WorldWideScience

Sample records for bed model development

  1. The impact of structural development on near bed flow dynamics in gravel bed rivers: coupling flume experiments with numerical modelling

    Science.gov (United States)

    Ockelford, A.; Hardy, R. J.; Rice, S. P.; Powell, M.

    2017-12-01

    It is increasingly being recognised that gravel bed rivers develop a surface `texture' in response to changes in the flow and sediment regime. This textural response often takes the form of a bed structure which develops to ultimately stabilise the surface across a range of spatio-temporal scales and it is these topographical structures which determine the flow structures that develop over the river bed. However, our ability to measure and parameterise that structure in ways that are useful and meaningful for the prediction of flow dynamics, still remains inadequate; this paper uses a three dimensional numerical model to assess how the temporal development of structure influences the near bed flow dynamics. Using a suite of flume based experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to three different levels of constant bed shear that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Surface structuring characteristics were measured at a high spatio-temporal resolution such that the time evolution of the beds could be fully described. In total 54 surfaces were generated and run through a Reynolds averaged three dimensional numerical model with an Rng turbulence closure. The topography input included using an immersed boundary technique within a Cartesian framework. Discussion concentrates on the how the trajectory of structural evolution under the different treatments affects the near bed flow dynamics. Specifically links are made between how the scales of boundary topography influence the flow and discusses how the measured flow variability at any one point will contain both locally derived and upstream-inherited flow structures, according to the range of scales of bed topography present. Keywords: Graded, Sediment, Structure, Turbulence, Modelling

  2. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  3. Mathematical modeling of a fluidized bed rice husk gasifier: Part 1 - Model development

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Al-Taweel, A.M.; Ghaly, A.E.; Hamdullahpur, F.; Ugursal, V.I.

    2000-01-01

    Two models (a single-compartment and a two-compartment) capable of predicting the steady state performance of a dual-distributor-type fluidized bed rice husk gasifier under a wide range of operating conditions were developed using the ASPEN PLUS process simulator. The models were based on material balance, energy balance, and chemical equilibrium relations. The single-compartment model neglected the complex hydrodynamic conditions prevalent in the gasifier and has only a single parameter (overall carbon conversion) that can be used to improve the fit between predicted and experimental gas compositions. The two-compartment model takes into consideration these complex hydrodynamic conditions and has two parameters (carbon conversion in the core and annular regions) that can be independently adjusted to account for the effect of various operating and design conditions on the composition of the gasification products. The models could be used to predict the performance of the gasifier when operating on other biomass materials. (Author)

  4. Mathematical modeling of a fluidized bed rice husk gasifier: Part 1--Model development

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Al-Taweel, A.M.; Ghaly, A.E.; Hamdullahpur, F.; Ugursal, V.I.

    2000-01-01

    Two models (a single-compartment and a two-compartment) capable of predicting the steady state performance of a dual-distributor-type fluidized bed rice husk gasifier under a wide range of operating conditions were developed using the ASPEN PLUS process simulator. The models were based on material balance, energy balance, and chemical equilibrium relations. The single-compartment model neglected the complex hydrodynamic conditions prevalent in the gasifier and has only a single parameter (overall carbon conversion) that can be used to improve the fit between predicted and experimental gas compositions. The two-compartment model takes into consideration these complex hydrodynamic conditions and has two parameters (carbon conversion in the core and annular regions) that can be independently adjusted to account for the effect of various operating and design conditions.

  5. Dynamic model development and validation for a nitrifying moving bed biofilter: Effect of temperature and influent load on the performance

    DEFF Research Database (Denmark)

    Sin, Gürkan; Weijma, Jan; Spanjers, Henri

    2008-01-01

    A mathematical model with adequate complexity integrating hydraulics, biofilm and microbial conversion processes is successfully developed for a continuously moving bed biofilter performing tertiary nitrification. The model was calibrated and validated using data from Nether Stowey pilot plant...

  6. Development of a Quadrotor Test BedModelling, Parameter Identification, Controller Design and Trajectory Generation

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2015-02-01

    Full Text Available In this paper, a quadrotor test bed is developed. The technical approach for this test bed is firstly proposed by utilizing a commercial quadrotor, a Vicon motion capture system and a ground station. Then, the mathematical model of the quadrotor is formulated considering aerodynamic effects, and the parameter identification approaches for this model are provided accordingly. Based on the developed model and identified parameters, a simulation environment that is consistent with the real system is developed. Subsequently, a flight control strategy and a trajectory generation method, both of which are conceptually and computationally lightweight, are developed and tested in the simulation environment. The developed algorithms are then directly transplanted to the real system, and the experimental results show that their responses in the real-time flights match well with those from the simulations. This indicates that the control algorithms developed for the quadrotor can be preliminarily verified and refined though simulations, and then directly implemented to the real system, which could significantly reduce the experimental risks and costs. Meanwhile, real-time experiments show that the developed flight controller can efficiently stabilize the quadrotor when external disturbances exist, and the trajectory generation approach can provide safe guidance for the quadrotor to fly smoothly through cluttered environments with obstacle rings. All of these features are valuable for real applications, thus demonstrating the feasibility of further development.

  7. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  8. Developing a cost effective rock bed thermal energy storage system: Design and modelling

    Science.gov (United States)

    Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank

    2017-06-01

    Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.

  9. Process development and modeling of fluidized-bed reactor with coimmobilized biocatalyst for fuel ethanol production

    Science.gov (United States)

    Sun, May Yongmei

    This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity

  10. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: mathematical treatment and model development.

    Science.gov (United States)

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian

    2009-06-01

    A mathematical model for integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor wastewater treatment processes was developed. The model is based on theoretical considerations that include simultaneous diffusion and Monod-type reaction kinetics inside the biofilm, competition between aerobic autotrophic nitrifiers, non-methanol-degrading facultative heterotrophs, methanol-degrading heterotrophs, slowly biodegradable chemical oxygen demand, and inert biomass for substrate (when appropriate) and space inside the biofilm; and biofilm and suspended biomass compartments, which compete for both the electron donor and electron acceptor. The model assumes identical reaction kinetics for bacteria within suspended biomass and biofilm. Analytical solutions to a 1-dimensional biofilm (assuming both zero- and first-order kinetics) applied to describe substrate flux across the biofilm surface are integrated with a revised and expanded matrix similar to that presented as the International Water Association (London, United Kingdom) Activated Sludge Model Number 2d (ASM2d) stoichiometric and kinetic matrix. The steady-state mathematical model describes a continuous-flow stirred-tank reactor.

  11. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  12. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  13. Development of a generic engineering model for packed bed reactors using computational fluid dynamics

    NARCIS (Netherlands)

    Tuinstra, B.F.

    2008-01-01

    Packed bed reactors are used in many chemical processes. With the advent of modern computers, flow simulation (Computational Fluid Dynamics, CFD) can be an aid in the design of process equipment. For particulate systems like packed bed reactors, simulation of the flow around the particles is very

  14. Development of Large Scale Bed Forms in the Sea –2DH Numerical Modeling

    DEFF Research Database (Denmark)

    Margalit, Jonatan; Fuhrman, David R.

    Large repetitive patterns on the sea bed are commonly observed in sandy areas. The formation of the bed forms have been studied extensively in literature using linear stability analyses, commonly conducted analytically and with simplifications in the governing equations. This work presents...

  15. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  16. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  17. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  18. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  20. DEVELOPMENT OF AN EXPERIMENTAL TEST BED DESIGNATED FOR MODEL STUDIES OF AERODYNAMICS OF PREMISES USING METHOD OF DIGITAL FLOW VISUALIZATION

    Directory of Open Access Journals (Sweden)

    Varapaev Vladimir Nikolaevich

    2012-12-01

    Full Text Available In the article, the authors present their findings generated at the laboratory of aerodynamic and aero-acoustic testing of structural units of MGSU. The authors provide information about the principle of operation and a brief description of the experimental test bed designated for the physical research of patterns of air flows arising inside building premises of various geometric shapes. The authors also demonstrate the basic parameters of the test bed, the principle of operation of its recording devices and some of its characteristics. The test bed is designated for the identification of characteristics of three-dimensional flows of models under research and for the verification of results of numerical studies. The measurement bed has advanced measurement and registration units. The management principle is based on the method of digital flow visualization, PIV method and Doppler flow meter implemented in the LDA anemometer. The test stand generates two or three component vector fields of turbulent gas flow velocities. It may be applicable to the study of liquids in case of research of hydraulics-related problems. Some results of the flow study are provided in the article, as well.

  1. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  2. Modeling Changes in Bed Surface Texture and Aquatic Habitat Caused by Run-of-River Hydropower Development

    Science.gov (United States)

    Fuller, T. K.; Venditti, J. G.; Nelson, P. A.; Popescu, V.; Palen, W.

    2014-12-01

    Run-of-river (RoR) hydropower has emerged as an important alternative to large reservoir-based dams in the renewable energy portfolios of China, India, Canada, and other areas around the globe. RoR projects generate electricity by diverting a portion of the channel discharge through a large pipe for several kilometers downhill where it is used to drive turbines before being returned to the channel. Individual RoR projects are thought to be less disruptive to local ecosystems than large hydropower because they involve minimal water storage, more closely match the natural hydrograph downstream of the project, and are capable of bypassing trapped sediment. However, there is concern that temporary sediment supply disruption may degrade the productivity of salmon spawning habitat downstream of the dam by causing changes in the grain size distribution of bed surface sediment. We hypothesize that salmon populations will be most susceptible to disruptions in sediment supply in channels where; 1) sediment supply is high relative to transport capacity prior to RoR development, and 2) project design creates substantial sediment storage volume. Determining the geomorphic effect of RoR development on aquatic habitat requires many years of field data collection, and even then it can be difficult to link geomorphic change to RoR development alone. As an alternative, we used a one-dimensional morphodynamic model to test our hypothesis across a range of pre-development sediment supply conditions and sediment storage volumes. Our results confirm that coarsening of the median surface grain-size is greatest in cases where pre-development sediment supply was highest and sediment storage volumes were large enough to disrupt supply over the course of the annual hydrograph or longer. In cases where the pre-development sediment supply is low, coarsening of the median surface grain-size is less than 2 mm over a multiple-year disruption period. When sediment supply is restored, our results

  3. Development of a simulation tool based on a segregated model to optimize the design and the scale up of animal cell culture in fixed-bed bioreactor [abstract

    Directory of Open Access Journals (Sweden)

    Gelbgras, V.

    2010-01-01

    Full Text Available The fixed-bed bioreactor is a promising system for the process intensification of the adherent animal cell culture. Nevertheless the fixed-bed bioreactor presents heterogeneity of the cell and the species concentrations which can complicate its optimization and its scale-up. The aim of this work is to develop a mathematical model of the evolution of the cell concentration and the species concentrations to study the process optimization and the bioreactor scale-up. The developed model is used as a simulation tool to study the influence of different phenomena on the cell heterogeneity. In this work, the importance of the adherent phase is investigated. This phase takes place in the beginning of the process. To realize a good implementation of the process, it is important to control the adherent cell concentration and to minimize the heterogeneity during this phase. If cell concentration heterogeneity appears, it will have repercussions during the whole process. In the model, four cell populations are considered: the viable cells in suspension in the medium, the captured cells by the fixed-bed in suspension in the medium, the adherent cells on the fixed-bed and the dead cells in suspension in the medium. Five extracellular species are considered: glucose, glutamine, oxygen, ammonia and lactate. Five phenomena are modeled: the culture medium flow through the fixed-bed (with axial convection, radial dispersion and axial dispersion, the cell capture by the fixed-bed, the cell adherence on the fixed-bed, the cell growth with a maximal cell concentration imposed by the specific area of the fixed-bed and the cell death. The interaction between cells and species is modeled by a Monod equation for the specific growth rate. The model equations are solved with a routine developed with Matlab 6.5. This routine used the Finite Volume Method coupled with a Newton-Raphson algorithm. The model parameters are experimentally identified by cell cultures in a pilot

  4. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  5. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  6. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  7. Numerical modeling of pyrolysis of sawdust in a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingmin; Chen, Xiaoping [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    An unsteady, one-dimensional mathematical model has been developed to describe the pyrolysis of sawdust in a packed bed. The sawdust bed was pyrolyzed using the hot gas and an electric heater outside the bed as the source of energy. The developed model includes mass, momentum and energy conservations of gas and solid within the bed. The gas flow in the bed is modeled using Darcy's law for fluid through a porous medium. The heat transfer model includes heat conduction inside the bed and convection between the bed and the hot gas. The kinetic model consists of primary pyrolysis reaction. A finite volume fully implicit scheme is employed for solving the heat and mass transfer model equations. A Runge-Kutta fourth order method is used for the chemical kinetics model equations. The model predictions of mass loss history and temperature were validated with published experimental results, showing a good agreement. The effects of inlet temperature on the pyrolysis process have been analyzed with model simulation. A sensitivity analysis using the model suggests that the predictions could be improved by considering the second reaction which could generate volatile flowing in the void.

  8. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  9. Mathematical modelling of MSW incineration on a travelling bed.

    Science.gov (United States)

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  10. Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to assist ...

  11. Diffusion model for fluidized-bed drying.

    Science.gov (United States)

    Zoglio, M A; Streng, W H; Carstensen, J T

    1975-11-01

    A sucrose-lactose-starch granulation was used to study particulate motion and attrition in a fluid bed dryer. There is some classification of material in the dryer as drying proceeds; fine particles are dried faster and become less dense, and the less dry but denser large particles show some (although not great) accumulation tendencies in the lower central area. Unlike countercurrent rotary drying, fluid bed drying cannot be accounted for by water diffusion inside the granule as the rate-limiting step. In its place, a model of external water vapor diffusion is proposed and is supported by vapor-concentration curves and by the linear dependence of the rate constants on the linear air velocities. The dried granulation exhibits the same trend as does countercurrent dried material in that larger particles have higher moisture contents than do smaller particles. Quantitative relationships between content of moisture and size were developed and are supported by experimental data. The granulation, upon storage, does not equilibrate, indicating that this type of water distribution is a problem in batch process granulations as well as in the earlier reported case of granulations for continuous production.

  12. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 1): Development of theoretical models for design considerations.

    Science.gov (United States)

    Sahoo, B K; Sudeep Kumara, K; Karunakara, N; Gaware, J J; Sapra, B K; Mayya, Y S

    2017-06-01

    Regulating the environmental discharge of 220 Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220 Rn transport and adsorption in a flow through charcoal bed and estimating the 220 Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analysis of Operation Parameters in a Dual Fluidized Bed Biomass Gasifier Integrated with a Biomass Rotary Dryer: Development and Application of a System Model

    Directory of Open Access Journals (Sweden)

    Nargess Puadian

    2014-07-01

    Full Text Available An integrated system model was developed in UniSim Design for a dual fluidized bed (DFB biomass gasifier and a rotary biomass dryer using a combination of user-defined and built-in unit operations. A quasi-equilibrium model was used for modelling biomass steam gasification in the DFB gasifier. The biomass drying was simulated with consideration of mass and energy balances, heat transfer, and dryer’s configuration. After validation using experimental data, the developed system model was applied to investigate: (1 the effects of gasification temperature and steam to biomass (S/B ratio on the gasification performance; (2 the effect of air supplied to the fast fluidized bed (FFB reactor and feed biomass moisture content on the integrated system performance, energy and exergy efficiencies. It was found that gasification temperature and S/B ratio have positive effects on the gasification yields; a H2/CO ratio of 1.9 can be achieved at the gasification temperature of 850 °C with a S/B ratio of 1.2. Consumption of excessive fuel in the system at higher biomass feed moisture content can be compensated by the heat recovery such as steam generation while it has adverse impact on exergy efficiency of the system.

  14. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  15. Development of a chemical kinetic model for a biosolids fluidized-bed gasifier and the effects of operating parameters on syngas quality.

    Science.gov (United States)

    Champion, Wyatt M; Cooper, C David; Mackie, Kevin R; Cairney, Paul

    2014-02-01

    In an effort to decrease the land disposal of sewage sludge biosolids and to recover energy, gasification has become a viable option for the treatment of waste biosolids. The process of gasification involves the drying and devolatilization and partial oxidation of biosolids, followed closely by the reduction of the organic gases and char in a single vessel. The products of gasification include a gaseous fuel composed largely of N2, H2O, CO2, CO, H2, CH4, and tars, as well as ash and unburned solid carbon. A mathematical model was developed using published devolatilization, oxidation, and reduction reactions, and calibrated using data from three different experimental studies of laboratory-scale fluidized-bed sewage sludge gasifiers reported in the literature. The model predicts syngas production rate, composition, and temperature as functions of the biosolids composition and feed rate, the air input rate, and gasifier bottom temperature. Several data sets from the three independent literature sources were reserved for model validation, with a focus placed on five species of interest (CO, CO2, H2, CH4, and C6H6). The syngas composition predictions from the model compared well with experimental results from the literature. A sensitivity analysis on the most important operating parameters of a gasifier (bed temperature and equivalence ratio) was performed as well, with the results of the analysis offering insight into the operations of a biosolids gasifier.

  16. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  17. A numerical model of a fluidized bed biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Hongming Jiang; Morey, R.V. (Minnesota Univ., St. Paul, MN (United States). Dept. of Agricultural Engineering)

    1992-01-01

    A one-dimensional, steady state, numerical model was developed for a fluidized bed biomass gasifier. The gasifier model consists of a fuel pyrolysis model, an oxidation model, a gasification model and a freeboard model. Given the bed temperature, ambient air flow rate and humidity ratio, fuel moisture content and reactor parameters, the model predicts the fuel feed rate for steady state operation, composition of the producer gas and fuel energy conversion. The gasifier model was validated with experimental results. The effects of major mechanisms (fuel pyrolysis and the chemical and the physical rate processes) were assessed in a sensitivity study of the gasification model. A parametric study was also conducted for the gasifier model. It is concluded that the model can be used for gasifier performance analysis. (author)

  18. Determination of true bed thickness using folded bed model and borehole data

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.S.; Velasquillo-Martinez, L.G.; Grajales-Nishimura, J.M.; Murillo-Muneton, G. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Garcia-Hernandez, J. [Petroleos Mexicanos Exploracion y Produccion, Tamaulipas (Mexico); Nieto-Samaniego, A.F. [Nacional Autonoma de Mexico Univ., Veracruz (Mexico). Centro de Geociencias

    2007-11-15

    The actual thickness of a given formation perpendicular to the bedding plane is known as the true bed thickness. Petroleum engineers rely on information regarding true bed thickness, particularly in dipping beds and in deviated holes because reservoir volume and isochore maps depend on these properties and not on the measured thickness. True bed thickness can be estimated from information gathered from well logs such as the dipmeter and borehole images. However, when deviations and dips exceed 10 degrees, corrections are needed. In this paper, a folded bed model was proposed to calculate the true bed thickness in the subsurface utilizing well log data. The value of true bed thickness (t) was shown to depend on the angle and the direction of the dip of the measured formation, as well as the drift angle and azimuth of the borehole. A case study from the Cantarell oil field in the southern Gulf of Mexico, offshore Campeche, was used to test the folded bed method. The model was shown to yield more uniform spatial change of the values of t, compared to the monoclinal bed model that often overestimates the average value of t. The maximum relative deviation of t from the monoclinal bed model reached 22.3 per cent and the maximum absolute deviation of t reached 34.5 m. The key factors that influence the values of t were found to be the bed dip, the dip difference between the top and base of the bed and the deviated angle of the well. The folded bed model yielded fewer changed values of the true bed thickness. 10 refs., 2 tabs., 9 figs.

  19. Development of the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.

    2012-01-01

    Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.

  20. Data-Driven Model-Free Adaptive Control of Particle Quality in Drug Development Phase of Spray Fluidized-Bed Granulation Process

    Directory of Open Access Journals (Sweden)

    Zhengsong Wang

    2017-01-01

    Full Text Available A novel data-driven model-free adaptive control (DDMFAC approach is first proposed by combining the advantages of model-free adaptive control (MFAC and data-driven optimal iterative learning control (DDOILC, and then its stability and convergence analysis is given to prove algorithm stability and asymptotical convergence of tracking error. Besides, the parameters of presented approach are adaptively adjusted with fuzzy logic to determine the occupied proportions of MFAC and DDOILC according to their different control performances in different control stages. Lastly, the proposed fuzzy DDMFAC (FDDMFAC approach is applied to the control of particle quality in drug development phase of spray fluidized-bed granulation process (SFBGP, and its control effect is compared with MFAC and DDOILC and their fuzzy forms, in which the parameters of MFAC and DDOILC are adaptively adjusted with fuzzy logic. The effectiveness of the presented FDDMFAC approach is verified by a series of simulations.

  1. Population balance modelling of fluidized bed melt granulation: an overview

    NARCIS (Netherlands)

    Tan, H.S.; Goldschmidt, M.J.V.; Boerefijn, R.; Hounslow, M.J.; Salman, A.; Kuipers, J.A.M.

    2005-01-01

    This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both

  2. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    Klein, J.E.

    2005-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  3. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    KLEIN, JAMES

    2004-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  4. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...

  5. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain gene...

  6. Steam gasification of wood biomass in a fluidized biocatalytic system bed gasifier: A model development and validation using experiment and Boubaker Polynomials Expansion Scheme BPES

    Directory of Open Access Journals (Sweden)

    Luigi Vecchione

    2015-07-01

    Full Text Available One of the most important issues in biomass biocatalytic gasification is the correct prediction of gasification products, with particular attention to the Topping Atmosphere Residues (TARs. In this work, performedwithin the European 7FP UNIfHY project, we develops and validate experimentally a model which is able of predicting the outputs,including TARs, of a steam-fluidized bed biomass gasifier. Pine wood was chosen as biomass feedstock: the products obtained in pyrolysis tests are the relevant model input. Hydrodynamics and chemical properties of the reacting system are considered: the hydrodynamic approach is based on the two phase theory of fluidization, meanwhile the chemical model is based on the kinetic equations for the heterogeneous and homogenous reactions. The derived differentials equations for the gasifier at steady state were implemented MATLAB. Solution was consecutively carried out using the Boubaker Polynomials Expansion Scheme by varying steam/biomass ratio (0.5-1 and operating temperature (750-850°C.The comparison between models and experimental results showed that the model is able of predicting gas mole fractions and production rate including most of the representative TARs compounds

  7. Application of sedimentation model to uniform and segregated fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Shippy, J.L. III; Watson, J.S.

    1990-10-24

    This paper incorporates concepts of unimodal and bimodal sedimentation to develop a model that accurately predicts bed expansion during particulate fluidization. During bed expansion a particle is considered to be fluidized not by the pure fluid, but by a slurry consisting of the pure fluid and other surrounding particles. The contributions of the other surrounding particles to the additional buoyant and drag forces are accounted for with the use of effective fluid or slurry properties, density and viscosity. As bed expansion proceeds, influences of the surrounding particles decrease; therefore, these effective properties are functions of the changing void fraction of the suspension. Furthermore, the expansion index, which empirically represents the degree to which viscous and inertial forces are present, is traditionally a function of a constant terminal Reynold's number. Because the effective fluid properties are considered to be changing as fluidization proceeds, the degree to which viscous and inertial forces also changes; therefore, the expansion index is written as a function of a local or intermediate Reynold's number. These concepts are further extended to bimodal fluidization in which small or light particles aid in the fluidization of the large or heavy particles. The results indicate that the proposed model more accurately predicts particulate bed expansion for a wider range of systems (gas -- liquid, low Reynold's number -- high Reynold's number) than other analytical or empirical models.

  8. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  9. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  10. An EMTP system level model of the PMAD DC test bed

    Science.gov (United States)

    Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur

    1991-01-01

    A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Eelectric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.

  11. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost

  12. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  13. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  14. Wind erosion model of a multiple sized particles bed

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, I.; Pons, A.; Harion, J.-L. [IMP-CNRS UPR 8521, Perpignan (France)

    2006-07-01

    A model has been developed in order to predict more accurately fugitive dust emissions by aeolian erosion on industrial sites. This model takes into account the time evolution of the bed surface features during erosion by a turbulent flow. It consists of four parts corresponding to aerodynamic entrainment and is based on the interaction between particle take-off and wall turbulence. A take-off criterion compares the lift force exerted by the flow on the particle with the sum of the weight and adhesive force. Bed pavement and saltation are also taken into account. Bed pavement is induced by the non-erodible particles. On steel plants stockpiles, ores and coals have granulometric spectra going a few microns to a few centimetres in diameter. In fact, the non-erodible particles, that cannot take-off because of their inertia, form obstacles in the finer particle take-off and lead to a time decrease in emitted mass flux. The new model has been tested for the case of a bimodal size distribution by comparison with relevant experimental data. The results demonstrate that the mode allows predicting the mass flux time decrease due to non-erodible particles. 17 refs., 6 figs.

  15. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  16. Mathematical modeling of a fluidized bed rice husk gasifier: Part 3 -- Model verification

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Ghaly, A.E.; Al-Taweel, A.M.; Ugursal, V.I.; Hamdullahpur, F.

    2000-04-01

    The validity of the two-compartment model developed for fluidized bed gasification of biomass was tested using experimental data obtained from a dual-distributor-type fluidized bed gasifier. The fluidized bed was operated on rice husks at various bed heights (19.5, 25.5, and 31.5 cm), fluidization velocities (0.22, 0.28, and 0.33 m/s), and equivalence ratios (0.25, 0.30, and 0.35). The model gave reasonable predictions of the core, annulus, and exit temperatures as well as the mole fractions of the combustible gas components and product gas higher heating value, except for the overall carbon conversion, which was overestimated. This could be attributed to uncertainties in the sampling procedure.

  17. Mathematical modeling of a fluidized bed rice husk gasifier: Part 3 - Model verification

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Ghaly, A.E.; Al-Taweel, A.M.; Ugursal, V.I.; Hamdullahpur, F.

    2000-03-01

    The validity of the two-compartment model developed for fluidized bed gasification of biomass was tested using experimental data obtained from a dual-distributor-type fluidized bed gasifier. The fluidized bed was operated on rice husks at various bed heights (19.5, 25.5, and 31.5 cm), fluidization velocities (0.22, 0.28, and 0.33 m/s), and equivalence ratios (0.25, 0.30, and 0.35). The model gave reasonable predictions of the core, annulus, and exit temperatures as well as the mole fractions of the combustible gas components and product gas higher heating value, except for the overall carbon conversion, which was overestimated. This could be attributed to uncertainties in the sampling procedure. (Author)

  18. A two dimensional model of undertow current over mud bed

    International Nuclear Information System (INIS)

    Mir Hammadul Azam; Abdul Aziz Ibrahim; Noraieni Hj, Mokhtar

    1996-01-01

    Coastal wave-current dynamics often causes severe erosion and this activity is more prominent within the surf zone. Turbulence generated by breaking wave is a complex phenomena and the degree of complexity increases to a higher degree when it happens over mud bed. A better understanding on wave and current is necessary to enrich the engineering hand to facilitate any coastal development work. Since physical model has certain deficiencies, such as high cost and scaling problem, the need for developing numerical models in such cases is significant. A time averaged two dimensional model has been developed to simulate the undertow over mud bed. A turbulent energy model also included which considers only the vertical variation of mixing length. Production of turbulent kinetic energy in the surf zone has been calculated from an hydraulic jump analogy. The result obtained shows an insignificant vertical variation of current. Further research is needed involving laboratory and field works to get sufficient data for comparing the model results

  19. CFD modeling of a prismatic spouted bed with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, Oliver; Heinrich, Stefan; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.; Mörl, Lothar

    2009-01-01

    Since the invention of the spouted bed technology by Mathur and Gishler (1955), different kinds of apparatus design were developed and a huge number of applications in nearly all branches of industry have emerged. Modeling of spouted beds by means of modern simulation tools, like discrete particle

  20. Investigation of flow mechanisms in conical models of fluidized beds and transfer of the results to high-temperature-coating beds. A study on the coating of nuclear fuel particles in fluidized beds

    International Nuclear Information System (INIS)

    Kalthoff, B.; Gyarmati, E.; Nickel, H.

    The different states of movement of the fluid-solid particle system as occurring in coating of nuclear particle fuel in conical fluidized beds determine the transfer of momentum, heat and mass in the fluidized bed. To know the flow characteristics, therefore, is essential for the understanding of the complex processes which take place during coating. As experimental studies in actual coaters initially were impossible due to the high temperature levels of up to 2000 0 C, information on characteristic behavior of the fluidized bed was obtained from geometrically similar model beds. Based on principles in the mechanics of similarity the fluid-solid particle system was selected. Hence, results obtained in model tests could be correlated to hot fluidized beds by means of a dimensionless characteristic number describing the fluid-solid system. A second combination of characteristic numbers allows the characterization of the three states of a fluidizing regime, i.e., spouting, bubbling, and slugging. For examining the model test results in hot beds, a measuring device was developed applicable to both cold model beds and actual fluidized bed coaters; pressure oscillations originating in the beds could be made visible by means of electronics and their frequency measured. Coating experiments with different batches and at different temperature levels rendered this frequency to decrease with increase in bed height. Thus the frequency is an important index for the momentary state of fluidization of the fluid-solid particle system. (U.S.)

  1. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    Science.gov (United States)

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  2. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  3. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  4. A CFD model for biomass combustion in a packed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal

    2016-07-01

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  5. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  6. Mathematical modeling of a fluidized bed rice husk gasifier: Part 2 - Model sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Ghaly, A.E.; Al-Taweel, A.M.; Hamdullahpur, F.; Ugursal, V.I.

    2000-02-01

    The performance of two thermodynamic models (one-compartment and two-compartment models), developed for fluidized bed gasification of rice husk, was analyzed and compared in terms of their predictive capabilities of the product gas composition. The two-compartment model was the most adequate to simulate the fluidized bed gasification of rice husk, since the complex hydrodynamics present in the fluidized bed gasifier were taken into account. Therefore, the two-compartment model was tested under a wide range of parameters, including bed height, fluidization velocity, equivalence ratio, oxygen concentration in the fluidizing gas, and rice husk moisture content. The model sensitivity analysis showed that changes in bed height had a significant effect on the reactor temperatures, but only a small effect on the gas composition, higher heating value, and overall carbon conversion. The fluidization velocity, equivalence ratio, oxygen concentration in the fluidizing gas, and moisture content in rice husk had dramatic effects on the gasifier performance. However, the model was more sensitive to variations in the equivalence ratio and oxygen concentration in the fluidizing gas. (Author)

  7. Mathematical modeling of a fluidized bed rice husk gasifier: Part 2 -- Model sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.; Ghaly, A.E.; Al-Taweel, A.M.; Hamdullahpur, F.; Ugursal, V.I.

    2000-03-01

    The performance of two thermodynamic models (one-compartment and two-compartment models), developed for fluidized bed gasification of rice husk, was analyzed and compared in terms of their predictive capabilities of the product gas composition. The two-compartment model was the most adequate to simulate the fluidized bed gasification of rice husk, since the complex hydrodynamics present in the fluidized bed gasifier were taken into account. Therefore, the two-compartment model was tested under a wide range of parameters, including bed height, fluidization velocity, equivalence ratio, oxygen concentration in the fluidizing gas, and rice husk moisture content. The model sensitivity analysis showed that changes in bed height had a significant effect on the reactor temperatures, but only a small effect on the gas composition, higher heating value, and overall carbon conversion. The fluidization velocity, equivalence ratio, oxygen concentration in the fluidizing gas, and moisture content in rice husk had dramatic effects on the gasifier performance. However, the model was more sensitive to variations in the equivalence ratio and oxygen concentration in the fluidizing gas.

  8. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers

    International Nuclear Information System (INIS)

    Jarungthammachote, S.; Dutta, A.

    2008-01-01

    Spouted beds have been found in many applications, one of which is gasification. In this paper, the gasification processes of conventional and modified spouted bed gasifiers were considered. The conventional spouted bed is a central jet spouted bed, while the modified spouted beds are circular split spouted bed and spout-fluid bed. The Gibbs free energy minimization method was used to predict the composition of the producer gas. The major six components, CO, CO 2 , CH 4 , H 2 O, H 2 and N 2 , were determined in the mixture of the producer gas. The results showed that the carbon conversion in the gasification process plays an important role in the model. A modified model was developed by considering the carbon conversion in the constraint equations and in the energy balance calculation. The results from the modified model showed improvements. The higher heating values (HHV) were also calculated and compared with the ones from experiments. The agreements of the calculated and experimental values of HHV, especially in the case of the circular split spouted bed and the spout-fluid bed were observed

  9. Circulating fluidized bed boiler numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Di Maggio, T. [Electricite de France, 75 - Paris (France). Direction des Etudes et Recherches; Bursi, J.M.; Lafanechere, L.; Jestin, L. [Electricite de France (EDF), 69 - Villeurbanne (France); Roulet, V. [E.D.F./DE/CNET, 92 - La Defense (France)

    1996-12-31

    Electricite de France (EdF) is actively involved in the development of CFB power plants. Thanks to a wide Research and Development program around the 125 MWe Emile Huchet and the 250 MWe Provence units (two boilers designed by Stein-Lurgi), EdF has been able to get a good knowledge of hydrodynamics and heat transfer in the circulating loop as well as the back pass. One of the main objectives of the R and D program was to gather this information and results in a steady state operating model of a CFB boiler and to simulate the operation of the 250 MWe Provence power plant. This model has been developed before the first ignition of the Provence power plant in order to check the design and to help on-field engineers during the start-up phase. Furthermore, this model allows R and D engineers to make parametric studies and to evaluate new designs. (authors) 5 refs.

  10. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  11. The state of development of multilayer sand bed filters

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.

    1977-01-01

    The state of development of multilayer sand bed filters may be described as follows: 1) Sand bed filters are generally suitable for the filtration of aggressive aerosols, in particular in cases of additional thermal loads, pressure peaks (fire safety, earthquakes). 2) Sand bed filters permit high flow rates, GfK filters (GfK = Gesellschaft fuer Kernforschung) reach 10 m 3 /min x m 2 with charges of more than 1 kg/m 2 and a separating efficiency > 99%. (use as pre-filters for the separation of large amounts of aerosols). 3) With proper optimization, the separating efficiency is better than that of class S filters (99.97%), while no significant reduction of the charge is required. 4) Exchange of sand bed filters is possible with a suitable vertical arrangement of the sand layers. 5) Sand bed filters may be combined with class S filters. The experience so far with sand bed filters was gained on the basis of experiments with aerosols from metal combustion. (orig./HP) [de

  12. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  13. Chebyshev super spectral viscosity method for a fluidized bed model

    CERN Document Server

    Sarra, S A

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations.

  14. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  15. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  16. Feasibility Study of a Lunar Analog Bed Rest Model

    Science.gov (United States)

    Cromwell, Ronita L.; Platts, Steven H.; Yarbough, Patrice; Buccello-Stout, Regina

    2010-01-01

    The purpose of this study was to determine the feasibility of using a 9.5deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The lunar analog bed rest model utilized a modified hospital bed. The modifications included mounting the mattress on a sled that rolled on bearings to provide freedom of movement. The weight of the sled was off-loaded using a counterweight system to insure that 1/6 body weight was applied along the long axis (z-axis) of the body. Force was verified through use of a force plate mounted at the foot of the bed. A seating assembly was added to the bed to permit periods of sitting. Subjects alternated between standing and sitting positions throughout the day. A total of 35% of the day was spent in the standing position and 65% was spent sitting. In an effort to achieve physiologic fluid shifts expected for a 1/6 G environment, subjects wore compression stockings and performed unloaded foot and ankle exercises. Eight subjects (3 females and 5 males) participated in this study. Subjects spent 13 days in the pre-bed rest phase, 6 days in bed rest and 3 days post bed rest. Subjects consumed a standardized diet throughout the study. To determine feasibility, measures of subject comfort, force and plasma volume were collected. Subject comfort was assessed using a Likert scale. Subjects were asked to assess level of comfort (0-100) for 11 body regions and provide an overall rating. Results indicated minimal to no discomfort as most subjects reported scores of zero. Force measures were performed for each standing position and were validated against subject s calculated 1/6 body weight (r(sup 2) = 0.993). The carbon monoxide rebreathing technique was used to assess plasma volume during pre-bed rest and on the last day of bed rest. Plasma volume results indicated a significant decrease (p = 0.001) from pre to post bed rest values. Subjects lost on average 8.3% (sd = 6.1%) during the

  17. Aspirin Intolerance: Experimental Models for Bed-to-Bench

    Science.gov (United States)

    Yamashita, Masamichi

    2016-01-01

    Aspirin is the oldest non-steroidal anti-inflammatory drug (NSAID), and it sometimes causes asthma-like symptoms known as aspirin-exacerbated respiratory disease (AERD), which can be serious. Unwanted effects of aspirin (aspirin intolerance) are also observed in patients with food-dependent exercise-induced anaphylaxis, a type I allergy disease, and aspirin-induced urticaria (AIU). However the target and the mechanism of the aspirin intolerance are still unknown. There is no animal or cellular model of AERD, because its pathophysiological mechanism is still unknown, but it is thought that inhibition of cyclooxygenase by causative agents leads to an increase of free arachidonic acid, which is metabolized into cysteinyl leukotrienes (cysLTs) that provoke airway smooth muscle constriction and asthma symptoms. As the bed-to-bench approach, to confirm the clinical discussion in experimental cellular models, we have tried to develop a cellular model of AERD using activated RBL-2H3 cells, a rat mast cell like cell line. Indomethacin (another NSAID and also causes AERD), enhances in vitro cysLTs production by RBL-2H3 cells, while there is no induction of cysLTs production in the absence of inflammatory activation. Since this suggests that all inflammatory cells with activation of prostaglandin and cysLT metabolism should respond to NSAIDs, and then I have concluded that aspirin intolerance should be separated from subsequent bronchoconstriction. Evidence about the cellular mechanisms of NSAIDs may be employed for development of in vitro AERD models as the approach from bench-to-bed. PMID:27719658

  18. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  19. Thermal Protection Test Bed Pathfinder Development Project

    Science.gov (United States)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  20. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.

  1. Discrete element modelling of fluidised bed spray granulation

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Weijers, G.G.C.; Boerefijn, R.; Kuipers, J.A.M.

    2003-01-01

    A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid¿solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum.

  2. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  3. A computational fluid dynamic model for fluidized bed heat transfer

    International Nuclear Information System (INIS)

    Yusuf, R.; Melaaen, M.C.; Mathiesen, V.

    2005-01-01

    The objective of this work is to study heat transfer from a heated wall in a gas fluidized bed using the computational fluid dynamic (CFD) approach. An Eulerian-Eulerian simulation of a two dimensional bubbling bed at ambient conditions with a heated wall is carried out on the in-house code FLOTRACS-MP-3D. An empirical as well as a mechanistic model for solid phase thermal conductivity is tested. Effect of operating parameters like velocity and particle size are also investigated. The fluid dynamic model is able to predict the qualitative trends for the influence of operating parameters as well as high heat transfer coefficients observed in gas fluidized beds. (author)

  4. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.

    2004-01-01

    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  5. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al 2 O 3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a

  6. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  7. Application of a model to investigate the effective thermal conductivity of randomly packed fusion pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-05-15

    In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.

  8. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Science.gov (United States)

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  9. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  10. Capacitor model to interpret the electric behavior of fluidized beds. Influence of apparatus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, V.; Guardiola, J.; Vian, A.

    1986-01-01

    This work provides a model to know the degree of electrification in fluidized beds on the basis of voltage measurements between an electric probe and a metallic distributor. The model is based on the similarity of behavior between the probe-bed-distributor system and a capacitor. The influence of three variables related to apparatus geometry - height of probe, column diameter and height of bed - has been studied in an air fluidized bed of glass beads. The results show that the degree of bed electrification is not influenced by the column diameter; the effect of bed height depends on the quality of fluidization: with a bubbling bed the degree of electrification increases with bed height whereas the opposite effect is observed with a slugging bed. Additional fixed bed experiments make clear that the rate of charge dissipation grows for increasing values of bed height and column diameter, and for decreasing values of probe height.

  11. A new comprehensive model and simulation package for fluidized bed spray granulation processes

    Energy Technology Data Exchange (ETDEWEB)

    Ihlow, M.; Drechsler, J.; Peglow, M.; Henneberg, M. [AVA GbRmbH, Steinfeldstrasse 5, D-39179 Barleben-Magdeburg (Germany); Moerl, L. [Universitaet Magdeburg, Institut fuer Apparate- und Umwelttechnik, Postfach 4120, D-39016 Magdeburg (Germany)

    2004-11-01

    The model introduced in this paper makes it possible to calculate the expected product and bed material particle size distribution, as well as the dynamic behavior of process state variables. It was integrated in the developed software package FBSim and it could be shown that even a complex process like the fluidized bed spray granulation can be simulated in its dynamic behavior, if existing models are extended and coupled. The implemented model achieves a coupled solution of the population balance and heat and mass transfer equations. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    In this thesis we develop a new iterative homogenization technique for pebble bed reactors, based on a 'macro-stochastic' transport approximation in the collision probability method. A model has been developed to deal with the stochastic distribution of pebbles with different burnup in the core, considering spectral differences in homogenization and depletion calculations. This is generally not done in the codes presently used for pebble bed analyses, where a pebble with average isotopic composition is considered to perform the cell calculation. Also an iterative core calculation scheme has been set up, where the low-order RZ S N full-core calculation computes the entering currents in the spectrum zones subdividing the core. These currents, together with the core k eff , are then used as surface source in the fine-group heterogeneous calculation of the multi-pebble geometries. The developed method has been verified using reference Monte Carlo simulations of a simplified PBMR- 400 model. The pebbles in this model are individually positioned and have different randomly assigned burnup values. The APOLLO2 developed method matches the reference core k eff within ± 100 pcm, with relative differences on the production shape factors within ± 4%, and maximum discrepancy of 3% at the hotspot. Moreover, the first criticality experiment of the HTR-10 reactor was used to perform a first validation of the developed model. The computed critical number of pebbles to be loaded in the core is very close to the experimental value of 16890, only 77 pebbles less. A method to calculate the equilibrium reactor state was also developed and applied to analyze the simplified PBMR-400 model loaded with different fuel types (UO 2 , Pu, Pu + MA). The potential of the APOLLO2 method to compute different fluxes for the different pebble types of a multi-pebble geometry was used to evaluate the bias committed by the average composition pebble approximation. Thanks to a 'compensation of error

  13. In silico modeling of in situ fluidized bed melt granulation.

    Science.gov (United States)

    Aleksić, Ivana; Duriš, Jelena; Ilić, Ilija; Ibrić, Svetlana; Parojčić, Jelena; Srčič, Stanko

    2014-05-15

    Fluidized bed melt granulation has recently been recognized as a promising technique with numerous advantages over conventional granulation techniques. The aim of this study was to evaluate the possibility of using response surface methodology and artificial neural networks for optimizing in situ fluidized bed melt granulation and to compare them with regard to modeling ability and predictability. The experiments were organized in line with the Box-Behnken design. The influence of binder content, binder particle size, and granulation time on granule properties was evaluated. In addition to the response surface analysis, a multilayer perceptron neural network was applied for data modeling. It was found that in situ fluidized bed melt granulation can be used for production of spherical granules with good flowability. Binder particle size had the most pronounced influence on granule size and shape, suggesting the importance of this parameter in achieving desired granule properties. It was found that binder content can be a critical factor for the width of granule size distribution and yield when immersion and layering is the dominant agglomeration mechanism. The results obtained indicate that both in silico techniques can be useful tools in defining the design space and optimization of in situ fluidized bed melt granulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modeling agglomeration processes in fluid-bed granulation

    Energy Technology Data Exchange (ETDEWEB)

    Cryer, S.A.

    1999-10-01

    Many agrochemicals are formulated as water dispersive granules through agglomeration, beginning with a fine powder ({approximately}1 {micro}m) and ending with granules on the order of 500 {micro}m. Powders are charged into a granulation system with a liquid binding agent, and granules are subsequently grown to an appropriate size. Granulation in fluid beds is presented using a mass conserving discretized population balance equation. Coalesce kernels governing the rate and extent of granulation are assumed dependent on the Stokes number, which is indirectly liked to important process variables (air and under flow rate, bed charge, bed geometry) such that the physical processes governing particle coalescence and rebound are correlated to process variables. A new coalescence kernel is proposed based on physical insight, simplicity, and deterministic equivalent modeling to account for uncertainty. This kernel is based on a Stokes number method where uncertainty in the Stokes number is characterized by polynomial chaos expansions. The magnitude of the coalescence kernel is proportional to the probability of the distribution of Stokes number exceeding a critical value. This mechanistic/semiempirical approach to fluid-bed agglomeration fosters an environment for process scaleup by eliminating specific equipment and process variable constraints to focus on the underlying mechanisms for proper scale-up procedures. Model predictions using this new kernel are then compared to experimental pilot-plant observations.

  15. Understanding and modeling retention of mammalian cells in fluidized bed centrifuges.

    Science.gov (United States)

    Kelly, William; Rubin, Jonathan; Scully, Jennifer; Kamaraju, Hari; Wnukowski, Piotr; Bhatia, Ravinder

    2016-11-01

    Within the last decade, fully disposable centrifuge technologies, fluidized-bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two-phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis-driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD-predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over-predict dead cell loss by up to 3-fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520-1530, 2016. © 2016 American Institute of Chemical Engineers.

  16. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Measurement and modelling of bed shear induced by solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.

    horizontal continental shelf. Measurements of bed shear stress, surface elevation and flow velocities were carried out. Periodic waves were also generated and the bed shear stresses measured over a horizontal bed were found to be comparable with the earlier...

  18. Glacier beds that will be exposed in the future: How will geomorphologic and hydrologic processes develop?

    Science.gov (United States)

    Linsbauer, Andreas; Paul, Frank; Haeberli, Wilfried

    2014-05-01

    The rapid shrinkage of glaciers in the Alps has widespread impacts on relief development and hydrology. Slope failures, collapse of lateral moraines, loose debris in glacier fore-fields, new lakes and changing river beds are among the most visible impacts. They already require increased attention by tourists, monitoring by local authorities and mitigation measures (e.g. www.gletschersee.ch). A view into potential future developments (after glaciers have disappeared) is thus of high interest. With recently developed models that reconstruct glacier bed topography from easily available datasets (e.g. glacier outlines and a DEM) over entire mountain ranges, potential developments of the landscape and hydrology can be quantitatively determined. The modelled glacier beds - though they must be seen as a rough first order approximation only - also allows the investigation of a wide range of glaciological relations and dependencies that have been widely applied but were never investigated for a large sample of glaciers so far. A key reason is that information on glacier thickness distribution and total ice volume is sparse and that the future development of glaciers can only be modelled realistically when a glacier bed is available. Hence, with the glacier beds now available there is a larger number of geomorphological, glaciological and hydrological studies ahead of us. This presentation is providing an overview on the lessons learned about glaciers and their future development from the modelled glacier beds, the expected changes in hydrology (e.g. decreasing glacier volume and formation of new lakes) and potential impacts from the altered geomorphology (e.g. debuttressing of rock walls). In particular the flat tongues of larger valley glaciers are rather thick and leave oversteepened lateral moraines or rock walls behind, towering above overdeepenings in the glacier bed that might be filled with water. It is thus expected that the hazard potential will further increase in

  19. Modeling of a fluidized bed reactor for the ethylene-propylene copolymerization

    Directory of Open Access Journals (Sweden)

    Juan Guillermo Cadavid Estrada

    2004-01-01

    Full Text Available A mathematical model for the ethylene - propylene copolymerization with a Ziegler - Natta catalyst in a gas phase fludized bed reactor is presented. The model includes a two active site kinetic model with spontaneous transfer reactions and site deactivation. Also, it is studied and simulated the growth of a polymeric particle which is exposed to an outside atmosphere (monomers concentrations and temperature that represent the emulsion phase conditions of the reactor. Particle growth model is the basis for the study of the sizes distribution into the reactor. Two phase model of Kunii-Levenspiel is the basis for the modelling and simulation of the fluid bed reactor, the models developed consider two extreme cases for the gas mixed grade in emulsion phase (perfectly mixed and plug flow. The solution of the models includes mass (for the two monomers and energy balances, coupled with the particle growth and residence time distribution models.

  20. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determin...

  1. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass

    Science.gov (United States)

    Pin, Yeh; Yuan-Chieh, Wu

    2017-04-01

    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  2. Development of second-generation pressurized fluidized bed combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  3. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Estochen, E.G. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)

  4. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  5. A Framework for Dynamic Modeling of Surface-Structure Patches on Bed Load Transport in Coarse Grained Reaches

    Science.gov (United States)

    Strom, K. B.

    2010-12-01

    Mountain streams are the first link in the fluvial system and often have complex bed morphologies which make it difficult to develop simple quantitative expressions for sediment mass flux and stream flow resistance. Such expressions are important for landscape evolution modeling as well as stream management and restoration practices and efforts. Part of the difficulty lies in the fact that stream beds can have large variations in particle size and structural organization - both of which lead to variations in bed strength that can change as a function of time. This study presents a mathematical framework to account for the dynamic impact of surface-structure patches on bed strength and bed load transport under simplified conditions. The framework is based on conservation principles for tracking the exchange of mass between structured and unstructured surface patches in the bed during structure formation and breakup. Two main transport equations are solved for the mobile and stationary phases, and the exchange between the two is modeled using particle collision theory and a simple breakup model (figure 1). The experiments of Strom et al. (2004) are used to parameterize the model initial conditions, and calculated and experimentally observed transport rates are compared as a function of time. Conceptual sketch of the modeling framework for: (A) a gravel bed, and (B) an idealized bed of uniform spherical particles. Mass conservation equations are written for each phase (structured and unstructured) and then solved with time under varying conditions.

  6. Model of rough bed for numerical simulation of saltation

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    2015-01-01

    Roč. 19, č. 3 (2015), s. 366-385 ISSN 1964-8189 R&D Projects: GA ČR GA103/09/1718; GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : saltation * bed load transport * rough bed * armoured bed * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.636, year: 2015

  7. GIS-based modelling of (all) glacier beds in Switzerland

    Science.gov (United States)

    Linsbauer, A.; Paul, F.; Hoelzle, M.; Haeberli, W.

    2009-04-01

    Due to the ongoing and expected future increase in global mean temperature, the Alpine environment will continue to get further away from equilibrium. Glaciers are a part of the high-mountain cryosphere, and their changes are considered to be the best natural indicators of climatic changes. The calculation and visualization of future glacier development is thus an important task of communicating climate change effects to a wider public. One of the most challenging topics in the assessment of climate change impacts on future glacier development is the unknown glacier bed and the related uncertainties in glacier volume estimations (Driedger and Kennard, 1986). In this respect, an estimated topography of the glacier bed would facilitate the calculation of glacier volume, the detection of local depressions, and the visualization of future ice-free grounds. We here present a simple but robust GIS-tool which allows to calculate an approximate bed topography for a large sample of glaciers. The only input used is a DEM, glacier outlines, and a set of flow lines. The method is based on the calculation of the ice thickness along selected points of the flow lines from the shallow ice approximation and subsequent spatial interpolation using topogrid and is independent of glacier size, type or climatic setting. The generated ice thickness distribution is in good agreement with direct measurements (GPR profiles) and results from more sophisticated methods that include assumptions on glacier flow. However, local derivations exist due to the very sensitive dependence on surface slope.

  8. 2D numerical model of particle-bed collision in fluid-particle flows over bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Chára, Zdeněk; Vlasák, Pavel

    2006-01-01

    Roč. 44, č. 1 (2006), s. 70-78 ISSN 0022-1686 R&D Projects: GA AV ČR IAA2060201 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * particle-bed collision * collision angle * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.527, year: 2006

  9. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  10. Optimization Model for Capacity Management and Bed Scheduling for Hospital

    Science.gov (United States)

    Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail

    2018-01-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  11. Modeling of laminar forced convection in spherical- pebble packed beds

    International Nuclear Information System (INIS)

    Hadad, Yaser; Jafarpur, Khosrow

    2012-01-01

    There are many parameters that have significant effects on forced convection heat transfer in packed beds, including Reynolds and Prandtl numbers of flow, porosity, pebble geometry, local flow conditions, wall and end effects. In addition, there have been many experimental investigations on forced convection heat transfer in packed beds and each have studied the effect of some of these parameters. Yet, there is not a reliable correlation that includes the effect of main parameters: at the same time, the prediction of precise correct limits for very low and high Reynolds numbers is off hand. In this article a general well-known model of convection heat transfer from isothermal bodies, next to some previous reliable experimental data has been used as a basis for a more comprehensive and accurate correlation to calculate the laminar constant temperature pebble-fluid forced convection heat transfer in a homogeneous saturated bed with spherical pebbles. Finally, for corroboration, the present results are compared with previous works and show a very good agreement for laminar flows at any Prandtl number and all porosities

  12. Mechanistic modelling of fluidized bed drying processes of wet porous granules

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; De Beer, Thomas; Gernaey, Krist

    2011-01-01

    granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models...... particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules......Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet...

  13. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    Science.gov (United States)

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  14. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  15. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer

    International Nuclear Information System (INIS)

    Kaleta, Agnieszka; Górnicki, Krzysztof; Winiczenko, Radosław; Chojnacka, Aneta

    2013-01-01

    Highlights: ► Three new drying models are formulated. ► The developed models are various modifications of the Page model. ► Nineteen models are used to describe the fluidized bed drying of apple. ► The Page model and formulated model is considered as the most appropriate. - Abstract: Three new drying models were formulated. The developed models are various modifications of the Page model. The models were used to describe the drying behaviour of apple (var. Ligol) dried in a fluidized bed dryer. The suitability of new models to describe the drying characteristics were compared to the accuracy of sixteen models available from the literature. The accuracies of the models were measured using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ 2 ). Three new developed models described the drying characteristics of apple cubes satisfactorily (R > 0.997). The Page model and one of the empirical models formulated by the authors of this study can be considered as the most appropriate (R > 0.9977, RMSE = 0.0094–0.0167, χ 2 = 0.0001–0.0002). The effect of drying air temperature on the drying models parameters were also determined. The shrinkage of apple cubes during drying was measured to assess the changes in quality of dried apples

  16. Integrated design approach of the pebble BeD modular reactor using models

    Energy Technology Data Exchange (ETDEWEB)

    Venter, Pieter J. [Pebble Bed Modular Reactor (Pty) Ltd., P.O. Box 9396, Centurion, 0046 (South Africa)]. E-mail: pieter.venter@pbmr.co.za; Mitchell, Mark N. [Pebble Bed Modular Reactor (Pty) Ltd., P.O. Box 9396, Centurion, 0046 (South Africa)

    2007-07-15

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR.

  17. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  18. Mathematical modeling of municipal solid waste plasma gasification in a fixed-bed melting reactor

    OpenAIRE

    Zhang, Qinglin

    2011-01-01

    The increasing yield of municipal solid waste (MSW) is one of the main by-products of modern society. Among various MSW treatment methods, plasma gasification in a fixed-bed melting reactor (PGM) is a new technology, which may provide an efficient and environmental friendly solution for problems related to MSW disposals. General objectives of this work are to develop mathematical models for the PGM process, and using these models to analyze the characteristics of this new technology. In this ...

  19. Numerical Modeling of Seismoelectric Fields through Thin-Beds

    Science.gov (United States)

    Grobbe, N.; Slob, E. C.

    2014-12-01

    The seismoelectric effect might help improving our knowledge of the subsurface. This complex physical phenomenon can be described by Biot's poroelasticity equations coupled to Maxwell's electromagnetic equations. Besides simultaneously offering seismic resolution and electromagnetic sensitivity, the coefficient coupling these two types of fields can in principal provide us with direct information on important medium parameters like porosity and permeability. Two types of seismoelectric coupling can be distinguished: 1) localized coupling generating an electromagnetic field that is present inside the seismic wave and travels with its velocity, referred to as the coseismic field 2) An independent electromagnetic field diffusing with electromagnetic velocity, referred to as the seismoelectric conversion, providing us with information at depth. One of the major challenges of seismoelectrics is the very weak signal-to-noise ratio of especially the seismoelectric conversion. In order to make seismoelectrics applicable in the field, we need to find ways to improve the signal-to-noise ratio of this second order effect. Can nature help us? It is well-known that a seismic wave travelling through a package of thin-beds, can experience amplitude-tuning effects that result in anomalously high amplitudes for the seismic signal. Can similar enhancing signal effects occur for seismoelectric phenomena? Using our analytically based, numerical modeling code ESSEMOD (ElectroSeismic and Seismoelectric Modeling), we investigate what effects thin-beds can have on the seismoelectric signal, thereby focusing especially on the seismoelectric conversion. We will highlight the factors that play a role in the possible enhancement of the seismoelectric signal-to-noise ratio by thin-beds. We show that the seismoelectric method is sensitive to changes in medium parameters on a spatial scale that is much smaller than the seismic resolution. Acknowledgements: This research was funded as a Shell

  20. Hybrid modelling of bed-discordant river confluences

    Science.gov (United States)

    Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.

    2016-12-01

    In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.

  1. Development and analysis of startup strategies for particle bed nuclear rocket engine

    Science.gov (United States)

    Suzuki, David E.

    1993-06-01

    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  2. Validation of new empirical model for self-leveling behavior of cylindrical particle beds based on experimental database

    International Nuclear Information System (INIS)

    Morita, Koji; Matsumoto, Tatsuya; Taketa, Shohei; Nishi, Shinpei; Cheng, Songbai; Suzuki, Tohru; Tobita, Yoshiharu

    2014-01-01

    During a material relocation phase of core disruptive accidents (CDAs) in sodium cooled fast reactors (SFRs), debris beds can be formed in the lower plenum region due to rapid quenching and fragmentation of molten core materials. Heat removal from debris beds is crucial to achieve so called in-vessel retention (IVR) of degraded core materials. Coolant boiling in the beds may lead to leveling of their mound shape, and then changes coolability of the beds with decay heat as well as neutronic characteristics. To clarify the mechanisms underlying this self-leveling behavior, several series of experiments using simulant materials has been performed in collaboration between Japan Atomic Energy Agency (JAEA) and Kyushu University in Japan. In the present study, experiments in a cylindrical system were employed to develop experimental data on self-leveling process of particle beds. In the experiments, to simulate the coolant boiling due to the decay heat in fuel, nitrogen gas was percolated uniformly through the bottom of the particle bed with a conical shape mound using a gas injection method. Time variations in bed height during the self-leveling process were measured for key experimental parameters on particle size, density and sphericity, and gas flow rate. Using a dimensional analysis approach, a new model was proposed to correlate the experimental data on transient bed height with an empirical equation using a characteristic time of self-leveling development and a terminal equilibrium height of the bed. It was demonstrated that the proposed model predicts self-leveling development of particle beds with reasonable accuracy in the present ranges of experimental conditions. (author)

  3. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.

    Science.gov (United States)

    Helu, Moneer; Hedberg, Thomas

    2015-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

  4. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed

    Science.gov (United States)

    Helu, Moneer; Hedberg, Thomas

    2017-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167

  5. Simulation modeling of fluidized bed coal gasifier for new topping cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Guilin; Yamazaki, Ryohei; Mori, Shigekatsu; Fujima, Yukihisa [Nagoya Univ. (Japan). Dept. of Chemical Engineering

    1997-12-31

    A new topping cycle coal power generation process is to be developed as a Japanese national project of high efficiency power generation process of coal. This process consists of a combination system of a pressurized bubbling fluidized-bed coal gasifier and a pressurized bubbling fluidized-bed combustor in series. To evaluate the performances and also to determine specifications and operation parameters of this process, it is extremely important to analyze the behavior and the performance of this system by a reasonable simulation model. A simulation model of this new process is developed in this paper. It is demonstrated by calculated results from this model that the carbon conversion in the gasifier, the composition and the heating value of produced gas are strongly dependent on operating conditions. Heat recovery by the steam in the combustor is also estimated as the function of coal feed rate.

  6. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling the microbial growth and temperature profile in a fixed-bed bioreactor.

    Science.gov (United States)

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2014-10-01

    Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.

  8. Modeling of ethylbenzene dehydrogenation kinetics process taking into account deactivation of catalyst bed of the reactor

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2017-01-01

    Full Text Available Styrene synthesis process occurring in a two-stage continuous adiabatic reactor is a complex chemical engineering system. It is characterized by indeterminacy, nonstationarity and occurs in permanent uncontrolled disturbances. Therefore, the task of developing the predictive control system of the main product concentration of the dehydrogenation reaction - styrene to maintain this value within a predetermined range throughout the period of operation is important. This solution is impossible without the development of the process model on the basis of the kinetic revised scheme, taking into account the drop of the reactor catalytic bed activity due to coke formation on the surface. The article justifies and proposes: the drop changes dependence of catalyst bed activity as a time of reactor block operation function and improved model of chemical reactions kinetics. The synthesized mathematical model of the process is a system of ordinary differential equations and allows you: to calculate the concentration profiles of reaction mixture components during the passage of the charge through the adiabatic reactor stage, to determine the contact gas composition at the outlet of the reactor stages throughout the cycle of catalytic system, taking into account temperature changes and drop of the catalyst bed activity. The compensation of the decreased catalyst bed activity is carried out by raising the temperature in the reactor block for the duration of the operation. The estimation of the values of chemical reactions rate constants, as well as the calculation and analysis of the main and by-products concentrations of dehydrogenation reactions at the outlet of the reactor plant is curried out. Simulation results show that the change of temperature of the reactor, carried out by the exponential law considering deactivation of the catalyst bed allows the yield in a given range of technological regulations throughout the operation cycle of the reactor block.

  9. Radionuclide transport in running waters, sensitivity analysis of bed-load, channel geometry and model discretisation

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2006-08-01

    In this report, further investigations of the model concept for radionuclide transport in stream, developed in the SKB report TR-05-03 is presented. Especially three issues have been the focus of the model investigations. The first issue was to investigate the influence of assumed channel geometry on the simulation results. The second issue was to reconsider the applicability of the equation for the bed-load transport in the stream model, and finally the last issue was to investigate how the model discretisation will influence the simulation results. The simulations showed that there were relatively small differences in results when applying different cross-sections in the model. The inclusion of the exact shape of the cross-section in the model is therefore not crucial, however, if cross-sectional data exist, the overall shape of the cross-section should be used in the model formulation. This could e.g. be accomplished by using measured values of the stream width and depth in the middle of the stream and by assuming a triangular shape. The bed-load transport was in this study determined for different sediment characteristics which can be used as an order of magnitude estimation if no exact determinations of the bed-load are available. The difference in the calculated bed-load transport for the different materials was, however, found to be limited. The investigation of model discretisation showed that a fine model discretisation to account for numerical effects is probably not important for the performed simulations. However, it can be necessary for being able to account for different conditions along a stream. For example, the application of mean slopes instead of individual values in the different stream reaches can result in very different predicted concentrations

  10. Chaotic behavior in a hydrodynamic model of a fluidized bed reactor

    International Nuclear Information System (INIS)

    Schouten, J.C.; van den Bleek, C.M.

    1991-01-01

    Recent preliminary experimental studies using time-series analysis have demonstrated that the multi-phase flow in fluidized bed reactors can be characterized as chaotic. In the present paper, it is therefore argued that the chaotic time-dependence of fluidization is a characteristic feature which should be included in scaling rules for fluidized bed reactors. For example, the similarity groups applied in dimensionless fluidized bed scaling should be improved by extending them with functions of the relevant numbers from chaos theory, such as the correlation and embedding dimension or the maximum Lyapunov exponent. This requires that the dependence of these numbers on fluidization parameters must be theoretically and experimentally investigated. The concept of chaos in fluidization also requires that the classical, empirically developed, hydrodynamic models that are applied in fluidized bed scaling are amended to include time-dependence, non-linearity as well as a sufficient level of complexity before they can predict any chaotic behavior. An example is given of chaotic behavior generated in the classical counter-current flow model according to Van Deemter by writing the upwards solids velocity as a harmonic oscillating function of time. A low-dimensional strange attractor is found, embedded in two-dimensional phase space, of which the correlation dimension depends on the solids exchange coefficient

  11. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed

    OpenAIRE

    Lukerchenko, Nikolay; Piatsevich, Ssiarhei; Chara, Zdenek; Vlasak, Pavel

    2009-01-01

    The paper describes a 3D numerical model of the spherical particle saltation. Two stages of particle saltation were distinguished – the particle free motion in water and the particle-bed collision. The particle motion consists of the translational and rotational particle motion. A stochastic method of calculation of the particle-bed collision was developed. The collision height and the contact point were defined as random variables. Impulse equations were used and the translational and angula...

  12. A bibliographic review of mathematical models of packed-bed biological reactors (PBR

    Directory of Open Access Journals (Sweden)

    Deisy Corredor

    2005-09-01

    Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.

  13. A model for the thermodynamic analysis in a batch type fluidized bed dryer

    International Nuclear Information System (INIS)

    Özahi, Emrah; Demir, Hacımurat

    2013-01-01

    An original model for thermodynamic analysis of a batch type fluidized bed dryer is proposed herein considering two separate systems comprised of drying air medium as a control volume and particles to be dried as a control mass. By means of the proposed model, energetic and exergetic analyses of a drying column of a batch type fluidized bed dryer are carried out as an original contribution to literature since there is no such like model in which the analyses are performed considering two separate systems. The energetic efficiencies evaluated by means of the proposed model using the data in literature are compared with those in literature and a good conformity is satisfied with an acceptable error margin of ±9%. A new correlation is also developed with a mean deviation of ±10% in order to evaluate the energetic efficiency for not only corn drying process but also drying processes of other particles at inlet air temperature of 50 °C. Effects of air mass flow rate, mass of particle and ambient temperature on energetic and exergetic efficiencies are analyzed and some concluding remarks are highlighted for further studies. - Highlights: • Energetic and exergetic analyses of a batch type fluidized bed dryer are developed. • An original model is proposed for thermodynamic analyses in a fluidized bed dryer. • The proposed model is compared with the data in literature with an accuracy of ±9%. • Effect of air mass flow rate is more significant than that of ambient temperature. • Effect of mass of particle is more significant than that of ambient temperature

  14. Modeling of waste/near field interactions for a waste repository in bedded salt: the Dynamic Network (DNET) model

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1983-01-01

    The Fuel Cycle Risk Analysis Division of Sandia National Laboratories has been funded by the US Nuclear Regulatory Commission to develop a methodology for use in assessing the long-term risk from the disposal of radioactive wastes in deep geologic formations. As part of this program, the Dynamic Network (DNET) model was developed to investigate waste/near field interactions associated with the disposal of radioactive wastes in bedded salt formations. The model is a quasi-multi-dimensional network model with capabilities for simulating processes such as fluid flow, heat transport, salt dissolution, salt creep, and the effects of thermal expansion and subsedence on the rock units surrounding the repository. The use of DNET has been demonstrated in the analysis of a hypothetical disposal site containing a bedded salt formation as the host medium for the repository. An example of this demonstration analysis is discussed. Furthermore, the outcome of sensitivity analyses performed on the DNET model are presented

  15. Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces

    OpenAIRE

    B. Panic; K. Janiszewski

    2014-01-01

    This paper presents the second phase of model investigations of static pressure radial distribution conducted on 4 levels of bed height. During the phase the diameter of glass bed particles was increased, blast-furnace pellets were introduced as bed and iron powder was used as powder. Experiments were carried out with regard to gas velocity, bed and powder type and size of bed particles. The radial distribution of 3 fractions of powder accumulated in the bed – static powder, dynamic powder an...

  16. Measurement and modeling of bed shear stress under solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Guard, P.A.; Baldock, T.E.

    Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 10 sup (4) < R sub (e...

  17. Analysis of fluidized bed granulation process using conventional and novel modeling techniques.

    Science.gov (United States)

    Petrović, Jelena; Chansanroj, Krisanin; Meier, Brigitte; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Various modeling techniques have been applied to analyze fluidized-bed granulation process. Influence of various input parameters (product, inlet and outlet air temperature, consumption of liquid-binder, granulation liquid-binder spray rate, spray pressure, drying time) on granulation output properties (granule flow rate, granule size determined using light scattering method and sieve analysis, granules Hausner ratio, porosity and residual moisture) has been assessed. Both conventional and novel modeling techniques were used, such as screening test, multiple regression analysis, self-organizing maps, artificial neural networks, decision trees and rule induction. Diverse testing of developed models (internal and external validation) has been discussed. Good correlation has been obtained between the predicted and the experimental data. It has been shown that nonlinear methods based on artificial intelligence, such as neural networks, are far better in generalization and prediction in comparison to conventional methods. Possibility of usage of SOMs, decision trees and rule induction technique to monitor and optimize fluidized-bed granulation process has also been demonstrated. Obtained findings can serve as guidance to implementation of modeling techniques in fluidized-bed granulation process understanding and control. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Assari, M.R. [Jundi-shapur University, Dezful (Iran); Basirat Tabrizi, H.; Saffar-Avval, M. [Amirkabir University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2007-02-15

    A mathematical model for batch drying based on the Eulerian 'two-fluid models' was developed. The two-dimensional, axis-symmetrical cylindrical equations for both phases were solved numerically. The governing equations were discretized using a finite volume method with local grid refinement near the wall and inlet port. The effects of parameters such as inlet gas velocity and inlet gas temperature on the moisture content, temperature of solid and gas at the outlet are shown. This data from the model was compared with that obtained from experiments with a fluidized bed and found to be in reasonably good agreement. (author)

  19. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  20. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  1. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  2. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  3. Engineering bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2014-01-01

    A comparison between two numerical models describing the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. Both models consider the incoming biomass as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed...

  4. Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2016-03-01

    A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

  5. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    Science.gov (United States)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  6. Field Observation and Numerical Modeling of Bed-Material Transport Dynamics in the Lower Mississippi River

    Science.gov (United States)

    Ramirez, M. T.; Allison, M. A.; Meselhe, E. A.

    2012-12-01

    to infer bed-material discharge to the ocean because the transport trajectories and velocities of individual grains can vary appreciably. This suggests that 3D numerical simulations, calibrated and validated by comprehensive field measurements, will provide the path forward in understanding bed material fluxes in these systems. These model simulations, utilizing Delft3D and Flow3D and these observational data, are under development to investigate the relationship between flow conditions and sediment transport at finer spatial scales.

  7. Some Challenges Posed by Coal Bed Methane Regional Assessment Modeling.

    Science.gov (United States)

    Moore, Catherine R; Doherty, John; Howell, Stephen; Erriah, Leon

    2015-01-01

    Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large-scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near-well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual-phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine-scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near-well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual-phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine-scale model. A single-phase simulator was then employed so that depressurization errors incurred by neglecting near-well, dual-phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the

  8. Biomimetic model systems of rigid hair beds: Part II - Experiment

    Science.gov (United States)

    Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.

  9. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR - BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND... Sensor -Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...covers the development of a torque sensor for verification and validation (V&V) of spacecraft attitude control actuators. The developed sensor directly

  10. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  11. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.

    Science.gov (United States)

    Liu, Huolong; Li, Mingzhong

    2014-07-01

    In this work, one-dimensional population balance models (PBMs) have been developed to model a pulsed top-spray fluidized bed granulation. The developed PBMs have linked the key binder solution spray operating factors of the binder spray rate, atomizing air pressure and pulsed frequency of spray with the granule properties to predict granule growth behaviour in the pulsed spray fluidized bed granulation process at different operating conditions with accuracy. A multi-stage open optimal control strategy based on the developed PBMs was proposed to reduce the model mismatch, in which through adjusting the trajectory of the evolution of the granule size distribution at predefined sample intervals, to determine the optimal operating variables related to the binder spray including the spray rate of binding liquid, atomizing air pressure and pulsed frequency of spray. The effectiveness of the proposed modelling and multi-stage open optimal control strategies has been validated by experimental and simulation tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The influence of sediment transport rate on the development of structure in gravel bed rivers

    Science.gov (United States)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this

  13. Propagation of hydrological modeling uncertainties on bed load transport simulations in steep mountain streams

    Science.gov (United States)

    Eichner, Bernhard; Koller, Julian; Kammerlander, Johannes; Schöber, Johannes; Achleitner, Stefan

    2017-04-01

    As mountain streams are sources of both, water and sediment, they are strongly influencing the whole downstream river network. Besides large flood flow events, the continuous transport of sediments during the year is in the focus of this work. Since small mountain streams are usually not measured, spatial distributed hydrological models are used to assess the internal discharges triggering the sediment transport. In general model calibration will never be perfect and is focused on specific criteria such as mass balance or peak flow, etc. The remaining uncertainties influence the subsequent applications, where the simulation results are used. The presented work focuses on the question, how modelling uncertainties in hydrological modelling impact the subsequent simulation of sediment transport. The applied auto calibration by means of MonteCarlo Simulation optimizes the model parameters for different aspects (efficiency criteria) of the runoff time series. In this case, we investigated the impacts of different hydrological criteria on a subsequent bed load transport simulation in catchment of the Längentaler Bach, a small catchment in the Stubai Alps. The used hydrologic model HQSim is a physically based semi-distributed water balance model. Different hydrologic response units (HRU), which are characterized by elevation, orientation, vegetation, soil type and depth, drain with various delay into specified river reaches. The runoff results of the Monte-Carlo simulation are evaluated in comparison to runoff gauge, where water is collected by the Tiroler Wasserkraft AG (TIWAG). Using the Nash-Sutcliffe efficiency (NSE) on events and main runoff period (summer), the weighted root mean squared error (RMSE) on duration curve and a combination of different criteria, a set of best fit parametrization with varying runoff series was received as input for the bed load transport simulation. These simulations are performed with sedFlow, a tool especially developed for bed load

  14. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2013-01-01

    Because of the complexity to describe and solve thermo-chemical processes occurring in a fuel bed in grate-fired boiler, it is often necessary to simplify the process and use modeling techniques based on overall mass, energy and species conservation. A comparison between two numerical models...... to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo...

  15. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik

    2010-01-01

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  16. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  17. A numerical model of the deep-bed drying of extruded fish feed and its experimental validation

    DEFF Research Database (Denmark)

    Haubjerg, Anders Fjeldbo; Veje, Christian; Jørgensen, Bo Nørregaard

    A deep bed drying model for the description of moisture and temperature on an individual pellet level has been developed. Experimental validation is carried out in a special designed lab batch dryer, based on recordings of average moisture content and pellet surface temperature, on the air exhaus...

  18. Flow structure through pool-riffle sequences and a conceptual model for their sustainability in gravel-bed rivers

    Science.gov (United States)

    D. Caamano; P. Goodwin; J. M. Buffington

    2010-01-01

    Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...

  19. Modelling of a recycling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    this paper, originally published in Water SA 27 (4) 445-454 in October 2001, is herewith re-published with the correct list of authors, and, due to a change in the process name following the original publication of the article, it is herewith pointed out that the term “falling sludge bed reactor” is replaced with “recycling.

  20. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...

  1. Modelling of a falling sludge bed reactor using AQUASIM | Ristow ...

    African Journals Online (AJOL)

    The falling sludge bed reactor (FSBR) allows for increased solids retention time, resulting in greater substrate conversion for all particulate degradation and biological reactions. The purpose of the FSBR is to hydrolyse primary settled sewage (PSS). Soluble products are then used for the biological treatment of acid mine ...

  2. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Setiadipura, Topan; Obara, Toru

    2014-01-01

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower k eff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher k eff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  3. Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks

    Directory of Open Access Journals (Sweden)

    Sharmina Begum

    2013-12-01

    Full Text Available Energy recovery from biomass by gasification technology has attracted significant interest because it satisfies a key requirement of environmental sustainability by producing near zero emissions. Though it is not a new technology, studies on its integrated process simulation and analysis are limited, in particular for municipal solid waste (MSW gasification. This paper develops an integrated fixed bed gasifier model of biomass gasification using the Advanced System for Process ENngineering (Aspen Plus software for its performance analysis. A computational model was developed on the basis of Gibbs free energy minimization. The model is validated with experimental data of MSW and food waste gasification available in the literature. A reasonable agreement between measured and predicted syngas composition was found. Using the validated model, the effects of operating conditions, namely air-fuel ratio and gasifier temperature, on syngas production are studied. Performance analyses have been done for four different feedstocks, namely wood, coffee bean husks, green wastes and MSWs. The ultimate and proximate analysis data for each feedstock was used for model development. It was found that operating parameters have a significant influence on syngas composition. An air-fuel ratio of 0.3 and gasifier temperature of 700 °C provides optimum performance for a fixed bed gasifier for MSWs, wood wastes, green wastes and coffee bean husks. The developed model can be useful for gasification of other biomasses (e.g., food wastes, rice husks, poultry wastes and sugarcane bagasse to predict the syngas composition. Therefore, the study provides an integrated gasification model which can be used for different biomass feedstocks.

  4. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  5. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up. 2007 Wiley-Liss, Inc

  6. Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.

    Science.gov (United States)

    Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana

    2013-06-01

    This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.

  7. Design and development of an intelligent nursing bed - a pilot project of "joint assignment".

    Science.gov (United States)

    Jiehui Jiang; Tingwei Liu; Yuting Zhang; Yu Song; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    The "joint assignment" is a creative bachelor education project for Biomedical Engineering (BME) in Shanghai University (SHU), China. The objective of this project is to improve students' capabilities in design thinking and teamwork through practices in the process of the design and development of complex medical product. As the first step, a pilot project "design and development of intelligent nursing bed" was set up in May 2015. This paper describes details of how project organization and management, various teaching methods and scientific evaluation approaches were achieved in this pilot project. For example, a method containing one main line and four branches is taken to manage the project and "prototyping model" was used as the main research approach. As a result a multi-win situation was achieved. The results showed, firstly, 62 bachelor students including 16 BME students were well trained. They improved themselves in use of practical tools, communication skills and scientific writing; Secondly, commercial companies received a nice product design on intelligent nursing bed, and have been working on industrializing it; Thirdly, the university and associated schools obtained an excellent practical education experience to supplement traditional class education; Fourthly and most importantly, requirements from end-users will be met. The results also showed that the "joint assignment" task could become a significant component in BME bachelor education.

  8. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  9. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Science.gov (United States)

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  10. Modeling of river bed deformation composed of frozen sediments with increasing environmental temperature

    Directory of Open Access Journals (Sweden)

    E. I. Debolskaya

    2013-01-01

    Full Text Available This paper is devoted to investigation of the influence of river flow and of the temperature rise on the deformation of the coastal slopes composed of permafrost with the inclusion of ice layer. The method of investigation is the laboratory and mathematical modeling. The laboratory experiments have shown that an increase in water and air temperature changes in a laboratory analogue of permafrost causes deformation of the channel even without wave action, i.e. at steady-state flow and non-erosive water flow velocity. The previously developed model of the bed deformation was improved to account for long-term changes of soil structure with increasing temperature. The three-dimensional mathematical model of coastal slopes thermoerosion of the rivers flowing in permafrost regions, and its verification was based on the results of laboratory experiments conducted in the hydraulic tray. Analysis of the results of mathematical and laboratory modeling showed that bed deformation of the rivers flowing in the permafrost zone, significantly different from the deformation of channels composed of soils not susceptible to the influence of the phase transition «water-ice», and can occur even under the non-erosive velocity of the water flow.

  11. Numerical model for biological fluidized-bed reactor treatment of perchlorate contaminated groundwater.

    Science.gov (United States)

    McCarty, Perry L; Meyer, Travis E

    2005-02-01

    Biological fluidized-bed reactor (BFBR) treatment with 1.3 mm granular activated carbon as support medium is being used for removal of 2.6 mg/L perchlorate from contaminated groundwater in California. The California drinking-water action level of 4 microg/L for perchlorate requires 99.9% perchlorate removal. Sufficient ethanol, the electron donor, is added to remove oxygen and nitrate as well as perchlorate, as all three serve as electron acceptors, but with biological preference for oxygen and nitrate. A numerical BFBR model based upon basic physical, chemical, and biological processes including reaction stoichiometry, biofilm kinetics, and sequential electron acceptor usage was developed and evaluated with the full-scale treatment results. A key fitting parameter was bacterial detachment rate, which impacts reaction stoichiometry. For best model fit this was found to vary between 0.062 and 0.31 d(-1), with an average of 0.22 d(-1). The model indicates that GAC particle size, reactor diameter, and perchlorate concentration affect BFBR performance. While empty-bed detention time might be decreased somewhat below 10 min by an increase in either GAC particle size or reactor diameter, the current design provides a good factor of safety in operation. With a 10 min detention time, the effluent goal of 4 microg/L should be achievable even with influent perchlorate concentration as high as 10 mg/L.

  12. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    Science.gov (United States)

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors

    International Nuclear Information System (INIS)

    Vasiliadou, I.A.; Karanasios, K.A.; Pavlou, S.; Vayenas, D.V.

    2009-01-01

    The aim of this work was to study hydrogenotrophic denitrification in packed-bed reactors under draw-fill and continuous operation. Three bench-scale packed-bed reactors with gravel in different sizes (mean diameter 1.75, 2.41 and 4.03 mm) as support media were used, in order to study the effect of particle size on reactors performance. The maximum denitrification rate achieved under draw-fill operation was 4.4 g NO 3 - -N/ld for the filter with gravel of 2.41 mm. This gravel size was chosen to perform experiments under continuous operation. Feed NO 3 - -N concentrations and hydraulic loadings (HL) ranged between 20-200 mg/l and 5.7-22.8 m 3 /m 2 d, respectively. A comparison between the two operating modes showed that, for low HL the draw-fill operation achieved higher denitrification rates, while for high HL and intermediate feed concentrations (40-60 mg NO 3 - -N/l) the continuous operation achieved higher denitrification rates (4.67-5.65 g/ld). Finally, experiments with three filters in series (with gravels of 4.03, 2.41 and 1.75 mm mean diameter) were also performed under continuous operation. The maximum denitrification rate achieved was 6.2 g NO 3 - -N/ld for feed concentration of 340 mg/l and HL of 11.5 m 3 /m 2 d. A model, which describes denitrification in packed-bed reactors, was also developed. The model predicts the concentration profiles of NO 3 - -N along filter height, in draw-fill as well as in continuous operation, satisfactorily.

  14. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  16. Three-phase packed bed reactor with an evaporating solvent—II. Modelling of the reactor

    NARCIS (Netherlands)

    van Gelder, K.B.; Borman, P.C.; Weenink, R.E.; Westerterp, K.R.

    1990-01-01

    In this paper two models are presented for a three-phase catalytic packed bed reactor in which in evaporating solvent is used to absorb and remove most of the reaction heat. A plug flow model and a model comprising mass and heat dispersion in the reactor are discussed. The results of both models are

  17. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    International Nuclear Information System (INIS)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    The SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided

  18. An improved model for estimating fractal structure of silica nano-agglomerates in a vibro-fluidized bed

    OpenAIRE

    A Esmailpour; N Mostoufi; R Zarghami

    2016-01-01

    A study has been conducted to determine the effects of operating conditions such as vibration frequency, vibration amplitude on the fractal structure of silica (SiO2) nanoparticle agglomerate in a vibro-fluidized bed. An improved model was proposed by assimilation of fractal theory, Richardson-Zaki equation and mass balance. This model has been developed to predict the properties of nanoparticle agglomerate, such as fractal dimension and its size. It has been found out the vibration intensity...

  19. Optimization and scale-up of oligonucleotide synthesis in packed bed reactors using computational fluid dynamics modeling.

    Science.gov (United States)

    Wolfrum, Christian; Josten, Andre; Götz, Peter

    2014-01-01

    A computational fluid dynamics (CFD) model for the analysis of oligonucleotide synthesis in packed bed reactors was developed and used to optimize the scale up of the process. The model includes reaction kinetics data obtained under well defined conditions comparable to the situation in the packed bed. The model was validated in terms of flow conditions and reaction kinetics by comparison with experimental data. Experimental validation and the following model parameter studies by simulation were performed on the basis of a column with 0.3 g oligonucleotide capacity. The scale-up studies based on CFD modelling were calculated on a 440 g scale (oligonucleotide capacity). © 2014 American Institute of Chemical Engineers.

  20. Calibration of an experimental model of tritium storage bed designed for 'in situ' accountability

    International Nuclear Information System (INIS)

    Bidica, Nicolae; Stefanescu, Ioan; Bucur, Ciprian; Bulubasa, Gheorghe; Deaconu, Mariea

    2009-01-01

    Full text: Objectives: Tritium accountancy of the storage beds in tritium facilities is an important issue for tritium inventory control. The purpose of our work was to perform calibration of an experimental model of tritium storage bed with a special design, using electric heaters to simulate tritium decay, and to evaluate the detection limit of the accountancy method. The objective of this paper is to present an experimental method used for calibration of the storage bed and the experimental results consisting of calibration curves and detection limit. Our method is based on a 'self-assaying' tritium storage bed. The basic characteristics of the design of our storage bed consists, in principle, of a uniform distribution of the storage material on several copper thin fins (in order to obtain a uniform temperature field inside the bed), an electrical heat source to simulate the tritium decay heat, a system of thermocouples for measuring the temperature field inside the bed, and good thermal isolation of the bed from the external environment. Within this design of the tritium storage bed, the tritium accounting method is based on determining the decay heat of tritium by measuring the temperature increase of the isolated storage bed. Experimental procedure consisted in measuring of temperature field inside the bed for few values of the power injected with the aid of electrical heat source. Data have been collected for few hours and the temperature increase rate was determined for each value of the power injected. Graphical representation of temperature rise versus injected powers was obtained. This accounting method of tritium inventory stored as metal tritide is a reliable solution for in-situ tritium accountability in a tritium handling facility. Several improvements can be done regarding the design of the storage bed in order to improve the measurement accuracy and to obtain a lower detection limit as for instance use of more accurate thermocouples or special

  1. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  2. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  3. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics.

    Science.gov (United States)

    Kalyuzhnyi, Sergey V; Fedorovich, Vyacheslav V; Lens, Piet

    2006-03-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using one-dimensional (with regard to reactor height) equations. A universal description of both the fluid hydrodynamics and granular sludge dynamics was elaborated by applying known physical laws and empirical relations derived from experimental observations. In addition, the developed model includes: (1) multiple-reaction stoichiometry, (2) microbial growth kinetics, (3) equilibrium chemistry in the liquid phase, (4) major solid-liquid-gas interactions, and (5) material balances for dissolved and solid components along the reactor height. The integrated model has been validated with a set of experimental data on the start-up, operation performance, sludge dynamics, and solute intermediate concentration profiles of a UASB reactor treating cheese whey [Yan et al. (1989) Biol Wastes 27:289-305; Yan et al. (1993) Biotechnol Bioeng 41:700-706]. A sensitivity analysis of the model, performed with regard to the seed sludge characteristics and the key model parameters, showed that the output of the dispersed plug flow model was most influenced by the sludge settleability characteristics and the growth properties (especially mu(m)) of both protein-degrading bacteria and acetotrophic methanogens.

  4. Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system.

    Science.gov (United States)

    Chowdhury, Shamik; Saha, Papita Das

    2013-02-01

    In this study, rice husk was modified with NaOH and used as adsorbent for dynamic adsorption of methylene blue (MB) from aqueous solutions. Continuous removal of MB from aqueous solutions was studied in a laboratory scale fixed-bed column packed with NaOH-modified rice husk (NMRH). Effect of different flow rates and bed heights on the column breakthrough performance was investigated. In order to determine the most suitable model for describing the adsorption kinetics of MB in the fixed-bed column system, the bed depth service time (BDST) model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN)-based model was also developed for describing the dynamic dye adsorption process. An extensive error analysis was carried out between experimental data and data predicted by the models by using the following error functions: correlation coefficient (R(2)), average relative error, sum of the absolute error and Chi-square statistic test (χ(2)). Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. All the error functions yielded minimum values for the ANN model than the traditional models (BDST and Thomas), suggesting that the ANN model is the most suitable model to describe the fixed-bed adsorption of MB by NMRH. It is also more rational and reliable to interpret dynamic dye adsorption data through a process of ANN architecture.

  5. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  6. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  7. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    Simulations with a mathematical model of a pressurized bubbling fluidized-bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are reported. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and includes homogeneous r...

  8. Model-Based Diagnosis in a Power Distribution Test-Bed

    Science.gov (United States)

    Scarl, E.; McCall, K.

    1998-01-01

    The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.

  9. On numerical model of one-dimensional time-dependent gas flows through bed of encapsulated phase change material

    Science.gov (United States)

    Lutsenko, N. A.; Fetsov, S. S.

    2017-10-01

    Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.

  10. Life-finding detector development at NASA GSFC using a custom H4RG test bed

    Science.gov (United States)

    Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander

    2018-01-01

    Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.

  11. Mathematical and numerical modeling of melting in metal-ceramic composite beds

    Science.gov (United States)

    Mughal, Mohammad Pervez

    2006-05-01

    Many of the ceramics used in the manufacture of the metal-ceramic composites are available as powders, which has encouraged investigators to develop tool less manufacturing techniques. Innovative processes like combustion synthesis and laser sintering processes offer great potential for specific material combinations. These processes involve heat and mass transfer in porous matrix with melting, solidification and may be chemical reaction. Since the resulting transport is relatively complex, there are few mathematical models available. In the present study, melting and transport of metal is demonstrated for a one-dimensional bed with uniform heat generation and convectively cooled boundaries. The effects of different Bond, Biot and Prandtl numbers are discussed using constant and temperature varying material properties. At low bond number the transport is controlled by capillary forces and temperature and saturation distribution is symmetric about the center of the bed. For Biot number larger than ten the process is internally controlled. Effect of Prandtl number is opposite of that of the Bond number. Use of constant properties overpredicts the process rate by 13%.

  12. Development of the fluidized bed thermal treatment process for treating mixed waste

    International Nuclear Information System (INIS)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-01-01

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures (∼ 525--600 degree C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB's) with 99.9999% (''six-nines'') destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na 2 CO 3 ) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste

  13. Development of a vibrofluidized bed and fluid-dynamic study with dry and wet adipic acid

    Directory of Open Access Journals (Sweden)

    Silva-Moris V.A.

    2003-01-01

    Full Text Available The vibrofluidized bed developed in this work, consisting of a transparent plexiglass tube with an inner diameter of 0.1 m and a height of 0.5 m, was designed for the fluidization of adipic acid. The fluidization behavior of dry adipic acid with particle diameters in the range of 75 - 600 mm and a density of 1340kg/m³ was studied using mechanical vibration for different sample loads. Variables studied for the wet material include frequency and amplitude of vibration and moisture content of the particles. On the basis of the quantitative flow curve data and visual observations, it is concluded that the fluid dynamics of the bed with wet sticky particles, both vibrating and not vibrating, is different from that of the bed with dry particles.

  14. Sampling related issues in pod-based model reduction of simplified circulating fluidised bed combustor model

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2015-09-01

    Full Text Available Over the last decades the method of proper orthogonal decomposition (POD has been successfully employed for reduced order modelling (ROM in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC. Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.

  15. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Science.gov (United States)

    Donskoy, Igor

    2017-10-01

    Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  16. Mathematical modelling and optimization of biomass-plastic fixed-bed downdraft co-gasification process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor

    2017-01-01

    Full Text Available Co-gasification of woody biomass and polyethylene is studied using mathematical modeling. The gasification process is downdraft fixed-bed. Comparison of modeling results with some experimental data is made. Influence of biomass/plastic ratio and air equivalence ratio on gasification efficiency is investigated.

  17. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    International Nuclear Information System (INIS)

    Boateng, A.A.; Mtui, P.L.

    2012-01-01

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.

  18. Phosphorus recovery from anaerobic digester supernatant by struvite crystallization: model-based evaluation of a fluidized bed reactor.

    Science.gov (United States)

    Rahaman, M S; Mavinic, D S; Ellis, N

    2008-01-01

    This paper is an attempt to model the UBC (University of British Columbia) MAP (Magnesium Ammonium Phosphate) fluidized bed crystallizer. A mathematical model is developed based on the assumption of perfect size classification of struvitre crystals in the reactor and considering the movement of liquid phase as a plug flow pattern. The model predicts variation of species concentration of struvite along the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) are then used to evaluate the reactor performance. The model predictions provide a reasonable good fit with the experimental results for both PO4-P and NH4-N removals. Another important aspect of this model is its capability of predicting the crystals size and the bed voidage at different height of the reactor. Those predictions also match fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation of the reactor and can also be extended to optimize the struvite crystallization process in the UBC MAP reactor. IWA Publishing 2008.

  19. A 2D hydrodynamic-sedimentological model for gravel-bed rivers. Part I: theory and validation

    OpenAIRE

    Gabriel Kaless; Mario A. Lenzi; Luca Mao

    2013-01-01

    This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina). The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence...

  20. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-10-29

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  1. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-07-23

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  3. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson

    2003-12-31

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

  4. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  5. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  6. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    Science.gov (United States)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  7. A simplified model of nitric oxide emission from a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, J.; Basu, P. [Technical University of Nova Scotia, Halifax, NS (Canada)

    1995-10-01

    A simplified mathematical model leading to a closed form of solution is developed for estimation of nitric oxide emission from a coal fired circulating fluidized bed (CFB) furnace. The furnace is divided into two sections: a lower section below and an upper section above the secondary air injection level. Reactions in the cyclone and the return leg are neglected. Furnace dimensions, coal feed rate, coal composition and furnace temperature are inputs to the model which was validated against several pilot scale and commercial units. Experimental results from two pilot plants and two commercial power plants agree with model predictions. A sensitivity analysis was carried out using the model to examine the effect of different operating parameters and coal properties on the overall NO emission from the furnace. It was found that excess air and furnace temperature are most important factors influencing the NO emission level. The primary to secondary air ratio influences the NO emission level reasonably. Properties of coal are other factors which affect the NO emission to a large extent. The model, though it involves some simplification, predicts the overall emission of NO with a level of accuracy accepted in commercial operation. 27 refs., 8 figs., 2 tabs.

  8. Modeling and simulation of a packed bed reactor for hydrogen by methanol steam reforming

    International Nuclear Information System (INIS)

    Aboudheir, A.; Idem, R.

    2004-01-01

    'Full text:' The performance of a catalytic packed bed tubular reactor for hydrogen production depends on mass transport characteristics and temperature distribution in the reactor. To accurately predict this performance, a rigorous numerical model has been developed based on coupled mass, energy, and momentum balance equations in cylindrical coordinates. This comprehensive model takes into account the variations of the concentration and temperature in both the axial and radial directions as well as the pressure drop along the packed reactor. Also, experimental measurements for hydrogen production were collected using a manganese-promoted co-precipitated Cu-Al catalyst for methanol-steam reforming in a micro-reactor having 10 mm i.d. and 460 mm overall length. The operating temperature ranged from 443 to 523 K and the space-time ranged from 0.1 to 2.5 kg cat h/kmol CH3OH. The simulation results were found to be in close agreement with the experimental data over the various operating conditions. This confirms the validity of both the numerical model of this work and our previous published kinetics models for this reaction system. In addition, the model formulation is applicable to handle reactions, not only for the microreactor presented in this work, but also, for other laboratory size and industrial scale processes for hydrogen production by hydrocarbon reformation. (author)

  9. Modeling of coal bed methane (CBM) production and CO{sub 2} sequestration in coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ekrem [Izmir Institute of Technology, Chemical Engineering Department, 35420-Urla/Izmir (Turkey)

    2009-01-07

    A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO{sub 2}) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 x 10{sup 5} m{sup 2} of coal formation. For the CO{sub 2} sequestration process, the model prediction showed that the CO{sub 2} injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO{sub 2} flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO{sub 2} could be about 11 x 10{sup 3} m{sup 3} per day; the injected CO{sub 2} would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 x 10{sup 6} m{sup 3} of CO{sub 2} could be stored within a 21.4 x 10{sup 5} m{sup 2} of coal seam with a thickness of 3 m. (author)

  10. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column: Mathematical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Adela Kogej

    2010-01-01

    Full Text Available The biosorption of lead ions from aqueous solution on a self-immobilized Rhizopus nigricans biomass has been studied. Experiments were performed in a laboratory scale packed bed column at different liquid flow rates and biosorbent bed heights. Recorded experimental breakthrough curves were compared to those predicted by a mathematical model, which was developed to simulate a packed bed biosorption process by a soft, self-immobilized fungal biosorbent. In the range of examined experimental conditions, the biomass characteristics such as pellet porosity and biosorption capacity substantially affected the predicted response curve. General correlations for the estimation of the intra-pellet effective diffusivity, the external mass transfer coefficient, as well as axial dispersion were successfully applied in this biological system with specific mechanical properties. Under the experimental conditions, mass transfer is controlled by the external film resistance, while the intra-pellet mass transfer resistance, as well as the effect of axial dispersion, can be neglected. A new parameter α, the fraction of active biomass, with an average value of α=0.7, was introduced to take into account the specific biomass characteristics, and consequently the observed non-ideal liquid flow through the bed of fungal pellets.

  11. Building population balance model for fluidized bed melt granulation: lessons from kinetic theory of granular flow

    NARCIS (Netherlands)

    Tan, H.S.; Goldschmidt, M.J.V.; Boerefijn, R.; Hounslow, M.J.; Salman, A.; Kuipers, J.A.M.

    2004-01-01

    The purpose of this paper is to develop a theoretically sound basis for the equi-partition of kinetic energy (EKE) kernel recently developed by our group to describe the evolution of granule size distributions in fluidized bed granulation. The approach taken is to show first by distinct element

  12. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S.; Toyoda, S. [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  13. Development program on pressurized fluidized-bed combustion. Annual report, July 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Cunningham, P.; Fischer, J.

    1975-07-01

    The feasibility of using fluidized-bed combustors in power and steam plants is being evaluated. The concept involves burning fuels such as coal in a fluidized bed of either a naturally occurring, calcium-containing limestone or dolomite or in a synthetically prepared calcium-containing stone. The calcium oxide in the stone reacts with the sulfur released during combustion to form calcium sulfate, which remains in the bed, thus decreasing the level of SO/sub 2/ in the flue gas. Levels of NO/sub x/ in the flue gas are also low. The effect of operating variables and type of stone on the levels of SO/sub 2/ and NO/sub x/ is being determined. Behavior of trace elements during combustion has been preliminarily evaluated. The properties of a fluidized bed at minimum fluidization at different temperatures and pressures have been determined. The CaSO/sub 4/ produced in the combustion process is regenerated to CaO for reuse in the combustor by reductive decomposition at 1095/sup 0/C (2000/sup 0/F). The effects of operating variables on sulfur release during regeneration are being evaluated. Another regeneration process, solid-solid reaction of CaSO/sub 4/ with CaS, is also being investigated. Fundamental investigations of the kinetics of sulfation and regeneration reactions for the natural and synthetic stones are continuing. A model for the sulfation reaction is presented. The status of the new combustor andancillary regenerator equipment is discussed. (auth)

  14. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  15. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  16. Mathematical Modelling of the Fixed-Bed Biomass-Coal Co-Gasification Process

    Directory of Open Access Journals (Sweden)

    Donskoy Igor G.

    2016-01-01

    Full Text Available The paper considers mathematical modelling of downdraft fixed-bed gasification process of the mixtures of woody biomass and coal. Biomass/coal ratio, biomass moisture content and air equivalence ratio are varying parameters. Boundaries of the efficient gasification regimes are estimated.

  17. Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy ...

    African Journals Online (AJOL)

    Kinetic studies of anaerobic digestion process of cheese whey were conducted in a pilot-scale up-flow anaerobic packed bed bioreactor (UAPB). An influent COD concentration of 59419 mg/l was utilized at steady state condition. Logistic and Monod kinetic models were employed to describe microbial activities of cheese ...

  18. Development of a pressurized fluidized-bed biomass gsifier to produce substitute fuels

    Science.gov (United States)

    Babu, S. P.; Onischak, M.; Kosowski, G.

    The Institute of Gas technology (IGT) is conducting a program to convert forest and crop residues to substitute fuel in a pressurized fluidized-bed biomass gasifier. The process is designed for operation at pressures up to 2.17 MPa (315 psia) and temperatures up to 1255 K (1800 F). Various goals for synthesis or fuel gas processes are being pursued to develop an efficient process. Some of these goals are to maximize the throughput, the amount, and the quality of the gas, while minimizing both the amount of the feedstock preparation needed and the formation of condensible compounds that require by-product disposal and process wastewater treatment. The process development results obtained from fluidization biomass devolatilization, and char gasification studies were used to design a 30/5-cm (12-inch) ID adiabatic fluidized-bed gasification process development unit (PDU), capable of handling up to 455 kg (1000 lb) of biomass per hour.

  19. A Coarse-Grained Two-Fluid Model for Gas-Solid Fluidized Beds

    Directory of Open Access Journals (Sweden)

    S. Schneiderbauer

    2014-03-01

    Full Text Available Due to increasing computer power the numerical simulation of fluidized and moving beds has become feasible. However, while kinetic theory based CFD (Computational Fluid Dynamics has become a valuable design tool for modeling pilot plant scale gassolid fluidized bed reactors, a fully resolved simulation of industrial scale reactor is still nearly unfeasible. It is, therefore, common to use sub-grid models to account for the effect of the small unresolved structures on large resolved scales when using coarse grids. It is generally agreed that the influence of these small scales on the drag force is a key parameter in the prediction of the hydrodynamics of fluidized beds. We present a sub-grid drag modification dealing with the influence of heterogeneous structures on the drag force. It is assumed that these structures appear as distinct clusters of particles within an interstitial dilute particle phase. The clusters and the dilute phase itself consist of homogeneously distributed particles enabling the application of a homogenous drag correlation to these structures. In contrast to the established sub-grid drag modification EMMS (Energy-Minimization Multi-Scale Method, the presented model distinguishes between resolved and unresolved clusters by computing the expectation value of the diameter of the unresolved clusters. This reveals a grid and slip velocity dependent drag modification, which recovers the homogenous drag law as the solids volume fraction approaches the maximum packing of frictional spheres. The presented model is validated on the one hand, in case of industrial scale bubbling and turbulent fluidized beds. On the other hand, the model is applied to the coarse grid simulation of a riser flow. The numerical results obtained on a coarse gird demonstrate that our model reveals fairly good agreement with experimental data of bed expansion and solids volume fraction distributions. Thus, the results proof that the presented drag

  20. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization......, hydrodenitrogenation, and hydrodearomatization. The model was solved using a finite differences scheme and was coupled with a flash calculation in ProII and thus, obtaining a simulation framework that can be generally used for such reactors....

  1. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  2. A 2D hydrodynamic-sedimentological model for gravel-bed rivers. Part I: theory and validation

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina. The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence closure. Sediment transport can be divided in different size classes (sand-gravel mixture and the equilibrium approach is used for Exner’s equation. The amour layer is also included in the structure of the model and the surface grain size distribution is also allowed to evolve. The model simulates bank slides that enable channel widening. Models predictions were tested against a flume experiment where a static armour layer was developed under conditions of sediment starvations and general good agreements were found: the model predicted adequately the sediment transport, grain size of transported material, final armour grain size distribution and bed elevation.

  3. Torpedo modelling in TORSIM and torpedo defence test bed

    NARCIS (Netherlands)

    Grootendorst, H.J.; Benders, F.P.A.; Driessen, F.P.G.; Witberg, R.

    2002-01-01

    The validated TORSIM (TORpedo SlMulation) model simulates the behaviour and determines the effectiveness of different torpedo types (MK46 and MK48), launched from a surface ship, from an air vehicle or from a submarine , against different types of submarine s or surface ships. Evasive manoeuvres of

  4. Modelling of a falling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... products are then used for the biological treatment of acid mine drainage. A mathematical model ... FSBR have been simulated using a system of mixed reactors connected by water flow and mass flux streams. Trends obtained ... Acid mine drainage (AMD) characteristically consists of high concentrations of ...

  5. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  6. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region

    DEFF Research Database (Denmark)

    Linsbauer, A.; Frey, H.; Haeberli, W.

    2016-01-01

    retreat may fill with water and form new lakes. In this study, the bed overdeepenings for ∼28000 glaciers (40 775km2) of the Himalaya-Karakoram region are modelled using GlabTop2 (Glacier Bed Topography model version 2), in which ice thickness is inferred from surface slope by parameterizing basal shear...

  7. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    International Nuclear Information System (INIS)

    Gan, Yixiang; Kamlah, Marc

    2008-01-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  8. Model investigations 3D of gas-powder two phase flow in descending bed with consideration radial distribution of flow

    Directory of Open Access Journals (Sweden)

    B. Panic

    2013-04-01

    Full Text Available The results of experimental investigations concerning radial distribution of powder accumulation in bed and static pressure were presented in this paper. To realize this research physical model of gas-powder two phase flow with descending bed was projected and constructed. Amounts of “dynamic” and “static” powder accumulated in bed, in dependence on gas velocity and of bed particles were investigated. In 3D model “static” powder (with its radial distribution at the tuyere level and in the higher part of bed was measured. The influence of bed particles, powder and gas radial distribution on values of interaction forces between flow phases in investigated system was defined.

  9. A Strategy for Coal Bed Methane and Coal Mine Methane Development and Utilization in China

    OpenAIRE

    Energy Sector Management Assistance Program

    2007-01-01

    China is short of clean energy, particularly conventional natural gas. The proven per capital natural gas reserve is only 1/12th of the world average. However, China has large coal bed methane (CBM) resources with development potential which can be recovered from surface boreholes independent of mining and in advance of mining, and also captured as a part of underground coal mining operati...

  10. Fluidized bed combustion research and development in Sweden: A historical survey

    Directory of Open Access Journals (Sweden)

    Leckner Bo.

    2003-01-01

    Full Text Available A survey is made on research and development related to fluidized bed boilers in Sweden during the past two decades, where several Swedish enterprises took part: Generator, Götaverken, Stal Laval (ABB Carbon and Studsvik. Chalmers University of Technology contributed in the field of research related to emissions, heat transfer and fluid dynamics, and some results from this activity are briefly summarized.

  11. Research on the pyrolysis of hardwood in an entrained bed process development unit

    Energy Technology Data Exchange (ETDEWEB)

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O' Neil, D.J. (Georgia Inst. of Tech., Atlanta, GA (United States). Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  12. Closing the Loop by Combining UASB Reactor and Reactive Bed Filetr Technology for wastewater Treatment : Modelling and Practical Approaches

    OpenAIRE

    Rodríguez-Gómez, Raúl

    2016-01-01

    A laboratory-scale upflow anaerobic sludge blanket (UASB) reactor followed by a packed bed reactor (PBR) filled with Sorbulite® in the lower part and Polonite® in the upper part was used to treat household wastewater in a 50-week experiment. A model was developed to describe the performance of the UASB reactor, including mass transfer through the film around anaerobic granules, intra-particle diffusion and bioconversion of the substrate. In a second model, a numerical expression describing th...

  13. A Numerical Model for Thermal Effects in a Microwave Irradiated Catalyst Bed

    OpenAIRE

    Lanz, Jason E.

    1998-01-01

    Electromagnetic and heat transfer analysis is used to determine possibility of selective heating of nanometer-sized, metallic catalyst particles attached to a ceramic support through microwave irradiation. This analysis is incorporated into a macroscopic heat transfer model of a packed and fluidized catalyst bed heated by a microwave field to predict thermal effects associated with selective heating of the catalyst sites. The model shows a dependence on particle size and microwave frequency...

  14. Mathematical modeling and experimental breakthrough curves of cephalosporin C adsorption in a fixed-bed column

    OpenAIRE

    Burkert, Carlos André Veiga; Barbosa, Geraldo Nazareno de Oliveira; Mazutti, Marcio Antônio; Maugeri, Francisco

    2011-01-01

    This work presents the mathematical modeling of the cephalosporin C (CPC) adsorption process in a fixed-bed column. The application of Particle Swarm Optimization (PSO) algorithm for parameter estimation was first considered, which shows to be a useful tool for parameter estimation in adsorption processes. Modeling and simulation of CPC purification showed a good performance during both estimation and validation step. After this, a central composite rotational design (CCRD) was conceived taki...

  15. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  16. Modelling of large-scale dense gas-solid bubbling fluidised beds using a novel discrete bubble model

    NARCIS (Netherlands)

    Bokkers, G.A.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2006-01-01

    In order to model the complex hydrodynamic phenomena prevailing in industrial scale gas–solid bubbling fluidised bed reactors and especially the macro-scale emulsion phase circulation patterns induced by bubble–bubble interactions and bubble coalescence, a discrete bubble model (DBM) has been

  17. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R.; Patrikainen, T.; Heikkinen, R.; Tiainen, M.; Virtanen, M. [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  18. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Tran, Dang-Thuan; Lin, Yi-Jan; Chen, Ching-Lung; Chang, Jo-Shu

    2014-01-01

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min −1 , whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  19. Biomimetic model systems of rigid hair beds: Part I - Theory

    Science.gov (United States)

    Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.

  20. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs.

    Science.gov (United States)

    Belciug, Smaranda; Gorunescu, Florin

    2016-03-01

    Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs. This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up. An evolutionary-based approach is used for enhancing the ability to optimize both bed management and associated costs. In addition, a "What-if analysis" shows how changing the model parameters could improve performance while controlling costs. The study uses bed-occupancy data collected at the Department of Geriatric Medicine - St. George's Hospital, London, period 1969-1984, and January 2000. The hybrid model revealed that a bed-occupancy exceeding 91%, implying a patient rejection rate around 1.1%, can be carried out with 159 beds plus 8 unstaffed beds. The same holding and penalty costs, but significantly different bed allocations (156 vs. 184 staffed beds, and 8 vs. 9 unstaffed beds, respectively) will result in significantly different costs (£755 vs. £1172). Moreover, once the arrival rate exceeds 7 patient/day, the costs associated to the finite capacity system become significantly smaller than those associated to an Erlang B queuing model (£134 vs. £947). Encoding the whole information provided by both the queuing system and the cost model through chromosomes, the genetic algorithm represents an efficient tool in optimizing the bed allocation and associated costs. The methodology can be extended to different medical departments with minor modifications in structure and parameterization. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. RSMASS system model development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Gallup, D.R.

    1998-01-01

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of

  2. Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.

    Science.gov (United States)

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1991-01-01

    The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies

  3. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  4. Comparison of PIV measurements and a discrete particle model in a rectangular 3D spout-fluid bed

    NARCIS (Netherlands)

    Link, J.M.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    Particle image velocimetry and a 3D hard sphere discrete particle model were applied to determine particle velocity profiles in the plane around a spout in a spoutfluid bed for various initial bed heights, spout and background fluidization velocities. Comparison between experimental and numerical

  5. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    International Nuclear Information System (INIS)

    Repetto, G.; Ederli, St.

    2007-01-01

    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO 2 spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  6. A conceptual model of pore-space blockage in mixed sediments using a new numerical approach, with implications for sediment bed stabilization

    Science.gov (United States)

    Bartzke, Gerhard; Huhn, Katrin

    2015-06-01

    In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D50=0.08 mm) were mixed into a coarse sand matrix (D50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U 1-5=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.

  7. MATHEMATICAL MODELING OF THE DYNAMICS OF TRANSFER PROCESSES DEHYDRATION AND GRANULATION IN A FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Б.Я. Корнієнко

    2012-12-01

    Full Text Available  An approach to the description of multivariate process of dehydration and granulation in a fluidized bed, which is accompanied by a phase transition is complicated by the formation of liquid phase on the surface of the pellet, followed by removal of the liquid phase and the formation of a mass crystallization by a layer of microcrystals. Presents a mathematical model of two-phase Euler-Euler.

  8. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    Science.gov (United States)

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice

  9. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: enso.ikonen@oulu.fi

    2009-07-01

    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  10. Study of filtration capacity parameters of trap beds in the development of oil and gas deposits according to industrial geophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Buryakovskii, L.A.; Badalov, T.A.; Palatnik, G.G.

    1981-01-01

    In developing oil and gas pools, especially with the use of water effects, we can vary the filtration capacity of the beds and petrophysical connections between them and the geophysical parameters. To study the parameters of the oil and gas beds according to data of industrial geophysics at different stages of development of the deposit we used the method of discrimination of samples in a nonlinear variant. As a result according to materials of industrial geophysical studies we were able to obtain data on the porosity and permeability of rocks of one of the horizons of two fields in the initial and current stages of development, time intervals between which were 12-16 years. The use of the proposed models permits us to determine the porosity and permeability of rocks under natural conditions at different stages of the development of the pool according to petrophysical models established at the initial stage of development.

  11. Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model

    International Nuclear Information System (INIS)

    Kaniyal, Ashok A.; Eyk, Philip J. van; Nathan, Graham J.

    2016-01-01

    Highlights: • First analysis to assess storage requirements of a stand-alone packed bed, batch process solar gasifier. • 35 days of storage required for stand-alone solar system, whereas 8 h of storage required for hybrid system. • Sensitivity of storage requirement to reactor operation, solar region and solar multiple evaluated. - Abstract: The first multi-day performance analysis of the feasibility of integrating a packed bed, indirectly irradiated solar gasification reactor with a downstream FT liquids production facility is reported. Two fuel-loading scenarios were assessed. In one, the residual unconverted fuel at the end of a day is reused, while in the second, the residual fuel is discarded. To estimate a full year time-series of operation, a simplified statistical model was developed from short-period simulations of the 1-D heat transfer, devolatilisation and gasification chemistry model of a 150 kW th packed bed reactor (based on the authors’ earlier work). The short time-series cover a variety of solar conditions to represent seasonal, diurnal and cloud-induced solar transience. Also assessed was the influence of increasing the solar flux incident at the emitter plate of the packed bed reactor on syngas production. The combination of the annual time-series and daily model of syngas production was found to represent reasonably the seasonal transience in syngas production. It was then used to estimate the minimum syngas storage volume required to maintain a stable flow-rate and composition of syngas to a FT reactor over a full year of operation. This found that, for an assumed heliostat field collection area of 1000 m 2 , at least 64 days of storage is required, under both the Residual Fuel Re-Use and Discard scenarios. This figure was not sensitive to the two solar sites assessed, Farmington, New Mexico or Tonopah Airport, Nevada. Increasing the heliostat field collection area from 1000 to 1500 m 2 , led to an increase in the calculated daily rate

  12. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    Energy Technology Data Exchange (ETDEWEB)

    Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Sharp, Michael [Univ. of Tennessee, Knoxville, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeffries, Brien [Univ. of Tennessee, Knoxville, TN (United States); Nam, Alan [Univ. of Tennessee, Knoxville, TN (United States); Strong, Eric [Univ. of Tennessee, Knoxville, TN (United States); Tong, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Welz, Zachary [Univ. of Tennessee, Knoxville, TN (United States); Barbieri, Federico [Univ. of Tennessee, Knoxville, TN (United States); Langford, Seth [Univ. of Tennessee, Knoxville, TN (United States); Meinweiser, Gregory [Univ. of Tennessee, Knoxville, TN (United States); Weeks, Matthew [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-06

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning of component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for

  13. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  14. Development of ammonium uranyl carbonate reduction to uranium dioxide using fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1988-01-01

    Laboratory development of Ammonium Uranyl Carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amounts of fluoride ( - 500μgF - /gTCAU) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentrations is reduced by pyrohydrolisis of UO 2 . Physical and Chemical proterties of the final product (UO 2 ) obtained were characterized. (author) [pt

  15. Kinetic modeling of hydrocracking reaction in a trickle-bed reactor with Pt/Y-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, BalSang; Park, Myung-June; Kim, Young-A; Park, Eun Duck [Ajou University, Suwon (Korea, Republic of); Han, Jeongsik [Agency for Defense Development, Daejeon (Korea, Republic of); Jeong, Kwang-Eun; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology (KRICT), Daejeon (Korea, Republic of)

    2014-03-15

    A kinetic model is developed to predict the entire distribution of hydrocarbon products for the hydrocracking reaction with Pt/Y-zeolite catalysts in a trickle-bed reactor. Operating conditions, such as temperature, pressure, and wax and H{sub 2} flow rates were varied to evaluate their effects on conversion and distribution, and kinetic parameters were estimated using the experimental data that covers the window of operating conditions. The comparison between experimental data and simulated results corroborated the validity of the developed model, and the quantitative prediction of the reactor performance was clearly demonstrated. To make evident the usefulness of the model, an optimization method, genetic algorithm (GA), was applied, and the optimal condition for the maximum production of C{sub 10}-C{sub 17} was successfully calculated.

  16. Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas

    Directory of Open Access Journals (Sweden)

    Mohammad Nasikin

    2010-10-01

    Full Text Available Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been  reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight,  while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse's cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.

  17. Modeling glacier beds in the Austrian Alps: How many lakes will form in future?

    Science.gov (United States)

    Koehler, Dominik; Geilhausen, Martin; Linsbauer, Andreas

    2014-05-01

    Glacial retreat exposes landscapes with relief characteristics greatly differing from the former ice covered surfaces. If glacial retreat exposes natural basins capable of forming proglacial lakes, then the downstream hydrologic and geomorphic systems in such catchments will be significantly altered due to discharge modifications, sediment trapping, decoupling effects and long term sediment storage (e.g. Geilhausen et al. 2013). Further implications are related to hydropower management, tourism and natural hazards. Consequently, sound knowledge of present day glacier beds ("proglacial zones of tomorrow") and in particular the total number, locations and characteristics of overdeepenings are of importance. For Austria, however, this important information about significant future changes of high alpine regions is yet missing. An interdisciplinary research project is currently in preparation to close this gap. This paper presents results of a pilot study. We used a novel GIS-based approach (GlabTop, cf. Linsbauer et al. 2012) to compute approximate glacier beds in the Austrian Alps. GlabTop ('Glacier bed Topography') is based on an empirical relation between average basal shear stress and elevation range of individual glaciers and makes use of digital elevation models (DEM), glacier outlines and branch lines (i.e. a set of lines covering all important glacier branches). DEMs and glacier outlines were derived from the Austrian glacier inventory (1998) and branch lines were manually digitized. The inventory includes 911 glaciers of which 876 (96%) were considered and 35 were excluded due to size restrictions ( 0.01 km²) with the potential of forming proglacial lakes when glacier retreat reveals the bed. The total area and volume of all overdeepenings is approx. 10 km² and 236 Mio m³ respectively and 33 lakes will be larger than 1 km³. A total glacier volume of 16 ± 5 km³ with an average ice thickness of 36 ± 11 m was calculated for 1998. Comparisons with

  18. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Development program on pressurized fluidized-bed combustion. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Johnson, I.; Cunningham, P.T.

    1976-07-01

    The feasibility of using fluidized-bed combustors in power and steam plants is being evaluated. The concept involves burning fuels such as coal in a fluidized bed of either a limestone (CaCO/sub 3/) or a synthetically prepared calcium-containing stone. The calcium reacts with the sulfur to form CaSO/sub 4/, which remains in the bed, thus decreasing the level of SO/sub 2/ in the flue gas. Levels of NO/sub x/ in the flue gas are low. In a separate step, the CaSO/sub 4/ is regenerated to CaO by reductive decomposition at Ca/sub solar/ 1100/sup 0/C for reuse in the combustor. Progress is reported on the following: the effect of regeneration operating variables on extent of regeneration and SO/sub 2/ concentration in the off-gas using coal as the source of reducing agent and of heat; the alternate combustion and regeneration behavior of stone; the rate and extent of sulfation of agents impregnated on Al/sub 2/O/sub 3/; the effect of variables on sorption and release of sulfur for CaO-impregnated stone; attrition resistance of stone; the kinetic and structural changes occurring during half-calcination of dolomite; the CaS-CaSO/sub 4/ regeneration reaction; and the volatility of trace elements when heating coal ash. Procurement and disposal of regenerated stone, minimum fluidization studies, modeling of a gas-solid combustion reaction and of the regeneration process, combustion studies using different sizes of coal and additive and also using lignite are reported.

  20. Measurements and theoretical modeling of effective thermal conductivity of particle beds under compression in air and vacuum

    Directory of Open Access Journals (Sweden)

    Jingwen Mo

    2017-09-01

    Full Text Available Effective thermal conductivity experiments were carried out with spherical particle beds under low and high compressive pressure loading in vacuum and air. A theoretical model was proposed for the effective thermal conductivity of particle beds based on the experimental results. The model incorporates heat conduction by particles including contact thermal resistance between particles, conduction through the gas in between particles, and radiation between particles, and includes two fitting parameters, namely the coefficient of heat conducted through the fluid, and the macro-contact thermal resistance. The predictions from the theoretical model satisfactorily match the experimental data for the bed effective thermal conductivity over the range of applied loading pressures on particles with different Young's modulus and the gas environment. The model can be used generally to describe the effect of compression stress or pressure on effective thermal conductivity of particle beds.

  1. Transient one-dimensional model of coal carbonization in a stagnant packed bed

    Science.gov (United States)

    Polesek-Karczewska, Sylwia; Kardaś, Dariusz; Wardach-Święcicka, Izabela; Grucelski, Arkadiusz; Stelmach, Sławomir

    2013-06-01

    In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.

  2. 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition

    Directory of Open Access Journals (Sweden)

    Gergely T. Török

    2017-01-01

    Full Text Available 3D numerical models are increasingly used to simulate flow, sediment transport and morphological changes of rivers. For the simulation of bedload transport, the numerical flow model is generally coupled with an empirical sediment transport model. The application range of the most widely used empirical models is, however, often limited in terms of hydraulic and sedimentological features and therefore the numerical model can hardly be applied to complex situations where different kinds of morphological processes take place at the same time, such as local scouring, bed armoring and aggradation of finer particles. As a possible solution method for this issue, we present the combined application of two bedload transport formulas that widens the application range and thus gives more appropriate simulation results. An example of this technique is presented in the paper by combining two bedload transport formulas. For model validation, the results of a laboratory experiment, where bed armoring, local scouring and local sediment deposition processes occurred, were used. The results showed that the combined application method can improve the reliability of the numerical simulations.

  3. Development and application of a high-temperature sampling probe for burning chamber conditions of fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M.; Jormanainen, P.; Roine, J.; Paakkinen, K. [VTT Chemistry, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-01

    A sampling probe for the burning chamber conditions of fluidized-bed combustion will be developed in this project. The probe will be suitable for sampling vaporous heavy and alkali metals and other condensing compounds (e.g. chlorides) as well combustion gases and alternatively also flue gas particles at high temperatures. The knowledge gained with the probe will help understanding, developing and modeling combustion processes and will thus aid the manufacturers of the boilers. (author)

  4. Organic matter and heavy metals content modeling in sewage sludge treated with reed bed system

    Science.gov (United States)

    Boruszko, Dariusz; Dąbrowski, Wojciech; Malinowski, Paweł

    2017-11-01

    The long process of sludge stabilization (7-15 years) remarkably reduces the organic matter content and causes the process of sludge humifaction. This paper presents the results of using low-cost methods of sludge treatment in the wastewater treatment plant located in Zambrow, Podlaskie Province. The results of studies on the organic matter and heavy metals content in sewage sludge after treatment in a reed bed system are presented. The aim of the research was to evaluate and model organic matter and heavy metals concentrations during sewage stabilization in reed bed lagoons. The lowest concentration, below 1.3 mg/kg DM of the examined seven heavy metals was mercury (Hg). The highest concentration, exceeding 1300 mg/kg DM was zinc (Zn). The obtained results for the heavy metals in sewage sludge from the reed bed lagoons in Zambrow show that the average content of the analyzed heavy metals is approximately 1620 mg/kg DM. The results of the study demonstrate a high efficiency of low-cost methods used in Zambrów WWTP in terms of the quality of the processed sludge. Sewage sludge from the lowest layer of the reed lagoon (12-14 years of dewatering and transformation) is characterized by the lowest organic matter and heavy metals content. The higher a sediment layer lies, i.e. the shorter the time of processing, the higher is the heavy metals content. This indicates a great role of reeds in the accumulation of these compounds.

  5. Modeling the supercritical desorption of orange essential oil from a silica-gel bed

    Directory of Open Access Journals (Sweden)

    Silva E.A.

    2000-01-01

    Full Text Available One of the most important byproducts of the orange juice industry is the oil phase. This is a mixture of terpenes, alcohols, and aldehydes, dissolved in approximately 96% limonene. To satisfactorily use oil phase as an ingredient in the food and cosmetics industries separation of the limonene is required. One possibility is to use a fixed bed of silica gel to remove the light or aroma compounds from the limonene. The aroma substances are then extracted from the bed of silica gel using supercritical carbon dioxide. This work deals with the modeling of the desorption step of the process using mass balance equations coupled with the Langmuir equilibrium isotherm. Data taken from the literature for the overall extraction curves were used together with empirical correlations to calculate the concentration profile of solute in the supercritical phase at the bed outlet. The system of equations was solved by the finite volume technique. The overall extraction curves calculated were in good agreement with the experimental ones.

  6. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  7. A constitutive model for the thermo-mechanical behaviour of fusion-relevant pebble beds and its application to the simulation of HELICA mock-up experimental results

    International Nuclear Information System (INIS)

    Vella, G.; Maio, P.A. Di; Giammusso, R.; Tincani, A.; Orco, G. Dell

    2006-01-01

    Within the framework of the activities promoted by European Fusion Development Agreement on the technology of the Helium Cooled Pebble Bed Test Blanket Module to be irradiated in one of the ITER equatorial ports, attention has been focused on the theoretical modelling of the thermo-mechanical constitutive behaviour of both beryllium and lithiated ceramics pebble beds, that are envisaged to act respectively as neutron multiplier and tritium breeder. The thermo-mechanical behaviour of the pebble beds and their nuclear performances in terms of tritium production depend on the reactor relevant conditions (heat flux and neutron wall load), the pebble sizes and the breeder cell geometries (bed thickness, pebble packing factor, bed overall thermal conductivity). ENEA-Brasimone and the Department of Nuclear Engineering (DIN) of the Palermo University have performed intense research activities intended to investigate fusion-relevant pebble bed thermo-mechanical behaviour by adopting both experimental and theoretical approaches. In particular, ENEA has carried out several experimental campaigns on small scale mock-ups tested in out-of-pile conditions, while DIN has developed a proper constitutive model that has been implemented on commercial FEM code, for the prediction of the thermal and mechanical performances of fusion-relevant pebble beds and for the comparison with the experimental results of the ENEA tests. In that framework, HELICA mock-up has been set-up and tested to investigate the behaviour of pebble bed in reactor-relevant geometries, providing useful data sets to be numerically reproduced by means of the DIN constitutive model, contributing to its assessment. The paper presents the constitutive model developed and the main experimental results of two test campaigns on HELICA mock-up carried out at HE-FUS 3 facility of ENEA Brasimone, the geometry of the mock-up, the adopted thermal and mechanical boundary conditions and the test operating conditions. The most

  8. Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences

    Directory of Open Access Journals (Sweden)

    Mats Meriste

    2015-05-01

    Full Text Available We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

  9. Modelling dynamic transport and adsorption of arsenic in soil-bed filters for long-term performance evaluation

    Science.gov (United States)

    Mondal, Sourav; Mondal, Raka; de, Sirshendu; Griffiths, Ian

    2017-11-01

    Purification of contaminated water following the safe water guidelines while generating sufficiently large throughput is a crucial requirement for the steady supply of safe water to large populations. Adsorption-based filtration processes using a multilayer soil bed has been posed as a viable method to achieve this goal. This work describes the theory of operation and prediction of the long-term behaviour of such a system. The fixed-bed column has a single input of contaminated water from the top and an output from the bottom. As the contaminant passes through the column, it is adsorbed by the medium. Like any other adsorption medium, the filter has a certain lifespan, beyond which the filtrate does not meet the safe limit of drinking water, which is defined as `breakthrough'. A mathematical model is developed that couples the fluid flow through the porous medium to the convective, diffusive and adsorptive transport of the contaminant. The results are validated with experimental observations and the model is then used to predict the breakthrough and lifetime of the filter. The key advantage of this model is that it can predict the long-term behaviour of any adsorption column system for any set of physical characteristics of the system. This worked was supported by the EPSRC Global Challenge Research Fund Institutional Sponsorship 2016.

  10. The development of an integrated multistaged fluid-bed retorting process. Final report, September 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Carter, S.D.; Taulbee, D.N.; Stehn, J.L.; Vego, A.; Robl, T.L.

    1995-02-01

    This summarizes the development of the KENTORT II retorting process, which includes integral fluidized bed zones for pyrolysis, gasification, and combustion of oil shale. Purpose was to design and test the process at the 50-lb/hr scale. The program included bench- scale studies of coking and cracking reactions of shale oil vapors over processed shale particles to address issues of scaleup associated with solid-recycle retorting. The bench-scale studies showed that higher amounts of carbon coverage reduce the rate of subsequent carbon deposition by shale oil vapors onto processed shale particles; however carbon-covered materials were also active in terms of cracking and coking. Main focus was the 50-lb/hr KENTORT II PDU. Cold-flow modeling and shakedown were done before the PDU was made ready for operation. Seven mass-balanced, steady-state runs were completed within the window of design operating conditions. Goals were achieved: shale feedrate, run duration (10 hr), shale recirculation rates (4:1 to pyrolyzer and 10:1 to combustor), bed temperatures (pyrolyzer 530{degree}C, gasifier 750{degree}C, combustor 830{degree}C), and general operating stability. Highest oil yields (up to 109% of Fischer assay) were achieved for runs lasting {ge} 10 hours. High C content of the solids used for heat transfer to the pyrolysis zone contributed to the enhanced oil yield achieved.

  11. Evaluation of models for predicting spray mist diameter for scaling-up of the fluidized bed granulation process.

    Science.gov (United States)

    Fujiwara, Maya; Dohi, Masafumi; Otsuka, Tomoko; Yamashita, Kazunari; Sako, Kazuhiro

    2012-01-01

    We evaluated models for predicting spray mist diameter suitable for scaling-up the fluidized bed granulation process. By precise selection of experimental conditions, we were able to identify a suitable prediction model that considers changes in binder solution, nozzle dimension, and spray conditions. We used hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), or polyvinylpyrrolidone (PVP) binder solutions, which are commonly employed by the pharmaceutical industry. Nozzle dimension and spray conditions for oral dosing were carefully selected to reflect manufacturing and small (1/10) scale process conditions. We were able to demonstrate that the prediction model proposed by Mulhem optimally estimated spray mist diameter when each coefficient was modified. Moreover, we developed a simple scale-up rule to produce the same spray mist diameter at different process scales. We confirmed that the Rosin-Rammler distribution could be applied to this process, and that its distribution coefficient was 1.43-1.72 regardless of binder solution, spray condition, or nozzle dimension.

  12. Gasification of biomass in a fixed bed downdraft gasifier--a realistic model including tar.

    Science.gov (United States)

    Barman, Niladri Sekhar; Ghosh, Sudip; De, Sudipta

    2012-03-01

    This study presents a model for fixed bed downdraft biomass gasifiers considering tar also as one of the gasification products. A representative tar composition along with its mole fractions, as available in the literature was used as an input parameter within the model. The study used an equilibrium approach for the applicable gasification reactions and also considered possible deviations from equilibrium to further upgrade the equilibrium model to validate a range of reported experimental results. Heat balance was applied to predict the gasification temperature and the predicted values were compared with reported results in literature. A comparative study was made with some reference models available in the literature and also with experimental results reported in the literature. Finally a predicted variation of performance of the gasifier by this validated model for different air-fuel ratio and moisture content was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    Science.gov (United States)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  14. Development of an adaptive optics test-bed for relay mirror applications

    Science.gov (United States)

    Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris

    2005-08-01

    The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.

  15. Development of the rf linear accelerator test bed for heavy-ion fusion

    International Nuclear Information System (INIS)

    Watson, J.M.

    1981-01-01

    The amount of absorbed energy required by high gain deuterium-tritium targets for inertial confinement fusion reactors is now projected to be greater than 1 Megajoule. It has become apparent that a heavy ion fusion driver is the preferred choice in this scenario. To demonstrate this accelerator-based option, the national program has established two test beds: one at Argonne for the rf linac/storage ring approach, and one at Lawrence Berkeley Laboratory developing an induction linac. The Argonne Beam Development Facility (BDF) would consist of a 40 mA rf linac for Xe + 8 , a storage ring, and a 10 GeV synchrotron. The design and status of the BDF is described as well as future program options to demonstrate as many solutions as possible of the issues involved in this approach

  16. Nonlinear model predictive control applied to the separation of praziquantel in simulated moving bed chromatography.

    Science.gov (United States)

    Andrade Neto, A S; Secchi, A R; Souza, M B; Barreto, A G

    2016-10-28

    An adaptive nonlinear model predictive control of a simulated moving bed unit for the enantioseparation of praziquantel is presented. A first principle model was applied at the proposed purity control scheme. The main concern about this kind of model in a control framework is in regard to the computational effort to solve it; however, a fast enough solution was achieved. In order to evaluate the controller's performance, several cases were simulated, including external pumps and switching valve malfunctions. The problem of plant-model mismatch was also investigated, and for that reason a parameter estimation step was introduced in the control strategy. In every studied scenario, the controller was able to maintain the purity levels at their set points, which were set to 99% and 98.6% for extract and raffinate, respectively. Additionally, fast responses and smooth actuation were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of an enzyme fluidized bed reactor equipped with static mixers: application to lactose hydrolysis in whey

    Energy Technology Data Exchange (ETDEWEB)

    Fauquex, P.F.; Flaschel, E.; Renken, A.

    1984-01-01

    Reactor operation with immobilized enzymes in fixed bed arrangement is often impaired due to the presence of finely divided solid matter, adsorbing substances or gas. The fluidized bed reactor would be applied in such cases owing to a limited pressure drop, a controlled voidage, and the avoidance of perforated plates for catalyst retention. Since enzymic reactions are often slow processes, catalysts of high external surface area should be provided together with sufficient time. However, classical fluidized beds suffer from hydrodynamic instability under these conditions. Therefore, a new reactor design was developed which used motionless mixers as internals. Fluidized bed reactors equipped with internals exhibit an outstanding hydrodynamic stability accompanied by an increase of the operating range in terms of flow rate by a factor of 4 compared to the classical fluidized bed. Results are presented, with emphasis on the backmixing and expansion characteristics. Various motionless mixers were investigated in columns of 39 and 150 mm in diameter. The fluidized bed equipped with internals was used for lactose hydrolysis in partially deproteinized whey. The lactase from Aspergillus niger immobilized on silica gel particles of 125-160 molm had a half-life of approximately 1 mo.

  18. Improving fuel quality by whole crude oil hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor

    International Nuclear Information System (INIS)

    Jarullah, A.T.; Mujtaba, I.M.; Wood, A.S.

    2012-01-01

    Highlights: ► Asphaltene contaminant must be removed to a large extent from the fuel to meet the regulatory demand. ► Kinetics for hydrodeasphaltenization are estimated via experimentation and modeling. ► Using the kinetic parameters, a full process model for the trickle bed reactor (TBR) is developed. ► The model is used for simulating the behavior of the TBR to get further insight of the process. ► The influences of operating conditions in the hydrodeasphaltenization process are reported. -- Abstract: Fossil fuel is still a predominant source of the global energy requirement. Hydrotreating of whole crude oil has the ability to increase the productivity of middle distillate fractions and improve the fuel quality by simultaneously reducing contaminants such as sulfur, nitrogen, vanadium, nickel and asphaltene to the levels required by the regulatory bodies. Hydrotreating is usually carried out in a trickle bed reactor (TBR) where hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM) and hydrodeasphaltenization (HDAs) reactions take place simultaneously. To develop a detailed and a validated TBR process model which can be used for design and optimization of the hydrotreating process, it is essential to develop kinetic models for each of these reactions. Most recently, the authors have developed kinetic models for all of these chemical reactions except that of HDAs. In this work, a kinetic model (in terms of kinetic parameters) for the HDAs reaction in the TBR is developed. A three phase TBR process model incorporating the HDAs reactions with unknown kinetic parameters is developed. Also, a series of experiments has been conducted in an isothermal TBR under different operating conditions affecting the removal of asphaltene. The unknown kinetic parameters are then obtained by applying a parameter estimation technique based on minimization of the sum of square errors (SSEs) between the experimental and predicted concentrations of

  19. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  1. Soil-plant system development 9 to 136 years after marly gully beds rehabilitation (French Southern Alps)

    Science.gov (United States)

    Erktan, Amandine; Cohen, Marianne; Zerouali, Laila; Poulenard, Jérôme; Cécillon, Lauric; Rey, Freddy

    2013-04-01

    gully beds restored in 2002 (8.3±4 mg.kg-1; ANOVA test, pspread of the cover requires more time. We conclude that within the first ten years after gully beds rehabilitation, a real soil-plant system has already developed with early signs of pedogenesis, which could be somehow nutrient limited.

  2. Development of fluidized bed combustion of biomass; Leijupolttoprosessin kehittaeminen vaikeille biopolttoaineille soveltuvaksi

    Energy Technology Data Exchange (ETDEWEB)

    Hiltunen, M.; Vaehaenen-Koivuluoma, T. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Some commercial BFB boilers burning biofuels, or biofuels and industrial wood wastes have suffered serious problems in bed material sintering. In worst cases the cumulation of reactive alkali compounds has caused total sintering of bed material even during a few days` operation. This presentation reports the results obtained from three separate cases, where sintering problems occurred. Boiler A burned biofuel with quartz sand and limestone addition. Boiler B burned softwood bark and industrial wood waste with sand addition. Boiler C burned softwood bark and sludge with sand addition. Due to the fuel used, bed sintering occurred in all boilers. Obviously, sintering was also influenced by some technical problems. Bed material samples have been analyzed with XRF and SEM-EDS techniques. According to these analyses, the main reason for sintering in boiler A is the cumulation of reactive potassium in bed material. In boiler B, the main reason is the fuel change from a mixture of softwood bark and industrial wood waste to pure industrial wood waste. The extra load of reactive sodium exceeded the critical concentration of alkali compounds in bed material. Also in boiler C, the fuel change from a mixture of softwood bark and sludge to pure softwood bark seems to be one of the reasons for bed sintering. After the fuel change the bed saturated with reactive potassium and the bed sintered. (orig.)

  3. Development Of A Mobile Robot As A Test Bed For Tele-Presentation

    Directory of Open Access Journals (Sweden)

    Diogenes Armando D. Pascua

    2016-01-01

    Full Text Available In this paper a human-sized tracked wheel robot with a large payload capacity for tele-presentation is presented. The robot is equipped with different sensors for obstacle avoidance and localization. A high definition web camera installed atop a pan and tilt assembly was in place as a remote environment feedback for users. An LCD monitor provides the visual display of the operator in the remote environment using the standard Skype teleconferencing software. Remote control was done via the internet through the free Teamviewer VNC remote desktop software. Moreover, this paper presents the design details, fabrication and evaluation of individual components. Core mobile robot movement and navigational controls were developed and tested. The effectiveness of the mobile robot as a test bed for tele-presentation were evaluated and analyzed by way of its real time response and time delay effects of the network.

  4. Development of a Mobile Robot as a Test Bed for Tele-Presentation

    Directory of Open Access Journals (Sweden)

    Diogenes Armando D. Pascua

    2016-05-01

    Full Text Available In this paper a human-sized tracked wheel robot with a large payload capacity for tele-presentation is presented. The robot is equipped with different sensors for obstacle avoidance and localization. A high definition web camera installed atop a pan and tilt assembly was in place as a remote environment feedback for users. An LCD monitor provides the visual display of the operator in the remote environment using the standard Skype teleconferencing software. Remote control was done via the internet through the free Teamviewer VNC remote desktop software. Moreover, this paper presents the design details, fabrication and evaluation of individual components. Core mobile robot movement and navigational controls were developed and tested. The effectiveness of the mobile robot as a test bed for tele-presentation were evaluated and analyzed by way of its real time response and time delay effects of the network

  5. Mathematical modeling of Kluyveromyces marxianus growth in solid-state fermentation using a packed-bed bioreactor.

    Science.gov (United States)

    Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen

    2010-04-01

    This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.

  6. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

    2017-01-01

    be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different......A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...

  7. Computational Model for the Neutronic Simulation of Pebble Bed Reactor’s Core Using MCNPX

    Directory of Open Access Journals (Sweden)

    J. Rosales

    2014-01-01

    Full Text Available Very high temperature reactor (VHTR designs offer promising performance characteristics; they can provide sustainable energy, improved proliferation resistance, inherent safety, and high temperature heat supply. These designs also promise operation to high burnup and large margins to fuel failure with excellent fission product retention via the TRISO fuel design. The pebble bed reactor (PBR is a design of gas cooled high temperature reactor, candidate for Generation IV of Nuclear Energy Systems. This paper describes the features of a detailed geometric computational model for PBR whole core analysis using the MCNPX code. The validation of the model was carried out using the HTR-10 benchmark. Results were compared with experimental data and calculations of other authors. In addition, sensitivity analysis of several parameters that could have influenced the results and the accuracy of model was made.

  8. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Directory of Open Access Journals (Sweden)

    Kogut Tomasz

    2016-06-01

    Full Text Available Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW, Delaunay Triangulation (TIN, and supervised Artificial Neural Networks (ANN, for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  9. Seismicity Induced by Hydraulic Fracturing in Shales: A Bedding Plane Slip Model

    Science.gov (United States)

    Staněk, František; Eisner, Leo

    2017-10-01

    Passive seismic monitoring of microseismic events induced in oil or gas reservoirs is known as microseismic monitoring. Microseismic monitoring is used to understand the process of hydraulic fracturing, which is a reservoir stimulation technique. We use a new geomechanical model with bedding plane slippage induced by hydraulic fractures within shale reservoirs to explain seismicity observed in a typical case study of hydraulic fracturing of a shale gas play in North America. Microseismic events propagating from the injection point are located at similar depths (within the uncertainty of their locations), and their source mechanisms are dominated by shear failure with both dip-slip and strike-slip senses of motion. The prevailing dip-slip mechanisms have one nearly vertical nodal plane perpendicular to the minimum horizontal stress axis, while the other nodal plane is nearly horizontal. Such dip-slip mechanisms can be explained by slippage along bedding planes activated by the aseismic opening of vertical hydraulic fractures. The model explains the observed prevailing orientation of the shear planes of the microseismic events, as well as the large difference between seismic and hydraulic energy.

  10. Transient Combustion in Granular Propellant Beds. Part I. Theoretical Modeling and Numerical Solution of Transient Combustion Processes in Mobile Granular Propellant Beds

    Science.gov (United States)

    1977-08-01

    To advice the statt-of-che- art in the combustion of granular prope..lents by forwilating a complete theoretical model describ".•j the Important...d~~+W s (-.1 1-3. Where the vector products of W , W/2 , W/ , W/ and W/ vith I arte •iVn as Wl#’. m II -VVW ,÷I&. -Wig I,÷W,4A+. j IS÷ I-P(/. W/r...beginning of the granular propel.ent bed ZL Left boumdary point - •light boundary point Grek S.2 1k (Ip Thermal diffusivity of pellucsp 1 Erosive burning

  11. Mathematical modeling of manganese adsorption onto bone char in a continuous fixed bed column incorporating backmixing and shriking core approaches

    Directory of Open Access Journals (Sweden)

    M. E. Maria

    Full Text Available Abstract The present study investigated the dynamics of manganese adsorption onto bone char in a continuous fixed bed column using a mathematical model that incorporates: (i the backmixing model to describe the fluid flow through the bed and (ii the shrinking core model to describe the kinetic and mass transfer phenomena within spherical adsorbent particles. The proposed model consists of an ordinary differential equation system. Hydrodynamic, kinetic and diffusive parameters were determined by fitting the mathematical model to the experimental data obtained by Sicupira et al. (2015. For the operating conditions evaluated in this study, the intraparticle diffusion represented the controlling step of the adsorption process (Bim> 3.8. The increase in the feed rate of the column (3.0-7.5 mL min-1 and the decrease in the height of the bed (8-16 cm resulted in a decrease in the time required for the saturation of the column bed. The model is flexible for a variety of flow conditions and adequately reproduced the behavior of the manganese adsorption process in the fixed bed column operation (R²> 0.99 with an average percentage error less than15%.

  12. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2 0 C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8 0 C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature

  13. Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed

    Science.gov (United States)

    Solimene, Roberto; Chirone, Roberto; Chirone, Riccardo; Salatino, Piero

    2017-06-01

    Fluidized beds may be considered a promising option to collection and storage of thermal energy of solar radiation in Concentrated Solar Power (CSP) systems thanks to their excellent thermal properties in terms of bed-to-wall heat transfer coefficient and thermal diffusivity and to the possibility to operate at much higher temperature. A novel concept of solar receiver for combined heat and power (CHP) generation consisting of a compartmented dense gas fluidized bed has been proposed to effectively accomplish three complementary tasks: collection of incident solar radiation, heat transfer to the working fluid of the thermodynamic cycle and thermal energy storage. A dynamical model of the system laid the basis for optimizing collection of incident radiative power, heat transfer to the steam cycle, storage of energy as sensible heat of bed solids providing the ground for the basic design of a 700kWth demonstration CSP plant.

  14. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, Cornelis H.; Schiphorst, Roelof; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is

  15. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Maulik, E-mail: maulikpanchal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Chaudhuri, Paritosh [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Van Lew, Jon T; Ying, Alice [UCLA, MAE Department, Los Angeles, CA 90095-1597 (United States)

    2016-11-15

    Highlights: • The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of TBM in ITER. • The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. • k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results. • The numerically-determined k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data and Zehner-Schlunder correlation. - Abstract: The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of IN LLCB TBM (Indian Lead Lithium Ceramic Breeder Test Blanket Module). The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. The uniform packing structures of Li{sub 2}TiO{sub 3} pebble bed are modelled by using the simple cubic, body centered cubic and face centered cubic arrangement. The packing structure of the RCP bed of Li{sub 2}TiO{sub 3} pebbles is generated with the discrete element method (DEM) code. k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results from literature. The numerically determined k{sub eff} of the Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data.

  16. Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and inter-particle collisions

    KAUST Repository

    Moreno, Pablo M.

    2011-05-19

    We present in this paper a new three-dimensional (3-D) model for bed-load sediment transport, based on a Lagrangian description. We analyze generalized sub-models for the velocities after collision and the representation of the bed-roughness. The free-flight sub-model includes the effect of several forces, such as buoyancy, drag, virtual mass, lift, Basset and Magnus, and also addresses the particle rotation. A recent methodology for saving computational time in the Basset force is also employed. The sub-models for the post-collision velocity and rotation are based on the conservation of linear and angular momentum during the collision with the bed. We develop a new 3-D representation for the bed roughness by using geometric considerations. In order to address the interaction of particles with the turbulent flow, we tracked the particles through a computed turbulent velocity field for a smooth flat plate. This velocity field was used as a surrogate of the 3-D turbulent conditions close to the bed in streams. We first checked that the basic turbulence statistics for this velocity field could be used to approximate those in an open-channel flow. We then analyzed the interaction of the sediment and the turbulence for a single and multiple particles. We compared numerical results with experimental data obtained by Niño and García (1998b). We show that model predictions are in good agreement with existing data, in the sand size range. © 2011 ASCE.

  17. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    Science.gov (United States)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  18. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    Science.gov (United States)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  19. Vision development test bed: The cradle of the MSS artificial vision system

    Science.gov (United States)

    Zucherman, Leon; Stovman, John

    This paper presents the concept of the Vision Development Test-Bed (VDTB) developed at Spar Aerospace Ltd. in order to assist development work on the Artificial Vision System (AVS) for the Mobile Servicing System (MSS) of Space Station Freedom in providing reliable and robust target auto acquisition and robotic auto-tracking capabilities when operating in the extremely contrasty illumination of the space environment. The paper illustrates how the VDTB will be used to understand the problems and to evaluate the methods of solving them. The VDTB is based on the use of conventional but high speed image processing hardware and software. Auxiliary equipment, such as TV cameras, illumination sources, monitors, will be added to provide completeness and flexibility. A special feature will be the use of solar simulation so that the impact of the harsh illumination conditions in space on image quality can be evaluated. The VDTB will be used to assess the required techniques, algorithms, hardware and software characteristics, and to utilize this information in overcoming the target-recognition and false-target rejection problems. The problems associated with NTSC video processing and the use of color will also be investigated. The paper concludes with a review of applications for the VDTB work, such as AVS real-time simulations, application software development, evaluations, and trade-offs studies.

  20. Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Di Colomba Di Blasi, C. [Universita degli Studi di Napoli ' ' Federico II' ' (Italy). Dip. di Ingegneria Chimica

    2000-07-01

    A mathematical model for intra-particle transport phenomena and chemical reactions is coupled with an external heat transfer model taking into account fluid-bed hydrodynamics, to predict the fast pyrolysis characteristics of cellulose fuels. Good agreement is obtained between predicted and measured product yields as functions of the reactor temperature. For practical applications aimed at liquid fuel production, particle size and external temperatures greatly affect the average particle heating rate (values roughly comprised between 300 and 1 K/s), whereas the actual degradation temperature vary in a narrow range (600-725 K). Consequently, variations in the conversion time are significantly larger than in product distribution and yields. Finally, comparisons are made with the Ranz-Marshall correlation and the limit case of infinitely fast external heat transfer rates. (Author).

  1. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Review of the Technical Status on the Debris Bed Cooling Model

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris

  3. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  4. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  5. An Euler–Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase

    International Nuclear Information System (INIS)

    Mellin, Pelle; Zhang, Qinglin; Kantarelis, Efthymios; Yang, Weihong

    2013-01-01

    A developed 3D Euler–Euler CFD model, with an integrated pyrolysis model, is proposed as a way of predicting vapor phase dynamics and product distributions in the fluidized bed process for biomass fast pyrolysis. The main interest in this work is the gases resulting from the pyrolysis mixed with the fluidizing gas. We propose therefore a simple rendering of the solid material while directing attention to the vapor phase. At the same time the required computational resources for reaching stabilized conditions in the reactor are reduced. Temperature profile, velocity profile and pyrolysis products are predicted and globally verified by a series of parallel cases, which are compared to experimental measurements and known trends of liquid, solid and gas yields. The comparison of experimental measurements and model predictions satisfy the accuracy of the model and on a quantitative basis, the product yields agree with commonly known trends of bio oil versus temperature and residence time. -- Highlights: • A 3-D CFD model for fast pyrolysis in fluidized beds has been developed. • Focus is on the vapor phase which permits a simplified rendering of the solids. • Predicted results largely agree with measured temperature, pressure, and bed height

  6. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  7. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Science.gov (United States)

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  8. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  9. Development and application of a process window for achieving high-quality coating in a fluidized bed coating process

    NARCIS (Netherlands)

    Laksmana, F.L.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van Der Voort Maarschalk, K.

    Next to the coating formulation, process conditions play important roles in determining coating quality. This study aims to develop an operational window that separates layering from agglomeration regimes and, furthermore, the one that leads to the best coating quality in a fluidized bed coater. The

  10. Modeling of cleaning of dust emission’ in fluidized bed building aspiration’ collector

    Directory of Open Access Journals (Sweden)

    Koshkarev Sergey A.

    2017-01-01

    Full Text Available This article describes one of the modern way to reduce dust emissions of pollutions exhausting into the atmosphere at expanded clay aggregates and other similar building materials manufactures applying filtering fluidized granular particulate material bed’ separator with low degree of dust leakage out from one. There is presented quasi-diffusion model featuring of process of cleaning of industrial emissions of dust in devices of tray type with the fluidized and weighted bed. There considered case of variable coefficient of longitudinal hashing intermixing within trough tray type separator in this article. It was made attempt to get meanings value of leakage’ degree dust out from separator. It was obtain in an implicit form. It was obtained and announced some results of the carried-out analysis are intended to get high efficiency of dust removal set up installations to clean emissions of aspiration scheme of the air environmental protection in production of bulk dispersed materials building construction industry.

  11. On farm development of bedded pack dairy barns in The Netherlands : animal welfare and milk quality

    NARCIS (Netherlands)

    Ouweltjes, W.; Smolders, E.A.A.

    2014-01-01

    This report describes figures on animal health and welfare on three Dutch commercial dairy farms that house their cows in bedded pack barns. Moreover, some milk quality parameters and culling and replacement figures are reported.

  12. Modeling of a Pilot-Scale Fixed-Bed Reactor for Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone

    Directory of Open Access Journals (Sweden)

    Daesung Song

    2018-02-01

    Full Text Available A 1D heterogeneous reactor model accounting for interfacial and intra-particle gradients was developed to simulate the dehydration of 2,3-Butanediol (2,3-BDO to 1,3-Butadiene (1,3-BD and Methyl Ethyl Ketone (MEK over an amorphous calcium phosphate (a-CP catalyst in a pilot-scale fixed-bed reactor. The developed model was validated with experimental data in terms of a fluid temperature profile along with the length of the catalyst bed, 2,3-BDO conversion, and selectivity for the major products, 1,3-BD and MEK, at the outlet of the reactor. The fluid temperature profile obtained from the model along the length of the catalyst bed coincides satisfactorily with the experimental observations. The difference between the experimental data and the 1D heterogeneous reactor model prediction for 2,3-BDO conversion and selectivity of 1,3-BD and MEK were 0.1%, 9 wt %, and 2 wt %, respectively. In addition, valuable insights related to the feeding system of a commercial-scale plant were made through troubleshooting of the pilot tests. Notably, if the feed including only 2,3-BDO and furnaces that increase the temperature of the feed to the reaction temperature were used in a commercial plant, the feeding system could not be operational because of the presence of heavy chemicals considered oligomers of 2,3-BDO.

  13. Development of Bed Ridges in Open Channels and their Effects on Secondary Currents and Wall Shear

    OpenAIRE

    Kamran Ansari; Ashfaque Ahmed Memon; Naeem Aziz Memon

    2012-01-01

    A numerical analysis of the ridges on the bed of wide, open channels and their effects on the distribution of secondary currents and wall shear is undertaken using CFD (Computational Fluid Dynamics). The presence of the lines of boil, consisting of low speed streaks, periodically in the transverse direction, is reported in the literature due to the presence of the ridges. In the present work, simulations are run on channel sections with varying the number of ridges on the bed and ...

  14. Kinetics of filtration of model crud with ion exchange resin bed

    International Nuclear Information System (INIS)

    Takahashi, M.; Ishigure, K.; Fujita, N.

    1987-01-01

    A simple mathematical model is presented to depict the filtration mechanism of crud or colloidal particles in the ion exchange resin bed. In this model the filtration process is classified into four stages, corresponding to the increase in the deposited amounts of the particles on the surfaces of the resins during the filtration process. In the first stage, it is assumed that the adhesion of crud particles is mainly controlled by the electrokinetic interaction between the particle and the virgin surfaces of the resins, while in the third stage the crud particles interact with the particles already adsorbed in the resins. The second stage is a transient period between the first and third stages. In the final stage, the clogging effect becomes significant. At the first stage of filtration, the model explains the rapid decrease of filtration efficiency, which is a matter of great concern from the practical point of view. A comparison is made between the model and laboratory experiments, using monodispersed α-Fe/sub 2/O/sub 3/ particles as model crud, and it is found that the proposed mechanism of filtration process seems quite reasonable

  15. Model and code development

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Progress in model and code development for reactor physics calculations is summarized. The codes included CINDER-10, PHROG, RAFFLE GAPP, DCFMR, RELAP/4, PARET, and KENO. Kinetics models for the PBF were developed

  16. Transient quenching of superheated debris beds during bottom reflood

    Energy Technology Data Exchange (ETDEWEB)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients.

  17. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  18. Studies of Resurgent Bed Bugs: Population Genetic Structure, Impact of Aggregation on Development and Molecular Screening for Bartonella

    Science.gov (United States)

    Saenz, Virna Lisa

    The recent resurgence of bed bugs (Cimex lectularius L.) has created an unprecedented demand for research on its biology. The main objectives of this dissertation research were to investigate several aspects of bed bug biology: infestation and dispersal dynamics at a large and small geographical scale using molecular markers, to determine the impact of aggregation on bed bug development and to screen bed bug populations for a re-emergent pathogen. First, we studied the infestation and dispersal dynamics of bed bugs at large geographical scale (e.g., across cities, states). Although bed bug infestations are on the rise, there is a poor understanding of their dispersal patterns and sources of infestation. We conducted a genetic study of 21 bed bug infestations from the eastern United States. We genotyped samples comprised of 8 - 10 individuals per infestation at nine polymorphic microsatellite loci. Despite high genetic diversity across all infestations, with 5 -- 17 alleles per locus (mean = 10.3), we found low genetic diversity (1 -- 4 alleles per locus) within all but one of the infestations. These results suggest that nearly all the studied infestations were started by a small propagule possibly consisting of a singly mated female and/or her progeny. All infestations were strongly genetically differentiated from each other (mean pairwise FST between populations = 0.68) and we did not find strong evidence of a geographic pattern of structuring. The high level of genetic diversity across infestations from the eastern United States together with the lack of geographically organized structure is consistent with multiple introductions into the United States from foreign sources. This work is described in Chapter 2 and was published in the Journal of Medical Entomology in 2012. Second, we investigated dispersal and infestation dynamics of bed bugs at a fine geographical scale within three multistory apartment buildings: one from Raleigh, NC and two from Jersey City, NJ

  19. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.

    Science.gov (United States)

    Ming, Liangshan; Li, Zhe; Wu, Fei; Du, Ruofei; Feng, Yi

    2017-01-01

    Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.

  20. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.

    Directory of Open Access Journals (Sweden)

    Liangshan Ming

    Full Text Available Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD was used to identify the high-risk factors. Then, Box-Behnken design (BBD was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5 and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5 of the process was investigated using response surface model (RSM, partial least squares method (PLS and artificial neural network of multilayer perceptron (MLP. The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.

  1. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control

    Science.gov (United States)

    Ming, Liangshan; Li, Zhe; Wu, Fei; Du, Ruofei; Feng, Yi

    2017-01-01

    Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products. PMID:28662115

  2. Modeling environmental contamination in hospital single- and four-bed rooms.

    Science.gov (United States)

    King, M-F; Noakes, C J; Sleigh, P A

    2015-12-01

    Aerial dispersion of pathogens is recognized as a potential transmission route for hospital acquired infections; however, little is known about the link between healthcare worker (HCW) contacts' with contaminated surfaces, the transmission of infections and hospital room design. We combine computational fluid dynamics (CFD) simulations of bioaerosol deposition with a validated probabilistic HCW-surface contact model to estimate the relative quantity of pathogens accrued on hands during six types of care procedures in two room types. Results demonstrate that care type is most influential (P model predicting the surface contacts by HCW and the subsequent accretion of pathogenic material as they perform standard patient care. This model indicates that single rooms may significantly reduce the risk of cross-contamination due to indirect infection transmission. Not all care types pose the same risks to patients, and housekeeping performed by HCWs may be an important contribution in the transmission of pathogens between patients. Ventilation rates and positioning of infectious patients within four-bed rooms can mitigate the accretion of pathogens, whereby reducing the risk of missed hand hygiene opportunities. The model provides a tool to quantitatively evaluate the influence of hospital room design on infection risk. © 2015 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  3. Performance of fluidized bed steam gasification of biomass - Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Loha, Chanchal; Chatterjee, Pradip K. [Thermal Engineering Group, Central Mechanical Engineering Research Institute, CSIR, Durgapur 713 209 (India); Chattopadhyay, Himadri [Dept. of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India)

    2011-03-15

    This paper presents the investigation of the performance from different biomasses in a fluidized bed gasifier where steam has been used as gasifying as well as fluidizing agent. An experimental setup is fabricated to study the gasification performance of rice husk, which is of special relevance to rice-producing countries like China and India. An equilibrium modeling approach is deployed to predict the gas composition which has been compared with the experimental results. Calibration of the model with appropriate modeling coefficients was necessary to achieve close resemblance with the experimental values. Further, the model is used to predict the gas compositions from other biomass and benchmarked with the performance of coal. In this study, the gasification temperature is varied from 650 C to 800 C, whereas the steam-to-biomass ratio (S/B) is varied from 0.75 to 2.00. As the gasification temperature increases, the production of H{sub 2} and CO increases but the generation of CH{sub 4} and CO{sub 2} reduces. The steam-to-biomass ratio was again found to influence the production rates. With increasing steam input, H{sub 2}, CO{sub 2} and CH{sub 4} were found to increase while CO reduces. (author)

  4. A SPH elastic-viscoplastic model for granular flows and bed-load transport

    Science.gov (United States)

    Ghaïtanellis, Alex; Violeau, Damien; Ferrand, Martin; Abderrezzak, Kamal El Kadi; Leroy, Agnès; Joly, Antoine

    2018-01-01

    An elastic-viscoplastic model (Ulrich, 2013) is combined to a multi-phase SPH formulation (Hu and Adams, 2006; Ghaitanellis et al., 2015) to model granular flows and non-cohesive sediment transport. The soil is treated as a continuum exhibiting a viscoplastic behaviour. Thus, below a critical shear stress (i.e. the yield stress), the soil is assumed to behave as an isotropic linear-elastic solid. When the yield stress is exceeded, the soil flows and behaves as a shear-thinning fluid. A liquid-solid transition threshold based on the granular material properties is proposed, so as to make the model free of numerical parameter. The yield stress is obtained from Drucker-Prager criterion that requires an accurate computation of the effective stress in the soil. A novel method is proposed to compute the effective stress in SPH, solving a Laplace equation. The model is applied to a two-dimensional soil collapse (Bui et al., 2008) and a dam break over mobile beds (Spinewine and Zech, 2007). Results are compared with experimental data and a good agreement is obtained.

  5. Interpretation of Microseismicity Observed From Surface and Borehole Seismic Arrays During Hydraulic Fracturing in Shale - Bedding Plane Slip Model

    Science.gov (United States)

    Stanek, F.; Jechumtalova, Z.; Eisner, L.

    2017-12-01

    We present a geomechanical model explaining microseismicity induced by hydraulic fracturing in shales developed from many datasets acquired with two most common types of seismic monitoring arrays, surface and dual-borehole arrays. The geomechanical model explains the observed source mechanisms and locations of induced events from two stimulated shale reservoirs. We observe shear dip-slip source mechanisms with nodal planes aligned with location trends. We show that such seismicity can be explained as a shearing along bedding planes caused by aseismic opening of vertical hydraulic fractures. The source mechanism inversion was applied only to selected high-quality events with sufficient signal-to-noise ratio. We inverted P- and P- and S-wave arrival amplitudes to full-moment tensor and decomposed it to shear, volumetric and compensated linear vector dipole components. We also tested an effect of noise presented in the data to evaluate reliability of non-shear components. The observed seismicity from both surface and downhole monitoring of shale stimulations is very similar. The locations of induced microseismic events are limited to narrow depth intervals and propagate along distinct trend(s) showing fracture propagation in direction of maximum horizontal stress from injection well(s). The source mechanisms have a small non-shear component which can be partly explained as an effect of noise in the data, i.e. events represent shearing on faults. We observe predominantly dip-slip events with a strike of the steeper (almost vertical) nodal plane parallel to the fracture propagation. Therefore the other possible nodal plane is almost horizontal. The rake angles of the observed mechanisms divide these dip-slips into two groups with opposite polarities. It means that we observe opposite movements on the nearly identically oriented faults. Realizing a typical structural weakness of shale in horizontal planes, we interpret observed microseismicity as a result of shearing

  6. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry.

    Science.gov (United States)

    Boyd, Philip W; Bressac, Matthieu

    2016-11-28

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km 2 ) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' ( sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  7. Developing a test-bed for robust research governance of geoengineering: the contribution of ocean iron biogeochemistry

    Science.gov (United States)

    Boyd, Philip W.; Bressac, Matthieu

    2016-11-01

    Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of `additionality' (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  8. Discrete element modeling and fibre optical measurements for fluidized bed spray granulation

    NARCIS (Netherlands)

    Link, J.M.; Godlieb, W.; Deen, N.G.; Heinrich, S.; Tripp, P.; Peglow, M.; Kuipers, J.A.M.; Schönherr, M.; Mörl, L.

    2007-01-01

    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties,

  9. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  10. Mathematical modelling and simulation of variable-density fluidized bed reactors with generalised nonlinear kinetics

    Science.gov (United States)

    Moradi Tafreshi, Zahra

    1999-10-01

    Fluidized bed reactor is widely used in the chemical, petroleum and biological processing industries for a variety of operations. Due to the complex fluidodynamics, conventional designs are often based on the assumption of constant reaction volume and first order kinetics. Most industrial catalytic reactions, however, occur in a variable-density environment and undergo nonmonotone kinetics. This thesis deals with those complexities. Two complex models, namely 2-phase and 3-phase models, were employed for the prediction of reactor performance. Four general types of reversible reactions with nonlinear power rate law kinetics were considered and the influence of density parameter, ɛ, and reaction orders on reactor behaviour were explored for each type. Computer programs, written in Matlab, were provided for each type of reaction. The simulation results of both models showed that the reaction density parameter has a significant effect on both fluidodynamic characteristics and reaction conversion. Generally, in all types higher values of fluidodynamic variables were obtained when ɛ >= 0. Reaction conversion, however, dropped as the expansion factor increased. This trend, which was more pronounced for reaction orders higher than unity, has been attributed to the ``membranous effect'' of the bubble-emulsion interface that permits a continuous supply of fresh reactants from bubble phase into the emulsion phase in contracting gas systems. In expanding reaction systems, however, the extra moles caused an increase in the bubble size and velocity which reduced the chances of good contact between the two phases. This suggests that fluidized operations are probably not optimal and applicable for certain types of reactions. Moreover, the results showed that simple first order reactions exhibit higher conversions than complex reactions with nonlinear kinetics. 3-phase model, on the other hand, predicted the possibility of multiple steady states for reactions with a decrease in

  11. [Flow model of internal-loop granular sludge bed nitrifying reactor].

    Science.gov (United States)

    Lu, Gang; Zheng, Ping

    2003-11-01

    Internal-loop granular sludge bed nitrifying reactor is a new type of aerobic nitrifying equipment and has shown a good potential for nitrification. To study the flow pattern and construct the flow model, the tracer tests were performed using pulse stimulus-response technique. Based on the experimental results, the flow pattern in the settling section and the circulating section of reactor were analyzed by axial dispersion model and tank-in-series model, respectively. The dispersion number D/uL of 0.00148 in the settling section indicates that its flow pattern is similar to plug flow reactor (PFR), and the series number N of 1.021 in the circulating section indicates that its flow pattern is similar to continuously stirred tank reactor (CSTR). During steady state, the theoretic hydraulic retention time is 360 min, and the actual hydraulic retention time is 341.2 min. The percentage of dead space in the reactor is 5.22%, thereinto the dead space caused by biomass (db ) is 0.75 % and the hydraulic dead space (dh) is 4.47%, which shows that the structural performance of the reactor is excellent. Based on the experiments and analysis, a model of CSTR and PFR in series was constructed. The actual hydraulic retention time distribution of the reactor is in good agreement with the model predictions. Since the relative error between them is 8.56%, the model is accurate to describe the flow pattern. The results have laid a foundation for the kinetic model of the reactor and will be helpful for its design and operation.

  12. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  13. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  14. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  15. FUZZY INFERENCE SYSTEM MODELING FOR BED ACTIVE CARBON RE-GENERATION PROCESS (CO2 GAS FACTORY CASE

    Directory of Open Access Journals (Sweden)

    S. Febriana

    2005-01-01

    Full Text Available Bed active carbon is one of the most important materials that had great impact in determining level of impurities in production of CO2 gas. In this particular factory case, there is unavailability of standard duration time of heating and cooling and steam flow rate for the re-generation process of bed active carbon. The paper discusses the fuzzy inference system for modeling of re-generation process of bed active carbon to find the optimum setting parameter. The fuzzy inference system was build using real historical daily processing data. After validation process, surface plot analysis was performed to find the optimum setting. The result of re-generation parameter setting is 9-10 hours of heating process, 4.66-5.32 hours of cooling process, and 1500-2500 kg/hr of steam flow rate.

  16. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  17. Development of Bed Ridges in Open Channels and their Effects on Secondary Currents and Wall Shear

    Directory of Open Access Journals (Sweden)

    Kamran Ansari

    2012-07-01

    Full Text Available A numerical analysis of the ridges on the bed of wide, open channels and their effects on the distribution of secondary currents and wall shear is undertaken using CFD (Computational Fluid Dynamics. The presence of the lines of boil, consisting of low speed streaks, periodically in the transverse direction, is reported in the literature due to the presence of the ridges. In the present work, simulations are run on channel sections with varying the number of ridges on the bed and the size of these ridges. The effect of these variations on the flow structures and shear stress distribution in wide open channels is reported. The results offer an interesting insight into the 3D (Three-Dimensional flow structures involved and the link between flow structures and bed morpho-dynamics in prismatic channels.

  18. Fluidized bed combustion of low-grade coal and wastes: Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M. [Academy of Sciences of Belarus, Minsk (Belarus). A.V. Luikov Heat and Mass Transfer Inst.; Dobkin, S.M.; Telegin, E.M. [Special Design Office, Brest (Belarus)

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  19. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  20. A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds

    Directory of Open Access Journals (Sweden)

    D. A. S. Conde

    2013-10-01

    Full Text Available A distinguishable feature of overland tsunami propagation is the incorporation of solids within the flow column, either sediment from the natural environment or remains from built infrastructure. This article describes a 2DH (two-dimensional horizontal mathematical model particularly suited for tsunami propagation over complex and dynamic geometries, such as river and estuarine mobile beds. The discretization scheme is based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe–Riemann solver, with appropriate source-term formulations to ensure full conservativeness. The model is validated with laboratory data and paleo-tsunami evidence. As a forecasting application, it is applied to a tsunami scenario in the Tagus estuary, an effort justified by the numerous catastrophic tsunamis that are known to have struck this location over the past two millennia. The obtained results show that, despite the significant differences in Lisbon's layout and morphology, a 1755-like tsunami would still inflict a devastating impact on this major city.

  1. Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)

    Science.gov (United States)

    Papale, William; Nalette Tim; Sweterlitsch, Jeffrey

    2009-01-01

    Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment. Performance testing at Hamilton Sundstrand on CAMRAS #3, which incorporates a new valve and modified canister design, showed similar CO2 and humidity removal performance as CAMRAS #1 and #2, demonstrating that the system form can be modified within certain bounds with little to no effect in system function or performance. Demonstration of solid amine based CO2 and humidity control is an important milestone in developing this technology for human spaceflight. The systems have low power requirements; with power for air flow and periodic valve actuation and indication the sole requirements. Each system occupies the same space as roughly four shuttle non-regenerative LiOH canisters, but have essentially indefinite CO2 removal endurance provided a regeneration pathway is available. Using the solid amine based systems to control cabin humidity also eliminates the latent heat burden on cabin thermal control systems and the need for gas/liquid phase separation in a low gravity environment, resulting in additional simplification of vehicle environmental control and life support system process requirements.

  2. Numerical modeling of the vertical hydrofluorination zone in the moving bed furnace for the production of UF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jourde, J.; Patisson, F.; Ablitzer, D. [Ecole des Mines, Nancy (France). Lab. de Science et Genie des Materiaux Metalliques; Houzelot, J.L. [Ecole des Mines, Nancy (France). Lab. des Sciences du Genie Chimique

    1996-12-31

    Uranium tetrafluoride UF{sub 4} is produced in the moving bed furnace, a reactor in which solid- and gas counterflow. Due to the highly exothermic nature of the chemical reactions involved, the-reactor operation requires a careful temperature control. To provide operators with an appropriate tool for the predictive simulation, optimization and control of the process an overall numerical model of the furnace has been developed. This article describes the part of the model concerning the vertical hydrofluorination zone. The differential equations representing the mass, energy and momentum balances are solved using the finite volume method. The physicochemical parameters necessary for the calculation are detailed. The rate of the main reaction, the hydrofluorination of UO{sub 2}, has been determined with the aid of a specific kinetic model. The computed parameters, namely the temperature and solid and gas compositions, are visualized in the form of isovalue maps. The initial results reveal the influence of a thermodynamic limitation of the reaction at temperatures higher than 650 K. (author)

  3. Studies on Pyrolysis Kinetic of Newspaper Wastes in a Packed Bed Reactor: Experiments, Modeling, and Product Characterization

    Directory of Open Access Journals (Sweden)

    Aparna Sarkar

    2015-01-01

    Full Text Available Newspaper waste was pyrolysed in a 50 mm diameter and 640 mm long reactor placed in a packed bed pyrolyser from 573 K to 1173 K in nitrogen atmosphere to obtain char and pyro-oil. The newspaper sample was also pyrolysed in a thermogravimetric analyser (TGA under the same experimental conditions. The pyrolysis rate of newspaper was observed to decelerate above 673 K. A deactivation model has been attempted to explain this behaviour. The parameters of kinetic model of the reactions have been determined in the temperature range under study. The kinetic rate constants of volatile and char have been determined in the temperature range under study. The activation energies 25.69 KJ/mol, 27.73 KJ/mol, 20.73 KJ/mol and preexponential factors 7.69 min−1, 8.09 min−1, 0.853 min−1 of all products (solid reactant, volatile, and char have been determined, respectively. A deactivation model for pyrolysis of newspaper has been developed under the present study. The char and pyro-oil obtained at different pyrolysis temperatures have been characterized. The FT-IR analyses of pyro-oil have been done. The higher heating values of both pyro-products have been determined.

  4. Demonstrations and verification of debris bed models in the MEDICI reactor cavity code

    International Nuclear Information System (INIS)

    Trebilcock, W.R.; Bergeron, K.D.; Gorham-Bergeron, E.D.

    1984-01-01

    The MEDICI reactor cavity model is under development at Sandia National Laboratories to provide a simple but realistic treatment of ex-vessel severe accident phenomena. Several demonstration cases have been run and are discussed as illustrations of the model's capabilities. Verification of the model with experiments has supplied confidence in the model

  5. Recent Developments in the Design, Capabilities and Autonomous Operations of a Lightweight Surface Manipulation System and Test-bed

    Science.gov (United States)

    Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.

    2011-01-01

    The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.

  6. Development and Analysis of Startup Strategies for Particle Bed Nuclear Rocket Engine

    Science.gov (United States)

    1993-06-01

    M. D. Hoover, eds. American Institute of Physics, New York, 1993. [L-3] Ludewig , Hans. "Particle Bed Reactor Nuclear Rocket Concept." Nuclear Thermal...July 1988. [S-I] Stafford, Thomas (Chairman). America’s Space Exploration Initiative: America at the Threshold. Report of the Stafford Committee to

  7. Equine Cyathostominae can develop to infective third-stage larvae on straw bedding

    DEFF Research Database (Denmark)

    Love, Sandy; Burden, Faith A.; McGirr, Eoghan C.

    2016-01-01

    BACKGROUND: Domesticated grazing animals including horses and donkeys are frequently housed using deep litter bedding systems, where it is commonly presumed that there is no risk of infection from the nematodes that are associated with grazing at pasture. We use two different approaches to test w...

  8. Development of a retrospective process for analyzing results of a HMM based posture recognition system in a functionalized nursing bed

    Directory of Open Access Journals (Sweden)

    Demmer Julia

    2017-09-01

    Full Text Available In the area of care in general but especially in the care of elderly, there is a great interest in deriving patient parameters preparation free. For this purpose, a load cell functionalized nursing bed has been developed at Niederrhein University of Applied Science. The system allows analysis and recognition of the persons’ positions and actions in the bed. The Hidden Markov Toolkit (HTK based posture recognition system was initially presented at the BMT 2015 by our research group. The initial system shows good results but to draw conclusions about the patient's condition, a minimum possible error rate should be achieved. For this purpose, a two-step retrospective analysis of the initial results was developed as an extension to improve the accuracy of the system.

  9. Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation

    Directory of Open Access Journals (Sweden)

    Weibing Zhu

    2018-03-01

    Full Text Available Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative dilatation of mining-induced unloading rock mass is first proposed in this paper. Triaxial unloading tests and theoretical calculation were used to investigate the influence of elastic dilatation of mining-induced unloading rock mass on the development of bed separation in the context of district No. 102 where a layer of super-thick igneous sill exists in the Haizi colliery. It is shown that the elastic dilatation coefficient of mining-induced unloading hard rocks and coal were 0.9~1.0‰ and 2.63‰ respectively under the axial load of 16 MPa, which increased to 1.30~1.59‰ and 4.88‰ when the axial load was 32 MPa. After successively excavating working faces No. 1022 and No. 1024, the elastic dilatation of unloading rock mass was 157.9 mm, which represented approximately 6.3% of the mining height, indicating the elastic dilatation of mining-induced unloading rock mass has a moderate influence on the development of bed separation. Drill hole detection results after grouting, showed that only 0.33 m of the total grouting filling thickness (1.67 m was located in the fracture zone and bending zone, which verified the result from previous drill hole detection that only small bed separation developed beneath the igneous sill. Therefore, it was concluded that the influences of elastic dilatation of mining-induced unloading rock mass and bulking of caved rock mass jointly contributed to the small bed separation space beneath the igneous sill. Since the accurate calculation of the unloading dilatation of rock mass is the fundamental basis for quantitative calculation of bed separation and surface subsidence, this paper is expected

  10. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    Science.gov (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of an experimental radioisotope based process tomography system for research applications in a cold trickle bed column

    International Nuclear Information System (INIS)

    Sau, Madhusudan; Kumar, Pravesh; Kumar, Umesh; Acharya, Rajesh; Singh, Gursharan

    2009-01-01

    In chemical and petrochemical engineering applications, random and structured packing are used in process columns to enhance the heat and mass transfer between two phases. The packing used in such columns is meant to obtain a high specific interfacial area. It is of paramount importance for scale-up and design of trickle bed process columns, to understand and predict the complex multiphase fluid dynamics. In simplified terms, the phase holdup, solid packing distribution in terms of density and gas and liquid velocities among other important parameters need to be qualitatively and quantitatively understood. In the petrochemical industry, many processes are carried out using fixed bed reactors with concurrent upward and downward gas and liquid flows. In order to characterize the liquid and gas flow distribution through a mock-up column, data on planar and volume density distribution using computed tomographic measurements are very helpful. The paper describes the development efforts of a multi-detector 137 Cs radioisotope based in-situ tomography scanner suitable for 600mm dia. cold trickle bed reactor. The development work is at present in progress. The schematics and development of the scanner gantry is described in this paper. (author)

  12. Modeling Tourism Sustainable Development

    Science.gov (United States)

    Shcherbina, O. A.; Shembeleva, E. A.

    The basic approaches to decision making and modeling tourism sustainable development are reviewed. Dynamics of a sustainable development is considered in the Forrester's system dynamics. Multidimensionality of tourism sustainable development and multicriteria issues of sustainable development are analyzed. Decision Support Systems (DSS) and Spatial Decision Support Systems (SDSS) as an effective technique in examining and visualizing impacts of policies, sustainable tourism development strategies within an integrated and dynamic framework are discussed. Main modules that may be utilized for integrated modeling sustainable tourism development are proposed.

  13. Gas Distribution in Shallow Packed Beds.

    Science.gov (United States)

    Parsons, Ian Miles

    Available from UMI in association with The British Library. Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base/free fluid interface. This study is based on a combined theoretical and modelling approach. The Ergun Equation is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been used in a vectorial form so that it can be applied to maldistributed and multi -directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid/bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. The flow in a curved bed section, which is three -dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant

  14. An improved model for estimating fractal structure of silica nano-agglomerates in a vibro-fluidized bed

    Directory of Open Access Journals (Sweden)

    A Esmailpour

    2016-10-01

    Full Text Available A study has been conducted to determine the effects of operating conditions such as vibration frequency, vibration amplitude on the fractal structure of silica (SiO2 nanoparticle agglomerate in a vibro-fluidized bed. An improved model was proposed by assimilation of fractal theory, Richardson-Zaki equation and mass balance. This model has been developed to predict the properties of nanoparticle agglomerate, such as fractal dimension and its size. It has been found out the vibration intensity increase leads to a slight reduction in fractal dimension of agglomerate. This Paper is also indicated that the size of agglomerate has the same behavior as fractal dimension with respect to vibration intensity changes. This study demonstrated that the fractal dimension of Silica nanoparticle agglomerate is in the range of 2.61 to 2.69 and the number of primary particles in the agglomerate is in the order of 1010. The vibration frequency is more impressive than its amplitude on agglomerate size reduction. Calculated Minimum fluidization velocity by applying predicted agglomerate sizes and experimental data are acceptable fitted.

  15. Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach

    Directory of Open Access Journals (Sweden)

    M. Peglow

    2005-06-01

    Full Text Available In this paper a model for fluidized bed spray agglomeration is presented. To describe the processes of heat and mass transfer, a physical based model is derived. The model takes evaporation process from the wetted particles as well as the effects of transfer phenomena between suspension gas and bypass gas into account. The change of particle size distribution during agglomeration, modeled by population balances, is linked to the heat and mass transfer model. A new technique is derived to extract agglomeration and nucleation rates from experimental data. Comparisons of experiments and simulations are presented.

  16. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  17. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Science.gov (United States)

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  18. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    Science.gov (United States)

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  19. Operating experience and development of fluidized-bed denitrators for UNH at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Minoru; Nakamichi, Hideya; Takeda, Seiichiro; Kubota, Kanya; Katoh, Shuji

    1983-01-01

    The fluidized bed denitrator for uranyl nitrate hexahydrate (UNH) at Tokai reprocessing plant has been operated since 1976. About 170 tons of spent fuel have been reprocessed, and the denitrator has encountered numerous operational problems during the period. This report deals with these technical problems and the associated countermeasures taken, including the dismantling and reconstruction of equipment and the improvement of operating method. The major problems encountered were as follows: (1) the crystallization of UNH on the UNH feeding line, (2) spray nozzle clogging and candle filter clogging, (3) particle growth, (4) plugging of the drawing-out line by nozzle caking, and (5) slugging in fluidized-bed denitration. The total quantity and quality of UO 3 products obtained so far at the plant are also briefly described together with some future R and D programs such as the improvement of UO 3 reactivity and the automation of denitrators. (Aoki, K.)

  20. Simple models for the continuous aerobic biodegradation of phenol in a packed bed reactor

    Directory of Open Access Journals (Sweden)

    Andrew Mark Gerrard

    2006-07-01

    Full Text Available This paper proposes the use of a preliminary, phenol removal step to reduce peak loads arriving at a conventional effluent plant. A packed bed reactor (PBR using polyurethane foam, porous glass and also cocoa fibres as the inert support material was used. Experiments have been carried out where the flow-rates, plus inlet and outlet phenol concentrations were measured. A simple, plug-flow model is proposed to represent the results. Zero, first order, Monod and inhibited kinetics rate equations were evaluated. It was found that the Monod model gave the best fit to the experimental data and allowed linear graphs to be plotted. The Monod saturation constant, K, is approximately 50 g m-3, and ka is around 900 s-1.Este artigo propõe o uso de uma etapa preliminar de remoção de fenol para redução de picos de carga na entrada de sistemas convencionais de tratamento de efluentes. Um reator de leito fixo (RLF foi usado, tendo como suportes inertes espuma de poliuretano, vidro poroso e também fibras de coco. Nos experimentos foram controladas a vazão e as concentrações de fenol de entrada e saída. Um simples modelo plug-flow é proposto para representar os resultados. Cinéticas de zero e primeira ordens, Monod e de inibição foram avaliadas. Foi verificado que o modelo de Monod foi o que melhor se ajustou aos dados experimentais, permitindo que gráficos lineares fossem traçados. A constante saturação de Monod, K, é de aproximadamente 50 g m-3 e ka em torno de 900 s-1.

  1. Fluidized bed adsorption of cephalosporin C.

    Science.gov (United States)

    Hicketier, M; Buchholz, K

    2002-02-28

    Fluidized bed adsorption can substantially simplify the recovery of products from fermentation. There are, however, several critical parameters, which have a significant influence on the performance of such systems. This paper presents experimental results on the adsorption of an antibiotic, Cephalosporin C, on macroporous adsorbents of the polystyrene type and on an ion exchanger. Internals (static mixers) were used to control bed expansion and mixing, the range of flow rates could thus be extended significantly. An integrated mathematical model was developed comprising bed expansion, residence time distribution and mixing, adsorption kinetics and equilibria.

  2. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  3. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

  4. A Physical Protection Systems Test Bed for International Counter-Trafficking System Development

    International Nuclear Information System (INIS)

    Stinson, Brad J.; Kuhn, Michael J.; Donaldson, Terrence L.; Richardson, Dave; Rowe, Nathan C.; Younkin, James R.; Pickett, Chris A.

    2011-01-01

    Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensors vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this

  5. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  6. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  7. The study on three-dimensional mathematical model of river bed erosion for water-sediment two-phase flow

    Science.gov (United States)

    Fang, Hongwei

    1996-02-01

    Based on the tensor analysis of water-sediment two-phase flow, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent flow. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.

  8. A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed membrane reactors

    OpenAIRE

    J.W. Voncken, Ramon; Roghair, Ivo; Van Sint Annaland, Martin

    2017-01-01

    Fluidized bed membrane reactors have been proposed as a promising reactor concept for the production of ultra-pure hydrogen via Water Gas Shift (WGS). High-flux thin-film dense palladium-based membranes are used to selectively extract hydrogen from the reaction medium, which shifts the thermodynamic equilibrium towards the products’ side, increasing the conversion. A Two-Fluid Model (TFM) has been used to investigate the effect of hydrogen extraction via perm-selective membranes on the WGS re...

  9. Thrust load determination for the high pressure turbo unit of the pebble bed micro model / Jacobus Janse van Rensburg

    OpenAIRE

    Janse van Rensburg, Jacobus

    2006-01-01

    Commercial turbochargers used on earth-moving equipment, were used as the turbo machinery for the Pebble Bed Micro Model (PBMM) instead of custom-built turbo units. A premature thrust bearing failure occurred on the High Pressure Turbo Unit (HPTU) of the PBMM during a test. Due to the closed Brayton cycle operation of the PBMM, it might have been possible to exert larger thrust loads on the thrust bearing of the HPTU than normally present in the turbo diesel engine application. ...

  10. Experimental study and Monte Carlo modeling of object motion in a bubbling fluidized bed

    OpenAIRE

    García Gutiérrez, Luis Miguel

    2014-01-01

    Mención Internacional en el título de doctor Fluidized beds are employed for a wide variety of applications such as drying, coating of particles, catalytic reactions, or thermal conversion processes. In a number of these applications, objects differing in density and/or size from the dense phase material are found in the bed. These objects can be agglomerates, catalysts or reactants. In this PhD thesis, a fundamental study of the motion of objects is presented, but consideri...

  11. Six-Degree Head-Down Tilt Bed Rest: Forty Years of Development as a Physiological Analog for Weightlessness

    Science.gov (United States)

    Smith, Jeffrey D.; Cromwell, Ronita L.; Kundrot, Craig E.; Charles, John B.

    2011-01-01

    Early on, bed rest was recognized as a method for inducing many of the physiological changes experienced by spaceflight. Head-down tilt (HDT) bed rest was first introduced as an analog for spaceflight by a Soviet team led by Genin and Kakurin. Their study was performed in 1970 (at -4 degrees) and lasted for 30 days; results were reported in the Russian Journal of Space Biology (Kosmicheskaya Biol. 1972; 6(4): 26-28 & 45-109). The goal was to test physiological countermeasures for cosmonauts who would soon begin month-long missions to the Salyut space station. HDT was chosen to produce a similar sensation of blood flow to the head reported by Soyuz cosmonauts. Over the next decade, other tilt angles were studied and comparisons with spaceflight were made, showing that HDT greater than 4 degrees was superior to horizontal bed rest for modeling acute physiological changes observed in space; but, at higher angles, subjects experienced greater discomfort without clearly improving the physiological comparison to spaceflight. A joint study performed by US and Soviet investigators, in 1979, set the goal of standardization of baseline conditions and chose 6-degrees HDT. This effectively established 6-degree HDT bed rest as the internationally-preferred analog for weightlessness and, since 1990, nearly all further studies have been conducted at 6-degrees HDT. A thorough literature review (1970-2010) revealed 534 primary scientific journal articles which reported results from using HDT as a physiological analog for spaceflight. These studies have ranged from as little as 10 minutes to the longest duration of 370 days. Long-term studies lasting four weeks or more have resulted in over 170 primary research articles. Today, the 6-degree HDT model provides a consistent, thoroughly-tested, ground-based analog for spaceflight and allows the proper scientific controls for rigorous testing of physiological countermeasures; however, all models have their strengths and limits. The 6

  12. Development of methanogenic consortia in fluidized-bed batches using sepiolite of different particle size.

    Science.gov (United States)

    Sánchez, J M; Rodríguez, F; Valle, L; Muñoz, M A; Moriñigo, M A; Borrego, J J

    1996-09-01

    The addition of support materials, such as sepiolite, to fluidized-bed anaerobic digesters enhances the methane production by increasing the colonization by syntrophic microbiota. However, the efficiency in the methanogenesis depends on the particle size of the support material, the highest level of methane production being obtained by the smaller particle size sepiolite. Because of the porosity and physico-chemical characteristics of these support materials, the anaerobic microbial consortia formed quickly (after one week of incubation). The predominant methanogenic bacteria present in the active granules, detected both by immunofluorescence using specific antibodies and by scanning electron microscopy, were acetoclastic methanogens, mainly Methanosarcina and Methanosaeta.

  13. Biomass pyrolysis in a fluidized bed reactor. Part 2: experimental validation of model results

    NARCIS (Netherlands)

    Wang, X.; Kersten, Sascha R.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    2005-01-01

    Various types of cylindrical biomass particles (pine, beech, bamboo, demolition wood) have been pyrolyzed in a batch-wise operated fluid bed laboratory setup. Conversion times, product yields, and product compositions were measured as a function of the particle size (0.7−17 mm), the vapor's

  14. Application of point kinetic model in the study of fluidized bed reactor dynamic

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio de; Streck, Elaine E.

    1995-01-01

    In this work the dynamical behavior of the fluidized bed nuclear reactor is analysed. The main goal consist to study the effect of the acceleration term in the point kinetic equations. Numerical simulations are reported considering constant acceleration. (author). 7 refs, 4 figs

  15. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available The gasification of two high-ash coals were studied using a pilot scale fluidised bed gasifier using oxygen enrich air and steam as the gasification agents. The results of the tests show that the fixed carbon conversion and calorific value increases...

  16. Improvement of the discrete element model for the study of granulation in a spout fluidized bed

    NARCIS (Netherlands)

    van Buijtenen, M.S.; Deen, N.G.; Heinrich, Stefan; Kuipers, J.A.M.; Antonyuk, Sergiy

    2007-01-01

    Spout fluidized beds find widespread application in the process industry in granulation processes, in which efficient contacting between large particles, droplets and gas is of paramount importance. However, detailed understanding of the complex behavior of these systems is lacking. In this paper we

  17. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds

    Science.gov (United States)

    X. Zhou; D.R. Weise; S Mahalingam

    2005-01-01

    An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...

  18. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim

    1996-01-01

    quartz reactor was measured. It was found that calcined Stevns Chalk is a very active catalyst for N2O decomposition in an inert atmosphere compared to bed material, i.e. a mixture of ash and sand. However, in FBC the limestone is exposed to a mixture of gases, including CO, CO2 and SO2, and sulphation...

  19. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers

    NARCIS (Netherlands)

    Singh, Umesh; Crosato, A.; Giri, Sanjay; Hicks, Murray

    2017-01-01

    The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river

  20. Bar dynamics and bifurcation evolution in a modelled braided sand-bed river

    NARCIS (Netherlands)

    Schuurman, Filip; Kleinhans, Maarten G.

    2015-01-01

    Morphodynamics in sand-bed braided rivers are associated with simultaneous evolution of mid-channel bars and channels on the braidplain. Bifurcations around mid-channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with

  1. Seismicity Induced by Hydraulic Fracturing in Shales: A Bedding Plane Slip Model

    Czech Academy of Sciences Publication Activity Database

    Staněk, František; Eisner, Leo

    2017-01-01

    Roč. 122, č. 10 (2017), s. 7912-7926 ISSN 2169-9313 Institutional support: RVO:67985891 Keywords : microseismic * seismicity * hydraulic fracturing * bedding plane slip Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: 1.7 Other natural sciences Impact factor: 3.350, year: 2016

  2. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.

    Science.gov (United States)

    Ren, Yupeng; Wu, Yi-Ning; Yang, Chung-Yong; Xu, Tao; Harvey, Richard L; Zhang, Li-Qun

    2017-06-01

    Ankle movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors receive motor rehabilitation in only a small fraction of time, partly due to the lack of effective devices and protocols suitable for early in-bed rehabilitation. Considering the first few months post stroke is critical in stroke recovery, there is a strong need to start motor rehabilitation early, mobilize the ankle, and conduct movement therapy. This study seeks to address the need and deliver intensive passive and active movement training in acute stroke using a wearable ankle robotic device. Isometric torque generation mode under real-time feedback is used to guide patients in motor relearning. In the passive stretching mode, the wearable robotic device stretches the ankle throughout its range of motion to the extreme dorsiflexion forcefully and safely. In the active movement training mode, a patient is guided and motivated to actively participate in movement training through game playing. Clinical testing of the wearable robotic device on 10 acute stroke survivors over 12 sessions of feedback-facilitated isometric torque generation, and passive and active movement training indicated that the early in-bed rehabilitation could have facilitated neuroplasticity and helped improve motor control ability.

  3. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    Science.gov (United States)

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Improvement of a multi-stage model for the modeling of a functionalized nursing bed as support for the sensor-assisted function-alization of furniture in the hospital and care sector

    Directory of Open Access Journals (Sweden)

    Kitzig Andreas

    2017-09-01

    Full Text Available Development of preparation-free functionalized furniture based patient monitoring systems for use in the area of home- or stationary- care is often empirically driven. In particular, functionalization of furniture by means of different sensors is strongly affected by this development methodology. As a result, the systems are often not extensive-ly extendable or cannot be optimized because basic mechanisms are not comprehensible. In order to support development or optimization, a modelling approach is often useful. Thus, using a more comprehensive approach the required sensitivity of the sensors as well as their position in the system can be derived from a simulation model. In order to solve this problem, a multi-stage model was introduced at the BMT conference in 2014 by the authors, which allows the designer to model the entire system. The model has been extended and improved in the meantime and the achieved progress is presented in this work. The presented modelling approach can be divided into three main components. These are the person under supervision, the furniture (in our case a nursing bed and the sensors (force measuring cells which are modelled separately. In this work the main focus will be on improving the modelling of the human movement process and its implementation. Furthermore, the modelling of the sensor behavior in the nursing bed is described in detail with regard to their oscillation behavior and the influence on the model.

  5. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2009-01-01

    volumes. In each control volume, dynamic heat and mass balances were set up allowing the simulation of the contents of water vapour, water on core particles and deposited coating mass as well as fluidisation gas, particle and chamber wall temperature. The model was used to test different scale....../3). Results show good agreement between simulated and experimental outlet fluidisation air temperature and humidity as well as bed temperature. Simulations reveal that vertical temperature and humidity gradients increase significantly with increasing scale and that in fluid beds as the simulated 900kg (RICA......-TEC Anhydro) production-scale, the gradients become too large to use the simple combined drying force/relative droplet size scale-up approach without also increasing the inlet fluidisation air temperature significantly. Instead, scale-up in terms of combinations of the viscous Stokes theory with simulated...

  6. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  7. Models comparative study for heat storage in fixed beds; Estudo comparativo de modelos para armazenamento de calor em leitos fixos

    Energy Technology Data Exchange (ETDEWEB)

    Stuginski Junior, Rubens

    1991-07-01

    This work presents comparative results of a numerical investigation of four possible models for the prediction of thermal performance of fixed bed storage units and their thermal design. These models includes Schumann's model, the radial dispersion model, a model that include both axial heat conduction in the fluid phase and admits thermal gradient in the solids particles and finally a two dimensional single phase model. For each of these models a computer code was written and tested to evaluate the computing time of same data and analyze any other computational problems. The tests of thermal performance included particle size, porosity, particle material, flow rate, inlet temperature and heat losses form tank walls and extremities. Dynamics behaviour of the storage units due to transient variation in either flow rate or inlet temperature was also investigated. The results presented include temperature gradients, pressure drop and heat storage. The results obtained are very useful for analysis and design of fixed bed storage units. (author)

  8. A 2D hydrodynamic-sedimentological model for gravel bed rivers. Part II, Case study: the Brenta River in Italy

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available A 2D depth average model has been used to simulate water and sediment flow in the Brenta River so as to interpret channel changes and to assess model predictive capabilities. The Brenta River is a gravel bed river located in Northern Italy. The study reach is 1400 long and has a mean slope of 0.0056. High resolution digital terrain models has been produced combining laser imaging detection and ranging data with colour bathymetry techniques. Extensive field sedimentological surveys have been also carried out for surface and subsurface material. The data were loaded in the model and the passage of a high intense flood (R.I. > 9 years was simulated. The model was run under the hypothesis of a substantial equilibrium between sediment input and transport capacity. In this way, the model results were considered as a reference condition, and the potential trend of the reach was assessed. Low-frequency floods (R.I. » 1.5 years are expected to produce negligible changes in the channel while high floods may focalize erosion on banks instead than on channel bed. Furthermore, the model predicts well the location of erosion and siltation areas and the results promote its application to other reaches of the Brenta River in order to assess their stability and medium-term evolution.

  9. New droplet model developments

    International Nuclear Information System (INIS)

    Dorso, C.O.; Myers, W.D.; Swiatecki, W.J.; Moeller, P.; Treiner, J.; Weiss, M.S.

    1985-09-01

    A brief summary is given of three recent contributions to the development of the Droplet Model. The first concerns the electric dipole moment induced in octupole deformed nuclei by the Coulomb redistribution. The second concerns a study of squeezing in nuclei and the third is a study of the improved predictive power of the model when an empirical ''exponential'' term is included. 25 refs., 3 figs

  10. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2010-03-01

    Full Text Available In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D geographic information system (GIS. A wireless sensor network (WSN is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN algorithm, the K-weighted nearest neighbors (KWNN algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD software and the virtual reality markup language (VRML to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  11. Development of an indoor location based service test bed and geographic information system with a wireless sensor network.

    Science.gov (United States)

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  12. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  13. Probabilistic Model Development

    Science.gov (United States)

    Adam, James H., Jr.

    2010-01-01

    Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.

  14. CFD Modelling of an Open Core Downdraft Moving Bed Biomass Gasifier

    OpenAIRE

    A. Rogel–Ramírez

    2008-01-01

    This paper contains the description of a bidimensional Computacional Fluid Dynamics (CFD), model developed to simulate the flow and reaction in a stratified downdraft biomass gasifier, whereby Eulerian conservation equations are solved for particle and gas phase components, velocities and specific enthalpies. The model is based on the PHOENICS package and represents a tool which can be used in gasifier analysis and design. Contributions of chemical kinetic and the mixing rate using the EBU ap...

  15. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  16. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad

    2013-01-01

    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  17. Modeling Fluid Dynamics and Growth Kinetics in Fluidized Bed Spray Granulation

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2010-12-01

    Full Text Available Fluidized bed spray granulation is used to produce spherical granules from suspensions, solutions and melts. Experimental investigations revealed that fluid dynamics in the granulator plays a crucial role, in particular in the jet. The jet causes the particle movement as well as drop propagation and deposition on the particles. In this work the “Two Fluid Model” (TFM is used to simulate the multiphase fluid dynamics in the fluidized bed. The results of simulations were validated by measuring the particle velocity using Laser Doppler Velocimetry (LDV. From the TFM-simulations with implemented growth mechanisms the growth kinetics is obtained and is used to describe the transient states of various granulation processes by solving the appropriate population balances.

  18. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    Science.gov (United States)

    2017-06-30

    for computing the bed shear stress in unstratified combined wave and current flows is presented. The present approach follows from existing theories ...and trademarks cited are the property of their respective owners . The findings of this report are not to be construed as an official Department of the...referenced. 1.2 Objective The objective of this technical report is to describe the theory and equations that accompany a MATLAB computer program

  19. Use of black oil simulator for coal bed methane reservoir model

    Energy Technology Data Exchange (ETDEWEB)

    Sonwa, R.; Enachescu, C.; Rohs, S. [Golder Associates GmbH, Celle (Germany)

    2013-08-01

    This paper starts from the work done by Seidle et al. (1990) and other authors on the topic of coal degasification and develops a more accurate representative naturally fractured CBM-reservoir by using a Discrete Fracture Network modeling approach. For this issue we firstly calibrate the reservoir simulator tNAVIGATOR by showing his ability to reproduce the work done by Seidle et al. and secondly generate a DFN model using FracMan in accordance with the distribution and orientation of the cleats. tNavigator was then used to simulate multiphase flow through the DFN- Model. (orig.)

  20. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  1. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Doster, J.M.; Kim, K.D.; Al-Chalabi, R.M.; Khedro, T.; Sues, R.H.; Yacout, A.M.

    1990-01-01

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  2. Bed roughness experiments in supply limited conditions

    NARCIS (Netherlands)

    Spekkers, Matthieu; Tuijnder, Arjan; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.; Parsons, D.R.; Garlan, T.; Best, J.L.

    2008-01-01

    Reliable roughness models are of great importance, for example, when predicting water levels in rivers. The currently available roughness models are based on fully mobile bed conditions. However, in rivers where widely graded sediments are present more or less permanent armour layers can develop

  3. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    International Nuclear Information System (INIS)

    Sarkar, Arijit; Koch, Donald L.

    2015-01-01

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior

  4. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit

    2015-11-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  5. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  6. Simultaneous heat and mass transfer in packed bed brying of seeds having a mucilage coating

    Directory of Open Access Journals (Sweden)

    M. M. Prado

    2008-03-01

    Full Text Available The simultaneous heat and mass transfer between fluid phase and seeds having a mucilaginous coating was studied during packed bed drying. To describe the process, a two-phase model approach was employed, in which the effects of bed shrinkage and nonconstant physical properties were considered. The model took into account bed contraction by employing moving coordinates. Equations relating shrinkage and structural parameters of the packed bed with moisture content, required in the drying model, were developed from experimental results in thick-layer bed drying. The model verification was based on a comparison between experimental and predicted data on moisture content and temperature along the bed. Parametric studies showed that the application of correlations capable of incorporating changes in bed properties gives better data simulation. By experimental-theoretical analysis, the importance of shrinkage for a more accurate interpretation of heat and mass transfer phenomena in the drying of porous media composed of mucilaginous seeds is corroborated.

  7. Observation and simulation of heterogeneous 2D water and solute flow processes in ditch beds for subsequent catchment modelling

    Science.gov (United States)

    Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc

    2015-04-01

    Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last

  8. Modelling of hybrid moving bed biofilm reactors: a pilot plant experiment.

    Science.gov (United States)

    Mannina, G; Di Trapani, D; Torregrossa, M; Viviani, G

    2007-01-01

    In recent years there has been an increasing interest in the development of hybrid biofilm reactors, especially in the upgrading of existing WWTP that are no longer able to respect concentration limits. In fact, today's challenge is the achievement of a good aquatic state for the receiving water bodies according to the Water Framework Directive requirements, which indeed limit even more the continuous emissions, i.e. coming from WWTP. This paper presents the setting up of a mathematical model for the simulation of a hybrid MBBR system; the model calibration/validation has been carried out considering a field gathering campaign on an experimental pilot plant. The main goal is to gain insight about MBBR processes attempting to overcome main shortcomings in particular referring to the modelling aspects. The model is made up of two connected sub-models for the simulation of the suspended and attached biomass. The model is mainly based on the concepts of the activated sludge model No. 1 (ASM1) for the description of the biokinetic process both for the suspended and for the attached biomass. The results show a good agreement between predicted and observed values both for the attached and for the suspended biomass moreover they are encouraging for further researches.

  9. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  10. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  11. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  12. Modeling Non-Fickian Transport and Hyperexponential Deposition for Deep Bed Filtration

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2010-01-01

    coefficients. For such cases the elliptic equation excels the advection dispersion equation in both fitting breakthrough curves and predicting deposition profiles related to natural or highly heterogeneous porous media. The deposition hyperexponentiality can be caused by the following three mechanisms...... influencing breakthrough curves and deposition profiles for the deep bed filtration systems. Results are compared with a large set of experimental observations. Our findings show that highly dispersed breakthrough curves, e.g. those with early arrivals and large ending tails, correspond to large dispersion...

  13. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  14. A New Elasto-Viscoplastic Damage Model Combined with the Generalized Hoek-Brown Failure Criterion for Bedded Rock Salt and its Application

    Science.gov (United States)

    Ma, Lin-jian; Liu, Xin-yu; Fang, Qin; Xu, Hong-fa; Xia, Hui-min; Li, Er-bing; Yang, Shi-gang; Li, Wen-pei

    2013-01-01

    According to the requirement of the West-East Gas Transmission Project in China, the solution-mined cavities located in the Jintan bedded salt formation of Jiangsu province will be utilized for natural gas storage. This task is more challenging than conventional salt dome cavern construction and operation due to the heterogeneous bedding layers of the bedded salt formation. A three-dimensional creep damage constitutive model combined with the generalized Hoek-Brown model is exclusively formulated and validated with a series of strength and creep tests for the bedded rock salt. The viscoplastic model, which takes the coupled creep damage and the failure behavior under various stress states into account, enables both the three creep phases and the deformation induced by vicious damage and plastic flow to be calculated. A further geomechanical analysis of the rapid gas withdrawal for the thin-bedded salt cavern was performed by implementing the proposed model in the finite difference software FLAC3D. The volume convergence, the damage and failure propagation of the cavern, as well as the strain rate of the salt around the cavern, were evaluated and discussed in detail. Finally, based on the simulation study, a 7-MPa minimum internal pressure is suggested to ensure the structural stability of the Jintan bedded salt cavern. The results obtained from these investigations provide the necessary input for the design and construction of the cavern project.

  15. Outcome of cardiopulmonary resuscitation in a 2300-bed hospital in a developing country.

    Science.gov (United States)

    Suraseranivongse, Suwannee; Chawaruechai, Thanawin; Saengsung, Parichart; Komoltri, Chulaluk

    2006-11-01

    To evaluate the outcome and quality of in-hospital cardiopulmonary resuscitation (CPR), and factors affecting the outcome. A 2300-bed university hospital in Thailand. A 1-year prospective audit according to the Utstein style. A total of 639 cardiac arrests (370 male, 269 female, age 1 day-96 years, mean+/-S.D.=53.3+/-24.12 years) were included. Four hundred and thirty-three cardiac arrests (67.8%) occurred in non-monitored areas and 200 (31.3%) occurred in monitored areas. Five hundred and thirty-six cardiac arrests (84%) were witnessed. The majority of cardiac arrests occurred in medical patients (68.4%) and surgical patients (21.4%). The most common underlying causes of arrest were respiratory failure (24.7%) and septic shock (23.3%). Initial ECG rhythms were ventricular fibrillation 79 (12.4%), asystole 272 (42.6%) with pulseless electrical activity 225 (35.2%). Most patients received basic life support within 1 min (86.7%) and advanced life support (ALS) within 4 min (92.6%) but only 25% of patients received defibrillation within 3 min. Following resuscitation, 394 (61.7%) achieved restoration of spontaneous circulation and 44 patients (6.9%) survived to discharge. Only 162 post-arrest patients were treated in the critical care area. The initial survival rate was not associated with sex, age and time to ALS, but was significantly related to the monitored area. In our setting, survival to discharge is 6.9%. Initial survival rate was strongly associated with being in a monitored area. Defibrillators and the critical care areas were insufficient.

  16. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, G. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, DPAM, 13 - Saint-Paul-lez-Durance (France); Ederli, St. [Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA) (Italy)

    2007-07-01

    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO{sub 2} spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  17. Effects of uncertain topographic input data on two-dimensional modeling of flow hydraulics, habitat suitability, and bed mobility

    Science.gov (United States)

    Legleiter, C. J.; McDonald, R.; Kyriakidis, P. C.; Nelson, J. M.

    2009-12-01

    Numerical models of flow and sediment transport increasingly are used to inform studies of aquatic habitat and river morphodynamics. Accurate topographic information is required to parameterize such models, but this fundamental input is typically subject to considerable uncertainty, which can propagate through a model to produce uncertain predictions of flow hydraulics. In this study, we examined the effects of uncertain topographic input on the output from FaSTMECH, a two-dimensional, finite difference flow model implemented on a regular, channel-centered grid; the model was applied to a simple, restored gravel-bed river. We adopted a spatially explicit stochastic simulation approach because elevation differences (i.e., perturbations) at one node of the computational grid influenced model predictions at nearby nodes, due to the strong coupling between proximal locations dictated by the governing equations of fluid flow. Geostatistical techniques provided an appropriate framework for examining the impacts of topographic uncertainty by generating many, equally likely realizations, each consistent with a statistical model summarizing the variability and spatial structure of channel morphology. By applying the model to each realization in turn, a distribution of model outputs was generated for each grid node. One set of realizations, conditioned to the available survey data and progressively thinned versions thereof, was used to quantify the effects of sampling strategy on topographic uncertainty and hence the uncertainty of model predictions. This analysis indicated that as the spacing between surveyed cross-sections increased, the reach-averaged ensemble standard deviation of water surface elevation, depth, velocity, and boundary shear stress increased as well, for both baseflow conditions and for a discharge of ~75% bankfull. A second set of realizations was generated by retaining randomly selected subsets of the original survey data and used to investigate the

  18. Modeling the operation of a three-stage fluidized bed reactor for removing CO2 from flue gases.

    Science.gov (United States)

    Mohanty, C R; Meikap, B C

    2011-03-15

    A bubbling counter-current multistage fluidized bed reactor for the sorption of carbon dioxide (CO(2)) by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow, and the emulsion phase in plug flow and perfectly mixed flow conditions. To meet prescribed permissible limit to emit carbon dioxide from industrial flue gases, dry scrubbing of CO(2) was realized. For the evaluation, a pilot plant was built, on which also the removal efficiency of CO(2) was verified at different solids flow rates. The model results were compared with experimental data in terms of percentage removal efficiency of carbon dioxide. The comparison showed that the EGPF model agreed well with the experimental data satisfactorily. The removal efficiency was observed to be mainly influenced by flow rates of adsorbent and CO(2) concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Modeling the operation of a three-stage fluidized bed reactor for removing CO2 from flue gases

    International Nuclear Information System (INIS)

    Mohanty, C.R.; Meikap, B.C.

    2011-01-01

    A bubbling counter-current multistage fluidized bed reactor for the sorption of carbon dioxide (CO 2 ) by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow, and the emulsion phase in plug flow and perfectly mixed flow conditions. To meet prescribed permissible limit to emit carbon dioxide from industrial flue gases, dry scrubbing of CO 2 was realized. For the evaluation, a pilot plant was built, on which also the removal efficiency of CO 2 was verified at different solids flow rates. The model results were compared with experimental data in terms of percentage removal efficiency of carbon dioxide. The comparison showed that the EGPF model agreed well with the experimental data satisfactorily. The removal efficiency was observed to be mainly influenced by flow rates of adsorbent and CO 2 concentration.

  20. Modelling of the Ni(II) removal from aqueous solutions onto grape stalk wastes in fixed-bed column.

    Science.gov (United States)

    Valderrama, César; Arévalo, Jaime A; Casas, Ignasi; Martínez, María; Miralles, Nuria; Florido, Antonio

    2010-02-15

    Grape stalk wastes generated in the wine production process were used for the removal of nickel (II) from aqueous solution. The experimental breakthrough curves were obtained in fixed-bed columns. Experiments we carry out in order to evaluate the influence of inlet metal concentration (30 and 70 mg L(-1)) and the regeneration process in a double sorption cycle. The CXTFIT code was used to fit the experimental data and to determine the transport and sorption parameters of the convective-dispersive equation (CDE) and the two-site deterministic non-equilibrium (TSM/CDE) model by adjusting the models to the experimental breakthrough curves (BTC). The results showed that bed capacity as well as transport and sorption parameters were affected by the initial metal concentration, at the highest Ni(II) concentration the grape stalks column saturated quickly leading to earlier breakthrough. The sorption capacity of the sorbent was slightly reduced in a double sorption cycle, while the recovery of the metal in the desorption step was ranging between 80% and 85% in both cycles.

  1. Study on process development of solvent extraction of montan wax from lignite particles in a continuous fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tiejun; Zhao Lianzhong; Di Weiquan; Huang Zhe; Chen Dabao; Zhang Ruiying; Yuan Huiru; Yang Guilin

    1985-12-01

    A new process of continuous solvent extraction for production of montan wax based on particulate fluidization technology was developed. Experimental results obtained in the pilot plant show that the fluidised bed extraction process is successful. The extraction rate is about 65-70% and benzene consumption is 0.46 t per ton of wax. Xun Dian lignite with particle size of 0.2-3 mm was used, which gave the following analysis data: wax content 7.15%, water content about 23%, ash content 12%. The quality of the montan wax product is specified as follows: water content 1.12%., insolubles (in benzene) 0.61%, ash content 0.3%, melting point 84 C, resin 21.16%, asphalts content 11.54%, acid value 35-50, saponification value 102.25.

  2. Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System

    Science.gov (United States)

    Deomore, Dayanand N.; Yarasu, Ravindra B.

    2018-02-01

    The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.

  3. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    Science.gov (United States)

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  4. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models such as that of Webb and Morley. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green's function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. In so far as their results are comparable, the present model yields estimates which are close to those of the Webb-Morley model for overall half-lives between 30 and 3000 years, but which become increasingly more restrictive for longer-lived materials. (author)

  5. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. (author)

  6. CFD Modelling of an Open Core Downdraft Moving Bed Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    A. Rogel–Ramírez

    2008-10-01

    Full Text Available This paper contains the description of a bidimensional Computacional Fluid Dynamics (CFD, model developed to simulate the flow and reaction in a stratified downdraft biomass gasifier, whereby Eulerian conservation equations are solved for particle and gas phase components, velocities and specific enthalpies. The model is based on the PHOENICS package and represents a tool which can be used in gasifier analysis and design. Contributions of chemical kinetic and the mixing rate using the EBU approach are considered in the gas phase global homogeneous reactions. The harmonic blending of chemical kinetics and mass transfer effects, determine the global heterogeneous reactions between char and O2, CO2, and H2O. The turbulence effect in the gas phase is accounted by the standard k–s approach. The model provides information of the producer gas composition, velocities and temperature at the outlet, and allows different operating parameters and feed properties to be changed. Finally, a comparison with experimental data available in literature was done, which showed satisfactory agreement from a qualitative point of view, though further validation is required.

  7. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2017-05-01

    Full Text Available The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ~70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1 assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2 field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3 the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models.

  9. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  10. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  11. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  12. Estimation of particle velocity in moving beds based on a flow model for bulk solids. Ryudo model ni motozuita idoso no ryushi sokudo no suisan

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. (Muroran Inst. of Tech., Hokkaido (Japan)); Honda, Y. (Snow Brand Milk Products Co. Ltd., Sapporo (Japan))

    1992-11-10

    Based on a particle flow model (stress-shear strain velocity relational expression) which takes account of the bulk volume expansion effect during shearing deformation of particles, a new estimation method for particle velocity distribution and stress distribution is proposed. The method is applied to a crossflow moving bed and to a moving bed for comparison with the experimental values to examine its validity. The method is further extended to predict the velocity profile and stress profile of moving beds in a vertical tube (countercurrent and concurrent) accompanying gas flow. It is indicated that the bulk volume expansion effect differs according to dimensions. The velocity distribution and the stress distribution of flows in a vertical tube are greatly influenced by the nature of the flow, i.e. whether it is a counterflow or a concurrent flow, and the frictional force of solids on a wall surface increases markedly in a concurrent flow, which induces considerable lag of particle velocity. The parameter which is contained in the model and indicates the bulk volume expansion effect is a function of the particle velocity, and it is almost unaffected by the flow rate of gas moving. 7 refs., 10 figs.

  13. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  14. Reflections on the development of a pre-service language curriculum for the BEd (Foundation Phase

    Directory of Open Access Journals (Sweden)

    Zubeida Desai

    2014-12-01

    Full Text Available The initiative of the Department of Higher Education and Training (DHET in South Africa to strengthen foundation phase teaching has resulted in the development of new foundation phase (Grades R–3 programmes at institutions that did not previously offer them. In this article we reflect on the conceptualisation and development of a pre-service language curriculum for one such programme. We base our discussion on principles that underpin teacher education programme development for early childhood education and on issues and insights about appropriate language curriculum content for a foundation phase teacher. Whilst awaiting the outcome of our accreditation, the authors, as two of the persons who assisted in the design of the language curriculum, thought it appropriate to subject the curriculum to an internal scrutiny whilst we prepare to offer the programme. This internal dialogue is informed by the literature on early language development, particularly in multilingual contexts such as in South Africa.

  15. Cost and cost effectiveness of long-lasting insecticide-treated bed nets - a model-based analysis

    Directory of Open Access Journals (Sweden)

    Pulkki-Brännström Anni-Maria

    2012-04-01

    Full Text Available Abstract Background The World Health Organization recommends that national malaria programmes universally distribute long-lasting insecticide-treated bed nets (LLINs. LLINs provide effective insecticide protection for at least three years while conventional nets must be retreated every 6-12 months. LLINs may also promise longer physical durability (lifespan, but at a higher unit price. No prospective data currently available is sufficient to calculate the comparative cost effectiveness of different net types. We thus constructed a model to explore the cost effectiveness of LLINs, asking how a longer lifespan affects the relative cost effectiveness of nets, and if, when and why LLINs might be preferred to conventional insecticide-treated nets. An innovation of our model is that we also considered the replenishment need i.e. loss of nets over time. Methods We modelled the choice of net over a 10-year period to facilitate the comparison of nets with different lifespan (and/or price and replenishment need over time. Our base case represents a large-scale programme which achieves high coverage and usage throughout the population by distributing either LLINs or conventional nets through existing health services, and retreats a large proportion of conventional nets regularly at low cost. We identified the determinants of bed net programme cost effectiveness and parameter values for usage rate, delivery and retreatment cost from the literature. One-way sensitivity analysis was conducted to explicitly compare the differential effect of changing parameters such as price, lifespan, usage and replenishment need. Results If conventional and long-lasting bed nets have the same physical lifespan (3 years, LLINs are more cost effective unless they are priced at more than USD 1.5 above the price of conventional nets. Because a longer lifespan brings delivery cost savings, each one year increase in lifespan can be accompanied by a USD 1 or more increase in price

  16. Development and clinical application of a computer-aided real-time feedback system for detecting in-bed physical activities.

    Science.gov (United States)

    Lu, Liang-Hsuan; Chiang, Shang-Lin; Wei, Shun-Hwa; Lin, Chueh-Ho; Sung, Wen-Hsu

    2017-08-01

    Being bedridden long-term can cause deterioration in patients' physiological function and performance, limiting daily activities and increasing the incidence of falls and other accidental injuries. Little research has been carried out in designing effective detecting systems to monitor the posture and status of bedridden patients and to provide accurate real-time feedback on posture. The purposes of this research were to develop a computer-aided system for real-time detection of physical activities in bed and to validate the system's validity and test-retest reliability in determining eight postures: motion leftward/rightward, turning over leftward/rightward, getting up leftward/rightward, and getting off the bed leftward/rightward. The in-bed physical activity detecting system consists mainly of a clinical sickbed, signal amplifier, a data acquisition (DAQ) system, and operating software for computing and determining postural changes associated with four load cell sensing components. Thirty healthy subjects (15 males and 15 females, mean age = 27.8 ± 5.3 years) participated in the study. All subjects were asked to execute eight in-bed activities in a random order and to participate in an evaluation of the test-retest reliability of the results 14 days later. Spearman's rank correlation coefficient was used to compare the system's determinations of postural states with researchers' recordings of postural changes. The test-retest reliability of the system's ability to determine postures was analyzed using the interclass correlation coefficient ICC(3,1). The system was found to exhibit high validity and accuracy (r = 0.928, p bed displacement, turning over, sitting up, and getting off the bed. The system was particularly accurate in detecting motion rightward (90%), turning over leftward (83%), sitting up leftward or rightward (87-93%), and getting off the bed (100%). The test-retest reliability ICC(3,1) value was 0.968 (p bed body postures and can be

  17. Development of Ada language control software for the NASA power management and distribution test bed

    Science.gov (United States)

    Wright, Ted; Mackin, Michael; Gantose, Dave

    1989-01-01

    The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.

  18. Gasification of rice husk in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mansaray, K.G.

    1998-12-31

    The development of two mathematical models which simulate the performance of a dual distributor fluidized bed gasifier was described. The gasification of rice husks in the gasifier using air as the sole gasifying agent was investigated. The four stages of the study were: (1) modification of the existing fluidized bed gasifier and data acquisition system, (2) preliminary experimentation to assess the suitability of rice husks for gasification to determine the feasible range of operating conditions for fluidized bed gasification of rice husks and to obtain data for proper design of thermochemical conversion systems, (3) development of mathematical models to predict the performance of the fluidized bed gasification system, and (4) experimentation to investigate the effects of various operating variables on the performance of the gasifier and provide data to evaluate the validity of the models.

  19. Hydrodynamic modeling of juvenile mussel dispersal in a large river: The potential effects of bed shear stress and other parameters

    Science.gov (United States)

    Daraio, J.A.; Weber, L.J.; Newton, T.J.

    2010-01-01

    Because unionid mussels have a parasitic larval stage, they are able to disperse upstream and downstream as larvae while attached to their host fish and with flow as juveniles after excystment from the host. Understanding unionid population ecology requires knowledge of the processes that affect juvenile dispersal prior to establishment. We examined presettlement (transport and dispersion with flow) and early postsettlement (bed shear stress) hydraulic processes as negative censoring mechanisms. Our approach was to model dispersal using particle tracking through a 3-dimensional flow field output from hydrodynamic models of a reach of the Upper Mississippi River. We tested the potential effects of bed shear stress (??b) at 5 flow rates on juvenile mussel dispersal and quantified the magnitude of these effects as a function of flow rate. We explored the reach-scale relationships of Froude number (Fr), water depth (H), local bed slope (S), and unit stream power (QS) with the likelihood of juvenile settling (??). We ran multiple dispersal simulations at each flow rate to estimate ??, the parameter of a Poisson distribution, from the number of juveniles settling in each grid cell, and calculated dispersal distances. Virtual juveniles that settled in areas of the river where b > critical shear stress (c) were resuspended in the flow and transported further downstream, so we ran simulations at 3 different conditions for ??c (??c = ??? no resuspension, 0.1, and 0.05 N/m2). Differences in virtual juvenile dispersal distance were significantly dependent upon c and flow rate, and effects of b on settling distribution were dependent upon c. Most simulations resulted in positive correlations between ?? and ??b, results suggesting that during early postsettlement, ??b might be the primary determinant of juvenile settling distribution. Negative correlations between ?? and ??b occurred in some simulations, a result suggesting that physical or biological presettlement processes

  20. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  1. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  2. Determination of the catalyst velocity profile along the riser of a fluidized bed reactor model by nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos; Dantas, C.C.

    1982-01-01

    A method adequated to industrial applications of flow measurements in fuidized bed reactor was developed. To measure the medium velocity of a catalyst, where the velocity is low, a radioactive tracer was used, 59 Fe and, to measure density by gamma attenuation, a standard source of 241 Am was used. The signals produced in NaI (Tl) scintilators detectors, were sent simultaneously to an electronic clock, to register the transit time, in the medium velocity measure of the catalyst whose reproductibility was 0.4%. The total estimated error for the method was a maximum of 4%. Important simplifications and pratical advantages are presented, if the method is compared to conventional measures with tracers. (E.G.) [pt

  3. Half Moon Bay, Grays Harbor, Washington: Movable-Bed Physical Model Study

    National Research Council Canada - National Science Library

    Huges, Steven A; Cohen, Julie

    2006-01-01

    ... Beach and the bay remains intact. The physical model eroded the June 2003 shoreline until a near equilibrium was achieved in the model with the dune recession line closely matching the existing vegetation line...

  4. Modellering af strømningsforhold og kanaldannelse i fixed bed koksbed

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Henriksen, Ulrik Birk; Gøbel, Benny

    2003-01-01

    For at kunne undersøge stabiliteten af en koksbed er der blevet udviklet forskellige modeller til beskrivelse af strømningsforholdene i bedden under iltfri forgasning af biomassekoks. Strømningsforholdene er blevet undersøgt på simple modeller og CFD-modeller...

  5. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  6. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  7. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  8. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-07-01

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account for enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. We validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.

  9. Development of a fixed-bed anammox reactor with high treatment potential.

    Science.gov (United States)

    Okamoto, Hiroyuki; Kawamura, Kimito; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2013-02-01

    A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m(3)/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m(3)/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH(4)-N removal capacity for low strength wastewater with a short hydraulic retention time.

  10. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-04-17

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

  11. The Sustainable Development Model

    OpenAIRE

    Cristina BURGHELEA

    2012-01-01

    Sustainable development concept approaches quality of life in complexity, as economic, social and environmental issues, promoting the idea of balance between economic development, social equity, efficient utilization and environment conservation.     An essential condition for achieving sustainable development is the right mix of macroeconomic policies coherent, consistent with resources to ensure sustainability of materials and energy used for growth.

  12. Hydrodynamic analysis of a three-fluidized bed reactor cold flow model for chemical looping hydrogen generation. Pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhipeng; Xiang, Wenguo; Chen, Shiyi; Wang, Dong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO{sub 2} from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe{sub 2}O{sub 3}, magnetite Fe{sub 3}O{sub 4}, wuestite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO{sub 2} can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe{sub 3}O{sub 4}) and H{sub 2}, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle. A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

  13. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    Science.gov (United States)

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (charcoal bed offers a compact and effective device to remove 220 Rn from affluent air streams in a space constrained domain. The prototype system has been installed in a thorium fuel cycle facility where it is being evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho

    2012-01-01

    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  15. Bed Prism Spectacles

    Science.gov (United States)

    Ribeiro, Jair Lúcio Prados

    2018-01-01

    We only became aware of the existence of bed prism spectacles when a student brought them to the classroom and asked us about how they work. The device proved to be a fertile source of curiosity among the students, and, to be properly understood, it required us to develop a comparison between reflection in a typical mirror and total internal…

  16. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    . The numerical modeling results highly agree with the experimental observations, which proves the ability of the model to catch a non-monotonic deposition profile in practice. An additional equation describing a mobile population behaving differently from the injected population seems to be a sufficient...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information...... condition for producing non-monotonic deposition profiles. The described physics by the additional equation may be different in different experimental settings....

  17. CLC in packed beds using syngas and CuO/Al2O3: model description and experimental validation

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al2O3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while

  18. A stochastic model for early placental development.

    KAUST Repository

    Cotter, Simon L

    2014-08-01

    In the human, placental structure is closely related to placental function and consequent pregnancy outcome. Studies have noted abnormal placental shape in small-for-gestational-age infants which extends to increased lifetime risk of cardiovascular disease. The origins and determinants of placental shape are incompletely understood and are difficult to study in vivo. In this paper, we model the early development of the human placenta, based on the hypothesis that this is driven by a chemoattractant effect emanating from proximal spiral arteries in the decidua. We derive and explore a two-dimensional stochastic model, and investigate the effects of loss of spiral arteries in regions near to the cord insertion on the shape of the placenta. This model demonstrates that disruption of spiral arteries can exert profound effects on placental shape, particularly if this is close to the cord insertion. Thus, placental shape reflects the underlying maternal vascular bed. Abnormal placental shape may reflect an abnormal uterine environment, predisposing to pregnancy complications. Through statistical analysis of model placentas, we are able to characterize the probability that a given placenta grew in a disrupted environment, and even able to distinguish between different disruptions.

  19. Selected sports talent development models

    OpenAIRE

    Michal Vičar

    2017-01-01

    Background: Sports talent in the Czech Republic is generally viewed as a static, stable phenomena. It stands in contrast with widespread praxis carried out in Anglo-Saxon countries that emphasise its fluctuant nature. This is reflected in the current models describing its development. Objectives: The aim is to introduce current models of talent development in sport. Methods: Comparison and analysing of the following models: Balyi - Long term athlete development model, Côté - Developmen...

  20. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O., E-mail: petero@vut.ac.za [Department of Chemical Engineering, Vaal University of Technology, P/Bag X021, Vanderbijlpark 1900 (South Africa); Neomagus, Hein W.J.P.; Everson, Raymond C. [School of Chemical and Minerals Engineering, North-West University, P/Bag X6001, Potchefstroom 2520 (South Africa); Webster, Athena [University of Utah, Chemistry Department, Salt Lake City, UT 84112 (United States); Gun, Marius A. vd [Sulzer Elbar B.V., Spikweien 36, NL-5943 AD Lomm (Netherlands)

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  1. Coupling hydrodynamic modeling and empirical measures of bed mobility to assess the risk of redd scour on a large regulated river

    Science.gov (United States)

    Christine L. May; Bonnie S. Pryor; Thomas E. Lisle; Margaret M. Lang

    2009-01-01

    n order to assess the risk of scour and fill of spawning redds during floods, an understanding of the relations among river discharge, bed mobility, and scour and fill depths in areas of the streambed heavily utilized by spawning salmon is needed. Our approach coupled numerical flow modeling and empirical data from the Trinity River, California, to quantify spatially...

  2. Radial heat transfer in beds of spheres, cylinders and Rashig rings. Verfication of model with a linear variation in the vicinity of the wall

    NARCIS (Netherlands)

    Smirnov, E.I.; Muzykantov, A.V.; Kuzmin, V.A.; Kronberg, Alexandre E.; Zolotarskii, I.A.

    2002-01-01

    Experimental data on the effective radial thermal conductivities and wall heat transfer coefficients of cylindrical beds formed of spheres, cylinders and Rashig rings are presented. The obtained heat transport parameters are compared with literature data. A model with a linear variation of λer in

  3. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal...... conductivity experiments were performed on a wheat straw sample, which were cut in a shredder with two different sieves, 4 and 8 mm, and packed loosely in the thermal conductivity apparatus. The model, using external porosity and char diameter, compared reasonable well with experiments. The two straw samples...... were also packed densely, and the model, using measured external porosity together with the diameter from the loosely packed sample, compared reasonable well with experiments. The verified model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity...

  4. A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends

    Science.gov (United States)

    Begnudelli, Lorenzo; Valiani, Alessandro; Sanders, Brett F.

    2010-01-01

    This work deals with the formulation and numerical implementation of a two-dimensional mathematical and numerical model describing open channel hydrodynamics, sediment and/or scalar transport and riverbed evolution in curved channels. It is shown that a well balanced 2D model can predict flow features, sediment and scalar concentration, and bed elevation with an accuracy that is suitable for practical river engineering. The term "balanced" implies that important physical processes are modeled with a similar degree of complexity and exhaustiveness. The starting point of the model formulation is the assumption of self-similarity of vertical velocity profiles (horizontal velocities in the longitudinal and transverse directions), that are scaled by shear velocity and streamline curvature, both resolved by the model. The former is scaled by a bed-resistance coefficient that must be estimated or calibrated - as usual - on a application-specific basis, and the latter is computed by a new, grid-based but grid orientation independent, scheme that acts on the discrete solution. All processes, including bottom shear, momentum dispersion, scalar dispersion, turbulent diffusion, bed load, and suspended load, are modeled using physically based, averaged values of empirical or semi-empirical constants, and consistently with the assumed velocity profiles (and bed-generated turbulence). Bed deformation modeling can be implemented with either an equilibrium or non-equilibrium formulation of the Exner equation, depending on the adaptation length scale, which must be taken under consideration if significantly larger than the length scale of the spatial discretization. The governing equations are solved by high-resolution, unstructured-grid Godunov method, which is elsewhere tested and shown to be reliable and second-order accurate. Application of the model to laboratory test cases, using standard parameter values and previously reported bed-resistance coefficients, gives results

  5. Physiological water model development

    Science.gov (United States)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a

  6. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  7. Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN.

    Science.gov (United States)

    Banerjee, Munmun; Bar, Nirjhar; Basu, Ranjan Kumar; Das, Sudip Kumar

    2017-04-01

    Cr(VI) is a toxic water pollutant, which causes cancer and mutation in living organisms. Adsorption has become the most preferred method for removal of Cr(VI) due to its high efficiency and low cost. Peanut and almond shells were used as adsorbents in downflow fixed bed continuous column operation for Cr(VI) removal. The experiments were carried out to scrutinise the adsorptive capacity of the peanut shells and almond shells, as well as to find out the effect of various operating parameters such as column bed depth (5-10 cm), influent flow rate (10-22 ml min -1 ) and influent Cr(VI) concentration (10-20 mg L -1 ) on the Cr(VI) removal. The fixed bed column operation for Cr(VI) adsorption the equilibrium was illustrated by Langmuir isotherm. Different well-known mathematical models were applied to the experimental data to identify the best-fitted model to explain the bed dynamics. Prediction of the bed dynamics by Yan et al. model was found to be satisfactory. Applicability of artificial neural network (ANN) modelling is also reported. An ANN modelling of multilayer perceptron with gradient descent and Levenberg-Marquardt algorithms have also been tried to predict the percentage removal of Cr(VI). This study indicates that these adsorbents have an excellent potential and are useful for water treatment particularly small- and medium-sized industries of third world countries. Almond shell represents better adsorptive capacity as breakthrough time and exhaustion time are longer in comparison to peanut shell.

  8. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  9. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.

    Science.gov (United States)

    Aleksić, Ivana; Đuriš, Jelena; Ibrić, Svetlana; Parojčić, Jelena

    2015-12-30

    Melt granulation in fluid bed processors is an emerging technique, but literature data regarding the modeling of this granulation method are lacking. In the present study different techniques (response surface analysis, multilayer perceptron neural network, and partial least squares method) were applied for modeling of spray-on fluidized bed melt granulation. Experiments were organized in line with central composite design. The effect of binder content and spray air pressure on granule properties was evaluated. The results obtained indicate that binder content can be identified as a critical factor controlling the granule size and size distribution. It was found that agglomeration mechanism involved, i.e., granule shape, can be greatly influenced by binder properties. The spray air pressure was identified as critical process parameter affecting granule flowability. The results presented indicate that application of in silico tools enables enhanced understanding and better control of novel pharmaceutical processes, such as melt granulation in fluidized bed. The artificial neural networks and partial least squares method were found to be superior to response surface methodology in prediction of granule properties. According to the results obtained, application of more advanced empirical modeling techniques complementary to design of experiments can be a suitable approach in defining the design space and optimization of spray-on fluidized bed melt granulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  11. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  12. Econometric models for biohydrogen development.

    Science.gov (United States)

    Lee, Duu-Hwa; Lee, Duu-Jong; Veziroglu, Ayfer

    2011-09-01

    Biohydrogen is considered as an attractive clean energy source due to its high energy content and environmental-friendly conversion. Analyzing various economic scenarios can help decision makers to optimize development strategies for the biohydrogen sector. This study surveys econometric models of biohydrogen development, including input-out models, life-cycle assessment approach, computable general equilibrium models, linear programming models and impact pathway approach. Fundamentals of each model were briefly reviewed to highlight their advantages and disadvantages. The input-output model and the simplified economic input-output life-cycle assessment model proved most suitable for economic analysis of biohydrogen energy development. A sample analysis using input-output model for forecasting biohydrogen development in the United States is given. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Models for Sustainable Regional Development

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2008-01-01

    The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China.......The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China....

  14. Full-wave algorithm to model effects of bedding slopes on the response of subsurface electromagnetic geophysical sensors near unconformities

    Science.gov (United States)

    Sainath, Kamalesh; Teixeira, Fernando L.

    2016-05-01

    We propose a full-wave pseudo-analytical numerical electromagnetic (EM) algorithm to model subsurface induction sensors, traversing planar-layered geological formations of arbitrary EM material anisotropy and loss, which are used, for example, in the exploration of hydrocarbon reserves. Unlike past pseudo-analytical planar-layered modeling algorithms that impose parallelism between the formation's bed junctions, our method involves judicious employment of Transformation Optics techniques to address challenges related to modeling relative slope (i.e., tilting) between said junctions (including arbitrary azimuth orientation of each junction). The algorithm exhibits this flexibility, both with respect to loss and anisotropy in the formation layers as well as junction tilting, via employing special planar slabs that coat each ;flattened; (i.e., originally tilted) planar interface, locally redirecting the incident wave within the coating slabs to cause wave fronts to interact with the flattened interfaces as if they were still tilted with a specific, user-defined orientation. Moreover, since the coating layers are homogeneous rather than exhibiting continuous material variation, a minimal number of these layers must be inserted and hence reduces added simulation time and computational expense. As said coating layers are not reflectionless however, they do induce artificial field scattering that corrupts legitimate field signatures due to the (effective) interface tilting. Numerical results, for two half-spaces separated by a tilted interface, quantify error trends versus effective interface tilting, material properties, transmitter/receiver spacing, sensor position, coating slab thickness, and transmitter and receiver orientation, helping understand the spurious scattering's effect on reliable (effective) tilting this algorithm can model. Under the effective tilting constraints suggested by the results of said error study, we finally exhibit responses of sensors

  15. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  16. Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology

    International Nuclear Information System (INIS)

    Miladinović, Marija R.; Stamenković, Olivera S.; Banković, Predrag T.; Milutinović-Nikolić, Aleksandra D.; Jovanović, Dušan M.; Veljković, Vlada B.

    2016-01-01

    Highlights: • Sunflower oil methanolysis in a continuous packed bed reactor was optimized. • Thermally-activated, low-cost quicklime bits were used as a catalyst. • Process was optimized by 3 3 full factorial design and Box-Behnken design. • Box-Behnken design is recommended for optimizing biodiesel production processes. • FAME content in the ester phase obtained under the optimum conditions was >98%. - Abstract: The effect of the residence time (i.e. liquid flow rate through the reactor), methanol-to-oil molar ratio and reaction temperature on the fatty acid methyl esters (FAMEs) content at the output of a continuous packed bed tubular reactor was modeled by the response surface methodology (RSM) combined with the 3 3 full factorial design (FFD) with replication or the Box-Behnken design (BBD) with five center points. The methanolysis of sunflower oil was carried out at the residence time of 1.0, 1.5 and 2.0 h, the methanol-to-oil molar ratios of 6:1, 12:1 and 18:1 and the reaction temperature of 40, 50 and 60 °C under the atmospheric pressure. Based on the used experimental designs, the model equations containing only linear and two-factor interaction terms were developed for predicting the FAME content, which were validated through the use of the unseen data. Applying the analysis of variance (ANOVA), all three factors were shown to have a significant influence on the FAME content. Acceptable statistical predictability and accuracy resulted from both designs since the values of the coefficient of determination were close to unity while the values of the mean relative percentage deviation were relatively low (<±10%). In addition, both designs predicted the maximum FAME content of above 99%, which agreed closely with the actual FAME content (98.8%). The same optimal reaction temperature (60 °C) and residence time (2.0 h) were determined by both designs while the BBD model suggested a slightly lower methanol-to-oil molar ratio (12.2:1) than the 3 3 FFD

  17. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    OpenAIRE

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall (alpha)w, into the one-dimensional overall heat transfer coefficient U results in a length dependence of U. It is shown that the ratio (alpha)w/U develops from unity at the bed inlet to a final value...

  18. Retrieval process development and enhancements: Hydraulic test bed integrated testing. Fiscal year 1995 technology development summary report

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Smalley, J.T.; Tucker, J.C.

    1996-02-01

    The Retrieval Process Development and Enhancements Program is sponsored by the U.S. Department of Energy (DOE) Office of Science and Technology to investigate waste dislodging and conveyance processes suitable for the retrieval of high-level radioactive waste. This program, represented by industry, national laboratories, and academia, is testing the performance of a technology of high-pressure waterjet dislodging and pneumatic conveyance integrated as a scarifier as a means of retrieval of waste inside waste storage tanks. Waste stimulants have been designed to challenge this retrieval process, and this technology has been shown to mobilize and convey the waste stimulants, at target retrieval rates while operating within the space envelope and the dynamic loading constraints of postulated deployment systems. The approach has been demonstrated to be versatile in dislodging and conveying a broad range of waste forms, from hard wastes to soft sludge wastes, through the use of simple and reliable in-tank components

  19. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Giovanna, E-mail: giovanna.esposito@unito.it [Molecular and Preclinical Imaging Center, University of Torino (Italy); D' angeli, Luca; Bartoli, Antonietta [Molecular and Preclinical Imaging Center, University of Torino (Italy); Chaabane, Linda [INSPE-Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano (Italy); Terreno, Enzo [Molecular and Preclinical Imaging Center, University of Torino (Italy)

    2013-02-21

    Positron Emission Tomography (PET) with {sup 18}F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of {sup 18}F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  20. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    Science.gov (United States)

    Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo

    2013-02-01

    Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  1. Heat and mass transfer enforcement of vibrating fluidized bed

    Science.gov (United States)

    Chu, Zhide; Yang, Junhong; Li, Xuhui; Song, Yang

    1994-12-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad, elaborates the vibration properties of vibrating fluidized bed, the fluidizing velocity and pressure drop of the bed layer. It also deduces the non-steady state drying dynamic equations of vibrating fluidized bed, analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  2. Scaling up of the fluidized bed granulation process.

    Science.gov (United States)

    Rambali, B; Baert, L; Massart, D L

    2003-02-18

    The scaling up of a fluidized bed granulation process from small scale to production scale is often done empirically in the pharmaceutical industry. In this study, a more practical and systematic method was developed in order to achieve a similar granule size in the scaled up fluid bed. The scaling up is based on the relative droplet size, and the powder bed moisture content at the end of the spraying cycle. The present study describes the scaling up of the fluidized granulation process from small (5 kg scale) to medium (30 kg scale) and to production fluid bed scale (120 kg scale). The granulation process is scaled up with as target a geometric mean granule size of 400 microm. First, the effect of the relative droplet size on the granule size was investigated in the different fluid beds. The effect of the change in relative droplet size on the granule size was different for each fluid bed. Second, experimental design is applied on the small and the medium fluid scale, and regression models for the granule size are proposed in order to scale up the granulation process on the small to medium scale. The granulation process was also successful by scaling-up to the large fluid bed, considering only the relative droplet size.

  3. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    Science.gov (United States)

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  4. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    Science.gov (United States)

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  5. Development of thin PdeAg supported membranes for fluidized bed membrane reactors including WGS related gases

    OpenAIRE

    Fernandez, E Ekain; Helmi Siasi Farimani, A Arash; Coenen, KT Kai; Meléndez, J; Viviente, JL; Pacheco Tanaka, DA; Sint Annaland, van, M Martin; Gallucci, F Fausto

    2015-01-01

    This paper reports the preparation, characterization and stability tests of Pd-based thin membranes for fluidized bed membrane reactor applications. Various thin membranes have been prepared by simultaneous Pd-Ag electroless plating. A simple technique for sealing of the produced membranes is reported and discussed. The membranes have been characterized for single gas permeation, and afterwards used for permeation of mixtures of gases and under fluidization conditions. The membranes have show...

  6. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  7. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea

    Science.gov (United States)

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.

    2001-01-01

    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and

  8. Reed beds receiving industrial sludge containing nitroaromatic compounds. Effects of outgoing water and bed material extracts in the umu-c genotoxicity assay, DR-CALUX assay and on early life stage development in zebrafish (Danio rerio).

    Science.gov (United States)

    Gustavsson, Lillemor; Hollert, Henner; Jonsson, Sofie; van Bavel, Bert; Engwall, Magnus

    2007-05-01

    Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical