obtained. Furthermore, the reasons for the deactivation of solid acid catalysts were investigated. It indicates that the main reason for the deactivation of catalysts is the site coverage near the inlet of the reactor, while it is ascribed to the steric effect in the region far away from the inlet.

  10. Autonomous multi-purpose floating power system with a compact static pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel; Vierow, Karen; Peddicord, Kenneth; Ragusa, Jean; McDeavitt, Sean; Poston, John Sr.; Shao, Lin; Willems, Greg [Department of Nuclear Engineering, Texas A and M University, College Station, Texas (United States)

    2008-07-01

    The paper introduces a new concept of an autonomous multipurpose system with a compact static-bed pebble bed reactor as a power source. The system is envisioned as a small floating power complex in which a compact high-efficiency nuclear system provides the source of energy for a variety of industrial processes. It offers the near-term (with a conventional power source) and long-term (with a compact high-efficiency nuclear system) technologies for a low cost electricity/potable water supply compared to traditional systems for regions where local communities are isolated and do not have extensive industrial infrastructure and distribution networks. The complex can be quickly installed anywhere following demands and needs of local communities - coastal regions and islands. The reactor design and system layout, balance-of-plant evaluations, performance characteristics and deployment strategies are discussed. (authors)

  11. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    Science.gov (United States)

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  12. Production of structured lipids in a packed-bed reactor with Thermomyces lanuginosa lipase

    DEFF Research Database (Denmark)

    Xu, Xuebing; Porsgaard, Trine; Zhang, Hong;

    2002-01-01

    Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packed-bed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (Lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), has...... recently been developed for fat modification. This study focuses on the new characteristics of the lipase in a packed-bed reactor when applied to interesterification of TAG. The degree of reaction was strongly related to the flow rate (residence time) and temperature, whereas formation of hydrolysis by......-products (DAG and FFA) were only slightly affected by reaction conditions. The degree of reaction reached equilibrium at 30-40 min residence time, and the most suitable temperature was 60degreesC or higher with respect to the maximal degree of reaction. The lipase was stable in a 2-wk continuous operation...

  13. Flow Field of Circulating Fluidized Bed Reactor with Venturi Inlet Configuration

    Institute of Scientific and Technical Information of China (English)

    HU Jinbang; LI Yanping; CHEN Anxin

    2005-01-01

    Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor.

  14. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    Science.gov (United States)

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  15. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhiyong, E-mail: bluemanner@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Lu, Mang [School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi Province (China); Huang, Wenhui [School of Energy Resources, China University of Geosciences, Beijing 100083 (China); Xu, Xiaochun [School of Geosciences and Resources, China University of Geosciences, Beijing 100083 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We invented a novel suspended ceramic carrier. Black-Right-Pointing-Pointer The suspended ceramic carrier is modified with sepiolite. Black-Right-Pointing-Pointer The carriers were used in MBBR to remediate wastewater. - Abstract: In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10 h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10 h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  16. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  17. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    Directory of Open Access Journals (Sweden)

    Miguel Menéndez

    2013-05-01

    Full Text Available Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR, where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB. The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen, the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors.

  18. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-07-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  19. Mathematical modeling of municipal solid waste plasma gasification in a fixed-bed melting reactor

    OpenAIRE

    Zhang, Qinglin

    2011-01-01

    The increasing yield of municipal solid waste (MSW) is one of the main by-products of modern society. Among various MSW treatment methods, plasma gasification in a fixed-bed melting reactor (PGM) is a new technology, which may provide an efficient and environmental friendly solution for problems related to MSW disposals. General objectives of this work are to develop mathematical models for the PGM process, and using these models to analyze the characteristics of this new technology. In this ...

  20. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    OpenAIRE

    Shohreh Azizi; Ilunga Kamika; Memory Tekere

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 h...

  1. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    International Nuclear Information System (INIS)

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  2. Eulerian-Lagrangian simulation of a bubbling fluidized bed reactor: Assessment of drag force correlations

    Directory of Open Access Journals (Sweden)

    Ku Xiao-Ke

    2012-01-01

    Full Text Available An Eulerian-Lagrangian approach is developed within the OpenFOAM framework to investigate the effects of three well-known inter-phase drag force correlations on the fluidization behavior in a bubbling fluidized bed reactor. The results show a strong dependency on the restitution coefficient and the friction coefficient and no occurrence of bubbling and slugging for the ideal-collision case. The mean pressure drops predicted by the three models agree quite well with each other.

  3. Medium voltage direct current (MVDC) converter for pebble bed modular reactor (PBMR) / Hendrik de Villiers Pretorius

    OpenAIRE

    Pretorius, Hendrik de Villiers

    2004-01-01

    Nuclear and renewable energy systems will probably be used more and more extensively in future due to high environmental demands regarding pollution and exhaustion of the world's gas and coal reserves. Because most types of renewable energy systems do not supply electric power at line frequency and voltage a converter is used to connect these sources to the existing power system. The Pebble Bed Modular Reactor (PBMR) is a nuclear power plant currently using a 50 Hz synchrono...

  4. Synthesis of Linear Alkylbenzene in a Novel Liquid-Solid Circulating Moving Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    韩明汉; 徐聪; 崔哲; 金涌

    2004-01-01

    For the alkylation of benzene with long-chain olefins, using Hβ zeolite catalyst as replacement of HF or A1Cl3 has the advantages of no corrosion, less environmental pollution, and much more 2-phenyl isomer, which has the highest biodegradability and solubility, and better detergent properties among the related isomers. The characterization of the coke shows that the deactivation of catalyst is caused by the jam of bulkier molecules, such as naphthalene, indane and linear alkylbenzenes, which are too big to move quickly in the intracrystalline pores of catalyst. The deactivated catalyst can be regenerated by benzene washing at higher temperature. To make the processes of reaction and regeneration continuous, a novel moving bed reactor is developed. Comparing with the processes with fixed bed reactors, the processes in this work have the advantages of continuous operation, low temperature, low pressure, low mole ratio of benzene to olefins, and high weight hourly space velocity.Keywords t3 zeolite, alkylation, linear alkylbenzene, moving bed reactor

  5. Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

    1983-09-01

    A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

  6. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  7. Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel

    International Nuclear Information System (INIS)

    Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergun and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR. (authors)

  8. Production of synthesis gas by co-gasifying coke and natural gas in a fixed bed reactor

    International Nuclear Information System (INIS)

    The production of synthesis gas has gained increasing importance because of its use as raw material for various industrial syntheses. In this paper synthesis gas generation during the reaction of a coal/methane with steam and oxygen, which is called the co-gasification of coal and natural gas, was investigated using a laboratory scale fixed bed reactor. It is found that about 95% methane conversion and 80% steam decomposition have been achieved when the space velocity of input gas (oxygen and methane) is less than 200 h-1 and reaction temperature about 1000 oC. The product gas contains about 95% carbon monoxide and hydrogen. The reaction system is near the equilibrium when leaving the reactor

  9. Gasification of refuse derived fuel in a fixed bed reactor for syngas production

    International Nuclear Information System (INIS)

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H2 and CO are found to be the major products, along with CO2 and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H2 and CO selectivities was studied, and the optimum temperature for better H2 and CO selectivity was determined to be 725 deg. C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H2 under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution

  10. Characterization of immobilized enzymes in polyurethane foams in a dynamic bed reactor.

    Science.gov (United States)

    Hu, Z C; Korus, R A; Stormo, K E

    1993-06-01

    beta-D-Galactosidase (E 3.2.1.23) from Aspergillus oryzae was immobilized with polyurethane foam (PUF). Among several immobilization methods attempted in this work, the immobilized enzyme preparation by in-situ co-polymerization between enzyme and prepolymer HYPOL 3000 showed the highest activity. The intrinsic kinetics of PUF-immobilized enzyme was determined in a dynamic bed reactor, used to increase transport rates. The immobilization mechanism in PUF was studied by measurements of immobilized enzyme kinetics and by using scanning electron microscopy combined with immuno-gold labeling techniques. The results showed that immobilization was predominantly by covalent bonding between primary amino groups of beta-D-galactosidase and isocyanate groups of the prepolymers. Entrapment in the PUF micropores assisted the immobilization of enzymes, and adsorption on the surface of macropores was not important for immobilization. The bicinchoninic acid method was applied for the determination of PUF loading capacity and specific enzyme activity and used to determine enzyme deactivation during immobilization. PMID:7763711

  11. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    Science.gov (United States)

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  12. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  13. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focu

  14. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    International Nuclear Information System (INIS)

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies

  15. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery.

    Science.gov (United States)

    Shimamura, Kazuaki; Ishikawa, Hideyuki; Tanaka, Toshihiro; Hirasawa, Izumi

    2007-04-01

    The authors have been engaged in the development of a phosphorus recovery system capable of maintaining high recovery efficiencies, with the chemical cost suppressed. This time, they conducted demonstration tests of a fluidized bed magnesium ammonium phosphate reactor provided with a seeder reactor for the supernatant from anaerobic digestion using a pilot experimental plant with a wastewater treatment capacity of 20 m3/d. For the digestion supernatant with a phosphorus concentration of approximately 300 mg/L, the treated water phosphorus concentration was 10 to 25 mg/L, and the phosphorus recovery efficiency was more than 90%. Relative to the chemical cost in the case of magnesium chloride, the chemical cost in the case of magnesium hydroxide is approximately 40%. Thus, with the new system, it was possible to reduce the running cost while maintaining high recovery efficiencies. PMID:17489275

  16. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  17. Dynamics and transient stability of a pebble bed reactor during start up

    Energy Technology Data Exchange (ETDEWEB)

    Miles, B.; Pain, C.C.; Eaton, M.D.; Ziver, A.K.; Goddard, A.J.H. [Applied Modelling and Computation Group, Imperial College of Science, Technology and Medicine, Dept. of Earth Science and Engineering, London (United Kingdom); Oliveira, C.R.E. de [Nuclear and Radiological Engineering and Medical Physics Program, The George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2005-07-01

    A design of a modular pebble bed reactor (PBR) is being developed for construction in South Africa. The design of this PBR is simulated in the FETCH nuclear criticality model. FETCH solves the neutron transport equations coupled to fluid dynamics and has been used in simulations of fluidized bed reactors. In the neutronics module of FETCH steady state neutronic calculations are performed to obtain the starting conditions for the subsequent calculation of transient behaviour. These include fuel temperature and control rod position. Neutron flux and the initial surplus reactivity are also calculated. Each step change in a simulated start-up is initiated by an excess reactivity which produces more severe transients than would be encountered in normal operation. The variations of several parameters with time are recorded, for example, temperature at various points in the reactor, temperature of the hottest pebble and fission rate. Spatial profiles are recorded at regular time intervals, including temperatures, power density, gas velocity and gas pressure. The stability of the reactor is demonstrated.

  18. Experimental and modeling study of sulfur dioxide oxidation in packed-bed tubular reactor

    Directory of Open Access Journals (Sweden)

    Hanen NOURI

    2013-08-01

    Full Text Available The conversion of sulfur dioxide into sulfur trioxide is a reaction which interests not only the industry of sulfuric acid production but also the processes of pollution control of certain gas effluents containing SO2. This exothermic reaction needs a very good control of temperature, that's why it is led in the industry in a multistage converter with intermediate heat exchangers. Microreactors represent a good alternative for such reaction due to their intensification of mass and heat transfer and enhancement of temperature control. In this study, this reaction was conducted in a stainless steel tubular (4mm ID packed bed reactor using particles of vanadium pentoxide as catalyst at atmospheric pressure. Experiments were performed with different inlet SO2 concentration in 3-9% range and reaction temperature between 685-833K. We noticed that the conversion decreases with the amount of SO2 and increases with the temperature until an optimum, above this value the conversion drop according to the shape of the equilibrium curve. Controlling rate mechanism is studied by varying temperature. Pseudohomogeneous perfect plug flow is used to describe this small tubular reactor. Numerical simulations with MATLAB were performed to validate the experimental results. Good agreement between the model predictions and the experimental results is achieved. Fluid flow description inside the packed bed reactor was performed by using the free fluid and porous media flow model. This model was solved by the commercial software COMSOL Multiphysics. Velocity profile inside the reactor is theoretically obtained.

  19. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  20. Racemization of undesired enantiomers: Immobilization of mandelate racemase and application in a fixed bed reactor.

    Science.gov (United States)

    Wrzosek, Katarzyna; Rivera, Mariel A García; Bettenbrock, Katja; Seidel-Morgenstern, Andreas

    2016-03-01

    Production of optically pure products can be based on simple unselective synthesis of racemic mixtures combined with a subsequent separation of the enantiomers; however, this approach suffers from a 50% yield limitation which can be overcome by racemization of the undesired enantiomer and recycling. Application of biocatalyst for the racemization steps offers an attractive option for high-yield manufacturing of commercially valuable compounds. Our work focuses on exploiting the potential of racemization with immobilized mandelate racemase. Immobilization of crude mandelate racemase via covalent attachment was optimized for two supports: Eupergit(®) CM and CNBr-activated Sepharose 4 Fast Flow. To allow coupling of enzymatic reaction with enantioselective chromatography, a mobile phase composition compatible with both processes was used in enzymatic reactor. Kinetic parameters obtained analyzing experiments carried out in a batch reactor could be successfully used to predict fixed-bed reactor performance. The applicability of the immobilized enzyme and the determined kinetic parameters were validated in transient experiments recording responses to pulse injections of R-mandelic acid. The approach investigated can be used for futher design and optimization of high yield combined resolution processes. The characterized fixed-bed enzymatic reactor can be integrated e.g. with chromatographic single- or multicolumn steps in various configurations.

  1. Steady-state inhibition model for the biodegradation of sulfonated amines in a packed bed reactor.

    Science.gov (United States)

    Juárez-Ramírez, Cleotilde; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Ramos-Monroy, Oswaldo; Santoyo-Tepole, Fortunata; Poggi-Varaldo, Héctor

    2015-05-25

    Aromatic amines are important industrial products having in their molecular structure one or more aromatic rings. These are used as precursors for the synthesis of dyes, adhesives, pesticides, rubber, fertilizers and surfactants. The aromatic amines are common constituents of industrial effluents, generated mostly by the degradation of azo dyes. Several of them are a threat to human health because they can by toxic, allergenic, mutagenic or carcinogenic. The most common are benzenesulfonic amines, such as 4-ABS (4-aminobenzene sulfonic acid) and naphthalene sulfonic amines, such as 4-ANS (4-amino naphthalene sulfonic acid). Sometimes, the mixtures of toxic compounds are more toxic or inhibitory than the individual compounds, even for microorganisms capable of degrading them. Therefore, the aim of this study was to evaluate the degradation of the mixture 4-ANS plus 4-ABS by a bacterial community immobilized in fragments of volcanic stone, using a packed bed continuous reactor. In this reactor, the amines loading rates were varied from 5.5 up to 69 mg L(-1) h(-1). The removal of the amines was determined by high-performance liquid chromatography and chemical oxygen demand. With this information, we have studied the substrate inhibition of the removal rate of the aromatic amines during the degradation of the mixture of sulfonated aromatic amines by the immobilized microorganisms. Experimental results were fitted to parabolic, hyperbolic and linear inhibition models. The model that best characterizes the inhibition of the specific degradation rate in the biofilm reactor was a parabolic model with values of RXM=58.15±7.95 mg (10(9) cells h)(-1), Ks=0.73±0.31 mg L(-1), Sm=89.14±5.43 mg L(-1) and the exponent m=5. From the microbial community obtained, six cultivable bacterial strains were isolated and identified by sequencing their 16S rDNA genes. The strains belong to the genera Variovorax, Pseudomonas, Bacillus, Arthrobacter, Nocardioides and Microbacterium. This

  2. Conceptual design study of Pebble Bed Type High Temperature Gas-cooled Reactor with annular core structure

    International Nuclear Information System (INIS)

    This report presents the Conceptual Design Study of Pebble Bed Type High Temperature Gas-cooled Reactor with Annular Core Structure. From this study, it is made clear that the thermal power of the Pebble Bed Type Reactor can be increased to 500MW through introducing the annular core structure without losing the inherent safe characteristics (in the coolant depressurization accident, the fuel temperature does not exceed the temperature where the fuel defect begins.) This thermal power is two times higher than the inherent safe Pebble Bed Type High temperature Gas-cooled Reactor (MHTGR) designed in West Germany. From this result, it is foreseen that the ratio of the plant cost to the reactor power is reduced and the economy of the plant operation is improved. The reactor performances e.g. fuel burnup and fuel temperature are maintained in same level of the MHTGR. (author)

  3. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2016-01-01

    A wastewater treatment system composed of an upflow anaerobic sludge blanket (UASB) reactor followed by a packed-bed reactor (PBR) filled with Sorbulite(®) and Polonite(®) filter material was tested in a laboratory bench-scale experiment. The system was operated for 50 weeks and achieved very efficient total phosphorus (P) removal (99%), 7-day biochemical oxygen demand removal (99%) and pathogenic bacteria reduction (99%). However, total nitrogen was only moderately reduced in the system (40%). A model focusing on simulation of organic material, solids and size of granules was then implemented and validated for the UASB reactor. Good agreement between the simulated and measured results demonstrated the capacity of the model to predict the behaviour of solids and chemical oxygen demand, which is critical for successful P removal and recovery in the PBR. PMID:27332842

  4. Elimination of weapons grade plutonium via burning in a Particle Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Ludewig, H.; Maise, G.; Todosow, M.

    1993-08-01

    An initial assessment of a concept for burning weapons grade plutonium based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based plutonium burner concept also possesses a number of safety and economic benefits relative to other reactor based Pu-burner approaches including a safeguards advantages, a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high temperatures while retaining virtually all fission products. In addition the reactor also possesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  5. Neutronics and thermal-hydraulics analyses of the pellet bed reactor for nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.J.; El-Genk, S. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-01-01

    Neutronics and thermal-hydraulics design and analyses of the pellet bed reactor for nuclear thermal propulsion are performed based on consideration of reactor criticality, passive decay heat removal, maximum fuel temperature, and subcriticality during a water flooding accident. Besides calculating the dimensions of the reactor core to satisfy the excess reactivity requirement at the beginning-of-mission of 1.25 $ (K{sub eff} of 1.01), the TWODANT discrete ordinates code is used to estimate the radial and axial fission power density profiles in the core. These power profiles are used in the nuclear propulsion thermal-hydraulic analysis model (NUTHAM-S) to determine the two-dimensional steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot frit to avoid hot spots in the core at full-power operation.

  6. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  7. Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Ghiasi, Bahman [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver BC (Canada); Elnashaie, Said S.E.H. [College of Engineering, Misr University for Science and Technology, Distinguished District, 6th of October Province (Egypt)

    2010-06-15

    Steam reforming of propane was carried out in a fluidized bed membrane reactor to investigate a feedstock other than natural gas for production of pure hydrogen. Close to equilibrium conditions were achieved inside the reactor with fluidized catalyst due to the very fast steam reforming reactions. Use of hydrogen permselective Pd{sub 77}Ag{sub 23} membrane panels to extract pure hydrogen shifted the reaction towards complete conversion of the hydrocarbons, including methane, the key intermediate product. Irreversible propane steam reforming is limited by the reversibility of the steam reforming of this methane. To assess the performance improvement due to pure hydrogen withdrawal, experiments were conducted with one and six membrane panels installed along the height of the reactor. The results indicate that a compact reformer can be achieved for pure hydrogen production for a light hydrocarbon feedstock like propane, at moderate operating temperatures of 475-550 C, with increased hydrogen yield. (author)

  8. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  9. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    Science.gov (United States)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  10. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  11. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M. [Nuclear Research and Consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  12. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Yung, Matthew M.; Johnson, David K.; ten Dam, Jeroen; Watson, Michael J.; Nimlos, Mark R.

    2016-03-17

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h-1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun. The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). High fractions of oxygen were rejected as water, CO, and CO2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.

  13. Performance and population analysis of a non-sterile trickle bed reactor inoculated with caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.M.; Stams, A.J.M.; Claassen, P.A.M.

    2009-01-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 molH 2mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73°C

  14. Cell retention by encapsulation for the cultivation of Jurkat cells in fixed and fluidized bed reactors.

    Science.gov (United States)

    Kaiser, P; Werner, M; Jérôme, V; Hübner, H; Buchholz, R; Freitag, R

    2014-12-01

    Jurkat cells are accepted model cells for primary human T lymphocytes, for example, in medical research. Their growth to tissue-like cell densities (up to 100 × 10(6)  cells/mLcapsule ) in semi-permeable (molecular weight cut off cultivations, that is, under conditions where both encapsulated and non-encapsulated cells can be cultivated under otherwise identical conditions, showed that maximum specific growth rates were higher for the encapsulated than for the non-encapsulated cells. In the subsequent batch and repeated batch bioreactor experiments (only encapsulated cells), growth rates were similar, with the exception of the fixed bed batch reactor, where growth kinetics were significantly slower. Concomitantly, a significant fraction of the cells towards the bottom of the bed were no longer metabolically active, though apparently not dead. In the repeated batch fluidized bed reactor cellular division could be maintained for more than two weeks, albeit with a specific growth rate below the maximum one, leading to final cell densities of approximately 180 × 10(6)  cell/gcapsule . At the same time, the cell cycle distribution of the cells was shifted to the S and G2/M phases.

  15. Temperature transients of a fusion-fission ITER pebble bed reactor in loss of coolant accident

    International Nuclear Information System (INIS)

    In this preliminary scoping study, post-accident temperature transients of several fusion-fission designs utilizing ITER-FEAT-like parameters and fission pebble bed fuel technology are examined using a 1-D cylindrical MATLAB heat transfer code along with conventional fission decay heat approximations. Scenarios studied include systems with no additional passive safety features to systems with melting reflectors designed to increase emissivity after reaching a specified temperature. Results show that for a total fission power of ∼1400-2800 MW, two of the realistic variants investigated are passively safe. The crucial time, defined as the time when either any structural part of the fusion-fission tokamak reaches melting point, or when the pebble fuel reaches 1873 K, ranges from 5.7 to 76 h for the unsafe configurations. Additionally, it is illustrated that, fundamentally, the LOCA characteristics of pure fission pebble beds and fusion-fission pebble beds are different. Namely, the former depends on the pebble fuel's large thermal capacity, along with external radiation and natural convective cooling, while the latter depends significantly more on the tokamak's sizeable total internal heat capacity. This difference originates from the fusion-fission reactor's conflicting goal of having to minimize heat transfer to the magnets during normal operation. These results are discussed in the context of overall fusion-fission reactor design and safety

  16. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  17. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  18. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  19. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes [1000 and 3000 MW(t)] and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 9500C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 9500C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG

  20. Development of a thermal–hydraulic analysis code for the Pebble Bed Water-cooled Reactor

    International Nuclear Information System (INIS)

    Highlights: ► Main design features of the PBWR were put forward. ► Thermal–hydraullics analysis code for the PBWR was developed and verified. ► Key thermal–hydraullics parameters were calculated in normal operation. ► The PBWR has a great pressure loss but an excellent heat transfer characteristic. ► Maximum fuel temperature and MDNBR are in conformity with safety criterion. - Abstract: The Pebble Bed Water-cooled Reactor (PBWR) is a water-moderated water-cooled pebble bed reactor in which millions of tristructural-isotropic (TRISO) coated micro-fuel elements (MFE) pile in each assembly. Light water is used as coolant that flows from bottom to top in the assembly while the moderator water flows in the reverse direction out of the assembly. Steady-state thermal–hydraullic analysis code for the PBWR will provide a set of thermal hydraulic parameters of the primary loop so that heat transported out of the core can match with the heat generated by the core for a safe operation of the reactor. The key parameters of the core including the void fraction, pressure drop, heat transfer coefficients, the temperature distribution and the Departure from Nucleate Boiling Ratio (DNBR) is calculated for the core in normal operation. The code can calculate for liquid region, water-steam two phase region and superheated steam region. The results show that the maximum fuel temperature is much lower than the design limitation and the flow distribution can meet the cooling requirement in the reactor core. As a new type of nuclear reactor, the main design features with a sufficient safety margin were also put forward in this paper.

  1. Theoretical and experimental research of natural convection in the core of the high temperature pebble bed reactor

    International Nuclear Information System (INIS)

    The physical model of the developed THERMIX-2D-code for computing thermohydraulic behaviour of the core of high temperature pebble bed reactors is verified by experiments with natural convection flow. Such fluid flow behaviour can be of very high importance for the real reactor in the case of natural heat removal decay. The experiments are performed in a special set up testing-stand with pressures up to 30 bars and temperatures up to 3000C by using air and helium as fluid. In comparison with the experimental data the numerical results show that a good and useful simulation is given by the program. Pure natural convection flow in packed pebble beds is calculated with a very high degree of reliability. The investigation of flow stability demonstrate that radial-symmetric relations are not given temporarily when national convection is overlayed by forced convection flow. In the discussion it is explained when and to what extent the program leds to useful results in such situations. The test of the effective heat conductivity lambdasub(eff) results in an improvement of the lambdasub(eff)-data used so far for temperatures below 13000C. (orig.)

  2. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  3. Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A fixed-bed reactor with sweeping gas was used to mitigate secondary reactions. • The pyrolysis products reflected the original structures of sludge compositions. • The slow pyrolysis produced high yields of liquid. • The oxygen-containing and nitrogenated compounds were the main liquid products. • The gas and liquid yields correlated with the volatile matter contents in the sludges. - Abstract: The pyrolysis of three municipal sewage sludges was carried out using a slowly heating and gas sweeping fixed-bed reactor in the temperature range between 300 °C and 700 °C. The study was aimed to characterize the gaseous and liquid products derived from three different sewage sludges and mainly to discuss the varieties of sewage sludges on the yields and compositions of the gaseous and liquid products. The pyrolysis in this reactor was observed to produce high yields of liquid (above 40 wt.% at 700 °C) that contained high proportions of oxygen-containing compounds and nitrogenated compounds, with minor monoaromatics and aliphatic compounds. The gas and liquid yields correlated with the volatile matter contents in the sludges. For all three sewage sludges, the oxygenated compounds were the principal liquid compounds which could be produced at a low temperature of 300 °C, while more of nitrogenated compounds and other compounds were formed at 700 °C depending on the varieties of sewage sludges

  4. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.

    Science.gov (United States)

    Liu, Chun-Zhao; Wang, Feng; Ou-Yang, Fan

    2009-01-01

    Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field. PMID:18760598

  5. Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Marília Maciel

    2013-01-01

    Full Text Available Polygalacturonases (PG are pectinolytic enzymes that have technological, functional and biological applications in food processing, fruit ripening and plant-fungus interactions, respectively. In the present, a microtitre plate methodology was used for rapid screening of 61 isolates of fungi from Aspergillus section Nigri to assess production of endo- and exo-PG. Studies of scale-up were carried out in a fixed bed reactor operated under different parameters using the best producer strain immobilised in orange peels. Four experiments were conducted under the following conditions: the immobilised cells without aeration; immobilised cells with aeration; immobilised cells with aeration and added pectin; and free cells with aeration. The fermentation was performed for 168 h with removal of sample every 24 h. Aspergillus niger strain URM 5162 showed the highest PG production. The results obtained indicated that the maximum endo- and exo-PG activities (1.18 U·mL−1 and 4.11 U·mL−1, respectively were obtained when the reactor was operating without aeration. The microtitre plate method is a simple way to screen fungal isolates for PG activity detection. The fixed bed reactor with orange peel support and using A. niger URM 5162 is a promising process for PG production at the industrial level.

  6. Production of polygalacturonases by Aspergillus section Nigri strains in a fixed bed reactor.

    Science.gov (United States)

    Maciel, Marília; Ottoni, Cristiane; Santos, Cledir; Lima, Nelson; Moreira, Keila; Souza-Motta, Cristina

    2013-01-28

    Polygalacturonases (PG) are pectinolytic enzymes that have technological, functional and biological applications in food processing, fruit ripening and plant-fungus interactions, respectively. In the present, a microtitre plate methodology was used for rapid screening of 61 isolates of fungi from Aspergillus section Nigri to assess production of endo- and exo-PG. Studies of scale-up were carried out in a fixed bed reactor operated under different parameters using the best producer strain immobilised in orange peels. Four experiments were conducted under the following conditions: the immobilised cells without aeration; immobilised cells with aeration; immobilised cells with aeration and added pectin; and free cells with aeration. The fermentation was performed for 168 h with removal of sample every 24 h. Aspergillus niger strain URM 5162 showed the highest PG production. The results obtained indicated that the maximum endo- and exo-PG activities (1.18 U · mL-1 and 4.11 U · mL-1, respectively) were obtained when the reactor was operating without aeration. The microtitre plate method is a simple way to screen fungal isolates for PG activity detection. The fixed bed reactor with orange peel support and using A. niger URM 5162 is a promising process for PG production at the industrial level.

  7. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Institute of Scientific and Technical Information of China (English)

    姜楠; 鲁娜; 李杰; 吴彦

    2012-01-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h^-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  8. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene. PMID:19560796

  9. A Photocatalytic Active Adsorbent for Gas Cleaning in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Peter Pucher

    2008-01-01

    Full Text Available Efficient photocatalysis for gas cleaning purposes requires a large accessible, illuminated active surface in a simple and compact reactor. Conventional concepts use powdered catalysts, which are nontransparent. Hence a uniform distribution of light is difficult to be attained. Our approach is based on a coarse granular, UV-A light transparent, and highly porous adsorbent that can be used in a simple fixed bed reactor. A novel sol-gel process with rapid micro mixing is used to coat a porous silica substrate with TiO2-based nanoparticles. The resulting material posses a high adsorption capacity and a photocatalytic activity under UV-A illumination (PCAA = photocatalytic active adsorbent. Its photocatalytic performance was studied on the oxidation of trichloroethylene (TCE in a fixed bed reactor setup in continuous and discontinuous operation modes. Continuous operation resulted in a higher conversion rate due to less slip while discontinuous operation is superior for a total oxidation to CO2 due to a user-defined longer residence time.

  10. Effect of the empty fraction in a solar reactor of fluidized bed; Efecto de la fraccion vacia en un reactor solar de lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Alejandro; Romero-Paredes, Hernando; Vazquez, Alejandro; Torijano, Eugenio; Ambriz, Juan J [Universidad Autonoma Metropilitana-Iztapalapa, Mexico, D.F. (Mexico)

    2000-07-01

    The objective of this paper is to obtain the temperature profiles and concentration of a solar reactor of fluidized bed that simultaneously serves as a solar receiver of a thermo-chemical storage system of solar energy. The complex phenomena that are inherent of these reactors make their sizing difficult for their solar application. For this reason, to model and to simulate its behavior without and with the chemical reaction helps to palliate this disadvantage. One of the present phenomena is the change of the empty fraction in which we concentrate our attention. In this paper an alternative is proposed in the modeling of these systems, considering local fluctuations of the empty fraction or porosity {epsilon}(x,y) in the bed. For this a probabilistic uniform distribution is proposed for all the nodes of the (x, y) mesh of the bed where local values of porosity for each node of the mesh are associated by means of a random generator where {epsilon}(x, y){epsilon} [0.1]. The hollow fraction plays a very important role because the penetration of the solar radiation in these systems of opaque bodies depends directly on the distribution of empty spaces in the trajectory of the incident radiation that affects its thermal and kinetic behavior. From the results the characteristic of non- isothermicity of the reactor can be incorporated which entails, once reached the reaction temperature, to a dispersed profile of concentrations. The empty fraction is a parameter that influences greatly in these profiles and that increasing the fluidization number is the way this time is diminished. In conclusion, the importance the empty fraction plays in the evolution of the temperature profiles as well as in the concentration profiles is emphasized. The behavior of the bed in the simulation becomes more precise in agreement with the experimental results previously obtained. [Spanish] El objetivo de este trabajo es obtener los perfiles de temperatura y concentracion de un reactor solar

  11. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 3. Appendix A. Equipment list

    International Nuclear Information System (INIS)

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system and was prepared by the General Electric Company. Core scoping studies were performed which evaluated the effects of annular and cylindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations. Volume 3 is an Appendix containing the equipment list for the plant and was also prepared by United Engineers and Constructors, Inc. It tabulates the major components of the plant and describes each in terms of quantity, type, orientation, etc., to provide a basis for cost estimation

  12. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 3. Appendix A. Equipment list

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system and was prepared by the General Electric Company. Core scoping studies were performed which evaluated the effects of annular and cylindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations. Volume 3 is an Appendix containing the equipment list for the plant and was also prepared by United Engineers and Constructors, Inc. It tabulates the major components of the plant and describes each in terms of quantity, type, orientation, etc., to provide a basis for cost estimation.

  13. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor

    Science.gov (United States)

    Hakim, Luis F.; George, Steven M.; Weimer, Alan W.

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al2O3 nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al2O3 vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  14. Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors

    International Nuclear Information System (INIS)

    This work investigates the effects of flow rate (5-15 Bed Volumes/h), particle size (0.8-1.7 mm), concentration (0.005-0.02 N) and Na+-enrichment of natural clinoptilolite on the removal efficiency of Pb2+, Cu2+, Fe3+ and Cr3+ in aqueous solutions. Ion exchange is performed in an upflow fixed bed reactor. The removal efficiency is increased with decreasing flow rate, particle size and concentration and is improved by a factor of 2-10, depending on the specific metal. The modification of the natural sample is favorable, leading to an increase of removal efficiency by 32-100%. For the experimental conditions examined, removal efficiency order is the following: Pb2+>Cr3+>Fe3+≥Cu2+. Finally, the operation is influenced by the studied parameters, following the order: concentration>volumetric flow rate>particle size>modification of the material

  15. Fast pyrolysis of rape seed in a well-swept fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Onay, O.; Beis, S.H.; Kockar, O.M. [Department of Chemical Engineering, Anadolu University, 26470, Eskisehir (Turkey)

    2001-04-01

    Fixed-bed fast pyrolysis experiments have been conducted on a sample of rape seed to determine particularly the effects of pyrolysis temperature, particle size, heating rate and sweep gas flow rate on the pyrolysis yields and their chemical compositions. The maximum oil yield of 68% was obtained at the final pyrolysis temperature of 550C, particle size range of 0.6-0.85 mm, with a heating rate of 300C min{sup -1} and a sweep gas flow rate of 100 cm{sup 3} min{sup -1} (N{sub 2}) in a well-swept fixed-bed reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rape seed can be used as a renewable fuel and chemical feedstock.

  16. Preliminary safety analysis of a thorium high-conversion pebble bed reactor

    International Nuclear Information System (INIS)

    An inherently safe thorium High-Conversion Pebble Bed Reactor would combine the inherent safety characteristics of the Pebble Bed Reactor with the favourable waste characteristics and resource availability of the thorium fuel cycle. Previous work by the authors showed that high conversion ratio's can be achieved within a thorium Pebble Bed Reactor (PBR) at a practical operating regime. The thorium PBR core design consists of a cylindrical core with a central driver zone surrounded by a breeder zone. The breeder pebbles have a 30 g heavy metal (HM) loading to enhance conversion of Th-232 into U-233, while the driver pebbles (10 w% U-233) contain a lower metal loading to enhance fission. In previous studies, thorium PBR designs were presented for three core diameters, using a 7.5 g heavy metal (HM) loading for the driver pebbles. The current paper investigates the safety of these thorium PBR designs in terms of reactivity coefficients and possible reactivity insertion due to water ingress. Early results indicated that the values of the reactivity coefficients for the three designs with 7.5 g HM loading per driver pebble were rather small and the possible reactivity insertion due to water ingress was very large. Therefore, also a lower HM loading per driver pebble (4 g) was investigated to reduce the impact of water ingress, since the core becomes less under-moderated. For the three core diameters investigated, it is shown that reducing the metal loading in the driver pebbles to 4 g is indeed advantageous in terms of safety, water ingress leads to a smaller reactivity increase but also the reactivity coefficients become stronger negative. Secondly, the breeding performance of the cores with a 4 g driver pebble HM loading improves. On the downside, the driver pebble residence times become shorter, which could increase fuel reprocessing costs. Fuel pebbles would have to be recycled at an increased rate, which might be more challenging from a practical perspective

  17. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    Science.gov (United States)

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  18. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  19. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  20. Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik;

    1998-01-01

    Production of specific-structured lipids (interesterified lipids with a specific structure) by enzymatic interesterification was carried out in a continuous enzyme bed pilot scale reactor. Commercial immobilized lipase (Lipozyme IM) was used and investigations of acyl migration, pressure drop....... Incorporation of medium chain fatty acids was increased with increased residence time. Approximately 40% lipase activity was lost after a four-week run. External mass transfer was not a major problem in the linear flow range, but internal mass transfer did impose some transfer limitations....

  1. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... catalytic membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  2. Processing of uranium oxide powders in a fluidized-bed reactor. I. Experimental

    Science.gov (United States)

    Cho, W. D.; Han, Man-Hee; Bronson, Mark C.; Zundelevich, Yury

    2002-10-01

    The oxidation of UN powders was carried out in a spout-type fluidized-bed reactor in gas mixtures of oxygen and argon, and over the temperature range of 200-500 °C. The rate of the conversion from UN to U 3O 8 powders was measured using gas chromatography and found to be dependent on temperature, partial pressure of oxygen and gas flowrate. The solid reactants and products were analyzed using SEM and XRD. Based on the experimental results, the conversion process was explained by the crackling core model.

  3. DECARBONATION AND ATTRITION OF CALCITE IN A PLASMA SPOUTED BED REACTOR

    OpenAIRE

    G. Flamant; Chraibi, M. (Mohamede); Vallbona, G.; Bertrand, C

    1990-01-01

    The mechanical power and the thermal energy for the processing of calcite are the main part of the energy consumption in cement industry. Experimental results about particle size reduction and calcination of CaCO3 in a plasma spouted bed reactor are presented in this paper. The main parameter seems to be the specific enthalpy of the plasma jet, it ranges between 3 kWh.m-3 20 kWh.m-3. The variations of the attrition rate, decomposition rate and particle size distribution are discussed.

  4. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor

    International Nuclear Information System (INIS)

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forli, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution

  5. The pebble bed high temperature reactor as a source of nuclear process heat. Vol. 2

    International Nuclear Information System (INIS)

    A theoretical analysis is given for a series of 8 different variants of the pebble-bed reactor in the 'once through' fuel management scheme. The comparison gives some insight into the parametric sensitivities and into the development potential of this type. The thorium/U-233 recycling fuel cycle allows to increase the conversion ratio up to the range between 0.90 and 0.95. The feasibility for a changeover between different fuel cycles under full power operation. - The study is complemented by a review of the relevant previous investigations. (orig.)

  6. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    International Nuclear Information System (INIS)

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use

  7. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor.

    Science.gov (United States)

    Li, Huiqiang; Han, Hongjun; Du, Maoan; Wang, Wei

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater. Nitrification of the MBBR was inhibited almost completely during start-up period. Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition. Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery. Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days. Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water. The ratio of nitrification decreased to 25% when influent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70% for another 4 days.

  8. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    Science.gov (United States)

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin. PMID:26203554

  9. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  10. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  11. Countercurrent multistage fluidized bed reactor for immobilized biocatalysts: III. Hydrodynamic aspects.

    Science.gov (United States)

    Vos, H J; van Houwelingen, C; Zomerdijk, M; Luyben, K C

    1990-08-01

    In Parts I and II of this series we described the modelling, design, and operation of a multistage fluidized bed reactor (MFBR) for immobilized biocatalysts. This article deals with those aspects of the MFBR which are different from single-stage fluidized beds which are operated in batch mode with respect to the solids. The semicontinuous transport of the particles requires perfect mixing of the particles in the reactor compartments, because particles are mainly transported from the bottom of these compartments. A large spread in the physical properties of the biocatalyst particles, especially of both size and density, may cause the particles to segregate into layers with different diameter and/or density. This affects the efficient use of the biocatalyst. The properties of the particles are dependent on the immobilization method. The suitability of different methods for possible future application in the MFBR is therefore compared. Because of segregation, successful use of a biofilm catalyst with a nonuniform thickness of the biofilm is doubtful. Experiments in a small scale reactor (+/- 0.1 m diameter) demonstrated that perfect particle mixing is possible using commercially available biocatalyst particles of uniform density. Co-immobilization of the biocatalyst with glass powder in a gel is a simple and effective method of increasing gel density. High density particles allow high liquid flow rates, and thus an improved external mass transfer can be achieved.The distributor plates, which separate the reactor compartments, must allow unhindered transport of particles. Therefore, the holes in these plates must have a diameter of at least 4.5 times that of the largest particles which are present in the particle mixture used. Furthermore, the plates must be designed such that, when scaling-up the reactor, a uniform liquid distribution over the cross-sectional area of the reactor occurs. Large-scale experiments were not carried out, but published correlations, indicate

  12. Reaction engineering simulations of a fluidized-bed reactor for selective oxidation of fluorene to 9-fluorenone

    Energy Technology Data Exchange (ETDEWEB)

    Mleczko, L. (Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie); Pannek, U. (Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie); Baerns, M. (Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie)

    1994-06-01

    The catalytic oxidation of fluorene to 9-fluorenone in a fluidized-bed reactor was investigated by modeling of the reactor and simulation of its performance. The ''Bubble Assemblage Model'' of Kato and Wen, the ''Bubbling Bed Model'' of Kunii and Levenspiel and the ''Countercurrent Backmixing Model'' of Potter were applied. From a comparison of simulation results obtained by the various fluidized-bed models and a fixed-bed model conclusions were drawn about the influence of interphase mass transfer and gas backmixing on the conversion of fluorene and selectivity of 9-fluorenone formation. Furthermore, the dependence of conversion and selectivity on temperature and hydrodynamic conditions was investigated. In particular, the implications of a change of hydrodynamic conditions for scale-up were analysed. The highest yield of 9-fluorenone predicted for a bench-scale fluidized bed amounted to 88% (X[sub F] = 97%, S[sub NON] = 91%). This yield was lower than in a fixed-bed reactor (Y[sub NON] = 92%, X[sub F] = 99%, S[sub NON] = 93%). A further drop of the yield was predicted when scaling-up from a bench-scale reactor to a commercial size unit (Y[sub NON] = 54%, X[sub F] = 86%, S[sub NON] = 63%). (orig.)

  13. Reaction Kinetics of Aniline Synthetic Wastewater Treatment by Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    H Ganjidoust

    2009-07-01

    Full Text Available "n "nBackground and Objectives: Experiments were conducted to investigate the behavior of Moving Bed Biofilm Reactor (MBBR as a novel aerobic process for treatment of aniline synthetic wastewater as a hard biodegradable compound is commonly used in number of industrial processes. The objective of this paper is evaluation of MBBR in different conditions for treatment of aniline and determination of reaction kinetics."nMaterials and Methods: In the MBBRs, different carriers are used to maximize the active biofilm surface area in the reactors. In this study, the reactor was filled with Light Expanded Clay Aggregate (LECA as carriers. Evaluation of the reactor efficiency was done at different retention time of 8, 24, 48 and 72 hours with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. After obtaining removal efficiencies, effluent concentration of aniline was measured by adsorption spectrum and maladaptive municipal wastewater treatment plant sludge in batch conditions for confidence of aniline biodegradation and its adsorption to the sludge mass. "nResults:The maximum obtained removal efficiencies were 91% (influent COD=2000 mg/L after 72 hours. Biodegradation of aniline in MBBR has been also approved by NMR spectrum tests. Finally experimental data has indicated that Grau second order model and Stover-Kincannon were the best models to describe substrate loading removal rate for aniline."nConclusion:biological treatment of aniline wastewater compared to other researchers methods.

  14. An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures.

    Science.gov (United States)

    Hoang, Valerie; Delatolla, Robert; Laflamme, Edith; Gadbois, Alain

    2014-01-01

    Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temperature nitrification. In this study, two laboratory MBBRs were used to investigate MBBR nitrification rates at 20, 5, and 1 degree C. Furthermore, the solids detached by the MBBR reactors were investigated and Arrhenius temperature correction models used to predict nitrification rates after long-term low-temperature exposure was evaluated. The nitrification rate at 5 degrees C was 66 +/- 3.9% and 64 +/- 3.7% compared to the rate measured at 20 degrees C for reactors 1 and 2, respectively. The nitrification rates at 1 degree C over a 4-month exposure period compared to the rate at 20 degrees C were 18.7 +/- 5.5% and 15.7 +/- 4.7% for the two reactors. The quantity of solids detached from the MBBR biocarriers was low and the mass of biofilm per carrier did not vary significantly at 20 degrees C compared to that after long-term exposure at 1 degree C. Lastly, a temperature correction model based on exposure time to cold temperatures showed a strong correlation to the calculated ammonia removal rates relative to 20 degrees C following a gradual acclimatization period to cold temperatures.

  15. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  16. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  17. Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Moses, David Lewis [ORNL

    2009-11-01

    The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of

  18. Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor.

    Science.gov (United States)

    Patel, Yogesh; Gupte, Akshaya

    2015-03-01

    The decolorization of Acid Maroon V was investigated using bacterial consortium EDPA containing Enterobacter dissolvens AGYP1 and Pseudomonas aeruginosa AGYP2 immobilized in different entrapment matrices. The consortium displayed 96% removal of dye (100 mg/l) within 6 h when immobilized in agar-agar. Under optimum concentrations of agar-agar (3.0% w/v) and cell biomass (0.9 g% w/v), the consortium displayed decolorization for 18 successive batches of Acid Maroon V and also decolorized 14 other different textile dyes. A packed bed reactor under batch mode showed 89% decolorization of dye after 56 repetitive cycles. Under continuous flow mode, maximum color removal was achieved with bed length of 36 cm, hydraulic retention time of 2.66 h, and dye concentration of 100 mg/l. Additionally, the reactor decolorized relatively higher concentrations (100-2000 mg/l) of dye. The synthetic dye wastewater containing five textile dyes was decolorized 92% with 62% COD reduction using an immobilized consortium.

  19. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    Science.gov (United States)

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas. PMID:27163861

  20. Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach

    International Nuclear Information System (INIS)

    Highlights: ► We introduced four basic forms of phenomenological method for pebble flow. ► We discussed the physical nature of the quasi-static pebble flow. ► We verified the applicability of the discrete element method. ► We investigated the parameter effects on quasi-static pebble flow. - Abstract: By means of the four basic forms of the phenomenological method, experimental results have intuitionally disclosed the physical mechanism from various views of the quasi-static pebble flow in a pebble bed reactor and successfully verified the availability of the discrete element method, on which the parameter effects have been investigated, including different base cone angle and different friction coefficient. The flow fields under different parameters have been discussed. On the basis of these researches, a framework of the general understanding of pebble flow mechanism has been drawn; many essential problems are discussed, including the interpretation of the quasi-static pebble flow, force analysis inside the pebble packing, propagation and distribution of the voids, internal equilibrium arches, competition mechanism, internal collapse, self-organization, equivalent shear force, equivalent normal force, the physical process of stagnant zone's influence on the overall flow field, and so on. All of these are very helpful to understand the physical mechanism of the quasi-static pebble flow in a pebble bed reactor.

  1. Modelisation of Nitrification under Inhibited Environment by Moving Bed Bio-Film Reactor Technique

    Directory of Open Access Journals (Sweden)

    Pham T.H. Duc

    2010-01-01

    Full Text Available Problem statement: Nitrification by Moving Bed Biofilm Reactor (MBBR involves physical, chemical and biological processes to remove toxic ammonia for aquaculture that are governed by a variety of parameters, like substrate and dissolved oxygen concentrations, organic matters, temperature, pH, alkalinity and turbulence level, which impact negatively or positively on nitrification kinetics. Approach: The situation becomes more serious as the reaction rate is inhibited by low ammonium concentration and high salinity. That problems usually occur in treatment systems of aquatic breeding hatcheries. Results: In this study, experiments have been conducted to evaluate the impact of salinity on nitrification rate through kinetic constant (k and reaction order (n based on general equation v = kCn. Moving bed biofilm reactor was operated continuously at same initial amounts of nitrogen and Phosphorus very low (oligotrophic conditions. Firstly, over view the impact of salinity on kinetic rate to modeling that effect k and n to modelisation that affects and obtained the impact of salinity content in the reaction medium (X and the acclimatization phase (Y on the kinetic constant (k = 0.097 e (-0.0003Yƒ{0.0346X and on the kinetic order (n = (0.0002Y-0.0195 X-0.009Y + 1.2382. Conclusion/Recommendations: Results from kinetic analysis allowed the prediction of the reaction rate and reaction yield with rather high accuracy, helping the design and operation of a biofilter under practical conditions.

  2. Determination of the enzyme reaction rate in a differential fixed-bed reactor: a case study

    Directory of Open Access Journals (Sweden)

    Baruque Filho E.A.

    2001-01-01

    Full Text Available The reaction rate of starch hydrolysis catalyzed by a glucoamylase covalently bound to chitin particles was measured in a Differential Fixed-Bed Reactor (DFBR. Under selected test conditions the initial reaction rate may represent biocatalyst activity. Some aspects which influence measurement of the initial reaction rate of an immobilized enzyme were studied: the amount of desorbed enzyme and its hydrolytic activity, the extent of pore blockage of the biocatalyst caused by substrate solution impurities and the internal and external diffusional mass transfer effects. The results showed that the enzyme glucoamylase was firmly bound to the support, as indicated by the very low amount of desorbed protein found in the recirculating liquid. Although this protein was very active, its contribution to the overall reaction rate was negligible. It was observed that the biocatalyst pores were susceptible to being blocked by the impurities of the starch solution. This latter effect was accumulative, increasing with the number of sequential experiments carried out. When the substrate solution was filtered before use, very reliable determinations of immobilized enzyme reaction rates could be performed in the DFBR. External and internal diffusional resistences usually play a significant role in fixed-bed reactors. However, for the experimental system studied, internal mass transfer effects were not significant, and it was possible to select an operational condition (recirculation flow rate value that minimized the external diffusional limitations.

  3. Thermal-hydraulic analysis of the pellet bed reactor for nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.J. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131-1341 (United States)); El-Genk, M.S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131-1341 (United States))

    1994-09-01

    A two-dimensional steady-state thermal-hydraulics analysis of the pellet bed reactor for nuclear thermal propulsion is performed using the NUTHAM- S thermal-hydraulic code. The effects of axial heat and momentum transfers on the temperature and flow fields in the core are investigated. In addition, the porosity profile in the hot frit is optimized to avoid the development of a hot spot in the reactor core. Finally, a sensitivity analysis is performed using the optimized hot frit porosity profile to determine the effects of varying the propellant and core parameters on the peak fuel temperature and pressure drop across the core. These parameters include the inlet temperature and mass flow rate of the hydrogen propellant, average porosity of the core bed, the porosity of the hot frit, and local hot frit blockage. The peak temperature of the fuel is shown not to exceed its melting point as a result of changing any of these parameters from the base case, with the exception of hot frit blockage greater than 60% over a 0.12m axial segment of the hot frit. ((orig.))

  4. Modular pebble-bed reactor reforming plant design for process heat

    International Nuclear Information System (INIS)

    This report describes a preliminary design study of a Modular Pebble-Bed Reactor System Reforming (MPB-R) Plant. The system uses one pressure vessel for the reactor and a second pressure vessel for the components, i.e., reformer, steam generator and coolant circulator. The two vessels are connected by coaxial pipes in an arrangement known as the side-by-side (SBS). The goal of the study is to gain an understanding of this particular system and to identify any technical issues that must be resolved for its application to a modular reformer plant. The basic conditions for the MPB-R were selected in common with those of the current study of the MRS-R in-line prismatic fuel concept, specifically, the module core power of 250 MWt, average core power density of 4.1 w/cc, low enriched uranium (LEU) fuel with a 235U content of 20% homogeneously mixed with thorium, and a target burnup of 80,000 MWD/MT. Study results include the pebble-bed core neutronics and thermal-hydraulic calculations. Core characteristics for both the once-through-then-out (OTTO) and recirculation of fuel sphere refueling schemes were developed. The plant heat balance was calculated with 55% of core power allotted to the reformer

  5. Conceptual Design Studies of a Passively Safe Thorium Breeder Pebble Bed Reactor

    OpenAIRE

    Wols, F.J.

    2015-01-01

    Nuclear power plants are expected to play an important role in the worldwide electricity production in the coming decades, since they provide an economically attractive, reliable and low-carbon source of electricity with plenty of resources available for at least the coming hundreds of years. However, the design of nuclear reactors can be improved significantly in terms of safety, by designing reactors with fully passive safety systems, and sustainability, by making more efficient use of natu...

  6. Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: • CaO coating at atmospheric pressure is applied on silica nanoparticles in a fluidized bed. • Atmospheric pressure would facilitate scaling-up of the process. • The conditions for the coating process at atmospheric pressure are discussed. • The CO2 sorbent capacity is demonstrated by TGA in carbonation/calcination. • STEM-EDX shows the presence of CaO on the surface of the nanoparticles. - Abstract: CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO2 solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO2 nanoparticles

  7. Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor.

    Science.gov (United States)

    Bakkiyaraj, S; Syed, Mahin Basha; Devanesan, M G; Thangavelu, Viruthagiri

    2016-05-01

    Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively. PMID:25940482

  8. Synthesis of a nanosilica supported CO{sub 2} sorbent in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C., E-mail: cshoyo@us.es [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Valverde, J.M. [Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Ommen, J.R. van [Department of Chemical Engineering, Delft University of Technology, Product and Process Engineering, Julianalaan 136, 2628 BL Delft (Netherlands); Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Sayagués, M.J. [Instituto de Ciencia de Materiales (CSIC – Universidad de Sevilla), Americo Vespucio 49, 41092 Sevilla (Spain)

    2015-02-15

    Highlights: • CaO coating at atmospheric pressure is applied on silica nanoparticles in a fluidized bed. • Atmospheric pressure would facilitate scaling-up of the process. • The conditions for the coating process at atmospheric pressure are discussed. • The CO{sub 2} sorbent capacity is demonstrated by TGA in carbonation/calcination. • STEM-EDX shows the presence of CaO on the surface of the nanoparticles. - Abstract: CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO{sub 2} solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO{sub 2} nanoparticles.

  9. Simulation of gas-solid fluidized bed reactor for F-T synthesis

    Institute of Scientific and Technical Information of China (English)

    CAI Jin; LI Tao; SUN Qi-wen; YING Wei-yong; FANG Ding-ye

    2009-01-01

    Using the lumping method, OH4, O3H8, O10H22, and C22H44 were chosen as the model products, and CO as the key component. The mathematical model of a gas-solid fluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by Universal Global Optimization with the Marquardt method. Residual error distribution and a statistical test show that the intrinsic kinetic models are reliable and acceptable. A model of carbon chain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained. Large- scale cold model experiments were conducted to investigate the distribution of the gas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the model established for the Fe-based F-T synthesis catalyst fit the experimental value very well under the same operating conditions, and all the absolute values of the relative deviations are less than 5%.

  10. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    Science.gov (United States)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  11. Alkylation of Benzene with Propylene in a Flow-Through Membrane Reactor and Fixed-Bed Reactor: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Sibele Pergher

    2012-05-01

    Full Text Available Benzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200–300 °C and with a weight hourly space velocity (WHSV of 51 h−1. β-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane’s XRD patterns showed good crystallinity for the β-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 μm thick. The powders’ specific area was determined to be 400 m2×g−1 by N2 adsorption/desorption, and the TPD results indicated an overall acidity of 3.4 mmol NH3×g−1. Relative to the powdered catalyst, the catalytic membrane showed good activity and product selectivity for cumene.

  12. Progress in the Development of the Modular Pebble-Bed Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    This review article summarizes recent progress by students and faculty at U.C. Berkeley working on the development of the Pebble-Bed Advanced High Temperature Reactor (PB-AHTR). The 410-MWe PBAHTR is a liquid salt cooled reactor that operates at near atmospheric pressure and high power density (20 to 30 MW/m3, compared to 4.8 MW/m3 for helium cooled reactors). Operating with a core inlet temperature of 600 deg. C and outlet temperature of 704 deg. C, the PB-AHTR uses well understood materials of construction including Alloy 800H with Hastelloy N cladding for the reactor vessel and primary loop components, and graphite for core and reflector structures. Recent work by the NE 170 senior design class has developed physical arrangements for the major reactor and power conversion components, along with the structural design for the reactor building and turbine hall featuring seismic base isolation, design for aircraft crash protection, shielding analysis, and design of a multiple-zone ventilation and containment system to provide effective control of radioactive and chemical contamination. The resulting total building volume is 260 m3/MWe, compared to 343 m3/MWe to 486 m3/MWe for current large (1150 to 1600 MWe) LWR designs. These results suggest the potential for significant reductions in construction time and cost. Neutronics studies have verified the capability to design the PB-AHTR with negative fuel and coolant temperature reactivity coefficients, for both LEU and deep-burn TRU fuels. Depletion analysis was also performed to identify optimal core designs to maximize fuel utilization. The additional moderation provided by the coolant simplifies design to achieve optimal moderation, and the spent fuel volume is approximately half that of helium cooled reactors. In collaboration with the Czech Nuclear Research Institute, initial zero-power critical tests were performed to validate PB-AHTR neutronics models. Liquid salts are unique among candidate reactor coolants due

  13. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  14. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Science.gov (United States)

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes.

  15. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR).

    Science.gov (United States)

    Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments.

  16. Changes in char reactivity due to char-oxygen and char-steam reactions using Victorian brown coal in a fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Shu Zhang; Yonggang Luo; Chunzhu Li; Yonggang Wang

    2015-01-01

    This study was to examine the influence of reactions of char–O2 and char–steam on the char reactivity evolution. A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at 800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation (ex-situ reactivity) using TGA (thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2 in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion sig-nificantly but also reduced the char reactivity dramatical y. The curve shapes of the char reactivity with involve-ment of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.

  17. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    Science.gov (United States)

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  18. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  19. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3. [using a fluidized bed reactor

    Science.gov (United States)

    Blocher, J. M., Jr.; Browning, M. F.

    1979-01-01

    The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.

  20. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.

    Science.gov (United States)

    Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko

    2014-03-15

    The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. PMID:24384559

  1. Improved Performances of a Fluidized Bed Photo reactor by a Microscale Illumination System

    International Nuclear Information System (INIS)

    The performances of a gas-solid two-dimensional fluidized bed reactor in photo catalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UV A-LEDs), have been compared. In the photo catalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO2-A12O3 catalyst the use of UV A-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UV A-LEDs are due to the UV A-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photo reactor windows, reducing the dispersion outside of photo reactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx-A12O3 and ethanol to acetaldehyde on VOx/TiO2.

  2. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity.

    Science.gov (United States)

    Chu, Libing; Wang, Jianlong

    2016-07-01

    In the present study, three kinds of biopolymers, PHBV, PHBV/starch and PHBV/bamboo powder (BP) blends were used as carbon source and biofilm carriers for denitrification in packed bed reactors to remove nitrate from groundwater. Results showed that a fast start-up was obtained in bioreactors filled with both PHBV/Starch and PHBV/BP blends without external inocula and it took more than 3 month for PHBV reactor to reach the same loading rate. The PHBV/BP packed reactor exhibited a better nitrate removal efficiency (87.4 ± 7.0%) and less adverse effects in nitrite accumulation and DOC release (below 0.5 mg NO2N L(-1) and 10.5 mg DOC L(-1) in the effluent) during stable operation. Pyrosequencing analysis demonstrated that bacteria belonging to genus Clostridium in phylum Firmicus, which play the primary role in degrading the biopolymers, are the most dominant (33-15% of the sequences). The predominant species in all samples is related to Clostridium crotonatovorans. All the identified 11 genera of denitrifying bacteria affiliated with phylum Proteobacteria and constituted 30-55% in the representative sequences. The PHBV/BP blend is economically attractive carbon source with good denitrification performance. PMID:27145420

  3. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  4. Fluidized Bed Membrane Reactors for Ultra Pure H2 Production—A Step forward towards Commercialization

    Directory of Open Access Journals (Sweden)

    Arash Helmi

    2016-03-01

    Full Text Available In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm3/h of ultra-pure H2 was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H2 partial pressure differences. The membranes showed very high H2 fluxes (3.89 × 10−6 mol·m−2·Pa−1·s−1 at 400 °C and 1 atm pressure difference with a H2/N2 ideal perm-selectivity (up to 21,000 when integrating five membranes in the module beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm, so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell.

  5. Fluidized Bed Membrane Reactors for Ultra Pure H₂ Production--A Step forward towards Commercialization.

    Science.gov (United States)

    Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin

    2016-03-19

    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average temperature PEM fuel cell.

  6. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater.

    Science.gov (United States)

    Shore, Jennifer L; M'Coy, William S; Gunsch, Claudia K; Deshusses, Marc A

    2012-05-01

    This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp.

  7. Pebble bed modular reactors versus other generation technologies. Costs and challenges for South Africa

    International Nuclear Information System (INIS)

    South Africa is Africa's major economy, with plans to double its electricity generation capacity by 2026. South Africa has spent almost two decades developing a nuclear reactor known as a Pebble Bed Modular Reactor (PBMR), which could provide substantial benefits to the electricity grid but was recently mothballed due to high costs. This work estimates the lifecycle financial costs of South African PBMRs, then compares these costs to those of five other generation options: coal, nuclear as pressurized water reactors (PWRs), wind, and solar as photovoltaics (PV) or concentrating solar power (CSP). Each technology is evaluated with low, base case, and high assumptions for capital costs, construction time, and interest rates. Decommissioning costs, project lifetime, capacity factors, and sensitivity to carbon price are also considered. PBMR could be cost competitive with coal under certain low cost conditions, even without a carbon price. However, international lending practices and other factors suggest that a high capital cost, high interest rate nuclear plant is likely to be competing with a low capital cost, low interest rate coal plant in a market where cost recovery is challenging. PBMR could potentially become more competitive if low rate international loans were available to nuclear projects or became unavailable to coal projects. (author)

  8. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  9. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  10. Fluidized Bed Membrane Reactors for Ultra Pure H₂ Production--A Step forward towards Commercialization.

    Science.gov (United States)

    Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average fuel cell. PMID:27007361

  11. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  12. Process development and modeling of fluidized-bed reactor with coimmobilized biocatalyst for fuel ethanol production

    Science.gov (United States)

    Sun, May Yongmei

    This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity

  13. High temperature gas-cooled pebble bed reactor steady state thermal-hydraulics analyses based on CFD method

    International Nuclear Information System (INIS)

    Background: Based on general purpose CFD code Fluent, the PBMR-400 full load nominal condition thermal-hydraulics performance was studied by applying local thermal non-equilibrium porous media model. Purpose: In thermal hydraulics study of the gas cooled pebble bed reactor, the core of the reactor can be treated as macroscopic porous media with strong inner heat source, and the original Fluent code can not handle it properly. Methods: By introducing a UDS in the calculation domain of the reactor core and subjoining a new resistance term, we develop a non-equilibrium porous media model which can give an accurate description of the core of the pebble bed. The mesh of CFD code is finer than that of the traditional pebble bed reactor thermal hydraulics analysis code such as THERMIX and TINTE, thus more information about coolant velocity fields, temperature field and solid phase temperature field can be acquired. Results: The nominal condition calculation results of the CFD code are compared to those of the well-established thermal-hydraulic code THERMIX and TINTE, and show a good consistency. Conclusion: The extended local thermal non-equilibrium model can be used to analyse thermal-hydraulics of high temperature pebble bed type reactor. (authors)

  14. Overview of gas-cooled reactor systems, their importance and their interactions

    International Nuclear Information System (INIS)

    The economic interactions between fueling, separative work, and capital requirements are illustrated for HTGR, GCFR, HTGR-GT, VHTR, LWRs and LMFBRs. The influence of finite low-cost uranium resources and of extensive LWR application within the next two decades on reactor use is also discussed. Technological developments required for the practical application of HTGRs, GCFRs, HTGR-GT and VHTRs are presented, along with the importance and environmental effects features of these applications. The technical advantages and disadvantages associated with use of the uranium and the thorium fuel cycles in HTGRs are given, including the implications a given fuel cycle has on fuel recycle and mined-fuel requirements. The influence of core design on HTGR fuel and coolant temperatures and on associated performance features are illustrated by considering prismatic and pebble-bed type cores. Finally, several scenarios relative to the development of the HTGR, GCFR, HTGR-GT and VHTR are presented. (auth)

  15. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems

    OpenAIRE

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Pantazi, Ypapanti; Andersen, Henrik Rasmus

    2015-01-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The Activated Sludge system was operated under low organic loading conditions. The Moving Bed Biofilm Reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed p...

  16. [Performance and substrate inhibition kinetics model of nitritation process in inverse turbulent bed reactor].

    Science.gov (United States)

    Jin, Ren-Cun; Yang, Guang-Feng; Ma, Chun; Zheng, Ping

    2011-01-01

    The performance of a nitritation inverse turbulent bed (ITB) reactor was tested and the substrate inhibition kinetics characteristics of the reactor were analyzed. The results showed that a rapid reactor startup could be realized within 20 d with a strategy that combined the biofilm attachment method named "precoating carrier treatment" and "rapid suspending sludge discharge", with the feeding strategy named "low strength, high load". When operated at a hydraulic retention time of 3 h and influent NH4(+) -N of 700 mg x L(-1), corresponding to a nitrogen loading rate of 5.60 kg x (m3 x d)(-1), a maximum NH4(+) -N removal rate of 4.25 kg x (m3 x d)(-1) was observed. The maximum NO2(-) -N production rate was as high as 3.70 kg x (m3 x d)(-1). Four inhibition kinetic models (Haldane, Edwards, Aiba and Luong) were analyzed through non-linear regression to represent the inhibitions caused by substrate of nitritation process and the parameters of models were gained, which were r(max) of 1.84 kg x (m3 x d)(-1), K(IH) of 97.4 mg x L(-1) and K(m) of 0.188 mg x L(-1) for Haldane model, and r(max) of 1.83 kg x (m3 x d)(-1) and K(IA) of 114 mg x L(-1) for Aiba model. It was proposed that Haldane and Aiba models well fitted the process data harvested in the ITB reactor.

  17. Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2catalyst

    Institute of Scientific and Technical Information of China (English)

    Bo; Liu; Shengfu; Ji

    2013-01-01

    In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.

  18. Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi

    2008-09-01

    The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the

  19. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Psoma, Aikaterini K.;

    2016-01-01

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers...... (CBTR) and 5-methyl-1H-benzotriazole (5TTR). Comparison of the HMBBR system with MBBR or AS systems from literature showed that the HMBBR system was more efficient for the biodegradation of the investigated chemicals. Biotransformation products of target compounds were identified using ultra high......-performance liquid chromatography, coupled with a quadrupole-time-of-flight high-resolution mass spectrometer (UHPLC-QToF-MS). Twenty two biotransformation products were tentatively identified, while retention time denoted the formation of more polar transformation products than the parent compounds....

  1. Biodegradation of TBP in a packed bed reactor using pseudomonas pseudoalcaligenes

    International Nuclear Information System (INIS)

    Tributyl phosphate (TBP), is an organophosphorus compound widely used as a solvent for the extraction of uranium and plutonium, from other radionuclides, in nuclear fuel processing. Several strains from contaminated sites were isolated and screened for their ability to degrade this organophosphorus compound. The most active strain identified as Pseudomonas pseudoalcaligenes could degrade 290μM of TBP and utilized it as a sole source of carbon and energy. Agarose immobilized cell systems were developed for the biodegradation of TBP. A packed bed reactor was constructed and operated for biological TBP removal. Degradation rates for repeated operations increased for successive batches indicating that cells grow better and get adapted to the reaction conditions over time. (author)

  2. Aging biofilm from a full-scale moving bed biofilm reactor: characterization and enzymatic treatment study.

    Science.gov (United States)

    Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju; Xu, Ke; Zhang, Yan

    2014-02-01

    Effective removal of aging biofilm deserves to receive more attention. This study aimed to characterized aging biofilm from a full-scale moving bed biofilm reactor treating pharmaceutical wastewater and evaluate the hydrolysis effects of biofilm by different enzymatic treatments. Results from FTIR and biochemical composition analyses showed that it was a predominately organic-based biofilm with the ratio of total protein (PN) to polysaccharide (PS) of 20.17. A reticular structure of extracellular polymeric matrix (EPM) with filamentous bacteria as the skeleton was observed on the basal layer through SEM-EDS test. Among the four commercial proteases and amylases from Genencor®, proteases were shown to have better performances than amylases either on the removal of MLSS and PN/MLSS or on DOC (i.e., dissolved organic carbon)/MLSS raising of biofilm pellets. Difference of dynamic fluorescence characteristics of dissolved organic matters after treated by the two proteases indicated distinguishing mechanisms of the treating process.

  3. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Li, Hui-qiang; Han, Hong-jun; Du, Mao-an; Wang, Wei

    2011-04-01

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN(-) and NH(4)(+)-N, respectively. NO(2)(-)-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN(-) and NH(4)(+)-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  4. Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater.

    Science.gov (United States)

    Ahmadi, Ehsan; Gholami, Mitra; Farzadkia, Mahdi; Nabizadeh, Ramin; Azari, Ali

    2015-05-01

    Phthalic acid esters have received significant attention over the last few years since they are considered as priority pollutants. In this study, effects of different operation conditions including hydraulic retention time, phthalates loading rates and aeration rate on process performance of moving bed biofilm reactor (MBBR) for removing diethyl phthalate (DEP) and diallyl phthalate (DAP) from synthetic wastewater was evaluated. In optimum conditions, 94.96% and 93.85% removal efficiency were achieved for DEP and DAP, respectively. Moreover, MBBR achieved to remove more than 92% of COD for both phthalates. The results showed that DEP had a higher biodegradation rate compared to DAP, according to the selected parameters such as half saturation constant, overall reaction rate and maximum specific growth rate. The Grau second order model found as the best model for predicting MBBR performance due to its high correlation coefficients and more conformity of its kinetic coefficients to the results.

  5. Modelling of moving bed biofilm membrane reactors (MBBMR) for on-site greywater treatment.

    Science.gov (United States)

    Jabornig, Simon; Rauch, Wolfgang

    2015-01-01

    The study evaluates with a mechanistic model the pilot plant results of a combined moving bed biofilm process and membrane filtration (MBBMR) treating single household greywater. It mainly includes the simulation of reactor hydraulics, degradation of pollutants, development of biomass and settlement of sludge. Iterative calibration was made with steady-state results of a 10-month pilot test. The model shows good predictions of readily biodegradable chemical oxygen demand and ammonium removal, as well as biomass concentration on carriers and in suspension. Also, a sensitivity analysis was made which calculates the relative significance factor of each model coefficient and by this provides comparability with other studies. Simulation data and actually measured parameters show that the suggested process was rather independent of ambient temperatures and short-term load fluctuations. Obtained datasets and model structure could be of use for future designers, as well as sellers and users of this process for on-site greywater reclamation.

  6. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  7. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Q.; Han, H.J.; Du, M.A.; Wang, W. [Harbin Institute of Technology, Harbin (China)

    2011-04-15

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN{sup -} and NH{sub 4}{sup +}-N, respectively. NO{sub 2}{sup -}-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN{sup -} and NH{sub 4}{sup +}-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  8. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  9. Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Olazar, Martin; Lopez, Gartzen; Arabiourrutia, Miriam; Elordi, Gorka; Aguado, Roberto; Bilbao, Javier [University of the Basque Country, Faculty of Science and Technology, Department of Chemical Engineering, P.O. Box 644, E48080 Bilbao (Spain)

    2008-01-15

    A novel kinetic model has been proposed for the thermal pyrolysis of tyres. The model is based on a reaction scheme that considers an intermediate lump and parallel reactions for the formation of the different product lumps. Seven lumps have been taken, which are gas (C{sub 4}), non-aromatic liquid (C{sub 5}-C), aromatics (C), tar (C{sub 11+}), char (low grade carbon black), intermediate and the original tyre. The kinetic data have been obtained in a pilot plant provided with a conical spouted bed reactor. The inert gas used is nitrogen and the temperature has been varied from 425 to 610 C. Discontinuous runs have been carried out for obtaining the kinetic data, and the product stream has been analysed on-line at different reaction times, thereby monitoring the evolution with time of mass fraction of the different components. The kinetic model gives reasonable predictions for lump yields. (author)

  10. Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor.

    Science.gov (United States)

    Jiang, K; Zhou, K G; Yang, Y C; Du, H

    2014-01-01

    Crystallization process in a fluidized bed reactor (FBR) has been regarded as an environmentally friendly technology for the removal and recovery of fluoride from industrial wastewater. The growth kinetics of calcium fluoride at high supersaturation was studied for design, control, and operation of an FBR. The main variables, including supersaturation, superficial velocity, pH value, and particle size of seed that influenced the crystal growth were investigated. Then, a growth model was used to predict the linear growth rate of calcium fluoride at a high influent concentration of fluoride. The pressure difference in the FBR was used as a feature to characterize the growth rate of calcium fluoride. The aggregation and adsorption between seeds and fine particles were proven to be a possible mechanism for growth of calcium fluoride.

  11. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  12. A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Akbar, E-mail: akbaresmaeili@yahoo.com; Beni, Ali Aghababai

    2014-09-15

    Graphical abstract: PVA/Cs nanofiber membrane was prepared by the electrospinning technique. The membrane was installed in a new fixed-bed reactor. The test results showed heavy metals absorbed by the PVA/Cs nanofiber membrane. - Highlights: • PVA/Cs nano-fiber membrane was produced using electrospinning technique. • The prepared nanofiber membrane was mesoporous. • Thermal crosslinking was successful to improve the stability of PVA/Cs nano-fiber membrane. • Experimental data were studied by adsorption isotherm models and thermodynamic relationships. - Abstract: In this research, a novel fixed-bed reactor was designed with a nanofiber membrane composed of a polyvinyl alcohol (PVA)/chitosan nanofiber blend prepared using an electrospinning technique. The applied voltage, tip-collector distance, and solution flow rate of the electrospinning process were 18 kV, 14.5 cm, and 0.5 mL h{sup −1}, respectively. Brunauer–Emmett–Teller (BET) theory, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize and analyze the nanofiber membranes. Homogeneous electrospun nanofibers with an average diameter of 99.47 nm and surface area of 214.12 m{sup 2} g{sup −1} were obtained. Adsorption experiments were carried out in a batch system to investigate the effect of different adsorption parameters such as pH, adsorbent dose, biomass dose, contact time, and temperature. The kinetic data, obtained at the optimal pH of 6, were analyzed by pseudo first-order and pseudo second-order kinetic models. Three isotherm models and thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were applied to describe the equilibrium data of the metal ions adsorbed onto the PVA/chitosan nanofiber membrane.

  13. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor

    International Nuclear Information System (INIS)

    This study focuses on the technical viability evaluation of the fast pyrolysis of sugar cane straw for its energy use. By means of this thermochemical process, the sugar cane straw is converted into bio-fuels (biochar, bio-oil) and non-condensable gases. The bio-fuels obtained could be used as fuel or as raw material in the chemical industry. The fast pyrolysis of sugar cane straw has been developed in a fluidized bed reactor. In order to improve this process to obtain high bio-oil yield, the influence of the operational conditions (equivalence ratio and temperature) on the product yields and on their characteristics was evaluated. The product yields of bio-oil and char were up to 35.5 wt.% and 48.2 wt.% respectively. The maximum bio-oil yield was achieved at temperature and equivalence ratio conditions of 470 °C and 0.14. The bio-oil obtained has low oxygen content (38.48 wt.% dry basis), very low water content, and a lower heating value of 22.95 MJ/kg. The gas chromatographic analyses allowed the identification of oxygenated compounds and heterocyclic aromatic hydrocarbons. The bio-oil pH ranged between 3.14 and 3.57 due to the presence of acid organic compounds. The char obtained has a high fixed carbon and volatile matter content. Its HHV value is 13.54 MJ/kg. -- Highlights: • Pyrolysis of sugar cane straw was studied in a fluidized bed reactor. • The product yields were evaluated. • The composition of the liquid and solid products obtained was analyzed. This is an environmentally friendly use for this waste

  14. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8.

  15. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  16. Prototype studies on the nondestructive online burnup determination for the modular pebble bed reactors

    International Nuclear Information System (INIS)

    Highlights: • Prototype study of online burnup measurement for HTR proves its feasibility. • Calibration and its correction of burnup assay device is discussed and verified. • Analysis of simulated gamma spectra shows good performance of spectra-unfolding method. - Abstract: The online fuel pebble burnup determination in future modular pebble bed reactor is implemented by measuring nondestructively the activity of the monitoring nuclide Cs-137 with HPGe detector on a pebble-by-pebble basis. Based on a full size prototype the feasibility is investigated. The prototype was first tested by using double sources to show that a precision of 2.8% (1σ) can be achieved in the determination of the Cs-137 net counting rate. Then, the relationship between the Cs-137 activity and the net counting rate recorded in the HPGe detector is calibrated with a standard Cs-137 source contained in the center of a graphite sphere with the same dimension as a real fuel pebble. Because the self attenuation of the calibration source differs with a fuel pebble, a correction factor of 1.07 ± 0.02 (p = 0.95) to the calibration is derived by using the efficiency transfer method. Last, by analyzing the spectra generated with KORIGEN software followed by Monte Carlo simulation, it is predicted that the relative standard deviation of the Cs-137 net counting rate can be still controlled below 3.5% despite of the presence of all the interfering peaks. The results demonstrate the feasibility of utilizing HPGe gamma spectrometry in the online determination of the pebble burnup in future modular pebble bed reactors

  17. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8. PMID:22483855

  18. Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass

    Energy Technology Data Exchange (ETDEWEB)

    Manjon, A.; Iborra, J.L.; Gomez, J.L.; Gomez, E.; Bastida, J.; Bodalo, A.

    1987-09-01

    A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentally measured values. (Refs. 28).

  19. Attrition resistant catalyst for dimethyl ether synthesis in fluidized-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG

    2008-01-01

    Fluidized-bed reactor is a candidate for dimethyi ether(DME)synthesis from syngas because of its excellent heat removal capability.In Order to improve the attrition resistance of catalyst,an amount of silica sol as binder was added to the catalyst composed of methanol synthesis component CuO/ZnO/Al2O3 and methanol dehydration component HZSM-5,which was prepared by coprecipitation and shaped by spray drying to get spherical particles.The effect of silica sol on the catalytic activity was investigated in a fixed-bed flow microreactor.Based on the experiment results,silica sol in the range of 0~20wt% had small effect on the catalytie activity.Generally,the CO conversion and DME yield decreased with the increase in concen.tration of silica sol,while the attrition resistance of catalysts increased with increasing silica sol,indicating that it was feasible to improve the attrition resistance without greatly sacrificing the activity of catalyst.In addition,the characterizations of catalysts were carried out using Brunauer-Emmett-Teller(BET),X-ray powder diffraction(XRD)and temperature programmed reduction (TPR).

  20. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. [Korean Advanced Institute of Science & Technology, Taejon (Republic of Korea)

    2010-08-15

    Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. From TGA experiments, weight loss rate of sawdust and coal blend increases above 400{sup o}C and additional weight loss was observed at 700{sup o}C. In a fixed bed at isothermal condition, the synergy to produce more volatiles appeared at 500-700{sup o}C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600{sup o}C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400{sup o}C and CH{sub 4} yield increases up to 62% at 600{sup o}C compared with the calculated value from the additive model.

  1. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    Science.gov (United States)

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.

  2. Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    魏伟胜; 徐建; 方大伟; 鲍晓军

    2003-01-01

    On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.20% and selectivity of 92.3% and 83.30/0 to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.

  3. Production of Carbon Nanotubes over Pre-reduced LaCoO3 Using Fluidized-bed Reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Carbon nanotubes were synthesized on a large scale by the catalytic decomposition of hydrocarbons over pre-reduced LaCoO3 using a fluidized-bed reactor. Reaction parameters such as reduction temperature, reduction time and reaction temperature were discussed.

  4. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were somet

  5. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  6. Conidial quality of the biocontrol agent Coniothyrium minitans produced by solid-state cultivation in a packed-bed reactor

    NARCIS (Netherlands)

    Jones, E.E.; Weber, F.J.; Oostra, J.; Rinzema, A.; Mead, A.; Whipps, J.M.

    2004-01-01

    Conidial germination and novel sand- and soil-based sclerotial parasitism assays were used to test the quality of conidial inoculum of the biocontrol agent Coniothyrium minitans IVT1 produced in different packed bed reactor runs. The fermenter airflow rate was either kept constant, resulting in a tr

  7. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were sometim

  8. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...

  9. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  10. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  11. Fluidized-bed reactor modeling for production of silicon by silane pyrolysis

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.

    1986-02-01

    An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.

  12. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    Science.gov (United States)

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    2016-01-01

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability. PMID:27642828

  13. Start-up of a thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lier, J.B. van; Grolle, K.C.F.; Lettinga, G. (Wageningen Agricultural Univ. (Netherlands). Dept. of Environmental Technology); Stams, A.J.M. (Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research State Univ. of New York, Albany, NY (United States). School of Public Health)

    1992-04-01

    Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64deg C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane-production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64deg C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36deg C and the other predominant at 46deg C and above. (orig.).

  14. Simulation for supporting scale-up of a fluidized bed reactor for advanced water oxidation.

    Science.gov (United States)

    Tisa, Farhana; Raman, Abdul Aziz Abdul; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  15. Valorisation of waste tyre by pyrolysis in a moving bed reactor

    International Nuclear Information System (INIS)

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.

  16. Simultaneous removal of phenol and nitrate in an anoxic fluidized bed reactor.

    Science.gov (United States)

    Omena, Sylvia P F; Sader, Leandro T; Silva, Edson L

    2013-01-01

    The general purpose of this study was to characterize a biological treatment system for phenol removal in an anoxic fluidized bed reactor (AFBR) that employed nitrate as the final electron acceptor. The average influent phenol concentrations in the study were 52, 107, 201, 335, and 518 mg/L so that phenol was not detected in the effluent for influent concentrations up to 335 mg/L. The removal efficiency dropped to 70% when the AFBR was operated with influent phenol concentrations above 500 mg/L. The ratio of carbon (derived solely from phenol) to nitrate (N-NO(3)) was approximately 1. Hence, the average influent N-NO(3) concentrations in the study were 45, 79, 157, 260, and 362 mg/L, with corresponding nitrogen removal efficiencies of 94%, 89%, 86%, 79%, and 51%. Nitrite accumulation was not observed because the average effluent N-NO(3) concentration during the entire reactor operation period was 1.5 mg/L.

  17. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  18. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater.

  19. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency. PMID:27386991

  20. Fluidized-bed reactor modeling for production of silicon by silane pyrolysis

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.

    1986-01-01

    An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.

  1. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    Science.gov (United States)

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  2. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    N. C. S. Amorim

    2014-09-01

    Full Text Available The effect of hydraulic retention time (HRT and organic loading rate (OLR on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m³-d. The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.00, while the influent chemical oxygen demand (COD measured 4000 mg COD/L. The hydrogen yield production increased from 0.13 to 1.91 mol H2/mol glucose as the HRT decreased from 8 to 2 h. The hydrogen production rate significantly increased from 0.20 to 2.04 L/h/L when the HRT decreased from 8 to 1 h. The main soluble metabolites were ethanol (1.87-100%, acetic acid (0.00-84.80%, butyric acid (0.00-66.78% and propionic acid (0.00-50.14%. Overall, we conclude that the best hydrogen yield production was obtained at an HRT of 2 h.

  3. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  4. Tertiary nitrification using moving-bed biofilm reactor: a case study in Tunisia.

    Science.gov (United States)

    Houda, Nasr; Abdelwaheb, Chatti; Asma, Ben Rajeb; Ines, Mehri; Ahmed, Landoulsi; Abdennaceur, Hassen

    2015-04-01

    In this study, the effect of operational conditions on biofilm development and nitrification in moving-bed biofilm reactor (MBBR) was investigated. The reactor was operated in a continuously fed regime during 170 days and with theoretical hydraulic retention time of 7 h, respectively. The presence of chemical oxygen demand (COD) increased the time required to form stable nitrifying. Subsequent stepwise increase of influent COD caused an increment in total polysaccharide (PS) and protein (PN) content, which was accompanied by an attachment of the biofilm, as shown by atomic force microscope (AFM). PS and PN concentrations proved to be good indicators of biomass development and attachment in MBBR system. Reactor was operated and water quality was characterized before and after treatment. Parameters including pH, 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS) (COD), PN, PS, and fecal bacteria in both raw and treated wastewater were monitored during the treatment. The removal rates of ammonium-nitrogen (NH4 (+)-N), BOD5, COD, and TSS are 95, 67.5, 69.2, and 73.33 %, respectively. The average bacterial reduction between the inlet and the outlet was of the order of 5 ± 1 logarithmic units for fecal coliforms. AFM showed that distinct biofilm and extracellular polymeric substances were formed in biofilm was thicker in the 70 days than in the 30 days. These results showed that the consumption rate for each substrate increased parabolically with biofilm thickness due to the increased amount of biomass Thus, MBBR can serve as a promising technology for wastewater treatment and can be scaled up for small communities in the developing countries.

  5. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    Directory of Open Access Journals (Sweden)

    Zhu Guifeng

    2016-01-01

    Full Text Available Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PB-FHR is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF2 salt Temperature Reactivity Coefficient (TRC. Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tristructural-isotropic (TRISO coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern and two kinds of reflector materials (SiC and graphite. This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9Be(n,2n reaction and low neutron absorption of 6Li (even at 1000 ppm in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel.

  6. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    D.Torres; S.de Llobet; J.L.Pinilla; M.J.Lázaro; I.Suelves; R.Moliner

    2012-01-01

    Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work.A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR).A parametric study of the effects of some process variables,including reaction temperature and space velocity,is undertaken.The operating conditions strongly affect the catalyst performance.Methane conversion was increased by increasing the temperature and lowering the space velocity.Using temperatures between 700 and 900 ℃ and space velocities between 3 and 6 LN/(gcat·h),a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run.In addition,carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.

  7. Biodiesel production in a magnetically-stabilized, fluidized bed reactor with an immobilized lipase in magnetic chitosan microspheres.

    Science.gov (United States)

    Zhou, Gui-Xiong; Chen, Guan-Yi; Yan, Bei-Bei

    2014-01-01

    Biodiesel production by immobilized Rhizopus oryzae lipase in magnetic chitosan microspheres (MCMs) was carried out using soybean oil and methanol in a magnetically-stabilized, fluidized bed reactor (MSFBR). The maximum content of methyl ester in the reaction mixture reached 91.3 (w/v) at a fluid flow rate of 25 ml/min and a magnetic field intensity of 150 Oe. In addition, the MCMs-immobilized lipase in the reactor showed excellent reusability, retaining 82 % productivity even after six batches, which was much better than that in a conventional fluidized bed reactor. These results suggested that a MSFRB using MCMs-immobilized lipase is a promising method for biodiesel production. PMID:24062133

  8. Use of activated carbon and natural zeolite as support materials, in an anaerobic fluidised bed reactor, for vinasse treatment.

    Science.gov (United States)

    Fernández, N; Fdz-Polanco, F; Montalvo, S J; Toledano, D

    2001-01-01

    In Cuba, the alcohol distillation process from cane sugar molasses, produces a final waste (vinasse), with an enormous polluting potential and a high sulfate content. Applying the anaerobic technology, most of the biodegradable organic matter can turn into biogas, rich in methane but with concentrations of sulfide above 1%. The present work develops two experiences with anaerobic fluidized bed reactors (AFBR) using both Cuban raw material, activated carbon and natural zeolite, as support media, with the purpose of obtaining high organic matter removal rates and keeping sulfide and ammonium concentrations in the permissible ranges. The reactors were operated during 120 days, achieving an organic loading rate of 10 kg COD/m3 day, with COD removal above 70%, and a methane production of 2 L/d. The activated carbon and natural zeolite used support materials in anaerobic fluidized bed reactors, and showed good results of distillery waste removal. PMID:11575071

  9. ANAEROBIC/AEROBIC BIODEGRADATION OF PENTACHLOROPHENOL USING GAC FLUIDIXED BED REACTORS: OPTIMIZATION OF THE EMPTY BED CONTACT TIME

    Science.gov (United States)

    An integrated reactor system has been developed to remediate pentachlorophenol (PCP) containing wastes using sequential anaerobic and aerobic biodegradation. Anaerobically, PCP was degraded to approximately equimolar concentrations (>99%) of chlorophenol (CP) in a granular activa...

  10. Co-Fuelling of Peat with Meat and Bone Meal in a Pilot Scale Bubbling Bed Reactor

    Directory of Open Access Journals (Sweden)

    Markku Orjala

    2010-07-01

    Full Text Available Co-combustion performance trials of Meat and Bone Meal (MBM and peat were conducted using a bubbling fluidized bed (BFB reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m3 limit upon combustion of pure MBM. SO2 emissions were found to be over the limit of 50 mg/m3, while in all trials NOx emissions were below the limit of 300 mg/m3. The HCl content of the flue gases was found to vary near the limit of 30 mg/m3. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 °C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications.

  11. A preliminary conceptual design for a 150 MWth pebble bed reactor core using the VSOP94 code package

    International Nuclear Information System (INIS)

    Recently, the hydrogen production using heat source of the high-temperature gas-cooled reactor (HTGR) has been attracting worldwide attention. Since the domestic neutronic design codes for the LWR core design were judged not to be applicable to design of the HTGRs, the VSOP94 code system for the core designs of pebble bed type HTGRs was installed in order to be used in the HTGR design until the domestic code system would be developed. After the VSOP94 was verified against a benchmark calculation for the PRROTEUS experiment, the preliminary conceptual design for a hypothetical bed reator with 150 MWth was performed using the VSOP94

  12. Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    S.Ja(s)o; R.Schom(a)cker; G.Wozny; S.Sadjadi; H.R.Godini; U.Simon; S.Arndt; O.G(o)rke; A.Berthold; H.Arellano-Garcia; H.Schubert

    2012-01-01

    Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn-2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4/SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis.

  13. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  14. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor

    Directory of Open Access Journals (Sweden)

    Papuga Saša V.

    2016-01-01

    Full Text Available Pyrolysis as a technique of chemical recycling of plastic materials is causing an increasing level of interest as an environmentally and economically acceptable option for the processing of waste materials. Studies of these processes are carried out under different experimental conditions, in different types of reactors and with different raw materials, which makes the comparison of different processes and the direct application of process parameters quite complex. This paper presents the results of investigation of the influence of temperature in the range of 450°C to 525°C, on the yield of the process of pyrolysis of waste plastics mixture, composed of 45% polypropylene, 35% low density polyethylene and 25% high density polyethylene. Also, this paper presents results of the investigation of the effect of the reaction, atintervals of 30-90 [min], on the yield of pyrolysis of the mentioned waste plastics mixture. Research was conducted in a fixed bed pilot reactor, which was developed for this purpose. The results of the research show that at a temperature of 500°C, complete conversion of raw materials was achieved, for a period of 45 [min], with a maximum yield of the pyrolysis oil of 32.80%, yield of the gaseous products of 65.75% and the solid remains of 1.46%. Afurther increase of temperature increases the yield of gaseous products, at the expense of reducing the yield of pyrolysis oil. Obtained pyrolysis oil has a high calorific value of 45.96 [MJ/kg], and in this regard has potential applications as an alternative fuel.

  15. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    Science.gov (United States)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  16. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Andrade Lima

    2005-09-01

    Full Text Available This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.Este trabalho apresenta um estudo morfológico de microrganismos aderidos à espuma de poliuretano em reator anaeróbio horizontal de leito fixo (RAHLF, aplicado ao tratamento de esgoto sanitário. O processo de colonização do suporte pela biomassa anaeróbia e as características morfológicas das células aderidas foram monitorados durante o período de partida do reator. Bacilos e cocos não fluorescentes foram predominantes no processo de aderência direta à espuma de poliuretano. Aumento na diversidade biológica foi observado a partir da 10ª semana de operação do reator, com predominância de bacilos, cocos e arqueas metanogênicas semelhantes a Methanosaeta. Problemas hidrodinâmicos, tais como formação de

  17. Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions

    Energy Technology Data Exchange (ETDEWEB)

    Balomenou, S.; Tsiplakides, D.; Katsaounis, A.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Caratheodory 1 St., GR-26504 Patras (Greece); Thiemann-Handler, S.; Cramer, B. [Robert Bosch GmbH Stuttgart, FV/FLC, PF 10 60 50, 70 049 Stuttgart (Germany); Foti, G.; Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2004-09-28

    A novel dismantlable monolithic-type electrochemically promoted catalytic reactor and 'smart' sensor-catalytic reactor unit has been constructed and tested for hydrocarbon oxidation and NO reduction by C{sub 2}H{sub 4} in presence of O{sub 2}. In this novel reactor, thin (=20-40nm) porous catalyst films made of two different materials are sputter-deposited on opposing surfaces of thin (0.25mm) parallel solid electrolyte plates supported in the grooves of a ceramic monolithic holder and serve as sensor or electropromoted catalyst elements. Using Rh/YSZ/Pt-type catalyst elements, the 22-plate reactor operated with apparent Faradaic efficiency exceeding 25 achieving near complete fuel and NO conversion at 300C in presence of up to 1.1% O{sub 2} in the feed at gas flow rates exceeding 1.3l/min. The metal catalyst dispersion was of the order of at least 15%. The novel reactor design requires only two external electrical connections and permits easy practical utilization of the electrochemical promotion of catalysis.

  18. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  19. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Pantazi, Ypapanti;

    2015-01-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The Activated Sludge system was operated under low organic loading conditions. The Moving Bed...... Biofilm Reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed partially and with different rates in tested systems. For MBBR, increased loading resulted...

  20. Design of a Novel Fluidized Bed Reactor To Enhance Sorbent Performance in CO2 Capture Systems Using CaO

    OpenAIRE

    Diego de Paz, María Elena; Arias Rozada, Borja; Grasa, Gemma; Abanades García, Juan Carlos

    2014-01-01

    This work deals with the modeling and design of a novel bubbling fluidized bed reactor that aims to improve the CO2 carrying capacity of CaO particles in CO2 capture systems by calcium looping (CaL). Inside the new reactor (the recarbonator) the particles that arrive from the carbonator of the CaL system react with a concentrated stream of CO2, thereby increasing their carbonate content up to a certain value, which can be predicted by means of the model proposed. The recarbonator model presen...

  1. Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method

    International Nuclear Information System (INIS)

    Taguchi method was applied as an experimental design to determine optimum conditions for color removal from textile dyebath house effluents in a zeolite fixed bed reactor. After the parameters were determined to treat real textile wastewater, adsorption experiments were carried out. The breakthrough curves for adsorption studies were constructed under different conditions by plotting the normalized effluent color intensity (C/C0) versus time (min) or bed volumes (BV). The chosen experimental parameters and their ranges are: HTAB concentration (Chtab), 1-7.5 g L-1; HTAB feeding flowrate (Qhtab), 0.015-0.075 L min-1; textile wastewater flowrate (Qdye), 0.025-0.050 L min-1 and zeolite bed height (Hbed), 25-50 cm, respectively. Mixed orthogonal array L16 (42 x 22) for experimental plan and the larger the better response category were selected to determine the optimum conditions. The optimum conditions were found to be as follows: HTAB concentration (Chtab) = 1 g L-1, HTAB feeding flowrate (Qhtab) = 0.015 L min-1, textile wastewater flowrate (Qdye) = 0.025 L min-1 and bed height (Hbed) = 50 cm. Under these conditions, the treated wastewater volume reached a maximum while the bed volumes (BV) were about 217. While HTAB concentration, g L-1 (A); zeolite bed height, cm (D) and wastewater flowrate, L min-1 (C) were found to be significant parameters, respectively, whereas, HTAB flowrate, L min-1 (B) was found to be an insignificant parameter

  2. Parametric sensitivity analysis to investigate heptane reforming in circulating fast fluidized bed membrane reactors

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar

    2015-01-01

    Full Text Available In this paper, we present mathematical modeling and numerical simulation tools in searching the high parameter space of steam reforming of heptane for the key design parameters, which have the potential to give high heptane conversion, high hydrogen yield and hydrogen to carbon monoxide ratio within the industrial limits for the syngas used as a feedstock for the gas to liquid processes (GTL. The system under consideration is the novel circulating fast fluidized bed membrane reactor (CFFBMR. The simulation results show that the hydrogen membrane has a significant role in the displacement of the thermodynamic equilibriums of the reversible reactions and production of ultraclean hydrogen, which can be used as a fuel for the fuel cells. Also the results of the sensitivity analysis show that the best performance of the CFFBMR can be obtained by a proper selection of combination of several parameters of high feed temperatures, high steam to carbon feed ratios, high reaction side pressures coupled with a large permeation area of a composite thin film membrane. These parameters are interacting in a very complex manner to give 100% conversion of heptane and 496.94% increase in hydrogen yield compared to the reformer without hydrogen membrane. It was found that under these selected operating conditions a low H2/CO ratio of 1.15 is achieved satisfying the practical recommended industrial range.

  3. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation.

    Science.gov (United States)

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2016-02-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, both in terms of hazing potential and total protein decrease, was significantly higher than PBR-pa, in all the seven unfined, white wines used. Among the wines tested, Sauvignon Blanc, given its total protein content as well as its very high intrinsic instability, was selected as a control wine to evaluate the effect of the treatment on wine as to its soluble protein profile, phenolic composition, mineral component, and sensory properties. The treatment in a PBR containing immobilised bromelain appeared effective in decreasing both wine hazing potential and total protein amount, while it did not significantly affect the phenol compounds, the mineral component nor the sensory quality of wine. The enzymatic treatment in PBR was shown to be a specific and mild technique for use as an alternative to bentonite fining for white wine protein stabilisation. PMID:27162393

  4. Gas Turbine High Temperature Gas (Helium) Reactor Using Pebble Bed Fuel Derived from Spent Fuel

    International Nuclear Information System (INIS)

    Project goals: Build on the $1B investment spent during the NGNP Project for the only true Inherently Safe Small Modular Reactor Design – the only SMR design that can make this claim due to negative temperature coefficient of reactivity - no containment required – less construction cost. NPMC in Partnership with Pebble Bed Modular Group, a fully owned subsidiary of Eskom, RSA to Factory Build Complete Plant in Modular Sections at Factory Site in Oswego, NY for transport to site by rail or shipping for world wide export. NPMC will provide Project and Construction Management of all new builds from plant sites through construction, commissioning and startup using local labor. License and Construct ion of spent fuel processing facility in both NY and South Africa using Proven Technology. Ultimate goals of project: 1. Award of the 2013 US DOE Innovative SMR $452M cost share grant for US NRC License Certification 2.Build Full Scale Demonstration Plant at Koeburg, RSA with World Bank Funding managed by NPMC in collaboration with our legal firm, Haynes and Boone LLP 3. Take Plant Orders Immediately (10% Down Payment) 4. Form Strategic Alliance with Domestic and/or International Utility

  5. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    Science.gov (United States)

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. PMID:26950756

  6. Assessing the treatment of acetaminophen-contaminated brewery wastewater by an anaerobic packed-bed reactor.

    Science.gov (United States)

    Abdullah, Norhayati; Fulazzaky, Mohamad Ali; Yong, Ee Ling; Yuzir, Ali; Sallis, Paul

    2016-03-01

    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%. PMID:26760229

  7. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Packed-bed reactor/silent-discharge plasma design data report

    International Nuclear Information System (INIS)

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described

  9. Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Yang, Tiankui; Mu, Huiling;

    2005-01-01

    for further studies in a continuous packed bed reactor. TL IM gave a fast reaction and had almost reached equilibrium with a residence time of 30 min, whereas RM IM required 60 min. The effect of reaction temperature was more pronounced for RM IM. TL IM showed little effect on the interesterification degree...... when the temperature was raised from 60 degrees C to 90 degrees C, whereas RM IM had a positive effect when the temperature was increased from 40 degrees C to 80 degrees C. Even though TL IM is an sn-1,3 specific lipase, small changes in the sn-2 position of the triacylglycerol could be seen....... The tendency was toward a reduction of the saturated fatty acid C14:0 and C16:0 and an increase of the long-chain saturated and unsaturated fatty acids (C18:0 and C18:1), especially at longer residence times (90 min). In prolonged continuous operation the activity of TL IM was high for the first 5 days...

  10. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. PMID:25728916

  11. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    Science.gov (United States)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  12. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    Science.gov (United States)

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.

  13. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater.

    Science.gov (United States)

    Kim, Hyun-Chul; Shin, Jaewon; Won, Seyeon; Lee, Jung-Yeol; Maeng, Sung Kyu; Song, Kyung Guen

    2015-03-15

    A fermentative strategy with an anaerobic moving bed biofilm reactor (AMBBR) was used for the treatment of domestic wastewater. The feasibility of using a membrane separation technique for post-treatment of anaerobic bio-effluent was evaluated with emphasis on employing a membrane distillation (MD). Three different hydrophobic 0.2 μm membranes made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) were examined in this study. The initial permeate flux of the membranes ranged from 2.5 to 6.3 L m(-2) h(-1) when treating AMBBR effluent at a temperature difference between the feed and permeate streams of 20 °C, with the permeate flux increasing in the order PP 98% rejection of dissolved organic carbon was also achieved. The characterization of wastewater effluent organic matter (EfOM) using an innovative suite of analytical tools verified that almost all of the EfOM was rejected via the PVDF MD treatment.

  14. Achieving nitritation and anammox enrichment in a single moving-bed biofilm reactor treating reject water.

    Science.gov (United States)

    Zekker, I; Rikmann, E; Tenno, T; Saluste, A; Tomingas, M; Menert, A; Loorits, L; Lemmiksoo, Vallo; Tenno, T

    2012-01-01

    A biofilm with high nitrifying efficiency was converted into a nitritating and thereafter a nitritating-anammox biofilm in a moving-bed biofilm reactor at 26.5 (+/- 0.5) degrees C by means of a combination of intermittent aeration, low dissolved oxygen concentration, low hydraulic retention time, free ammonia and furthermore, also by elevated HCO3- concentration. Nitrite-oxidizing bacteria (NOB) were more effectively suppressed by an enhanced HCO3- concentration range of 1200-2350 mg/L as opposed to free-ammonia-based process control where NOBs recovered from inhibition; the respective total-nitrogen removal rates were 0.3 kg N/(m3 x d) and 0.2 kg N/(m3 x d). The biofilm modification strategies resulted in a shift in bacterial community as the NOB Nitrobacter spp. were replaced with NOB belonging to the genus Nitrospira spp. and were closely related to Candidatus Nitrospira defluvii. A community of anaerobic ammonium-oxidizing microorganisms -uncultured Planctomycetales bacterium clone P4 (closely related to Candidatus Brocadia fulgida)--was developed.

  15. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR.

  16. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  17. Measurement of liquid holdup and axial dispersion in trickle bed reactors using radiotracer technique

    International Nuclear Information System (INIS)

    The holdup and axial dispersion of aqueous phase has been measured in trickle bed reactors as a function of liquid and gas flow rates using radioisotope tracer technique. Experiments were carried out in the glass column of inner diameter of 15.2x10-2 m column for air-water system using three different types of packings i.e. non-porous glass beads, porous catalyst of tablet and extrudate shape. The range of liquid and gas flow rates used were 8.3x10-5 - 3.3x1--4 m3/s and 0 - 6.67x10-4 m3/s, respectively. Residence time distributions of liquid phase and gas phase were measured and mean residence times were determined. The values of liquid holdup were calculated from the measured mean residence times. It was observed that the liquid holdup increases with increase in liquid flow rates and was independent of increase in gas flow rates used in the study. Two-parameter axial dispersion model was used to simulate measured residence time distribution data and values of mean residence time and Peclet number were obtained. It was observed that the values of Peclet number increases with increase in liquid flow rate for glass beads and tablets and remains almost constant for extrudates. The values of mean residence time obtained from model simulation were found to be in good agreement with the values measured experimentally. (author)

  18. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yingming [School of Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073 (China)]|[Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China); Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang, Jie; Fu, Yan [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Lv, Pengmei; Wang, Xuewei [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China)

    2009-03-15

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751). (author)

  19. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yingming [School of Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China); Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang Jie [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)], E-mail: changjie@scut.edu.cn; Fu Yan [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Lv Pengmei; Wang Xuewei [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China)

    2009-03-15

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0 diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751)

  20. Nutrients recovery by struvite formation from wastewater in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.W. [Civil and Environmental Engineering, Kyungnam Univ., Masan (Korea); Kwon, H.B. [Dept. of Materials Science Engineering, Kyungnam Univ., Masan (Korea); Kim, Y.J.; Jeon, H.P. [Graduate student, Civil and Environmental Engineering, Kyungnam Univ. (Korea)

    2005-07-01

    Nutrient removal and recovery from wastewater is being challenged to avoid eutrophication problems, and the discharge standards have also been tightened by water regulations. Therefore, this study was undertaken to recover the nutrients from both synthetic wastewater and swine wastewater in a fluidized bed reactor (FBR). The operational parameters were changed to find out the optimum conditions for struvite formation. The most suitable pH was identified around pH 9. When the molar ratio of magnesium as Mg: P was 2:1 in the FBR, the removal efficiency of NH{sub 4}-N and PO{sub 4}-P was 79 and 90%, respectively. The seed material was effective to form struvite in the condition of 30g dosage. Struvite crystallization in reaction was completed in 20 minutes. The growth of struvite crystals was confirmed by the analysis of XRD, FT-IR and TG-DTA. In addition, the struvite was successfully recovered when the optimum conditions were applied to the swine wastewater. (orig.)

  1. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor

    International Nuclear Information System (INIS)

    Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimum conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0 diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751)

  2. Catalytic pyrolysis of miscanthus × giganteus in a spouted bed reactor.

    Science.gov (United States)

    Du, Shoucheng; Sun, Yijia; Gamliel, David P; Valla, Julia A; Bollas, George M

    2014-10-01

    A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity. PMID:25058293

  3. Evaluation of Anaerobic Fluidized Bed Reactor for treating Sugar mill effluent - a Case Study

    Directory of Open Access Journals (Sweden)

    R. Mathiyazhagan

    2014-07-01

    Full Text Available Anaerobic treatment processes are credible options for providing sustainable treatment to biodegradable waste streams. The Anaerobic Fluidized Bed Reactor (AFBR is an evolving process that requires waste specific design methodologies based on kinetics of the specific process. The research was precisely an experimental study on AFBR having23.56 litres of effective volume to evaluate its treatment performance and gas recovery in terms of Chemical Oxygen Demand (COD, Hydraulic Retention Time(HRTand Organic Loading Rate (OLR. The synthetic sugar influent COD was variedfrom 1500 to 4000 mg/lit. The OLR for the operating flow rates were ranged from 1.36 to 28.8 Kg COD/m3 .day for HRT varied from 3.2 to 24 hrs. The maximum COD removal efficiency is 90.06 at an operating OLR of 3.42 Kg COD/m3 .day. The maximum biogas yield was observed at 0.28 m 3 /kg COD removed.

  4. Packed-bed reactor/silent-discharge plasma design data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described.

  5. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    Science.gov (United States)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  6. Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor.

    Science.gov (United States)

    de Luna, Mark Daniel G; Briones, Rowena M; Su, Chia-Chi; Lu, Ming-Chun

    2013-01-01

    Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO(2) carrier particles were supported by glass beads with 2-4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the "two-stage" ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe(2+)]/[H(2)O(2)] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC-MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio.

  7. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor.

    Science.gov (United States)

    Nageswara Rao, Neti; Rohit, Misra; Nitin, Gedam; Parameswaran, P N; Astik, J K

    2009-08-01

    The electrooxidation of high strength leachate from an industrial solid waste landfill site was carried out in a three-dimensional carbon bed electrode reactor (TDR). This paper discusses the kinetics and mechanism of electrooxidation on the basis of time course variation of COD, TOC and TKN (total Kjeldahl nitrogen) from the raw leachate. The batch experiments were run at different applied currents (1-3 A) for a period of 6h. A two-stage pseudo-first order reaction kinetics model was developed based on the initial rapid removal of pollutants (Phase I) followed by slow oxidation kinetics (Phase II). About 60-64% COD was removed within 1h with a rate constant 5.83 x 10(-3) min(-1) in Phase I, which was near 5-7 times greater than that of Phase II (0.81-1.03 x 10(-3)min(-1)). The mineralization efficiency was found to be significant in the range 0.83-0.84. The apparent faradic efficiency and specific energy consumption for COD removal were also estimated. The mechanism of electrooxidation was discussed with the help of adsorption, kinetic and SEM results.

  8. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  9. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems

  10. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mita, Luigi [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Grumiro, Laura [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Rossi, Sergio [Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Bianco, Carmen; Defez, Roberto [Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples (Italy); Gallo, Pasquale [Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples (Italy); Mita, Damiano Gustavo, E-mail: mita@igb.cnr.it [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Diano, Nadia [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy (Italy)

    2015-06-30

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  11. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors. PMID:27148733

  12. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors.

  13. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors

    International Nuclear Information System (INIS)

    This paper analyses a thermochemical energy storage process using a CaO/Ca(OH)2 chemical loop. A single circulating fluidized bed reactor is proposed to carry out the hydration-dehydration alternating reactions. During the energy discharge step, steam is fed to the reactor and used as a fluidizing gas and as a reactant with the CaO coming from a silo, enabling heat to be recovered at a sufficiently high temperature (around 743 K) from the hydration reaction taking place in the fluidized bed. During the dehydration of Ca(OH)2 (energy charging step), heat (i.e. from a concentrated solar field) is stored in thermochemical form as CaO by using steam as a fluidizing gas. A basic process integration scheme for a reference case with a power output of 100 MWt is analysed in this work, by solving the mass and energy balances during charging and discharging steps and by calculating the volume of the silos and characteristic dimensions of the fluidized bed reactor. The effective energy storage densities of the CaO silo is shown to be over 260 kWh/m3 with reasonable activities of the solids when storing CaO solids in the silo at around 813 K. - Highlights: • Novel process concept using CaO/Ca(OH)2 cycle for thermochemical energy storage . • Design of a circulating fluidized bed reactor coupled with low cost solid storage silos. • Reaction under steam at 743–813 K for both hydration/dehydration shown to be effective. • Εnergy storage density over 260 kWh/m3 for solids with increment in conversion of 0.6

  14. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    OpenAIRE

    Sachs, Marius; Schmitt, Adeliene; Peukert, Wolfgang; Wirth, Karl-Ernst

    2014-01-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder...

  15. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik;

    1999-01-01

    °C; substrate ratio, 5.5; and water content, 0.1%. The production of diacylglycerols was not well correlated with any of the parameters and the yield generally decreased with the experimental sequence. This was due to the stoichiometric water in the substrate mixture in the packed enzyme bed being......Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... was not identical for the sequential experiments in the same enzyme bed due to the deactivation of the Lipozyme IM. Therefore, the results were normalized based on enzyme deactivation models. Well-fitting quadratic models were obtained after normalizing the data for the incorporation of oleic acid...

  16. Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Beykoz Lojistik Meslek Yueksekokulu, Beykoz, Istanbul (Turkey)], E-mail: sumer@gazi.edu.tr; Sahin, Haci Mehmet; Acir, Adem [Beykoz Lojistik Meslek Yueksekokulu, Istanbul (Turkey); Al-Kusayer, Tawfik Ahmed [King Saud University, College of Engineering, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2009-08-15

    Prospective fuels for a new reactor type, the so called fixed bed nuclear reactor (FBNR) are investigated with respect to reactor criticality. These are (1) low enriched uranium (LEU); (2) weapon grade plutonium + ThO{sub 2}; (3) reactor grade plutonium + ThO{sub 2}; and (4) minor actinides in the spent fuel of light water reactors (LWRs) + ThO{sub 2}. Reactor grade plutonium and minor actinides are considered as highly radio-active and radio-toxic nuclear waste products so that one can expect that they will have negative fuel costs. The criticality calculations are conducted with SCALE5.1 using S{sub 8}-P{sub 3} approximation in 238 neutron energy groups with 90 groups in thermal energy region. The study has shown that the reactor criticality has lower values with uranium fuel and increases passing to minor actinides, reactor grade plutonium and weapon grade plutonium. Using LEU, an enrichment grade of 9% has resulted with k{sub eff} = 1.2744. Mixed fuel with weapon grade plutonium made of 20% PuO{sub 2} + 80% ThO{sub 2} yields k{sub eff} = 1.2864. Whereas a mixed fuel with reactor grade plutonium made of 35% PuO{sub 2} + 65% ThO{sub 2} brings it to k{sub eff} = 1.267. Even the very hazardous nuclear waste of LWRs, namely minor actinides turn out to be high quality nuclear fuel due to the excellent neutron economy of FBNR. A relatively high reactor criticality of k{sub eff} = 1.2673 is achieved by 50% MAO{sub 2} + 50% ThO{sub 2}. The hazardous actinide nuclear waste products can be transmuted and utilized as fuel in situ. A further output of the study is the possibility of using thorium as breeding material in combination with these new alternative fuels.

  17. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor.

    Science.gov (United States)

    Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y

    2014-06-01

    In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination.

  18. Low-canopy seagrass beds still provide important coastal protection services.

    Directory of Open Access Journals (Sweden)

    Marjolijn J A Christianen

    Full Text Available One of the most frequently quoted ecosystem services of seagrass meadows is their value for coastal protection. Many studies emphasize the role of above-ground shoots in attenuating waves, enhancing sedimentation and preventing erosion. This raises the question if short-leaved, low density (grazed seagrass meadows with most of their biomass in belowground tissues can also stabilize sediments. We examined this by combining manipulative field experiments and wave measurements along a typical tropical reef flat where green turtles intensively graze upon the seagrass canopy. We experimentally manipulated wave energy and grazing intensity along a transect perpendicular to the beach, and compared sediment bed level change between vegetated and experimentally created bare plots at three distances from the beach. Our experiments showed that i even the short-leaved, low-biomass and heavily-grazed seagrass vegetation reduced wave-induced sediment erosion up to threefold, and ii that erosion was a function of location along the vegetated reef flat. Where other studies stress the importance of the seagrass canopy for shoreline protection, our study on open, low-biomass and heavily grazed seagrass beds strongly suggests that belowground biomass also has a major effect on the immobilization of sediment. These results imply that, compared to shallow unvegetated nearshore reef flats, the presence of a short, low-biomass seagrass meadow maintains a higher bed level, attenuating waves before reaching the beach and hence lowering beach erosion rates. We propose that the sole use of aboveground biomass as a proxy for valuing coastal protection services should be reconsidered.

  19. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rodrigo J.G., E-mail: rodrigo@eq.uc.pt [Centro de Investigacao em Engenharia dos Processos Quimicos e Produtos da Floresta (CIEPQPF), GERSE - Group on Environmental, Reaction and Separation Engineering, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II - Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Almeida, Teresa S.A.; Quinta-Ferreira, Rosa M. [Centro de Investigacao em Engenharia dos Processos Quimicos e Produtos da Floresta (CIEPQPF), GERSE - Group on Environmental, Reaction and Separation Engineering, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II - Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters.

  20. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    Science.gov (United States)

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. PMID:21377790

  1. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-08-01

    Sulphate-reducing bacteria (SRB) are important members of the sulphur cycle in wastewater treatment plants (WWTPs). In this study, we investigate the diversity and activity of SRB within the developing and established biofilm of two moving bed biofilm reactor (MBBR) systems treating municipal wastewater in New Zealand. The larger of the two WWTPs (Moa Point) generates high levels of sulphide relative to the smaller Karori plant. Clone libraries of the dissimilatory (bi)sulphite reductase (dsrAB) genes and quantitative real-time PCR targeting dsrA transcripts were used to compare SRB communities between the two WWTPs. Desulfobulbus (35-53 % of total SRB sequences) and genera belonging to the family Desulfobacteraceae (27-41 %) dominated the SRB fraction of the developing biofilm on deployed plastic carriers at both sites, whereas Desulfovibrio and Desulfomicrobium were exclusively found at Moa Point. In contrast, the established biofilms from resident MBBR carriers were largely dominated by Desulfomonile tiedjei-like organisms (58-100 % of SRB sequences). The relative transcript abundance of dsrA genes (signifying active SRBs) increased with biofilm weight yet remained low overall, even in the mature biofilm stage. Our results indicate that although SRB are both present and active in the microbial community at both MBBR study sites, differences in the availability of sulphate may be contributing to the observed differences in sulphide production at these two plants.

  2. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    Science.gov (United States)

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  3. Process simulation of biomass gasification in a bubbling fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: • Bubbling fluidized bed gasification of biomass is studied by computer simulation. • The effect of some critical parameters on gasification performance is studied. • The performance of air–steam gasification of wood chips is analyzed. • Model predictions are compared against available data from the literature. • The optimum operating conditions for the gasification are found. - Abstract: A detailed process model was developed to simulate the air–steam gasification of biomass in a bubbling fluidized bed for hydrogen and syngas production by coupling Aspen Plus simulator and dedicated FORTRAN subroutines. Effects of critical parameters, including gasification temperature, steam/biomass ratio (SBR), equivalence ratio (ER), and biomass particle size (BPS) on the composition of fuel gas were discussed. The results indicate that the high temperature is more favorable for production of useful syngas (H2 and CO) and hydrogen yield (HY). The simulation results also demonstrate that ER is the most important factor in the process; higher ER contributed to higher carbon conversion, tar reforming, and gas yield, however, it lowered gas caloric value and cold gas efficiency. However, steam injection recognized as a key factor to produce more hydrogen rich gas in the SBR range studied, but had a major effect on CO2 formation. The model is validated by experimental data and found relatively to be in good agreement

  4. Supplemental Report on Nuclear Safeguards Considerations for the Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Moses, David Lewis [ORNL; Ehinger, Michael H [ORNL

    2010-05-01

    Recent reports by Department of Energy National Laboratories have discussed safeguards considerations for the low enriched uranium (LEU) fueled Pebble Bed Modular Reactor (PBMR) and the need for bulk accountancy of the plutonium in used fuel. These reports fail to account effectively for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency's (IAEA's) 'provisional' guidelines for termination of safeguards on 'measured discards.' The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel may not be judged sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of {sup 232}U and {sup 236}U in the used fuel at the target burn-up of {approx}91 GWD/MT exceed specification limits for reprocessed uranium (ASTM C787) and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the {sup 236}U content to fall within specification thus making the PBMR used fuel less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBMR specific activity of reprocessed uranium isotopic mixture and its A{sub 2} values for effective dose limit if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light water reactor spent fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product ({sup 99}Tc) and any possible plutonium contamination that may be present from attempted covert reprocessing. Thus, the potentially recoverable uranium from PBMR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of

  5. Kinetics, mass transfer and hydrodynamics in a packed bed aerobic reactor fed with anaerobically treated domestic sewage.

    Science.gov (United States)

    Fazolo, A; Pasotto, M B; Foresti, E; Zaiat, M

    2006-10-01

    This study presents an assessment of the kinetic, mass transfer and hydrodynamic parameters of a pilot-scale fixed bed reactor containing immobilized biomass in polyurethane matrices and fed with the effluent of a horizontal-flow fixed bed anaerobic reactor, which was used to treat domestic sewage. It was found that the liquid-solid and intra-particle mass transfer resistances significantly affected the overall oxygen consumption rate and that mechanical agitation could minimize such resistances. The volumetric oxygen transfer coefficient (kLa) values for superficial air velocities between 8.4 cm min(-1) and 57.0 cm min(-1) varied from 20.8 h(-1) to 58.8 h(-1) for tap water, and 16.8 h(-1) to 53.0 h(-1) for the anaerobic pre-treated effluent. The intrinsic oxygen uptake rate was estimated to be 19.9 mgO2 gVSS(-1) h(-1). A first-order kinetic model with residual concentration was considered to adequately represent the COD removal rate, whereas nitrogen conversion was considered to be well represented by a model of pseudo-first-order reaction in series. It was also found that the ammonium conversion to nitrite was the limiting step of the overall nitrogen conversion rate. The hydrodynamic behavior of the reactor was represented by three to four completely mixed reactors in series.

  6. From field to factory-Taking advantage of shop manufacturing for the pebble bed modular reactor

    International Nuclear Information System (INIS)

    The move of nuclear plant construction from the field to the factory for small, advanced pebble bed modular reactor (PBMR) designs has significant benefits compared to traditional light water reactor (LWR) field oriented designs. The use of modular factory construction techniques has a growing economic benefit over time through well-established process learning applications. This paper addresses the basic PBMR design objectives and commercialization model that drive this approach; provides a brief technical description of the PBMR design and layout with representative CAD views and discusses derived figures of merit highlighting the relative simplicity of PBMR compared to a modern LWR. The discussion emphasizes that more of PBMR can be built in the factory due to the simple design of a direct helium Brayton cycle compared to an indirect LWR steam cycle with its associated equipment. For the PBMR design there are fewer and less cumbersome auxiliary and safety systems with their attendant support requirements. Additionally, the labor force economic efficiency for nuclear projects is better in the factory than in the field, including consideration of labor costs and nuclear quality programs. Industrial learning is better in the factory because of the more controlled environment, mechanization optimization opportunities and because of the more stable labor force compared to the field. Supply chain benefits are more readily achievable with strategic contracts for module suppliers. Although building a nuclear power plant is not a typical high volume manufacturing process, for the PBMR-type of plant, with its high degree of standardization and relatively small, simplified design, the shift to factory work has a significant impact on overall project cost due to earlier identification and better coordination of parallel construction paths. This is in stark contrast to the construction of a large LWR in the past. Finally, the PBMR modular plant concept continues at the

  7. Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production

    International Nuclear Information System (INIS)

    A laboratory-scale prototype windowed reactor using a fluidized bed of coal coke particles was tested for thermochemical gasification using concentrated Xe light radiation as an energy source. The fluidized-bed reactor, designed to be combined with a solar reflective tower or beam-down optics, is evaluated for steam gasification of coal coke according to gasification performance: CO, H2, and CO2 production rates; carbon conversion; light-to-chemical efficiency. Internal circulation of coal coke particles inside the reactor increases gasification performance, which is further enhanced by higher steam partial pressure of the inlet gas. - Highlights: • A reactor prototype was designed for solar steam gasification by beam-down optics. • Particle circulation homogenizes temperature distribution across all bed layers. • The reactor design of internal circulation improved gasification performances

  8. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Science.gov (United States)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  9. US/FRG joint report on the pebble bed high temperature reactor resource conservation potential and associated fuel cycle costs

    International Nuclear Information System (INIS)

    Independent analyses at ORNL and KFA have led to the general conclusion that the flexibility in design and operation of a high-temperature gas-cooled pebble-bed reactor (PBR) can result in favorable ore utilization and fuel costs in comparison with other reactor types, in particular, with light-water reactors (LWRs). Fuel reprocessign and recycle show considerable promise for reducing ore consumption, and even the PBR throwaway cycle is competitive with fuel recycle in an LWR. The best performance results from the use of highly enriched fuel. Proliferation-resistant measures can be taken using medium-enriched fuel at a modest ore penalty, while use of low-enriched fuel would incur further ore penalty. Breeding is possible but net generation of fuel at a significant rate would be expensive, becoming more feasible as ore costs increase substantially. The 233U inventory for a breeder could be produced by prebreeders using 235U fuel

  10. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids.

  11. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor.

    Science.gov (United States)

    Winkler, Mari K H; Yang, Jingjing; Kleerebezem, Robbert; Plaza, Elzbieta; Trela, Jozef; Hultman, Bengt; van Loosdrecht, Mark C M

    2012-06-01

    The effects of volatile fatty acids (VFAs) on nitrogen removal and microbial community structure in nitritation/anammox process were compared within a granular sludge reactor and a moving bed biofilm reactor. Nitrate productions in both systems were lower by 40-68% in comparison with expected nitrate production. Expected sludge production on VFAs was estimated to be 67-77% higher if heterotrophs were the main acetate degraders suggesting that Anammox bacteria used its organotrophic capability and successfully competed with general heterotrophs for organic carbon, which led to a reduced sludge production. FISH measurements showed a population consisting of mainly Anammox and AOB in both reactors and oxygen uptake rate (OUR) tests also confirmed that flocculent biomass consisted of a minor proportion of heterotrophs with a large proportion of AOBs. The dominant Anammox bacterium was Candidatus "Brocadia fulgida" with a minor fraction of Candidatus "Anammoxoglobus propionicus", both known to be capable of oxidizing VFAs.

  12. Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst: A simulation study using experimental kinetic model

    Institute of Scientific and Technical Information of China (English)

    Nakisa Yaghobi; Mir Hamid Reza Ghoreishy

    2008-01-01

    The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.

  13. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed.

  14. Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air

    International Nuclear Information System (INIS)

    Fast pyrolysis of kraft lignin with partial (air) oxidation was studied in a bubbling fluidized bed reactor at reaction temperatures of 773 and 823 K. The bio-oil vapors were fractionated using a series of three condensers maintained at desired temperatures, providing a dry bio-oil with less than 1% water and over 96% of the total bio-oil energy. Oxygen feed was varied to study its effect on yield, composition, and energy recovery in the gas, char and oil products. The addition of oxygen to the pyrolysis process increased the production of gases such as CO and CO2. It also changed the dry bio-oil properties, reducing its heating value, increasing its oxygen content, reducing its average molecular weight and tar concentration, while increasing its phenolics concentration. The lower reaction temperature of 773 K was preferred for both dry bio-oil yield and quality. Autothermal operation of the pyrolysis process was achieved with an oxygen feed of 72 or 54 g per kg of biomass at the reaction temperatures of 773 and 823 K, respectively. Autothermal operation reduced both yield and total energy content of the dry bio-oil, with relative reductions of 24 and 20% for the yield, 28 and 23% for the energy content, at 773 and 823 K. - Highlights: • Autothermal pyrolysis of Kraft lignin is possible with introduction of air. • Under autothermal conditions, 24% of the dry bio-oil chemicals are lost at 773 K. • Partial oxidation helps produce more simple phenols and less pyrolytic lignin. • Bio-oil from lignin pyrolysis has a very high phenolics concentration

  15. Core and fuel design for Pebble Bed Modular Reactor (PBMR) using SRAC computer code

    International Nuclear Information System (INIS)

    Core and fuel down scale analysis on PBMR-HTR using SRAC program aims to identify the influence of U235 enrichment, burnable poison, coolant flow rate and coolant temperature entered to criticality core and safety aspects of nuclear reactor with the parameters are multiplication factor (keff) and fuel temperature coefficient, moderator temperature coefficient and coolant temperature coefficient. Core PBMR-HTR finite cylindrical with a hole in the middle which contains 334,000 pebble fuel bed. That consist of UO2 fuel, graphite moderator and helium coolant. Down scale the design model performed on the half core represent the whole core. The study was conducted by varying the fuel enrichment of 8%; 8.5%; 9%; 9.5% and 10%, while variation burnable poison enrichment at 5 ppm, 7 ppm, 9 ppm, 11 ppm and 15 ppm. The variation of coolant flow rate of 60%, 80%, 100%, 120% and 140% from its original value at 17.118 kg/s while the variation of coolant temperature input at 673.15 K; 723.15 K; 773.15 K; 823.15 K and 873.15 K. In this research, value of keff without Gd2O3 are 1.026213 (BOL) and 1.004173 (EOL) with excess reactivity of 2.55% with 9% U235 enrichment. While keff on BOL by using 7 ppm Gd2O3 of 1.006968 and 1.004198 for EOL with excess reactivity of 0.69%. Fuel temperature reactivity coefficient, moderator and coolant in a row for -8.597317E-05/K; -2.595284E-05 /K and 1.1496E-06/K. Temperature reactivity coefficient is negative. This indicates inherent safety characteristic have been met. Increasing the input temperature and coolant flow rate reduction lowers the value of keff core, and it will contribute to negative reactivity coefficient. (author)

  16. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    Science.gov (United States)

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.

  17. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Kroon, Kristel; Rikmann, Ergo; Tenno, Toomas; Tomingas, Martin; Vabamäe, Priit; Vlaeminck, Siegfried E; Tenno, Taavo

    2012-09-01

    In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N₂H₄ and NH₂OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L⁻¹ of each NH₂OH and N₂H₄, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO₂⁻. Various combinations of N₂H₄, NH₂OH, NH₄⁺, and NO₂⁻ were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N₂H₄ concentration (4.38 mg N L⁻¹) present in these batches was 5.43 mg N g⁻¹ TSS h⁻¹, whereas equimolar concentrations of N₂H₄ and NH₂OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.

  18. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    Science.gov (United States)

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD.

  19. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  20. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    Science.gov (United States)

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems. PMID:27054722

  1. Production of biocrudes from biomass in a fixed-bed tubular reactor: product yields and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Putun, A.E.; Ozcan, A.; Gercel, H.F.; Putun, E. [Anadolu University, Eskisehir (Turkey). Dept. of Chemical Engineering, Faculty of Engineering and Architecture

    2001-08-10

    Fixed-bed pyrolysis in a tubular reactor was conducted on three biomass samples. Euphorbia rigida, sunflower (Helianthus annus L.) pressed bagasse and hazelnut (Corylus avellana) shells, to determine the possibility of each being a potential source of renewable fuels and chemical feedstocks. The effects of pyrolysis temperature and sweep gas (N{sub 2}) flow rate on the pyrolysis yields and chemical compositions of the biocrudes obtained were investigated. The maximum biocrude yield of 45.7 wt% was obtained from sunflower pressed bagasse in N{sub 2} atmosphere at a pyrolysis temperature of 823 K and fixed heating rate of 7 K min{sup -1}. However, this biocrude yield can be compared with the biocrude of Euphorbia rigida (31.5 wt%) at optimum conditions. The biocrude yield of sunflower pressed bagasse increased by 26.4% as the final temperature was increased from 673 to 823 K whereas the biocrude yield of Euphorbia rigida increased by 30.8% more than sunflower pressed bagasse when the final temperature was increased from 673 to 823 K. The pyrolysis products were characterized by elemental analysis, high performance size exclusion chromatography (HPSEC) and {sup 1}H NMR spectroscopy, and also compared with the currently utilized transport fuels by simulated distillation. The pentane subfractions of biocrudes were analyzed for the quantification of hydrocarbons by gas chromatography. The chemical characterizations have shown that the biocrudes obtained from Euphorbia rigida, sunflower pressed bagasse and hazelnut shells were quite similar to crude oil and shale oil. 30 refs., 4 figs., 6 tabs.

  2. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  3. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    Science.gov (United States)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  4. A comparative study of charcoal gasification in two types of spouted bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Salam, P. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klongluang, Pathumthani 12120 (Thailand); Bhattacharya, S.C. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klongluang, Pathumthani 12120 (Thailand)] e-mail: bhatta@ait.ac.th

    2006-03-01

    Gasification is considered to be a favourable method for converting a solid fuel into a more versatile gaseous fuel. Performance of a gasifier depends on the design of the gasifier, type of fuel used and air flow rate, etc. The applications of spouted bed for a variety of processes such as drying, coating, pyrolysis, gasification and combustion have been reported. Gasification of solid fuels in a spouted bed, which has certain potential advantages over other fluid bed configurations, appears to be an under-exploited technique so far. Central jet distributors are the most commonly used in the experimental studies that has been reported in the literature. Circular slit distributor is a new concept. This paper presents results of a comparative experimental study on air gasification of charcoal in central jet and circular slit inert sand spouted beds. The experiments were carried for an equivalence ratio of 0.25. The effect of spouting velocity and type of the distributor on the gasification performance were discussed. The steady state dense bed temperature varied between 979 and 1183 deg C for central jet spouted bed and between 964 and 1235 deg C for circular slit spouted bed. At higher spouting velocities, the gasification efficiency of the circular slit spouted bed was slightly more compared with that of central jet spouted bed.

  5. A comparative study of charcoal gasification in two types of spouted bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Salam, P.A.; Bhattacharya, S.C. [Asian Institute of Technology, Pathumthani (Thailand). School of Environmental, Resources and Development

    2006-03-01

    Gasification is considered to be a favourable method for converting a solid fuel into a more versatile gaseous fuel. Performance of a gasifier depends on the design of the gasifier, type of fuel used and airflow rate, etc. The applications of spouted bed for a variety of processes such as drying, coating, pyrolysis, gasification and combustion have been reported. Gasification of solid fuels in a spouted bed, which has certain potential advantages over other fluid bed configurations, appears to be an under-exploited technique so far. Central jet distributors are the most commonly used in the experimental studies that has been reported in the literature. Circular slit distributor is a new concept. This paper presents results of a comparative experimental study on air gasification of charcoal in central jet and circular slit inert sand spouted beds. The experiments were carried for an equivalence ratio of 0.25. The effect of spouting velocity and type of the distributor on the gasification performance were discussed. The steady state dense bed temperature varied between 979 and 1183{sup o}C for central jet spouted bed and between 964 and 1235{sup o}C for circular slit spouted bed. At higher spouting velocities, the gasification efficiency of the circular slit spouted bed was slightly more compared with that of central jet spouted bed. (author)

  6. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min−1, whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  7. Benzene and ethylbenzene removal by denitrifying culture in a horizontal fixed bed anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, V.R.; Chinalia, F.A.; Sakamoto, I.K.; Varesche [Univ. de Sao Paulo (Brazil). Dept. de Hidraulica e Saneamento; Thiemann, O.H. [Univ. de Sao Paulo (Brazil). Inst. de Fisica de Sao Carlos

    2004-07-01

    Benzene, ethylbenzene, toluene, and xylene are toxic and are important constituents of gasoline and other petroleum fuels. These compounds are potential health hazards because of their high solubility and hence their ability to contaminate groundwater. Anaerobic immobilized biomass is a way of treating wastewater contaminated with the above compounds. The performance of a specially adapted biofilm is critical in the viability of this idea. In this investigation, an especially adapted biofilm was obtained using a denitrifying bacterial strain isolated from a slaughterhouse wastewater treatment plant. The strain was cultured in a liquid medium with added ethanol, nitrate, ethylbenzene, and benzene. To assess the viability of the strain for the purposes of degradation of ethylbenzene, and benzene two separate horizontal reactors were prepared with polyurethane foam in order to immobilize the biomass. Various concentrations of the two compounds were admitted. At high concentrations chemical oxygen demand decreased dramatically and benzene and ethylbenzene removal almost 100 per cent. DNA sequencing of the biofilm showed that Paracoccus versutus was the dominant species in the ethylbenzene reactor. 7 refs., 6 figs.

  8. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor.

    Science.gov (United States)

    Kouba, Vojtech; Catrysse, Michael; Stryjova, Hana; Jonatova, Ivana; Volcke, Eveline I P; Svehla, Pavel; Bartacek, Jan

    2014-01-01

    The application of nitrification-denitrification over nitrite (nitritation-denitritation) with municipal (i.e. diluted and cold (or low-temperature)) wastewater can substantially improve the energy balance of municipal wastewater treatment plants. For the accumulation of nitrite, it is crucial to inhibit nitrite-oxidizing bacteria (NOB) with simultaneous proliferation of ammonium-oxidizing bacteria (AOB). The present study describes the effect of the influent total ammonium nitrogen (TAN) concentration on AOB and NOB activity in two moving bed biofilm reactors operated as sequencing batch reactors (SBR) at 15 °C (SBR I) and 21 °C (SBR II). The reactors were fed with diluted reject water containing 600, 300, 150 and 75 mg TAN L(-1). The only factor limiting NOB activity in these reactors was the high concentrations of free ammonia and/or free nitrous acid (FNA) during the SBR cycles. Nitrite accumulation was observed with influents containing 600, 300 and 150 mg TAN L(-1) in SBR I and 600 and 300 in SBR II. Once nitrate production established in the reactors, the increase of influent TAN concentration up to the original 600 mg TAN L(-1) did not limit NOB activity. This was due to the massive development of NOB clusters throughout the biofilm that were able to cope with faster formation of FNA. The results of the fluorescence in situ hybridization analysis preliminarily showed the stratification of bacteria in the biofilm.

  9. Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: performance and kinetic modeling.

    Science.gov (United States)

    Fia, Fátima R L; Matos, Antonio T; Borges, Alisson C; Fia, Ronaldo; Cecon, Paulo R

    2012-10-15

    An evaluation was performed of three upflow anaerobic fixed bed reactors for the treatment of wastewater from coffee bean processing (WCP). The supports used were: blast furnace cinders, polyurethane foam and crushed stone with porosities of 53, 95 and 48%, respectively. The testing of these 139.5 L reactors consisted of increasing the COD of the influent (978; 2401 and 4545 mg L(-1)), while maintaining the retention time of 1.3 days. For the maximum COD applied, the reactor filled with foam presented removals of 80% (non-filtered samples) and 83% (filtered samples). The greater performance of the reactor filled with foam is attributed to its porosity, which promoted greater collection of biomass. From the results, it could be concluded that the reactors presented satisfactory performance, especially when using the foam as a support. Furthermore, the modified Stover-Kincannon and second order for multicomponent substrate degradation models were successfully used to develop a model of the experimental data. PMID:22609965

  10. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  11. The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The integration of methanogenesis with denitrification and anaerobic ammonium oxidation(ANAMMOX) was studied in an expanded granular sludge bed(EGSB) reactor in this work. Experimental results from the continuous treatment of wastewater with nitrite and ammonium, which lasted for 107 days, demonstrated that wastewater with high nitrite and ammonium could be anaerobically treated in an expanded granular sludge bed reactor. More than 91% to 97% of COD were removed at up to about 3.9 g COD/(L@d) of COD volumetric loading rate. More than 97% to 100% of nitrite was denitrified at up to about 0.8g NO2-N/(L@d), which is 16 times higher than that in a conventional activated sludge system with nitrification/denitrification(0.05g N/((L@d). No dissimilatory reduction of nitrite to ammonium occurred in the process. However, maximum of about 40% ammonium was found to be lost. Batch tests of 15 days with sludge from the reactor showed that 100% of nitrite was denitrified completely, and about 3% of ammonium was removed when only ammonium (34.3 mg/L) and nitrite(34.3 mg/L) were added into the sludge suspension medium. Furthermore, about 15% of ammonium amounts were lost with organic COD addition. It suggested that the methanogenesis in the system could enhance ANAMMOX because of intermediate hydrogen produced during methanogenesis.

  12. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  13. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  14. Production of single-walled carbon nanotubes from methane over Co-Mo/MgO nanocatalyst: A comparative study of fixed and fluidized bed reactors

    Institute of Scientific and Technical Information of China (English)

    Alimorad Rashidi; Roghayeh Lotfi; Ehsaneh Fakhrmosavi; Masoud Zare

    2011-01-01

    In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes (SWNTs) have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition (CCVD) of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt% in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.

  15. Importance of effects due to fusion α-particles for tokamak reactor design

    International Nuclear Information System (INIS)

    Issues related to the presence of fusion α-particles which are of importance for the design of a tokamak reactor are listed and shortly discussed. It is concluded that these issues, although to a large extent directly connected with the general problems of tokamak physics, require more attention to provide the information needed for designing a tokamak reactor. (orig.)

  16. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  17. An experimental study of the partial oxidation of ethane to ethylene in a shallow fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    DANICA BRZIC

    2007-02-01

    Full Text Available The partial catalytic oxidation of ethane to ethylene was investigated experimentally in a shallow fluidized bed. The performaces of two catalyst types, pure g‑Al2O3 and V2O5/ g-Al2O3 particles 1.8 mm in diameter, were analyzed. A pilot fluidized bed reactor with rectangular cross-section of 100mm´100mm was used. The experiments were carried out under atmospheric pressure in a dilute system under oxygen excess conditions. V2O5/g-Al2O3 showed good catalytic performances regarding ethylene selectivity. The influence of the temperature (in the range of 400–600 °C and the contact time (in the range of 35 – 85 kg sm-3 on the conversion of ethane and the selectivity to ethylene was analyzed. The highest yield of ethylene was 18 %.

  18. Fluid flow and heat transfer investigation of pebble bed reactors using mesh adaptive large-eddy simulation

    International Nuclear Information System (INIS)

    A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)

  19. Liquid spreading in trickle-bed reactors: Experiments and numerical simulations using Eulerian--Eulerian two-fluid approach

    CERN Document Server

    Solomenko, Z; Fourati, Manel; Larachi, Faical; Boyer, Christophe; Augier, Frédéric

    2015-01-01

    Liquid spreading in gas-liquid concurrent trickle-bed reactors is simulated using an Eulerian twofluid CFD approach. In order to propose a model that describes exhaustively all interaction forces acting on each fluid phase with an emphasis on dispersion mechanisms, a discussion of closure laws available in the literature is proposed. Liquid dispersion is recognized to result from two main mechanisms: capillary and mechanical (Attou and Ferschneider, 2000; Lappalainen et al., 2009- The proposed model is then implemented in two trickle-bed configurations matching with two experimental set ups: In the first configuration, simulations on a 2D axisymmetric geometry are considered and the model is validated upon a new set of experimental data. Overall pressure drop and liquid distribution obtained from $\\gamma$-ray tomography are provided for different geometrical and operating conditions. In the second configuration, a 3D simulation is considered and the model is compared to experimental liquid flux patterns at th...

  20. A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts

    Energy Technology Data Exchange (ETDEWEB)

    Moormann, R.

    2008-06-15

    The AVR pebble bed reactor (46 MW{sub th}) was operated 1967-88 at coolant outlet temperatures up to 990 C. A principle difference of pebble bed HTRs as AVR to conventional reactors is the continuous movement of fuel element pebbles through the core which complicates thermohydraulic, nuclear and safety estimations. Also because of a lack of other experience AVR operation is still a relevant basis for future pebble bed HTRs and thus requires careful examination. This paper deals mainly with some insufficiently published unresolved safety problems of AVR operation and of pebble bed HTRs but skips the widely known advantageous features of pebble bed HTRs. The AVR primary circuit is heavily contaminated with metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The amount of this contamination is not exactly known, but the evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory, which is some orders of magnitude more than precalculated and far more than in large LWRs. A major fraction of this contamination is bound on graphitic dust and thus partly mobile in depressurization accidents, which has to be considered in safety analyses of future reactors. A re-evaluation of the AVR contamination is performed here in order to quantify consequences for future HTRs (400 MW{sub th}). It leads to the conclusion that the AVR contamination was mainly caused by inadmissible high core temperatures, increasing fission product release rates, and not - as presumed in the past - by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot yet be equipped with instruments. The maximum core temperatures are still unknown but were more than 200 K higher than calculated. Further, azimuthal temperature differences at the active core margin of up to 200 K were