WorldWideScience

Sample records for bed membrane reactor

  1. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  2. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given

  3. Steam reforming of heptane in a fluidized bed membrane reactor

    Science.gov (United States)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  4. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  5. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  6. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Transport from the membrane to the packed bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  7. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  8. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  9. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  10. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    Science.gov (United States)

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  12. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  14. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  16. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  17. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Intraparticle mass transport

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  18. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Intraparticle Mass Transport

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  19. Particle bed reactor modeling

    Science.gov (United States)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  20. Pebble-bed reactor

    International Nuclear Information System (INIS)

    Lohnert, G.; Mueller-Frank, U.; Heil, J.

    1976-01-01

    A pebble-bed nuclear reactor of large power rating comprises a container having a funnel-shaped bottom forming a pebble run-out having a centrally positioned outlet. A bed of downwardly-flowing substantially spherical nuclear fuel pebbles is positioned in the container and forms a reactive nuclear core maintained by feeding unused pebbles to the bed's top surface while used or burned-out pebbles run out and discharge through the outlet. A substantially conical body with its apex pointing upwardly and its periphery spaced from the periphery of the container spreads the bottom of the bed outwardly to provide an annular flow down the funnel-shaped bottom forming the runout, to the discharge outlet. This provides a largely constant downward velocity of the spheres throughout the diameter of the bed throughout a substantial portion of the down travel, so that all spheres reach about the same burned-out condition when they leave the core, after a single pass through the core area

  1. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. Development of packed bed membrane reactor for the oxidative dehydrogenation of propane

    NARCIS (Netherlands)

    Kotanjac, Zeljko

    2009-01-01

    In this research, a reactor concept for the oxidative dehydrogenation of propane was studied. First a literature survey was performed, to investigate which are the best catalyst systems and best operating conditions that result in the largest propylene yield. In the kinetic study of ODHP over a

  3. Gas fluidized bed reactor

    International Nuclear Information System (INIS)

    Bernardelli, H. da C.

    1976-03-01

    The equations of motion for both gas and particles in a gas fluidised system are stablished through general assumptions which are generally accepted on physical grounds. The resulting model is used to study the velocity fields of each phase in the case of an isolated bubble rising close to the flat distributor plate. A well posed problem results for the solution of Laplace's equation of the potential flow of the particles when consideration is given to the presence of the distributor as a boundary condition. The corresponding stream functions are also obtained which enable the drawing of the motion patterns using numerical techniques. The following two dimensional cases are analysed: S/b=1; S/b=1,5; S/b=2,5; S/b=5 and the limiting case S/b→αinfinite. The results for the interphase exchange between bubbles and particulate phases are applied to a gas fluidised bed reactor and its effect on the chemical conversion is studied for the simplest cases of piston flow and perfect mixing in the particulate phase [pt

  4. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  5. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  6. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  7. Experimental study on the hydrodynamic effects of gas permeation through horizontal membrane tubes in fluidized beds

    NARCIS (Netherlands)

    Jong, de J.F.; Sint Annaland, van M.; Kuipers, J.A.M.

    2013-01-01

    Fluidized Bed Membrane Reactors gain worldwide increasing interest for various applications. Nevertheless, fundamental research on the hydrodynamics of these reactors is required in order to improve the predictive capabilities of numerical models and to improve reactor performance. This study

  8. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    Science.gov (United States)

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  9. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    Saddoud, Ahlem; Sayadi, Sami

    2007-01-01

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m -3 d -1 with gradual increase to an average of 13.27 kg TCOD m -3 d -1 . At stable conditions, the treatment efficiency was high with an average COD and BOD 5 reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m -3 d -1 . The removal efficiencies of SCOD and BOD 5 were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines

  10. MIT pebble bed reactor project

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Massachusetts Institute of Technology, Cambridge (United States)

    2007-03-15

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

  11. MIT pebble bed reactor project

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2007-01-01

    The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis

  12. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Saddoud, Ahlem [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia); Sayadi, Sami [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia)], E-mail: sami.sayadi@cbs.rnrt.tn

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m{sup -3} d{sup -1} with gradual increase to an average of 13.27 kg TCOD m{sup -3} d{sup -1}. At stable conditions, the treatment efficiency was high with an average COD and BOD{sub 5} reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m{sup -3} d{sup -1}. The removal efficiencies of SCOD and BOD{sub 5} were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  13. Particle bed reactor scaling relationships

    Science.gov (United States)

    Slovik, G.; Araj, K.; Horn, F. L.; Ludewig, H.; Benenati, R.

    The Particle Bed Reactor (PBR) concept can be used in several applications both as part of a power generating system or as a direct propulsion unit. In order to carry out optimization studies of systems involving a PBR, it is necessary to know the variation of the critical mass with pertinent system parameters such as weight, size, power level and thrust level. A parametric study is presented for all the practical combinations of fuel and moderating material. The PBR is described, the practical combinations of materials and dimensions are discussed, and an example is presented.

  14. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen View the MathML source from light hydrocarbons

  15. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, C.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen (<10 ppm CO) from light hydrocarbons such as

  16. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  17. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  18. A packed bed membrane reactor for the oxidative dehydrogenation of propane on a Ga2O3 / MoO3 based catalyst

    NARCIS (Netherlands)

    Kotanjac, Ž.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Oxidative dehydrogenation of propane has been studied over a Ga2O3/MoO3 based catalyst. Using a differentially operated packed bed reactor with premixed oxygen and propane feed, the kinetic parameters for the main reaction and the consecutive and parallel reactions were experimentally determined. It

  19. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  20. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  1. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  2. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  3. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  4. FBR and RBR particle bed space reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10 0 K), high coolant-outlet temperatures (1500 to 3000 0 K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H 2 -cooled mode. The RBR will operate only in the open-cycle H 2 -cooled mode

  5. A new fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1986-01-01

    A new nuclear reactor design based on the fluidized bed concept is proposed. A current design utilizes spherical fuel of slightly enriched Zircaloy-clad uranium dioxide fluidized by light water under pressure. The reactor is modular in system; therefore, any size reactor can be constructed from the basic standard modul. The reactor physics calculations show that reactivity increases with porosity to a maximum value and thereafter decreases. This produces inherent safety and eliminates the need for control rods and burnable poisons. The heat transfer calculations show that the maximum power extracted from the reactor core is not limited to the material temperature limits but to the maximum mass flow of coolant, which corresponds to the desired operating porosity. Design simplicity and inherent safety make it an attractive small reactor design. (Author) [pt

  6. Particle bed reactor nuclear rocket concept

    International Nuclear Information System (INIS)

    Ludewig, H.

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times

  7. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  8. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  9. Pebble Bed Reactor Dust Production Model

    International Nuclear Information System (INIS)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-01-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production

  10. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  11. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  12. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  13. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  14. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  15. The Pebble Bed Modular Reactor: An obituary

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve, E-mail: stephen.thomas@gre.ac.u [Public Services International Research Unit (PSIRU), Business School, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2011-05-15

    The High Temperature Gas-cooled Reactor (HTGR) has exerted a peculiar attraction over nuclear engineers. Despite many unsuccessful attempts over half a century to develop it as a commercial power reactor, there is still a strong belief amongst many nuclear advocates that a highly successful HTGR technology will emerge. The most recent attempt to commercialize an HTGR design, the Pebble Bed Modular Reactor (PBMR), was abandoned in 2010 after 12 years of effort and the expenditure of a large amount of South African public money. This article reviews this latest attempt to commercialize an HTGR design and attempts to identify which issues have led to its failure and what lessons can be learnt from this experience. It concludes that any further attempts to develop HTGRs using Pebble Bed technology should only be undertaken if there is a clear understanding of why earlier attempts have failed and a high level of confidence that earlier problems have been overcome. It argues that the PBMR project has exposed serious weaknesses in accountability mechanisms for the expenditure of South African public money. - Research highlights: {yields} In this study we examine the reasons behind the failure of the South African PBMR programme. {yields} The study reviews the technical issues that have arisen and lessons for future reactor developments. {yields} The study also identifies weaknesses in the accountability mechanisms for public spending.

  16. The ESKOM pebble bed modular reactor

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1999-01-01

    An audit has been made of the design, construction, safety, economics and marketability of the ESKOM pebble bed modular reactor (PBMR). In this paper that audit is briefly summarized. The principal conclusions of the audit are as follows. The design is sound. It is a logical development of the designs proposed for other, modern, high-temperature gas-cooled reactors. More than 80% of the cost of constructing and commissioning a series of PBMRs would be spent in South Africa. The PBMR is much safer than existing nuclear power reactors and for many practical purposes it may be treated as a conventional chemical plant. The PBMR is economically competitive with thermal power stations. There is a substantial global market for the PBMR. (author)

  17. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  18. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  19. A Numerical Model for Trickle Bed Reactors

    Science.gov (United States)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  20. Modelling of a falling sludge bed reactor using AQUASIM | Ristow ...

    African Journals Online (AJOL)

    Modelling of a falling sludge bed reactor using AQUASIM. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... a system of mixed reactors connected by water flow and mass flux streams.

  1. Evolution of Particle Bed Reactor Fuel

    Science.gov (United States)

    Jensen, Russell R.; Evans, Robert S.; Husser, Dewayne L.; Kerr, John M.

    1994-07-01

    To realize the potential performance advantages inherent in a particle bed reactor (PBR) for nuclear thermal propulsion (NTP) applications, high performance particle fuel is required. This fuel must operate safely and without failure at high temperature in high pressure, flowing hydrogen propellant. The mixed mean outlet temperature of the propellant is an important characteristic of PBR performance. This temperature is also a critical parameter for fuel particle design because it dictates the required maximum fuel operating temperature. In this paper, the evolution in PBR fuel form to achieve higher operating temperatures is discussed and the potential thermal performance of the different fuel types is evaluated. It is shown that the optimum fuel type for operation under the demanding conditions in a PBR is a coated, solid carbide particle.

  2. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  3. Fixed-bed Reactor Dynamics and Control - A Review

    DEFF Research Database (Denmark)

    Jørgensen, S. B.

    1986-01-01

    The industrial diversity of fixed bed reactors offers a challenging and relevant set of control problems. These intricate problems arise due to the rather complex dynamics of fixed bed reactors and to the complexity of actual reactor configurations. Many of these control problems are nonlinear...... and multi-variable. During the last decade fixed bed reactor control strategies have been proposed and investigated experimentally. This paper reviews research on these complex control problems with an emphasis upon solutions which have been demon-strated to work in the laboratory and hold promise...

  4. The fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sahin, S.; Sefidvash, F.

    2007-01-01

    The core of a water moderated Fixed Bed Nuclear Reactor (FBNR), possessing, for instance, an electrical power of 40 MW, consists of 1.35 million fuel pellets (9.5 t) with a diameter of 1.5 cm each. The low enriched uranium fuel is made of TRISO type microspheres used in the HTGR, embedded in a graphite matrix and cladded by a shell of 1 mm SiC. Under any thinkable operational condition the fuel temperature will be below 400 C whereas its stability limit is at about 1600 C. The first characteristic of the FBNR is, therefore, its robust fuel under relatively 'cold' operating conditions and - due to the outer SiC - shell layer - the freedom from any hydrogen production. To operate the reactor the fuel pellets are pumped by a flow of water from below into the core regions where they form a stable fixed bed of about 4 cubic meter and become critical for energy production heating the outlet water to about 330 C (at 160 bar) which feeds a steam generator. The new safety feature is now the following: In case of any abnormity (e.g. external power failure, overheating etc.) the circulating pump stops and - due to gravity - the fuel pellets fall automatically out of the core region into a helical 'fuel chamber' underneath the core where their decay heat is transferred passively by natural circulation to a water tank housing the fuel chamber. The safety principle, applied here, is: The loss of an active component (circulating pump) induces a self-controlled, passively working shut-down manoeuvre accompanied by a foolproof decay heat removal without any emergency power system or any human interaction. The fuel chamber is sealed and is transported as the only reactor component to and from the reactor site. There is no possibility to irradiate fertile fuel, too. For a long-life core (larger than a 10 years cycle time) the fuel can either be poisoned by gadolinium-oxide or by a piston type core limiter adjusting the height and controlling thereby the number of the fuel pellets in

  5. Study of reactivity of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Rammsy, J.E.M.

    1985-01-01

    The reactor physics calculations of a 19 module Fluidized Bed Nuclear Reactor using Leopard and Odog codes are performed. The behaviour of the reactor was studied by calculating the reactivity of the reactor as a function of the parameters governing the operational and accidental conditions of the reactor. The effects of temperature, pressure, and vapor generation in the core on the reactivity are calculated. Also the start up behaviour of the reactor is analyzed. For the purpose of the study of a prototype research reactor, the calculations on a one module reactor have been performed. (Author) [pt

  6. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  7. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  8. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  9. Operational methods of the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1993-01-01

    The operational curve of reactivity as a function of porosity of the Fluidized Bed Nuclear Reactor is presented. The strategies for start-up, shut-down and maintaining the reactor critical during operation are described. The inherent safety of the reactor from neutronic point of view under steady state condition is demonstrated. (author)

  10. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  11. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  12. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  13. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  14. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical

  15. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  16. Mixing and scale affect moving bed biofilm reactor (MBBR) performance

    NARCIS (Netherlands)

    Kamstra, Andries; Blom, Ewout; Terjesen, Bendik Fyhn

    2017-01-01

    Moving Bed Biofilm Reactors (MBBR) are used increasingly in closed systems for farming of fish. Scaling, i.e. design of units of increasing size, is an important issue in general bio-reactor design since mixing behaviour will differ between small and large scale. Research is mostly performed on

  17. Fluidized bed reactor for working up carbon coated particles

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1981-01-01

    A fluidized bed reactor is described for working up carbon coated particles, particularly nuclear fuel particles or fertile material particles consisting essentially of a cylindrical portion connected to a conical portion. Gas supply pipes, gas distribution space and gas distribution heads are provided within the conical reactor lower portion, the gas distribution members being arranged in at least two superimposed planes and distributed symmetrically over the cross-section of the reactor

  18. The effect of gas permeation through vertical membranes on chemical switching reforming (CSR) reactor performance

    NARCIS (Netherlands)

    Wassie, S.A.; Gallucci, F.; Cloete, S.; Zaabout, A.; van Sint Annaland, M.; Amini, S.

    2016-01-01

    A novel membrane assisted fluidized bed reactor concept has been proposed for ultra-pure hydrogen production with integrated CO2 capture from steam methane reforming. The so-called Chemical Switching Reactor (CSR) concept combines the use of an oxygen carrier for supplying heat and catalysing the

  19. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  20. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  1. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  2. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  3. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  4. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Habibi-Rezaie, Mehran; Pezeshk, Hamid; Nabi-Bidhendi, Gholam-Reza

    2011-01-01

    Research highlights: → There is an optimum aeration rate in the MBMBR process compartments. → Optimum aeration rate maximizes nutrients removal. → Optimum aeration rate minimizes membrane fouling. → Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h -1 and a specific aeration demand per membrane area (SAD m ) of 1.2 and 0.4m air 3 m -2 h -1 , respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD m significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD m were 151 L h -1 and 0.8-1.2m air 3 m membrane -2 h -1 , respectively.

  5. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: yrahimi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: mhabibi@khayam.ut.ac.ir [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: pezeshk@khayam.ut.ac.ir [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: ghhendi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)

    2011-02-28

    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  6. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  7. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  8. Methanol steam-reforming in a catalytic fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duesterwald, H G; Hoehlein, B; Kraut, H; Meusinger, J; Peters, R [Research Centre Juelich (KFA) (Germany). Inst. of Energy Process Engineering; Stimming, U [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Festkoerperphysik und Techn. Phys.

    1997-12-01

    Designing an appropriate methanol steam reformer requires detailed knowledge about the processes within such a reactor. Thus, the axial temperature and concentration gradients and catalyst ageing were investigated. It was found that for a fresh catalyst load, the catalyst located in the reactor entrance was most active during the experiment. The activity of this part of the catalyst bed decreased after some time of operation due to ageing. With further operation, the most active zone moved through the catalyst bed. From the results concerning hydrogen production and catalyst degradation, the necessary amount of catalyst for a mobile PEMFC-system can be estimated. (orig.)

  9. Nonlinear dynamics and control of a recycle fixed bed reactor

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1997-01-01

    The purpose of this paper is twofold. Primarily to describe the dynamic behaviour that can be observed in a fixed bed reactor with recycle of unconverted reactant. Secondly to describe the possibilities of model reduction in order to facilitate control design. Reactant recycle has been shown...... to introduce periodic solution to the fixed bed reactor, a phenomenon which is not seen for the system without the recycle, at least not within the Peclet number range investigated in the present work. The possibility of model reduction by the methods of modal decomposition, and by characteristics...

  10. Thermalhydraulics of flowing particle-bed-type fusion reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.; Abdelk-Khalik, S.I.

    1982-01-01

    An experimental investigation has been conducted to determine the heat transfer characteristics of gravity-flowing particle beds using a special heat transfer loop. Glass microspheres were allowed to flow by gravity at controlled rates through an electrically heated stainless steel tubular test section. Values of the local and average convective heat transfer coefficient as a function of the average bed velocity, particle size and heat flux were determined. Such information is necessary for the design of gravity-flowing particle-bed type fusion reactor-blankets and associated tritium recovery systems. (orig.)

  11. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    International Nuclear Information System (INIS)

    Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested

  12. Nonproliferation and safeguard considerations: Pebble Bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, conpare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  13. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  14. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  15. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  16. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  17. Parametric study for high conversion pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Ruetten, H. J.

    1975-06-15

    Tables are presented of fuel cycle costs, conversion ratios and accompanying variations in fuel element designs for a 3,00 MWth high conversion pebble bed reactor with initial high enriched uranium/thorium cycle and subsequent recycling of U-233, Pu-239 and Pu-241.

  18. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped

  19. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  20. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  1. Trickle Bed Reactor Operation under Forced Liquid Feed Rate Modulation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Jiřičný, Vladimír; Karnetová, P.; Kolena, J.; Lederer, J.; Skála, D.; Staněk, Vladimír; Tukač, V.

    2007-01-01

    Roč. 13, č. 4 (2007), s. 192-198 ISSN 1451-9372 R&D Projects: GA MPO(CZ) FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : trickle -bed reactor * period * feed rate Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Dicyclopentadiene Hydrogenation in Trickle Bed Reactor under Forced Periodic Control

    Czech Academy of Sciences Publication Activity Database

    Skála, D.; Hanika, Jiří

    2008-01-01

    Roč. 62, č. 2 (2008), s. 215-218 ISSN 1336-7242 R&D Projects: GA MPO(CZ) FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : periodic control * trickle -bed reactor * dicyclopentadiene Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  4. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  6. Study on transient of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Streck, E.E.

    1988-01-01

    The point kinetic equations for a Fluidized-Bed Nuclear Reactor are solved by the method of Hansen. Due to the time varying nature of the reactor volume, the equations have a non-conventional formulation (moving boundary problem), but the method of solution preserves its asymptotic convergence and efficiency characteristics under this formulation. A one dimensional and linearized thermal hydraulics feedback model was coupled to the point kinetic equations in order to obtain a more realistic representation of the reactor power. The resulting equations are solved by the Euler explicit method. (author)

  7. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  8. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    Buden, D.; Williams, K.; Mast, P.; Mims, J.

    1987-01-01

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in the tens of megawatts. The electrical power requirements are envisioned to be twofold: long-duration lower power levels will be needed for station keeping, communications, and/or surveillance; short-duration higher power levels will be required for pulsed power devices. These power characteristics led to the proposal of a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multimegawatt reactor power source are standby, alert, and pulsed power modes; high-thermal output heat source (approximately 1000 MWt peak power); long lifetime station keeping power (10 to 30 years); high temperature output (1500 K to 1800 K); rapid-burst power transition; high reliability (above 95 percent); and stringent safety standards compliance. The proposed pellet bed reactor is designed to satisfy these characteristics

  9. Operation of Packed-Bed Reactors Studied in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  10. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  11. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  12. Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing

    International Nuclear Information System (INIS)

    Håkonsen, Silje Fosse; Grande, Carlos A.; Blom, Richard

    2014-01-01

    Highlights: • A mathematical model for the rotating CLC reactor has been developed. • The model reflects the gas distribution in the reactor during CLC operation. • Radial dispersion in the rotating bed is the main cause for internal gas mixing. • The model can be used to optimize the reactor design and particle characteristics. - Abstract: A newly designed continuous lab-scale rotating bed reactor for chemical looping combustion using CuO/Al 2 O 3 oxygen carrier spheres and methane as fuel gives around 90% CH 4 conversion and >90% CO 2 capture efficiency based on converted methane at 800 °C. However, from a series of experiments using a broad range of operating conditions potential CO 2 purities only in the range 20–65% were yielded, mostly due to nitrogen slip from the air side of the reactor into the effluent CO 2 stream. A mathematical model was developed intending to understand the air-mixing phenomena. The model clearly reflects the gas slippage tendencies observed when varying the process conditions such as rotation frequency, gas flow and the flow if inert gas in the two sectors dividing the air and fuel side of the reactor. Based on the results, it is believed that significant improvements can be made to reduce gas mixing in future modified and scaled-up reactor versions

  13. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Mirvakili, A.; Paymooni, K.

    2011-01-01

    The present study proposes a novel configuration of Fischer-Tropsch synthesis (FTS) reactors in which a fixed-bed water perm-selective membrane reactor is followed by a fluidized-bed hydrogen perm-selective membrane reactor. This novel concept which has been named fixed-bed membrane reactor followed by fluidized-bed membrane reactor (FMFMDR) produces gasoline from synthesis gas. The walls of the tubes of a fixed-bed reactor (water-cooled reactor) of FMFMDR configuration are coated by a high water perm-selective membrane layer. In this new configuration, two membrane reactors instead of one membrane reactor are developed for FTS reactions. In other words, two different membrane layers are used. In order to investigate the performance of FMFMDR, a one-dimensional heterogeneous model is taken into consideration. The simulation results of three schemes named fluidized-bed membrane dual-type reactor (FMDR), FMFMDR and conventional fixed-bed reactor (CR) are presented. They have been compared in terms of temperature, gasoline and CO 2 yields, H 2 and CO conversions and the water permeation rate through the membrane layer. Results show that the gasoline yield in FMFMDR is higher than the one in FMDR. The FMFMDR configuration not only decreases the undesired product such as CO 2 but also produces more gasoline. -- Research highlights: → The application of H-SOD membrane layer in FTS reactors. → Approximate 7.5% and 37% increase in the gasoline yield in terms of [g/g feed x 100] in comparison with FMDR and CR, respectively. → A remarkable decrease in CO 2 emission to the environment. → A good configuration mainly due to reduction in catalysts sintering as a result of in situ water removal.

  14. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  15. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Holland, M.E.

    1980-01-01

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  16. Researchers solve big mysteries of pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Afaque; Roelofs, Ferry; Komen, E.M.J. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, Emilio [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Nuclear Science and Engineering; Sgro, Titus [CD-adapco, London (United Kingdom). Technical Marketing

    2014-03-15

    The PBR is one type of High Temperature Reactors, which allows high temperature work while preventing the fuel from melting (bringing huge safety margins to the reactor) and high electricity efficiency. The design is also highly scalable; a plant could be designed to be as large or small as needed, and can even be made mobile, allowing it to be used onboard a ship. In a PBR, small particles of nuclear fuel, embedded in a moderating graphite pebble, are dropped into the reactor as needed. At the bottom, the pebbles can be removed simply by opening a small hatch and letting gravity pull them down. To cool the reactor and create electricity, helium gas is pumped through the reactor to pull heat out which is then run through generators. One of the most difficult problems to deal with has been the possible appearance of local temperature hotspots within the pebble bed heating to the point of melting the graphite moderators surrounding the fuel. Obviously, constructing a reactor and experimenting to investigate this possibility is out of the question. Instead, nuclear engineers have been attempting to simulate a PBR with various CFD codes. The thermo-dynamic analysis to simulate realistic conditions in a pebble bed are described and the results are shown. (orig.)

  17. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  18. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  19. Fluidized bed reactor for processing particles coated with carbon

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1978-01-01

    The carbon coating of production returns of these particles first has to be removed before the heavy metal core released can be reprocessed. For reasons of criticality, removal of burnt-up particles downwards must be possible in the fluidized bed reactor even if the reactor diameter is greater than 800 mm, and the material temperatures must not exceed 650 0 C. It consists of an upper cylindrical and a lower conical part, where, according to the invention, the gas distributor heads in the conical part are situated in several planes above one another for the fluidisation and combustion gas and where they are evently distributed over the reactor crossection, so that an even flow profile is achieved over the reactor cross section. (HP) [de

  20. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  2. Optimization of a packed bed reactor for liquid waste treatment

    International Nuclear Information System (INIS)

    Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.

    1993-01-01

    The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere

  3. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Maloncy, M.L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology (Netherlands)

    2004-07-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branch ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. A model studies using C6 components are conduct. Separated n-C6 from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  4. Cleaning of porous filters in fossilized bed reactors

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Sancho Rod, J.

    1965-01-01

    In this report are established the optimum working conditions of a filter cleaning system by blow back. For this purpose it was determined in the first place the blow back air rate necessary to have a good cleaning. The reasons for which it was not possible until now to control the pressure in a fluidized bed calcination reactor are analyzed and a criteria is established to calculate the optimum floe necessary to clean efficiently a porous by this procedures. (Author)

  5. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  6. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  7. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  8. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Park, HyeongKae; Knoll, Dana; Gaston, Derek; Martineau, Richard

    2010-01-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  9. Pellet bed reactor for nuclear thermal propelled vehicles

    International Nuclear Information System (INIS)

    El-Genk, M.; Morley, N.J.; Haloulakos, V.E.

    1991-01-01

    The Pellet Bed Reactor (PeBR) concept is capable of operating at a high power density of up to 3.0 kWt/cu cm and an exit hydrogen gas temperature of 3000 K. The nominal reactor thermal power is 1500 MW and the reactor core is 0.80 m in diameter and 1.3 m high. The nominal PeBR engine generates a thrust of approximately 315 kN at a specific impulse of 1000 s for a mission duration to Mars of 250 days requiring a total firing time of 170 minutes. Because of its low diameter-to-height ratio, PeBR has enough surface area for passive removal of the decay heat from the reactor core. The reactor is equipped with two independent shutdown mechanisms; 8-B4C safety rods and 26 BeO/B4C control drums; each system is capable of operating and scraming the reactor safely. Due to the absence of core internal support structures, the PeBR can be fueled and refueled in orbit using the vacuum of space. These unique features of the PeBR provide for safety during launch, simplicity of handling, deployment, and end-of-life disposal, and vehicle extended lifetime. 11 refs

  10. A novel auto-thermal reforming membrane reactor for high purity H2

    International Nuclear Information System (INIS)

    Tony Boyd; Grace, J.R.; Lim, C.J.; Adris, A.M.

    2006-01-01

    A novel hydrogen reactor based on steam reforming of natural gas has been developed and tested. The reactor produces high purity hydrogen using in-situ perm-selective membranes installed in a fluidized catalyst bed, thus shifting the thermodynamic equilibrium of the SMR reaction and eliminating the need for downstream hydrogen purification. The reactor is particularly suited to auto-thermal reforming, where air is added to the reformer to provide the endothermic reaction heat, thus eliminating the need to indirectly heat the reactor. The gas flow pattern within the fluidized bed induces an internal circulation of catalyst particles between the central SMR reaction (permeation) zone and an outer annulus. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming, while ensuring that the palladium membranes are not exposed to excessive temperatures or to oxygen. Another beneficial characteristic of the reactor is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes. Pilot plant results carried out in a semi-industrial scale reactor will be presented. The reactor was operated up to 650 C and 14 bar. Pure hydrogen (99.999+%) was initially obtained from the reactor and an equilibrium shift was demonstrated. (authors)

  11. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  12. Thermal hydraulic and neutronic interaction in the rotating bed reactor

    International Nuclear Information System (INIS)

    Lee, C.C.

    1986-01-01

    Power transient characteristics in a rotating fluidized bed reactor (RBR) are investigated theoretically. A propellant flow perturbation is assumed to occur in an initially equilibrium state of the core. Transfer functions representing quasi-one-dimensional mutual feedback between thermal hydraulics and neutronics are developed and analyzed in the frequency domain. Neutronic responses are determined by Fermi-age theory for slowing down of fast neutrons and diffusion theory for thermal neutron distribution. Neutron leakage through the exhaust nozzle is accounted for by applying diffuse view factors similar to those applied in radiative heat transfer. The bed expansion behavior is described by a kinematic wave equation derived from the continuity of the gas phase. The drift flux approach is used to determine the yield fractions in the equilibrium bed. Thermal responses of fuel are evaluated by dividing it into several volume-averaged zones to better account for the transient effects over single zone models. Sample calculations are undertaken for the various operation conditions and design parameters of the RBR based on 250 MW/sub t/, 1000 MW/sub t/, and 5000 MW/sub t/ power reactors. The results show that power transients are dependent on the parametric changes of optical thickness and view factors

  13. Gas reactor international cooperative program interim report. Pebble bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, compare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  14. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    Science.gov (United States)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  15. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    International Nuclear Information System (INIS)

    El-genk, M.S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept

  16. Catalytic membrane reactor for tritium extraction system from He purge

    International Nuclear Information System (INIS)

    Santucci, Alessia; Incelli, Marco; Sansovini, Mirko; Tosti, Silvano

    2016-01-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm 3 /h and a H 2 /He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H 2 feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been measured by using

  17. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  18. PERKEMBANGAN BIOFILM NITRIFIKASI DI FIXED BED REACTOR PADA SALINITAS TINGGI

    Directory of Open Access Journals (Sweden)

    Sudarno

    2012-03-01

    Full Text Available Development of nitrification biomass that is growing attached on carried material was examined by measuring its ammonium or nitrit oxidation rates. Porous ceramic rings (36 pieces were put into the fixed bed reactor (FBR . The fixed bed reactor that was operated continuously for more than 500 day was continued to be operated at a HRT of 1 day, a DO of above 5 mg L-1 and pH of 8. Ammonia concentration in the feeding was 50 mg NH4+-N L-1. At days 1, 5, 12, 20, 33 and 50, six porous ceramic rings were taken out and then ammonia and nitrite removal rate by biofilm in the ceramic rings was separately measured. The measurement of rates was done in small cylindrical glass reactors with initial concentration of ammonia and nitrite was 10 mg N L-1. Until 50 days of incubation AORs were always higher than NORs. Additionally, ammonia oxidizers attach or grow faster in the porous ceramic material than nitrite oxidizers.

  19. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Renu Gupta

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.7127.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7127.31-37 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7127][Cited by: Scopus 1 | ] 

  20. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  1. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  2. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  3. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  4. Critical Issues for Particle-Bed Reactor Fuels

    Science.gov (United States)

    Evans, Robert S.; Husser, Dewayne L.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    Particle-Bed Reactors (PBRs) potentially offer performance advantages for nuclear thermal propulsion, including very high power densities, thrust-to-weight ratios, and specific impulses. A key factor in achieving all of these is the development of a very-high-temperature fuel. The critical issues for all such PBR fuels are uranium loading, thermomechanical and thermochemical stability, compatibility with contacting materials, fission product retention, manufacturability, and operational tolerance for particle failures. Each issue is discussed with respect to its importance to PBR operation, its status among current fuels, and additional development needs. Mixed-carbide-based fuels are recommended for further development to support high-performance PBRs.

  5. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  6. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  7. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  8. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  9. Transformation products of clindamycin in moving bed biofilm reactor (MBBR)

    DEFF Research Database (Denmark)

    Ooi, Gordon Tze Hoong; Escola Casas, Monica; Andersen, Henrik Rasmus

    2017-01-01

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater...... treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs...... process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments...

  10. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Dmitry Yu. Murzin

    2008-09-01

    Full Text Available In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood, was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5°C/min was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  11. Pyrolysis of softwood carbohydrates in a fluidized bed reactor.

    Science.gov (United States)

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu

    2008-09-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 degrees C/min) was applied to the heating until a reactor temperature of 460 degrees C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  12. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  13. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  14. Definition of validated membrane reactor model for 5 kW power output CHP system for different natural gas compositions

    NARCIS (Netherlands)

    Di Marcoberardino, Gioele; Gallucci, Fausto; Manzolini, Giampaolo; van Sint Annaland, Martin

    2016-01-01

    Over the last years, many studies focused on the development of membrane reactors for micro-cogeneration systems based on PEM fuel cells, thanks to its unique feature of separating pure hydrogen. This work deals with (i) the design of a fluidized bed membrane reactor flexible towards different

  15. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  16. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  17. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  18. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  19. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    Moore, R.L.; Oh, C.H.; Merrill, B.J.; Petti, D.A.

    2002-01-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  20. Coal-char combustion in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, S.P.; Pande, M. [Indian Institute of Technolgy, Kanpur (India)

    2001-12-01

    Combustion of bituminous coal chars ranging from 0.8 mm to 1.8 mm has been studied in a fluidised bed reactor at temperatures ranging from 500 to 850{sup o}C. The fluidised bed consists of inert sand particles of average size of 0.5 mm and reactive coal char particles. A heat balance has been worked out to calculate the rate of combustion of char from measured incremental changes in the bed temperature during combustion. Investigations on partially burnt particles suggest that the ash layer which builds up around the burning core of char particles is non-flaking and the particles burn in a shrinking core manner. Analysis of rate data indicates that the rate of combustion is controlled by chemical reaction kinetics, though diffusion of oxygen through the bundary layer begins to influence the overall reaction kinetics at higher temperatures. The burnt out time varies linearly with particle size. Activation energy for the chemical reaction control regime is found to be around 68 kJ/mole.

  1. Improving hydrolysis of food waste in a leach bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Browne, James D.; Allen, Eoin; Murphy, Jerry D., E-mail: jerry.murphy@ucc.ie

    2013-11-15

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.

  2. Improving hydrolysis of food waste in a leach bed reactor

    International Nuclear Information System (INIS)

    Browne, James D.; Allen, Eoin; Murphy, Jerry D.

    2013-01-01

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB

  3. State of the art of the fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Vilhena, M.T.M.B. de; Streck, E.; Borges, V.; Johansson, M.

    1987-01-01

    A small and simple nuclear reactors with inherent safety using the fluidized bed concept is under research and study. In this paper a brief study neutronics and thermal hydraulics of this reactor concept is presented. (Author) [pt

  4. Sewage disposal using anaerobic membrane reactor. Kenkiseimaku reactor ni yoru gesui shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y. (Dic-Degremont Co. Ltd., Tokyo (Japan))

    1991-11-01

    Discussions were given on a small-scale sewage disposal of about bod 200 mg/l, for which no many examples of use have been hitherto available, using a system combining an anaerobic reactor and membrane modules. Experiments had been carried out from 1988 through 1990 as a part of the Aqua-Renaissance Project. The test equipment wza installed in the premises of the Chigasaki Coastal Research Facilities operated by the Ministry of International Trade and Industry, which used sewage flowing from the adjoining sewage treatment plant for the southern area of the Fujisawa City. The test facility consisted of a system comprising a pretreatment facility, SS decomposing reactor, fluid-bed reactor, separation membrane modules, nitrogen removing facility and micro-organism activity measurement. The test facility was constucted assuming a treatment of 10 m{sup 3} a day. The system was divided into a composite system, A system and B system to operate the system in simplified flows. As a result of comparing the composite system, A system and B system, it was found that B system can deal with wider range of disposal for a small-scale sewage treatment of about 1000 m{sup 3} a day. 6 refs., 14 figs., 3 tabs.

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  6. Semi-dry flue gas desulfurization using Ca(OH)2 in a fluidized bed reactor with bed materials

    International Nuclear Information System (INIS)

    Park, Young Oak; Roh, Hak Jae; Oh, Chang Sup; Kim, Yong Ha

    2010-01-01

    The main objective of present work is to reduce sulfur dioxide emission from power plant for the environment protection. The fluidized bed (FB) was used as the reactor with bed materials in a new semi-dry flue gas desulfurization (FGD) process to achieve high desulfurization efficiency (>98%). Fine powder of Ca(OH) 2 as sorbent and water were continuously fed separately to the bed reactor where bed materials (2 mm glass beads) were fluidized vigorously with flue gas (flow 720 Nm 3 / hr) using bench scale plant of stainless steel column. We have investigated different effects of water injection flow rate, Ca/ S molar ratio and weight of bed materials on SO 2 removal. The increments in the Ca/ S molar ratio and water injection flow rate have been resulted higher desulfurization efficiency with certain disadvantages such as higher sorbent cost and lower temperature of the treated flue gas, respectively. (author)

  7. Risk-informed design of a pebble bed gas reactor

    International Nuclear Information System (INIS)

    Ritterbusch, Stanley; Dimitrijevic, Vesna; Simic Zdenko; Savkina Marina

    2003-01-01

    One of the major challenges to the successful deployment of new nuclear plants in the United States is the regulatory process, which is largely based on water-reactor design technology and operating experience. While ongoing and expected efforts to license new LWR designs are based primarily on current regulations, guidance, and past experience, the pre-application review of the gas-cooled Pebble Bed Modular Reactor (PBMR) has shown that efforts are being made to provide additional 'risk-informed' improvements to the licensing process. These improvements are aimed at resolving new design and regulatory issues using a plant-wide integrated evaluation method - state-of-the-art Probabilistic Risk Assessment - which addresses all significant design features and operating modes. The integrated PRA evaluation is supported by the usual deterministic design analyses, engineering judgments, and margins added to address uncertainties (i.e., defense-in-depth). The work performed for this paper was completed as part of the United States Department of Energy's Nuclear Energy Research Initiative. The purpose of this particular project was to develop the methods for a new 'highly risk-informed' design and regulatory process. In this work. PRA techniques were applied in order to provide an integrated and systematic analysis of the plant design, to quantify uncertainties and explicitly account for defense-in-depth features. This work concentrates on the application of the risk-informed principles to a new plant design such as the PBMR. The implementation example completed for this project included specification of the design configuration, use of the PRA to evaluate the design, and iterations to identify design changes that improve the overall level of safety and system reliability. This paper summarizes the new 'highly risk-informed' design process, the design of the PBMR, and the results obtained. These results, consistent with the known inherent safety features of a pebble-bed

  8. Mathematical modeling of a three-phase trickle bed reactor

    Directory of Open Access Journals (Sweden)

    J. D. Silva

    2012-09-01

    Full Text Available The transient behavior in a three-phase trickle bed reactor system (N2/H2O-KCl/activated carbon, 298 K, 1.01 bar was evaluated using a dynamic tracer method. The system operated with liquid and gas phases flowing downward with constant gas flow Q G = 2.50 x 10-6 m³ s-1 and the liquid phase flow (Q L varying in the range from 4.25x10-6 m³ s-1 to 0.50x10-6 m³ s-1. The evolution of the KCl concentration in the aqueous liquid phase was measured at the outlet of the reactor in response to the concentration increase at reactor inlet. A mathematical model was formulated and the solutions of the equations fitted to the measured tracer concentrations. The order of magnitude of the axial dispersion, liquid-solid mass transfer and partial wetting efficiency coefficients were estimated based on a numerical optimization procedure where the initial values of these coefficients, obtained by empirical correlations, were modified by comparing experimental and calculated tracer concentrations. The final optimized values of the coefficients were calculated by the minimization of a quadratic objective function. Three correlations were proposed to estimate the parameters values under the conditions employed. By comparing experimental and predicted tracer concentration step evolutions under different operating conditions the model was validated.

  9. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    Science.gov (United States)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  10. Gas Reactor International Cooperative Program. Interim report. Safety and licensing evaluaion of German Pebble Bed Reactor concepts

    International Nuclear Information System (INIS)

    1978-09-01

    The Pebble Bed Gas Cooled Reactor, as developed in the Federal Republic of Germany, was reviewed from a United States Safety and Licensing perspective. The primary concepts considered were the steam cycle electric generating pebble bed (HTR-K) and the process heat pebble bed (PNP), although generic consideration of the direct cycle gas turbine pebble bed (HHT) was included. The study examines potential U.S. licensing issues and offers some suggestions as to required development areas

  11. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best

  12. Localization of the hot spots in a pebble bed reactor

    International Nuclear Information System (INIS)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung

    2016-01-01

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments

  13. Localization of the hot spots in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments.

  14. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  15. Pebble bed reactor with one-zone core

    International Nuclear Information System (INIS)

    Mueller-Frank, U.; Lohnert, G.

    1977-01-01

    The claim deals with measures to differentiate the flow rate and to remove spherical fuel elements in the core of a pebble bed reactor. Hence the vertical rate of the fuel elements in the border region is for example twice as much as in the centre. A central funnel-shaped outlet on the floor of the core container over which a conical body is placed with its peak pointing upwards, or also the forming of several outlets can be used to adjust to a certain exit rate for the fuel elements. The main target of the invention is a radially extensively constant coolant outlet temperature at the outlet of the core which determines the effectiveness of the connected heat exchanger and thus contributes to economy. (UA) [de

  16. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  17. Continuous thermophilic biohydrogen production in packed bed reactor

    International Nuclear Information System (INIS)

    Roy, Shantonu; Vishnuvardhan, M.; Das, Debabrata

    2014-01-01

    Highlights: • Continuous H 2 production in whole cell immobilized system was compared with CSTR. • Suitability of environment friendly support matrix for immobilization of whole cells was explored. • Pack bed reactor showed higher stability as compared to CSTR at lower HRTs. • Flow cytometry study showed the influence of recycle ratio on viability of cells. • Novel approach to find out the effect of NADH/NAD + ratio during H 2 production. - Abstract: The present research work deals with the performance of packed bed reactor for continuous H 2 production using cane molasses as a carbon source. Maximum H 2 production rate of 1.7 L L −1 h −1 was observed at a dilution rate and recycle ratio of 0.8 h −1 and 0.6, respectively which was corresponding to the lowest NADH/NAD + ratio. This suggests that the utilization of NADH pool for H 2 and metabolite production might lead to decrement in NADH/NAD + ratio. Thus NADH/NAD + ratio show inverse relation with hydrogen production. The substrate degradation kinetics was investigated as a function of flow rate considering the external film diffusion model. At a flow rate of 245 mL h −1 , the contribution of external film mass transfer coefficient and first order substrate degradation constant were 55.4% and 44.6% respectively. Recycle ratio of 0.6 improved the hydrogen production rates by 9%. The viable cell count was directly proportional to the recycle ratio (within the range 0.1–0.6). Taguchi design showed the significant influence of the feed pH on continuous H 2 production followed by dilution rate and recycle ratio. Thus environmentally friendly and cheaper solid matrix like coconut coir could be efficiently used for thermophilic continuous hydrogen production

  18. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  20. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling

    KAUST Repository

    Ye, Yaoli; Labarge, Nicole; Kashima, Hiroyuki; Kim, Kyoung Yeol; Hong, Pei-Ying; Saikaly, Pascal; Logan, Bruce E.

    2016-01-01

    Anaerobic fluidized bed membrane bioreactors (AFMBRs) use granular activated carbon (GAC) particles suspended by recirculation to effectively treat low strength wastewaters (∼100–200 mg L−1, chemical oxygen demand, COD), but the effluent can contain dissolved methane. An aerobic fluidized bed membrane bioreactor (AOFMBR) was developed to avoid methane production and the need for wastewater recirculation by using rising air bubbles to suspend GAC particles. The performance of the AOFMBR was compared to an AFMBR and a conventional aerobic membrane bioreactor (AeMBR) for domestic wastewater treatment over 130 d at ambient temperatures (fixed hydraulic retention time of 1.3 h). The effluent of the AOFMBR had a COD of 20 ± 8 mg L−1, and a turbidity of <0.2 NTU, for low-COD influent (153 ± 19 and 214 ± 27 mg L−1), similar to the AeMBR and AFMBR. For the high-COD influent (299 ± 24 mg L−1), higher effluent CODs were obtained for the AeMBR (38 ± 9 mg L−1) and AFMBR (51 ± 11 mg L−1) than the AOFMBR (26 ± 6 mg L−1). Transmembrane pressure of the AOFMBR increased at 0.04 kPa d−1, which was 20% less than the AeMBR and 57% less than the AFMBR, at the low influent COD. Scanning electron microscopy (SEM) analysis indicated a more uniform biofilm on the membrane in AOFMBR than that from the AeMBR biofilm, and no evidence of membrane damage. High similarity was found between communities in the suspended sludge in the AOFMBR and AeMBR (square-root transformed Bray–Curtis similarity, SRBCS, 0.69). Communities on the GAC and suspended sludge were dissimilar in the AOFMBR (SRBCS, 0.52), but clustered in the AFMBR (SRBCS, 0.63).

  1. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling

    KAUST Repository

    Ye, Yaoli

    2016-09-24

    Anaerobic fluidized bed membrane bioreactors (AFMBRs) use granular activated carbon (GAC) particles suspended by recirculation to effectively treat low strength wastewaters (∼100–200 mg L−1, chemical oxygen demand, COD), but the effluent can contain dissolved methane. An aerobic fluidized bed membrane bioreactor (AOFMBR) was developed to avoid methane production and the need for wastewater recirculation by using rising air bubbles to suspend GAC particles. The performance of the AOFMBR was compared to an AFMBR and a conventional aerobic membrane bioreactor (AeMBR) for domestic wastewater treatment over 130 d at ambient temperatures (fixed hydraulic retention time of 1.3 h). The effluent of the AOFMBR had a COD of 20 ± 8 mg L−1, and a turbidity of <0.2 NTU, for low-COD influent (153 ± 19 and 214 ± 27 mg L−1), similar to the AeMBR and AFMBR. For the high-COD influent (299 ± 24 mg L−1), higher effluent CODs were obtained for the AeMBR (38 ± 9 mg L−1) and AFMBR (51 ± 11 mg L−1) than the AOFMBR (26 ± 6 mg L−1). Transmembrane pressure of the AOFMBR increased at 0.04 kPa d−1, which was 20% less than the AeMBR and 57% less than the AFMBR, at the low influent COD. Scanning electron microscopy (SEM) analysis indicated a more uniform biofilm on the membrane in AOFMBR than that from the AeMBR biofilm, and no evidence of membrane damage. High similarity was found between communities in the suspended sludge in the AOFMBR and AeMBR (square-root transformed Bray–Curtis similarity, SRBCS, 0.69). Communities on the GAC and suspended sludge were dissimilar in the AOFMBR (SRBCS, 0.52), but clustered in the AFMBR (SRBCS, 0.63).

  2. Advanced modularity design for the MIT pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kadak, Andrew C. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: kadak@mit.edu; Berte, Marc V. [Department of Nuclear Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-202 Cambridge, MA 02139-4307 (United States)]. E-mail: mvberte@yahoo.com

    2006-03-15

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant.

  3. Advanced modularity design for the MIT pebble bed reactor

    International Nuclear Information System (INIS)

    Kadak, Andrew C.; Berte, Marc V.

    2006-01-01

    The future of all reactors will depend on whether they can be economically built and operated. One of the major impediments to new nuclear construction is the capital cost due in large part to the length of construction time and complexity of the plant. Pebble bed reactors offer the opportunity to reduce the complexity of the plant because the number of safety systems required is significantly reduced due to the inherent safety of the technology. However, because of its small size, the capital cost per kilowatt is likely to be large if traditional construction approaches are followed. This strongly suggests the need for innovative construction concepts to reduce the construction time and cost. MIT has proposed a modularity approach in which the plant is pre-built in space-frame type modules which are built in factories. These space frames would contain all the equipment contained in a given volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site and assembled 'lego-style.' Studies presently underway have demonstrated the feasibility of the concept. Thermal stress analysis has been performed and an integrated design with the space frames has been developed. It is expected that this modularity approach will significantly shorten construction time and expense. This paper proposes a concept for further development, not a final design for the entire plant

  4. Transmutation of plutonium in pebble bed type high temperature reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1997-01-01

    The pebble bed type High Temperature Reactor (HTR) has been studied as a uranium-free burner of reactor grade plutonium. In a parametric study, the plutonium loading per pebble as well as the type and size of the coated particles (CPs) have been varied to determine the plutonium consumption, the final plutonium burnup, the k ∞ and the temperature coefficients as a function of burnup. The plutonium loading per pebble is bounded between 1 and 3 gr Pu per pebble. The upper limit is imposed by the maximal allowable fast fluence for the CPs. A higher plutonium loading requires a longer irradiation time to reach a desired burnup, so that the CPs are exposed to a higher fast fluence. The lower limit is determined by the temperature coefficients, which become less negative with increasing moderator-actinide ratio. A burnup of about 600 MWd/kgHM can be reached. With the HTR's high efficiency of 40%, a plutonium supply of 1520 kg/GW e a is achieved. The discharges of plutonium and minor actinides are then 450 and 110 kg/GW e a, respectively. (author)

  5. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  6. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  7. Heat transfer in a membrane assisted fluidised bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, S.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidised bed was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged in a staggered formation with the membrane

  8. Fluidized-bed Fenton coupled with ceramic membrane separation for advanced treatment of flax wastewater.

    Science.gov (United States)

    Fan, Dong; Ding, Lili; Huang, Hui; Chen, Mengtian; Ren, Hongqiang

    2017-10-15

    Fluidized-bed Fenton coupled with ceramic membrane separation to treat the flax secondary effluent was investigated. The operating variables, including initial pH, dosage of H 2 O 2 and Fe 0 , air flow rate, TMP and pore size, were optimized. The distributions of DOMs in the treatment process were analyzed. Under the optimum condition (600mgL -1 H 2 O 2 , 1.4gL -1 Fe 0 , pH=3, 300Lh -1 air flow rate and 15psi TMP), the highest TOC and color removal efficiencies were 84% and 94% in the coupled reactor with 100nm ceramic membrane, reducing 39% of total iron with similar removal efficiency compared with Fluidized-bed Fenton. Experimental results showed that the ceramic membrane could intercept catalyst particles (average particle size >100nm), 10.4% macromolecules organic matter (AMW>20000Da) and 12.53% hydrophobic humic-like component. EEM-PARAFAC identified four humic-like (M1-M4) and one protein-like components (M5), and the fluorescence intensities of M1-M5 in the secondary effluent were 63.27, 63.05, 33.41, 16.71 and 0.72 QSE, respectively. After the coupled treatment, the removal efficiencies of M1(81%), M2(86%) were higher than M3, M4(63%, 61%). Pearson correlation analysis suggested that M1, M2 and M3 were the major contributors to the cake layer, and M4, M5 might more easily lead to pore blockages. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  10. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    Hydrogen is considered to be an important potential energy carrier; however, its advantages are unlikely to be realized unless efficient means can be found to produce it without generation of CO{sub 2}. Sorption-enhanced steam methane reforming (SE-SMR) represent a novel, energy-efficient hydrogen production route with in situ CO{sub 2} capture, shifting the reforming and water gas shift reactions beyond their conventional thermodynamic limits. The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite, a calcium-based natural sorbent, was chosen as the primary CO{sub 2}-acceptor in this study due to high absorption capacity, relatively high reaction rate and low cost. An experimental investigation was conducted in a bubbling fluidized bed reactor of diameter 0.1 m, which was operated cyclically and batch wise, alternating between reforming/carbonation conditions and higher-temperature calcination conditions. Hydrogen concentrations of >98 mole% on a dry basis were reached at 600 C and 1 atm, for superficial gas velocities in the range of {approx}0.03-0.1 m/s. Multiple reforming-regeneration cycles showed that the hydrogen concentration remained at {approx}98 mole% after four cycles. The total production time was reduced with an increasing number of cycles due to loss of CO{sub 2}-uptake capacity of the dolomite, but the reaction rates of steam reforming and carbonation seemed to be unaffected for the conditions investigated. A modified shrinking core model was applied for deriving carbonation kinetics of Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An apparent activation energy of 32.6 kj/mole was found from parameter fitting, which is in good agreement with previous reported results. The derived rate expression was able to predict experimental conversion up to {approx}30% very well, whereas the prediction of higher conversion levels was poorer. However, the residence time of sorbent in a continuous

  11. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  12. Nuclear safeguards considerations for pebble bed reactors (PBRs)

    International Nuclear Information System (INIS)

    Moses, David L.

    2012-01-01

    Recent reports by the Department of Energy National Laboratories have discussed safeguards considerations for low enriched uranium (LEU)-fueled pebble bed reactors (PBRs) and the need for bulk accountancy of the plutonium in “used fuel.” These reports fail to account for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency (IAEA) “provisional” guidelines for termination of safeguards on “measured discards.” The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel is not sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of the uranium minor isotopes 232 U and 236 U in the used fuel at the target burnup of ∼90 Gigawatt-days per metric ton (GWD/MT) exceed standard specification limits for reprocessed uranium and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the 236 U content to fall within specification. Hence, the PBR used fuel is less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBR specific activity of a reprocessed uranium isotopic mixture and its A 2 values for effective dose limits if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light-water-reactor used fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product (technetium, 99 Tc) and plutonium contamination. Thus, the potentially recoverable uranium from PBR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for

  13. Gas-solid hydroxyethylation of potato starch in a stirred vibrating fluidized bed reactor

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    A novel reactor for modifying cohesive C-powders such as in the gas-solid hydroxyethylation of semidry potato starch is characterized, the so-called stirred vibrating fluidized bed reactor. Good fluidization characteristics are obtained in this reactor for certain combinations of stirring and

  14. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  15. Pebble bed modular reactor - The first Generation IV reactor to be constructed

    International Nuclear Information System (INIS)

    Ion, S.; Nicholls, D.; Matzie, R.; Matzner, D.

    2004-01-01

    Substantial interest has been generated in advanced reactors over the past few years. This interest is motivated by the view that new nuclear power reactors will be needed to provide low carbon generation of electricity and possibly hydrogen to support the future growth in demand for both of these commodities. Some governments feel that substantially different designs will be needed to satisfy the desires for public perception, improved safety, proliferation resistance, reduced waste and competitive economics. This has motivated the creation of the Generation IV Nuclear Energy Systems programme in which ten countries have agreed on a framework for international cooperation in research for advanced reactors. Six designs have been selected for continued evaluation, with the objective of deployment by 2030. One of these designs is the very high temperature reactor (VHTR), which is a thermal neutron spectrum system with a helium-cooled core utilising carbon-based fuel. The pebble bed modular reactor (PBMR), being developed in South Africa through a worldwide international collaborative effort led by Eskom, the national utility, will represent a key milestone on the way to achievement of the VHTR design objectives, but in the much nearer term. This paper outlines the design objectives, safety approach and design details of the PBMR, which is already at a very advanced stage of development. (author)

  16. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  17. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology, Delft (Netherlands)

    2005-03-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branched ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. Model studies using C{sub 6} components are conducted. n-C{sub 6} separated from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  18. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I; Tanaka, S; Shirai, T; Suzuki, S

    1977-08-01

    Cellulase was immobilized in a collagen fibril matrix, and no leakage of cellulase from the collagen fibril matrix was observed. The immobilized cellulase was more stable than the native cellulase. The substrate cellulose was hydrolyzed quantitatively with immobilized cellulase. The final reaction product was identified as glucose. Immobilized cellulase was used in a fluidized bed reactor where the pressure drop of the fluidized bed reactor was low and constant. Cellulose was hydrolyzed to glucose by the cellulase-bead fluidized bed reactor. The minimum flow velocity (U/sub mf/) was 0.5 cm/sec and the optimum flow velocity of the cellulose hydrolysis was 1 cm/sec.

  19. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  20. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  1. Theory and measurements of electrophoretic effects in monolith, fixed-bed, and fluidized-bed plasma reactors

    International Nuclear Information System (INIS)

    Morin, T.J.

    1989-01-01

    Pressure gradients and secondary flow fields generated by the passage of electrical current in a d.c. gas discharge or gas laser are topics of longstanding interest in the gaseous electronics literature. These hydrodynamic effects of space charge fields and charged particle density gradients have been principally exploited in the development of gas separation and purification processes. In recent characterization studies of fixed-bed and fluidized-bed plasma reactors several anomalous flow features have been observed. These reactors involve the contacting of a high-frequency, resonantly-sustained, disperse gas discharge with granular solids in a fixed or fluidized bed. Anomalies in the measured pressure drops and fluidization velocities have motivated the development of an appropriate theoretical approach to, and some additional experimental investigations of electrophoretic effects in disperse gas discharges. In this paper, a theory which includes the effects of space charge and diffusion is used to estimate the electric field and charged particle density profiles. These profiles are then used to calculate velocity fields and gas flow rates for monolith, fixed-bed, and fluidized-bed reactors. These results are used to rationalize measurements of gas flow rates and axial pressure gradients in high-frequency disperse gas discharges with and without an additional d.c. axial electric field

  2. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  3. Sustainability and the Fixed Bed Nuclear Reactor (FBNR

    Directory of Open Access Journals (Sweden)

    Farhang Sefidvash

    2012-08-01

    Full Text Available Sustainability as a multifaceted and holistic concept is analyzed. Sustainability involves human relationship with elements such as natural environment, economy, power, governance, education and technology with the ultimate purpose of carrying forward an ever-advancing civilization. The Fixed Bed Nuclear Reactor (FBNR is an innovative, small, simple in design, inherently safe, non-proliferating, and environmentally friendly concept that its deployment can generate energy in a sustainable manner contributing to the prosperity of humanity. The development of FBNR will provide electricity as well as desalinated water through a simple but advanced technology for the developing, as well as developed countries. FBNR is environmentally friendly due to its inherent safety and the convenience of using its spent fuel as the source of radiation for irradiation purposes in agriculture, industry, and medicine. Politically, if a ping pong game brought peace between China and USA, a program of development of FBNR supported by the peace loving international community can become a more mature means to bring peace among certain apparently hostile nations who crave sustainable energy, desalinated water and simple advanced technology.

  4. Packed bed reactor treatment of liquid hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-01-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl 4 ), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO 2 is not released to the environment

  5. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  6. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  7. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  8. Raising distillate selectivity and catalyst life time in Fischer-Tropsch synthesis by using a novel dual-bed reactor

    International Nuclear Information System (INIS)

    Tavasoli, A.; Sadaghiani, K.; Khodadadi, A. A.; Mortazavi, Y.

    2007-01-01

    In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diff rent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Raiment promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed reactor system. The methane selectivity in the dual-bed reactor was about 18.9% less compared to that of the single-bed reactor. The C 5+ selectivity for the dual-bed reactor was 10.9% higher than that of the single-bed reactor. Accelerated deactivation of the catalysts in the dual-bed reactor was 42% lower than that of the single-bed reactor. It was revealed that the amount of catalysts activity recovery after regeneration at 400 d eg C in the dual-bed system is higher than that of the single-bed system

  9. Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors

    KAUST Repository

    Labarge, Nicole

    2016-10-17

    An anaerobic fluidized bed membrane bioreactor (AFMBR) is a new and effective method for energy-efficient treatment of low strength wastewater, but the factors that affect performance are not well known. Different inocula and acclimation methods of the granular activated carbon (GAC) used in the reactor were examined here to determine their impact on chemical oxygen demand (COD) removal and microbial community composition of domestic wastewater-fed AFMBRs. AFMBRs inoculated with anaerobic digester sludge (D) or domestic wastewater (W) and fed domestic wastewater, or inoculated with a microbiologically diverse anaerobic bog sediment and acclimated using methanol (M), all produced the same COD removal of 63 ± 12% using a diluted wastewater feed (100 ± 21 mg L−1 COD). However, an AFMBR with GAC inoculated with anaerobic digester sludge and acclimated using acetate (A) showed significantly increased wastewater COD removal to 84 ± 6%. In addition, feeding the AFMBR with the M-acclimated GAC with an acetate medium for one week subsequently increased COD removal to 70 ± 6%. Microbial communities enriched on the GAC included Geobacter, sulfur-reducing bacteria, Syntrophaceae, and Chlorobiaceae, with reactor A having the highest relative abundance of Geobacter. These results showed that acetate was the most useful substrate for acclimation of GAC communities, and GAC harbors unique communities relative to those in the AFMBR influent and recirculated solution.

  10. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    1978-09-01

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  11. Neutronic modeling of pebble bed reactors in APOLLO2

    International Nuclear Information System (INIS)

    Grimod, M.

    2010-01-01

    In this thesis we develop a new iterative homogenization technique for pebble bed reactors, based on a 'macro-stochastic' transport approximation in the collision probability method. A model has been developed to deal with the stochastic distribution of pebbles with different burnup in the core, considering spectral differences in homogenization and depletion calculations. This is generally not done in the codes presently used for pebble bed analyses, where a pebble with average isotopic composition is considered to perform the cell calculation. Also an iterative core calculation scheme has been set up, where the low-order RZ S N full-core calculation computes the entering currents in the spectrum zones subdividing the core. These currents, together with the core k eff , are then used as surface source in the fine-group heterogeneous calculation of the multi-pebble geometries. The developed method has been verified using reference Monte Carlo simulations of a simplified PBMR- 400 model. The pebbles in this model are individually positioned and have different randomly assigned burnup values. The APOLLO2 developed method matches the reference core k eff within ± 100 pcm, with relative differences on the production shape factors within ± 4%, and maximum discrepancy of 3% at the hotspot. Moreover, the first criticality experiment of the HTR-10 reactor was used to perform a first validation of the developed model. The computed critical number of pebbles to be loaded in the core is very close to the experimental value of 16890, only 77 pebbles less. A method to calculate the equilibrium reactor state was also developed and applied to analyze the simplified PBMR-400 model loaded with different fuel types (UO 2 , Pu, Pu + MA). The potential of the APOLLO2 method to compute different fluxes for the different pebble types of a multi-pebble geometry was used to evaluate the bias committed by the average composition pebble approximation. Thanks to a 'compensation of error

  12. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  13. Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Production of specific-structured lipids (interesterified lipids with a specific structure) by enzymatic interesterification was carried out in a continuous enzyme bed pilot scale reactor. Commercial immobilized lipase (Lipozyme IM) was used and investigations of acyl migration, pressure drop...

  14. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  15. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A. Lemire; Marc A. Demeter; Iain George; Howard Ceri; Raymond J. Turner

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  16. Oxidation of ethene in a wall-cooled packed-bed reactor

    NARCIS (Netherlands)

    Schouten, E.P.S.; Borman, P.C.; Westerterp, K.R.

    1994-01-01

    The selective oxidation of ethene over a silver on α-alumina catalyst was studied in a pilot plant with a wall-cooled tubular packed bed reactor. Gas and solid temperatures in the catalyst bed were measured at different axial and radial positions as well as concentrations at different axial

  17. Advantages of forced non-steady operated trickle-bed reactors

    NARCIS (Netherlands)

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    2002-01-01

    Trickle-bed reactors are usually operated in the steady state trickle flow regime. Uneven liquid distribution and the formation of hot spots are the most serious problems experienced during trickle flow operation. In this paper, we advocate the use of non-steady state operation of trickle-bed

  18. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Science.gov (United States)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  19. Heat transfer in a membrane assisted fluidized bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, Sander; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidized bed operated in the bubbling fluidization regime was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged

  20. Chemical-looping combustion in a reverse-flow fixed bed reactor

    International Nuclear Information System (INIS)

    Han, Lu; Bollas, George M.

    2016-01-01

    A reverse-flow fixed bed reactor concept for CLC (chemical-looping combustion) is explored. The limitations of conventional fixed bed reactors, as applied to CLC, are overcome by reversing the gas flow direction periodically to enhance the mixing characteristics of the bed, thus improving oxygen carrier utilization and energy efficiency with respect to power generation. The reverse-flow reactor is simulated by a dusty-gas model and compared with an equivalent fixed bed reactor without flow reversal. Dynamic optimization is used to calculate conditions at which each reactor operates at maximum energy efficiency. Several cases studies illustrate the benefits of reverse-flow operation for the CLC with CuO and NiO oxygen carriers and methane and syngas fuels. The results show that periodic reversal of the flow during reduction improves the contact between the fuel and unconverted oxygen carrier, enabling the system to suppress unwanted catalytic reactions and axial temperature and conversion gradients. The operational scheme presented reduces the fluctuations of temperature during oxidation and increases the high-temperature heat produced by the process. CLC in a reverse-flow reactor has the potential to achieve higher energy efficiency than conventional fixed bed CLC reactors, when integrated with a downstream gas turbine of a combined cycle power plant. - Highlights: • Reverse-flow fixed bed CLC reactors for combined cycle power systems. • Dynamic optimization tunes operation of batch and transient CLC systems. • The reverse-flow CLC system provides stable turbine-ready gas stream. • Reverse-flow CLC fixed bed reactor has superior CO 2 capture and thermal efficiency.

  1. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yangming [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Wenhua [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-10-15

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H{sub 2}O{sub 2} production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H{sub 2}O{sub 2} was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H{sub 2}O{sub 2} generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L{sup −1} of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h.

  2. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    International Nuclear Information System (INIS)

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-01-01

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H 2 O 2 production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H 2 O 2 was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H 2 O 2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L −1 of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h

  3. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  4. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  5. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  6. Solid phase transport in series fluidised bed reactors

    International Nuclear Information System (INIS)

    Hayes, M.R.

    1980-01-01

    In a multistage counter-current fluidised bed column, fluidised bed material is recycled within each stage and a fraction is continuously withdrawn to the next lower stage at a rate dependent only on the rate of removal of the fluidised bed material from the base of the column. It has a particular application to the ion exchange treatment of liquids containing suspended solids, for example leach solutions from uranium ores. (author)

  7. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas

    International Nuclear Information System (INIS)

    Jing Qiangshan; Lou Hui; Mo Liuye; Zheng Xiaoming

    2006-01-01

    Reforming of methane with carbon dioxide and oxygen was investigated over Ni/MgO-SiO 2 catalysts using fixed bed and fluidized bed reactors. The conversions of CH 4 and CO 2 in a fluidized bed reactor were close to thermodynamic equilibrium. The activity and stability of the catalyst in the fixed bed reactor were lower than that in the fluidized bed reactor due to carbon deposition and nickel sintering. TGA and TEM techniques were used to characterize the spent catalysts. The results showed that a lot of whisker carbon was found on the catalyst in the rear of the fixed bed reactor, and no deposited carbon was observed on the catalysts in the fluidized bed reactor after reaction. It is suggested that this phenomenon is related to a permanent circulation of catalyst particles between the oxygen rich and oxygen free zones. That is, fluidization of the catalysts in the fluidized bed reactor favors inhibiting deposited carbon and thermal uniformity in the reactor

  8. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  9. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  10. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  11. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  12. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  13. Conceptual design of a fluidized bed nuclear reactor : Statics, dynamics and safety-related aspects

    NARCIS (Netherlands)

    Agung, A.

    2007-01-01

    In this thesis a conceptual design of an innovative high temperature reactor based on the fluidization principle (FLUBER) is proposed. The reactor should satisfy the following requirements: (a) modular and low power, (b)) large shutdown margin, (c) able to produce power when the bed of particles

  14. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  15. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    International Nuclear Information System (INIS)

    Hu Jian; Jiang Nan; Li Jie; Shang Kefeng; Lu Na; Wu Yan; Mizuno Akira

    2016-01-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. (paper)

  16. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    Science.gov (United States)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  17. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  18. Thermofluid-neutronic stability of the rotating, fluidized bed, space-power reactor

    International Nuclear Information System (INIS)

    Lee, C.C.; Jones, O.C.; Becker, M.

    1993-01-01

    A rotating fluidized bed nuclear reactor has the potential of being a vary attractive option for ultra-high power space systems, especially for propulsion. Research has already examined fuel bed expansion due to variations in state variables, propellant flow rate, and rotational speed, and has also considered problems related to thermal stress. This paper describes the results of a coupled thermofluid-neutronic analysis where perturbations in fuel bed height caused by maneuvering changes in operating conditions alter power levels due to varying absorption of neutrons which would otherwise leak from the system, mainly through the nozzle. This first analysis was not a detailed stability analysis. Rather, it utilized simplified neutronic methods, and was intended to provide an order-of-magnitude assessment of the stability of the reactor with the intention to determine whether or not stability might be a 'concept killer'. Stability was compared with a fixed-fuel-bed reactor of identical geometry for three different cases comprising a set of small, medium and large sizes/powers from 250 MW to 5 GW. It was found that power fluctuations in the fluidized bed reactor were larger by 100 db or more than expected in a packed bed reactor of the same geometry, but never resulted in power excursions. Margins to unit gain in some cases, however, were sufficiently small that the approximations in this quasi-2-dimensional model may not be sufficiently accurate to preclude significant excursions. (orig.)

  19. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  20. Review of PSI studies on reactor physics and thermal fluid dynamics of pebble bed reactors

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2014-01-01

    Switzerland is member of the Generation IV International Forum (GIF). The related work takes entirely place at PSI in the working groups of Gas-Cooled Fast Reactors and Very High Temperature Reactors. In the past, PSI has performed experimental and theoretical studies on criticality issues of pebble beds at the PROTEUS reactor, as well as a preliminary risk assessment of a prototypal HTR as an input for a comparison of energy supply options. PROTEUS was a critical assembly with an annular driver zone. The central region was filled by arrangements of fuel spheres. The reactivity effect of a water ingress was investigated by simulating the water by polyethylene rods of different diameter inserted into the gaps of a regular package. For sub-criticality measurements in pebble beds, a built-in pulsed neutron source was used. The experimental results were used to validate diffusion and higher order neutron transport models. Concerning thermal hydraulics of gas flows, the vast experience of PSI is focused on hydrogen transport, accumulation, and dispersion in containments of light water reactors. The phenomena are comparable in many aspects to the fluid dynamic issues relevant to HTR. Experiments on hydrogen flows are performed for numerous scenarios in the large-scale containment test facility PANDA. Hydrogen is substituted by helium as a model fluid. An important generic aspect is turbulent mixing in the presence of strong stratification, which is relevant for HTR as well. In a parallel project, generic small-scale mixing experiments with a high density ratio of 1:7 are carried out in a horizontal rectangular channel, where helium and nitrogen flows are brought into contact downstream of the rear edge of a splitter plate. Due to the high density ratio, turbulent mixing is affected by strong non-Boussinesq effects. The measurements taken by Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence techniques are compared to RANS and LES simulations. Similar large

  1. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  2. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    Willms, R.S.; Okuno, K.

    1993-01-01

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  3. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    Science.gov (United States)

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Experimental and theoretical studies on hydrogenation of olefins in multiphase fixed bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Battsengel, B.; Datsevitch, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2003-07-01

    Multi phase reactors like trickle bed systems are frequently used for gas-liquid reactions. In general, they have complex mass and heat transfer characteristics; scale-up is therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate, taking catalytic octene hydrogenation as a model reaction. The reaction rate in a trickle bed reactor is by a factor of about 20 smaller than (theoretically) in the absence of any mass transfer limitations. Based on the experimental results, the so-called pre-saturation concept is presented, where only the liquid saturated with hydrogen is fed into the reactor. The effective reaction rate in this two phase system (liquid and solid cat.) is equal or even higher than in a trickle bed reactor. Scale-up problems do not occur, and the pre-saturation concept has also other advantages (lower energy consumption), as discussed in detail in this paper. (orig.)

  5. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  6. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  7. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    This manuscript focuses on the aspect of a membrane gradostat as an entirely different concept compared to submerged hollow fibre modules. The use of membrane bioreactor (MBR) technology is rapidly advancing in the wastewater treatment industries. However, this is not the case in the biopharmaceutical ...

  8. Numerical simulation for debris bed behavior in sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Tobita, Yoshiharu

    2014-01-01

    For safety analysis of SFR, it is necessary to evaluate behavior along with coolability of debris bed in lower plenum which is formed in severe accident. In order to analyze debris behavior, model for dense sediment particles behavior was proposed and installed in SFR safety analysis code SIMMER. SIMMER code could adequately reproduce experimental results simulating the self-leveling phenomena with appropriate model parameters for bed stiffness. In reactor condition, the self-leveling experiment for prototypical debris bed has not been performed. Additionally, the prototypical debris bed consists of non-spherical particles and it is difficult to quantify model parameters. This situation brings sensitivity analysis to investigate effect of model parameters on the self-leveling phenomena of prototypical debris bed in present paper. As initial condition for sensitivity analysis, simple mound-like debris bed in sodium-filled lower plenum in reactor vessel is considered. The bed consists of the mixture of fuel debris of 3,300 kg and steel debris of 1,570 kg. Decay heat is given to this fuel debris. The model parameter is chosen as sensitivity parameter. Sensitivity analysis shows that the model parameters can effect on intensity of self-leveling phenomena and eventual flatness of bed. In all analyses, however, coolant and sodium vapor break the debris bed at mainly center part of bed and the debris is relocated to outside of bed. Through this process, the initial debris bed is almost planarized before re-melting of debris. This result shows that the model parameters affect the self-leveling phenomena, but its effect in the safety analysis of SFRs is limited. (author)

  9. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  10. CFD study on the supercritical carbon dioxide cooled pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dali, E-mail: ydlmitd@outlook.com; Peng, Minjun; Wang, Zhongyi

    2015-01-15

    Highlights: • An innovation concept of supercritical carbon dioxide cooled pebble bed reactor is proposed. • Body-centered cuboid (BCCa) arrangement is adopted for the pebbles. • S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor. - Abstract: The thermal hydraulic study of using supercritical carbon dioxide (S-CO{sub 2}), a superior fluid state brayton cycle medium, in pebble bed type nuclear reactor is assessed through computational fluid dynamics (CFD) methodology. Preliminary concept design of this S-CO{sub 2} cooled pebble bed reactor (PBR) is implemented by the well-known KTA heat transfer correlation and Ergun pressure drop equation. Eddy viscosity transport turbulence model is adopted and verified by KTA calculated results. Distributions of the temperature, velocity, pressure and Nusselt (Nu) number of the coolant near the surface of the middle spherical fuel element are obtained and analyzed. The conclusion of the assessment is that S-CO{sub 2} would be a good candidate coolant for using in pebble bed reactor due primarily to its good heat transfer characteristic and large mass density, which could lead to achieve lower pressure drop and higher power density.

  11. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  12. Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives

    OpenAIRE

    Dubey, Kashyap Kumar; Kumar, Dhirendra; Kumar, Punit; Haque, Shafiul; Jawed, Arshad

    2013-01-01

    Bioconversion of colchicine into its pharmacologically active derivative 3-demethylated colchicine (3-DMC) mediated by P450BM3 enzyme is an economic and promising strategy for the production of this inexpensive and potent anticancer drug. Continuous stirred tank reactor (CSTR) and packed-bed reactor (PBR) of 3 L and 2 L total volumes were compared for the production of 3-demethylated colchicine (3-DMC) a colchicine derivative using Bacillus megaterium MTCC*420 under aerobic conditions. Statis...

  13. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  14. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  15. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  16. Pebble bed test reactor in peu-a-peu load

    International Nuclear Information System (INIS)

    Kranz, L.

    1988-03-01

    The presented work deals with a new type of load model for high temperature reactors with spherical fuels: the peu-a-peu load system. Using this load system the reactor core is only filled partially in the beginning of the power operation. But it has to be a critical base core. With proceeding burn-off the reactor is filled up with further fuel elements the way that it stays always just critically. When the reactor is filled up completely with fuel elements, the reactor operation has to be interrupted and the reactor has to be discharged. Afterwards a new cycle can start like the one just described. A reference reactor with 100 MW thermal power is investigated in this work in detail and should make clear the way of function of the load system and the base idea of 'simplicity and safety'. The improvement proposal to use again a part of the fuel elements of a cycle for the next cycle minimizes the higher specific uranium need of a peu-a-peu reactor decisively. (orig.) [de

  17. Pebble bed reactor fiscal year 1980: review summary report

    International Nuclear Information System (INIS)

    1980-07-01

    Information on high-temperature reactor development is presented concerning reactor operating experience; core performance assessment; core control and shutdown; reflector and core support; maintenance and availability; safety aspects of PBR and prismatic comparison; PCRV dimensions; and fuel reprocessing cost estimate

  18. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  19. The effects of baffles and gas superficial velocity on a bubble fluidized bed reactor's applications

    International Nuclear Information System (INIS)

    Ghorbanpour, A.; Ghannadi Maragheh, M.; Mallah, M. H.

    2008-01-01

    Baffles are used for decreasing bubbles diameter in order to increase the conversion rate along the bubbling fluidized bed reactors. The appearance of this phenomenon is due to bursting of the bubbles during the pass of bubbles from baffles. In this work, a computerized modeling and simulation have been performed in order to obtain a fundamental knowledge of the influence of the baffles on the bubble diameter and the specific mass transfer area. The height of the bed is 5 meters and its diameter is 0.3 meter. Baffles are located at 1 and 2 meters from the bottom of the bed. A two phase model together with a comprehensive fluid dynamical description of bubbling fluidized is presented. The effects of baffles and gas superficial velocity on the operating behavior of fluidized bed reactors are considered. The results are compared to the previously reported documents, and the experiments which have been carried out. MATLAB software is used in this simulation

  20. Membrane reactor technology for ultrapure hydrogen production

    NARCIS (Netherlands)

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines

  1. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  2. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    Brugnot, C.

    1993-11-01

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  3. Simulation of petcoke gasification in slagging moving bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Soumitro; Sarkar, T.K.; Sen, P.K. [Research and Development Center, Engineers India Limited, Gurgaon 122001 (India)

    2005-03-25

    A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m{sup 2}/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 {sup o}C. Fluxes higher than 5000 kg/m{sup 2}/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

  4. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  5. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    International Nuclear Information System (INIS)

    Haloulakos, V.E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment

  6. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    Science.gov (United States)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  7. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong; Chen, Tianjiao; Ghoniem, Ahmed F.

    2013-01-01

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two

  8. Chemical looping reforming in packed-bed reactors : modelling, experimental validation and large-scale reactor design

    NARCIS (Netherlands)

    Spallina, V.; Marinello, B.; Gallucci, F.; Romano, M.C.; van Sint Annaland, M.

    This paper addresses the experimental demonstration and model validation of chemical looping reforming in dynamically operated packed-bed reactors for the production of H2 or CH3OH with integrated CO2 capture. This process is a combination of auto-thermal and steam methane reforming and is carried

  9. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor.

    Science.gov (United States)

    Webster, Todd S; Condee, Charles; Hatzinger, Paul B

    2013-02-01

    N-nitrosodimethylamine (NDMA) is a suspected human carcinogen that has traditionally been treated in water using ultraviolet irradiation (UV). The objective of this research was to examine the application of a laboratory-scale fluidized bed reactor (FBR) as an alternative technology for treating NDMA to part-per-trillion (ng/L) concentrations in groundwater. Previous studies have shown that the bacterium Rhodococcus ruber ENV425 is capable of cometabolizing NDMA during growth on propane as a primary substrate in batch culture (Fournier et al., 2009) and in a bench-scale membrane bioreactor (Hatzinger et al., 2011) to low ng/L concentrations. R. ruber ENV425 was inoculated into the FBR during this study. With a hydraulic residence time (HRT) of 20 min, the FBR was found to be an effective means to treat 10-20 μg/L of NDMA to effluent concentrations less than 100 ng/L. When the HRT was increased to 30 min and oxygen and propane addition rates were optimized, the FBR system demonstrated treatment of the NDMA to effluent concentrations of less than 10 ng/L. Short-term shutdowns and the presence of trichloroethene (TCE) at 6 μg/L as a co-contaminant had minimal effect on the treatment of NDMA in the FBR. The data suggest that the FBR technology can be a viable alternative to UV for removing NDMA from groundwater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  11. Comparison of Several Thermal Conductivity Constants for Thermal Hydraulic Calculation of Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Setiadipura, Topan; Pramutadi, Asril

    2017-07-01

    There are two type of High Temperature Gas Reactor (HTGR), prismatic and pebble bed. Pebble Bed type has unique configuration because the fuels are randomly distributed inside the reactor core. In term of safety features, Pebble Bed Reactor (PBR) is one of the most promising reactor type in avoiding severe nuclear accidents. In order to analyze heat transfer and safety of this reactor type, a computer code is now under development. As a first step, calculation method proposed by Stroh [1] is adopted. An approach has been made to treat randomly distributed pebble balls contains fissile material inside the reactor core as a porous medium. Helium gas act as coolant on the reactor system are carrying heat flowing in the area between the pebble balls. Several parameters and constants are taken into account in the new developed code. Progress of the development of the code especially comparison of several thermal conductivity constants for a certain PBR-case are reported in the present study.

  12. Gasification of Coal and PET in Fluidized Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Vosecký, Martin; Kameníková, Petra; Punčochář, Miroslav; Skoblia, Sergej; Staf, M.; Vošta, J.; Koutský, B.; Svoboda, Karel

    2006-01-01

    Roč. 85, 17-18 (2006), s. 2458-2468 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA104/04/0829 Institutional research plan: CEZ:AV0Z40720504 Keywords : fludized bed * gasification * plastic waste Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.358, year: 2006

  13. Styrene biofiltration in a trickle-bed reactor

    Directory of Open Access Journals (Sweden)

    V. Novak

    2008-04-01

    Full Text Available The biological treatment of styrene waste gas in a trickle-bed filter (TBF was investigated. The bioreactor consisted of a two-part glass cylinder (ID 150 mm filled with 25 mm polypropylene Pall rings serving as packing material. The bed height was 1m. Although the laboratory temperature was maintained at 22 ºC, the water temperature in the trickle-bed filter was slightly lower (about 18 ºC.The main aim of our study was to observe the effect of empty-bed residence time (EBRT on bioreactor performance at a constant pollutant concentration over an extended time period. The bioreactor was inoculated with a mixed microbial consortium isolated from a styrene-degrading biofilter that had been running for the previous two years. After three weeks of acclimation period, the bioreactor was loaded with styrene (100 mg.m-3. EBRT was in the range of 53 s to 13 s. A maximum elimination capacity (EC of 11.3 gC.m-3.h-1 was reached at an organic loading (OL rate of 18.6 gC.m-3.h-1.

  14. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  15. Determination of pressure distribution in an aerated bed in a controlled pilot-scale compost reactor

    Energy Technology Data Exchange (ETDEWEB)

    Solowiej, P. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    This study investigated the effectiveness of dealing with biological waste by composting. In particular, it examined the feasibility of recovering excess thermal energy produced in the process of composting biological waste in terms of mass and energy transport parameters required in the aerated compost bed. An experiment was performed in which a 100 dm{sup 3} adiabatic, leak-tight reactor equipped with a controlled aeration system was constructed to study the temperature and pressure distribution in the bed. Sensors were used to determine the amount and humidity of emitted gases under variable external physical conditions. The perforated bottom of the reactor allowed for bed aeration. As such, the humidity and heat were transported upwards, forced by the air pumped in and by natural convection. In terms of pressure distribution inside the composted and aerated bed, the study results showed that there were considerable differences in pressure for the selected places of the bed of the composted biological material. An increase in upwards pressure was observed in the heap throughout the experiment. Pressure differences in the same plane of the bed were also noted. The study results should facilitate the development of a model of mass and energy transport in a bed of composted material.

  16. Electrochemical Recovery of Gold from Waste Electric and Electronic Equipment Using Circulating Particulate Bed Reactor (CPBE)

    Science.gov (United States)

    Ravinder, T.; Ali, U. F. M.; Ridwan, F. M.; Ibrahim, N.; Azmi, N. H.

    2017-06-01

    The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing {{AuCl}}4- and {{AuCl}}2- of less than 0.5 mol m-3(< 102 g m-3). Elemental gold was successfully obtained on 0.5-1 mm gr particles in an electrochemical reactor incorporating a cation- permeable membrane and operated in bath recycle mode. Depletion to concentration < 5 × 10-3 mol m-3 (< 1 g m-3) appeared to be mass transport controlled at an applied potential of +0.20 V (SCE), specific electrical energy consumption (SEEC) of ca. 800-1300 kWh h (tonne Au)-1 for cell voltages (U) of 2.0-3.0 V, and fractional current efficiencies of ca. 0.95. However, atomic absorption and UV spectrophotometry established that as the ([{{AuCl}}4-+[{{AuCl}}2-]) concentration decayed, the [{{AuCl}}4-]:[{{AuCl}}2-] molar ratio changed. A multi-step mechanism for reduction of {{AuCl}}4- ions explained this behavior in terms of changing overpotentials for {{AuCl}}4- and {{AuCl}}2- reduction as total dissolved gold concentration decreased. In addition, SEM images confirmed that adherent and coherent Au deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).

  17. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  18. Ceramic membrane reactor with two reactant gases at different pressures

    Science.gov (United States)

    Balachandran, Uthamalingam; Mieville, Rodney L.

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  19. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor

    Science.gov (United States)

    Detalina, M.; Pradanawati, S. A.; Widyarani; Mamat; Nilawati, D.; Sintawardani, N.

    2018-03-01

    Fixed-bed reactors are commonly used as bioreactors for various applications, including chemicals production and organic wastewater treatment. Bioreactors are fixed with packing materials for attaching microorganisms. Packing materials should have high surface area and enable sufficient fluid flow in the reactor. Natural materials e.g. rocks and fibres are often used as packing materials. Commercially, packing materials are also produced from polymer with the advantage of customizable shapes. The objective of this research was to study the mixing pattern in a packed-bed reactor using bamboo as packing material. Bamboo was selected for its pipe-like and porous form, as well as its abundant availability in Indonesia. The cut bamboo sticks were installed in a reactor in different configurations namely vertical, horizontal, and random. Textile dye was used as a tracer. Our results show that the vertical configuration gave the least liquid resistant flow. Yet, the random configuration was the best configuration during mixing process.

  1. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Shahmoradi, Behzad

    2011-01-01

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y obs ) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  3. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  4. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  5. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    International Nuclear Information System (INIS)

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  6. CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor

    OpenAIRE

    Tukač, V.

    2014-01-01

    The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  7. Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo

    2009-01-01

    After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)

  8. Development of a safeguards system for the THTR pebble bed reactor

    International Nuclear Information System (INIS)

    Engelhardt, H.

    1978-08-01

    This report provides a survey of the technical possibilities of safeguarding the THTR-300 pebble bed reactor in accordance with the NPT. Description of the reactor system, the operational mode, and the operator's material control system are presented in Sections 2, 3 and 4. A suggested safeguards approach which is based on an item counting of pebble elements with containment and surveillance as a supplementary measure is described in the Sections 5 and 6

  9. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  10. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  11. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  12. Sludge combustion in fluidized bed reactors at laboratory scale

    International Nuclear Information System (INIS)

    Chirone, R.; Cammarota, A.

    2001-01-01

    The combustion of a dried sewage sludge in laboratory scale fluidized bed has been studied in Naples by the Istituto di ricerche sulla combustione (Irc) in the framework of a National project named Thermal Process with Energy Recovery to be used in laboratory and pre-pilot scale apparatus. The attention has been focused on emissions of unreacted carbon as elutriated fines, on the emissions of pollutant gases and on the assessment of the inventory of fly- and bottom ashes. The combustion behaviour of sewage sludge has been compared with those of a market available Tyre Derived Fuel (TDF) and a biomass from Mediterranean area (Robinia Pseudoacacia) and with that of a South African bituminous coal. Stationary combustion tests were carried out at 850 0 C by feeding particles in the size range 0-1 mm into a bed of silica sand without any sorbent addition. The fluidized bed combustor has been operated, at a superficial gas velocity of 0.4 m/s and different excesses of air ranging between 14 and 98%. Relatively high combustion efficiency, larger than 98.9% has been obtained in experiments carried out with sewage sludge and excess of air larger than 20%. These values, are comparable with those obtained in previously experimental activity carried out under similar operative conditions with a South Africa Bituminous coal (97-98%). It is larger than those obtained by using a Tyre Derived Fuel (89-90%) and the Robinia Pseudoacacia Biomass (93-93%). The relative importance of carbon fines elutriation, CO emissions and volatile bypassing the bed in determining the loss of combustion efficiency has been evaluated for the different fuels tested [it

  13. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T; Frankenhaeuser, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  14. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    Carlson, Bryan J.; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO 2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m 2 and a catalyst volume to membrane area ratio of 4.63 cc/cm 2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m 2 ). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m 2 . The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm 2 . The total membrane area of the 7-tube PMR (0.0851 m 2 ) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m 2 ). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR

  15. Comparison of the Effects of Fluidized-Bed and Fixed-Bed Reactors in Microwave-Assisted Catalytic Decomposition of TCE by Hydrogen

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2012-01-01

    Full Text Available Trichloroethylene (TCE decomposition by hydrogen with microwave heating under different reaction systems was investigated. The activities of a series of catalysts for microwave-assisted TCE hydrodechlorination were tested through the fixed-bed and the fluidized-bed reactor systems. This study found that the different reaction system is suitable for different catalyst type. And there is an interactive relationship between the catalyst type and the reaction bed type.

  16. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  17. Design and development of fluidized bed reactor system for production of trichlorosilane as a precursor for high purity silicon

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Bhanja, K.; Nayak, S.; Bhattacharya, S.K.

    2009-01-01

    Trichlorosilane is widely used as precursor material for production of high purity silicon. It is mainly produced by reaction of metallurgical grade silicon with anhydrous HCl gas in a fluidized bed reactor. To develop this process on commercial scale a pilot size fluidized bed reactor system was designed and developed and successfully operated. This paper discusses the critical issues related to these activities. (author)

  18. Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2015-01-01

    Full Text Available Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

  19. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Science.gov (United States)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  20. A Pebble-Bed Breed-and-Burn Reactor

    International Nuclear Information System (INIS)

    Greenspan, Ehud

    2016-01-01

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  1. A Pebble-Bed Breed-and-Burn Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  2. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  3. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D. [CSIRO Energy Technology, Pullenvale QLD 4069 (Australia); Donelson, R. [CSIRO Process Science and Engineering, Clayton VIC 3168 (Australia); Dave, N.C. [CSIRO Energy Technology, North Ryde NSW 2113 (Australia)

    2010-10-15

    Conceptual 300 tonne per day (tpd) H{sub 2}-from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO{sub 2} removal and PSA-based H{sub 2} purification systems, these studies provide a benchmark against which alternative H{sub 2}-from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO{sub 2} at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H{sub 2}-from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 {mu}m Pd or 40 {mu}m Pd-25Ag wt%). Experiments to measure CO conversion, and H{sub 2} flux and yield were conducted at 400 C with a feed pressure of 20 bar H{sub 2}O:C ratio of 3 and a H{sub 2} product pressure of 1 bar. Under the optimum conditions examined (with a 40 {mu}m-thick Pd-25Ag membrane and <3 mm-thick catalyst bed), a membrane surface area of {proportional_to}25,000 m{sup 2} would be required to provide a throughput of 300 tpd with 85% H{sub 2} yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer

  4. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  5. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  6. Modelling of a falling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... products are then used for the biological treatment of acid mine drainage. A mathematical ... solid matter into three valleys inside the reactor, as opposed to an ... conversion of PSS in the presence of sulphate-reducing bacteria ... indicate substrate flow (stoichiometrically) in the form of COD ..... fermentation.

  7. How to prevent runaways in trickle-bed reactors for Pygas hydrogenation

    NARCIS (Netherlands)

    Westerterp, K.R.; Kronberg, Alexandre E.

    2002-01-01

    In the past, several runaways have occurred in Trickle-Bed Reactors (TBR) used for the hydrogenation of pyrolysis gasoline as produced in ethylene cracking installations. This phenomenon has been studied in the framework of a special program in the Netherlands, which is administered by the National

  8. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  9. Fast pyrolysis of biomass in a fluidized bed reactor: in-situ filtering of the vapors

    NARCIS (Netherlands)

    Hoekstra, E.; Hogendoorn, Kees; Wang, X.; Westerhof, Roel Johannes Maria; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria; Groeneveld, M.J.

    2009-01-01

    A system to remove in situ char/ash from hot pyrolysis vapors has been developed and tested at the University of Twente. The system consists of a continuous fluidized bed reactor (0.7 kg/h) with immersed filters (wire mesh, pore size 5 μm) for extracting pyrolysis vapors. Integration of the filter

  10. Nature and characteristics of pulsing flow in trickle-bed reactors

    NARCIS (Netherlands)

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    2002-01-01

    Pulsing flow is well known for its advantages in terms of an increase in mass and heat transfer rates, complete catalyst wetting and a decrease in axial dispersion compared to trickle flow. The operation of a trickle-bed reactor in the pulsing flow regime is favorable in terms of a capacity increase

  11. Enlargement of the pulsing flow regime by periodic operation of a trickle-bed reactor.

    NARCIS (Netherlands)

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    1999-01-01

    Potential advantages of pulsing flow in trickle-bed reactors include capacity increase and elimination of hot spots through the enhanced mass and heat transfer rates. A disadvantage of naturally occurring pulsing flow is the necessity of relatively high gas and liquid flow rates, especially at

  12. Application of point kinetic model in the study of fluidized bed reactor dynamic

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio de; Streck, Elaine E.

    1995-01-01

    In this work the dynamical behavior of the fluidized bed nuclear reactor is analysed. The main goal consist to study the effect of the acceleration term in the point kinetic equations. Numerical simulations are reported considering constant acceleration. (author). 7 refs, 4 figs

  13. Fabrication of the fuel elements cladding for utilization in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Schaeffer, L.; Sefidvash, F.

    1986-01-01

    A method for the fabrication of cladding of the spherical fuel elements for the utilization in the fluidized bed nuclear reactor is presented. Some prelimminary experiments were performed to adopt a method which adapt itself to mass production with the desired high quality. Still methods for cladding fabrication are under study. (Author) [pt

  14. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  15. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  16. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Almeida, Lucilla C.; Su, Jian

    2015-01-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  17. Production of structured lipids in a packed-bed reactor with Thermomyces lanuginosa lipase

    DEFF Research Database (Denmark)

    Xu, Xuebing; Porsgaard, Trine; Zhang, Hong

    2002-01-01

    Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packed-bed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (Lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), ha...

  18. Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao

    2009-01-01

    Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed

  19. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  20. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  1. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  2. Degradation of whey in an anaerobic fixed bed (AnFB) reactor

    OpenAIRE

    Handajani, Marisa

    2004-01-01

    An Anaerobic Fixed Bed (AnFB) reactor was run as an upflow anaerobic reactor with an arrangement of supporting material for growth of a biofilm. The supporting material was made from Liapor-clay-polyethylene sinter lamellas (Herding Co., Amberg). The AnFB reactor was used for treating high concentrations of whey-containing wastewater. Optimal operating conditions for whey treatment at a concentration of COD in the influent of around 50 g whey·l-1 were found for a hydraulic retention ...

  3. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  4. Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Auwerda, G.J., E-mail: g.j.auwerda@tudelft.n [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands); Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der [Department of Physics of Nuclear Reactors at the Delft University of Technology, Mekelweg 15, Delft (Netherlands)

    2010-08-15

    In pebble bed reactors the pebbles have a random distribution within the core. The usual approach in modeling the bed is homogenizing the entire bed. To quantify the errors arising in such a model, this article investigates the effect on k{sub eff} of three phenomena in random pebble distributions: non-uniform packing density, neutron streaming in between the pebbles, and variations in Dancoff factor. For a 100 cm high cylinder with reflective top and bottom boundary conditions 25 pebble beds were generated. Of each bed three core models were made: a homogeneous model, a zones model including density fluctuations, and an exact model with all pebbles modeled individually. The same was done for a model of the PROTEUS facility. k{sub eff} calculations were performed with three codes: Monte Carlo, diffusion, and finite element transport. By comparing k{sub eff} of the homogenized and zones model the effect of including density fluctuations in the pebble bed was found to increase k{sub eff} by 71 pcm for the infinite cylinder and 649 pcm for PROTEUS. The large value for PROTEUS is due to the low packing fraction near the top of the pebble bed, causing a significant lower packing fraction for the bulk of the pebble bed in the homogenized model. The effect of neutron streaming was calculated by comparing the zones model with the exact model, and was found to decrease k{sub eff} by 606 pcm for the infinite cylinder, and by 1240 pcm for PROTEUS. This was compared with the effect of using a streaming correction factor on the diffusion coefficient in the zones model, which resulted in {Delta}{sub streaming} values of 340 and 1085 pcm. From this we conclude neutron streaming is an important effect in pebble bed reactors, and is not accurately described by the correction factor on the diffusion coefficient. Changing the Dancoff factor in the outer part of the pebble bed to compensate for the lower probability of neutrons to enter other fuel pebbles caused no significant changes

  5. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Science.gov (United States)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  6. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  7. Failure analysis of pebble bed reactors during earthquake by discrete element method

    International Nuclear Information System (INIS)

    Keppler, Istvan

    2013-01-01

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios

  8. Failure analysis of pebble bed reactors during earthquake by discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)

    2013-05-15

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.

  9. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    International Nuclear Information System (INIS)

    Mohan, N.; Kannan, G.K.; Upendra, S.; Subha, R.; Kumar, N.S.

    2009-01-01

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l -1 ) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l -1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  10. Accounting for porous structure in effective thermal conductivity calculations in a pebble bed reactor

    International Nuclear Information System (INIS)

    Antwerpen, W. van; Rousseau, P.G.; Toit, C.G. du

    2009-01-01

    A proper understanding of the mechanisms of heat transfer, flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature pebble bed reactor. A thorough knowledge of the porous structure within the packed bed is important to any rigorous analysis of the transport phenomena, as all the heat and flow mechanisms are influenced by the porous structure. In this paper a new approach is proposed to simulate the effective thermal conductivity employing a combination of new and existing correlations for randomly packed beds. More attention is given to packing structure based on coordination number and contact angles, resulting in a more rigorous differentiation between the bulk and near-wall regions. The model accounts for solid conduction, gas conduction, contact area, surface roughness as well as radiation. (author)

  11. The importance of the AVR pebble-bed reactor for the future of nuclear power

    International Nuclear Information System (INIS)

    Pohl, P.

    2006-01-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  12. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  13. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Kinetic evaluation of an anaerobic fluidised-bed reactor treating slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    An anaerobic fluidised-bed reactor for purification of slaughterhouse wastewater was modelled as a continuous-flow, completely-mixed homogeneous microbial system, with the feed COD as the limiting-substrate concentration. The average microbial residence time in the reactor was defined in terms of conventional sludge-retention-time. The experimental data obtained indicated that the Michaelis-Menten expression was applicable to a description of substrate utilisation (i.e. COD removal) in the anaerobic fluidised-bed system. The maximum substrate utilisation rate, k, and the Michaelis constant, K{sub s}, were determined to be 1.2/day and 0.039 g/l. The observed biomass yield in the reactor decreased with increasing sludge-retention-time. The specific methane production rate observed was a linear function of the specific substrate-utilisation rate. (Author)

  15. Trickle bed reactor model to simulate the performance of commercial diesel hydrotreating unit

    Energy Technology Data Exchange (ETDEWEB)

    C. Murali; R.K. Voolapalli; N. Ravichander; D.T. Gokak; N.V. Choudary [Bharat Petroleum Corporation Ltd., Udyog Kendra (India). Corporate R& amp; D Centre

    2007-05-15

    A two phase mathematical model was developed to simulate the performance of bench scale and commercial hydrotreating reactors. Major hydrotreating reactions, namely, hydrodesulphurization, hydrodearomatization and olefins saturation were modeled. Experiments were carried out in a fixed bed reactor to study the effect of different process variables and these results were used for estimating kinetic parameters. Significant amount of feed vaporization (20-50%) was estimated under normal operating conditions of DHDS suggesting the importance of considering feed vaporization in DHDS modeling. The model was validated with plant operating data, under close to ultra low sulphur levels by correctly accounting for feed vaporization in heat balance relations and appropriate use of hydrodynamic correlations. The model could predict the product quality, reactor bed temperature profiles and chemical hydrogen consumption in commercial plant adequately. 14 refs., 7 figs., 6 tabs.

  16. Mathematical simulation of hazardous ion retention from radioactive waste in fixed bed reactor

    International Nuclear Information System (INIS)

    Sohsah, M.A.; Gohneim, M.M.; Othman, S.H.; El-Anadouli, B.E.

    2007-01-01

    Reactor design for fluid-solid, noncatalytic reaction depends on the prediction of the performance of the reactor kinetically. The most mathematical models used to handle fixed bed reactor in which the solid bed constitute one of the reactants, while a second reactant is in the fluid phase are complex and difficult to handle. A new mathematical model which easier to handle has been developed to describe the system under investigation. The model was examined theoretically and experimentally. A column backed with chelating cloth filter to separate radionuclide form radioactive waste solution is used as a practical application for the model. Comparison of the model predictions with the experimental results gives satisfactory agreement at most of the process stages

  17. Analysis of startup strategies for a particle bed reactor nuclear rocket engine

    Science.gov (United States)

    Suzuki, D. E.

    1993-06-01

    This paper develops and analyzes engine system startup strategies for a particle bed reactor (PBR) nuclear rocket engine. The strategies are designed to maintain stable flow through the PBR fuel element while reaching the design conditions as quickly as possible. The analyses are conducted using a computer model of a representative particle bed reactor and engine system. Elements of the startup strategy considered include: the coordinated control of reactor power and coolant flow; turbine inlet temperature and flow control; and use of an external starter system. The simulation results indicate that the use of an external starter system enables the engine to reach design conditions very quickly while maintaining the flow well away from the unstable regime. If a bootstrap start is used instead, the transient does not progress as fast and approaches closer to the unstable flow regime, but allows for greater engine reusability. These results can provide important information for engine designers and mission planners.

  18. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES

    International Nuclear Information System (INIS)

    Pavlidis, Dimitrios; Lathouwers, Danny

    2013-01-01

    The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated

  19. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    International Nuclear Information System (INIS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-01-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ −1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ −1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ −1 higher, respectively, than in the PBD reactor at 53 J l −1 . The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment. (paper)

  20. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  1. Dry Reforming of Methane Using a Nickel Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Jonas M. Leimert

    2017-12-01

    Full Text Available Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water–gas shift reaction (WGS. For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60–90%.

  2. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  3. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  4. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  5. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  6. Cleaning of porous filters in fossilized bed reactors; Estudio de limpieza de filtros porosos en reactores de lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo Otero, A; Sancho Rod, J

    1965-07-01

    In this report are established the optimum working conditions of a filter cleaning system by blow back. For this purpose it was determined in the first place the blow back air rate necessary to have a good cleaning. The reasons for which it was not possible until now to control the pressure in a fluidized bed calcination reactor are analyzed and a criteria is established to calculate the optimum floe necessary to clean efficiently a porous by this procedures. (Author)

  7. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  8. Removal of micropollutants in Moving Bed Biofilm reactors (MBBRs)

    DEFF Research Database (Denmark)

    Torresi, Elena

    Numerous pollutants such as pharmaceuticals and personal care products are continuously released into municipal wastewater treatment plants (WWTP). Present at concentration of nano- to milligram per liter, they are defined as micropollutants. Micropollutants are only partially removed, possibly due...... compared to conventional activated sludge. In MBBRs, biofilm grow on plastic carriers kept in suspension in the reactor basin via mechanical mixing or aeration, offering a suit of benefits, amongst all comparably small footprint. Despite few existing evidences in aerobic MBBR, an in-depth understanding...

  9. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  10. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  11. Effect of friction on pebble flow pattern in pebble bed reactor

    International Nuclear Information System (INIS)

    Li, Yu; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2016-01-01

    Highlights: • A 3D DEM study on particle–wall/particle friction in pebble bed reactor is carried out. • Characteristic values are defined to evaluate features of pebble flow pattern quantitatively. • Particle–wall friction is dominant to determine flow pattern in a specific pebble bed. • Friction effect of hopper part on flow field is more critical than that of cylinder part. • Three cases of 1:1 full scale practical pebble beds are simulated for demonstration. - Abstract: Friction affects pebble flow pattern in pebble-bed high temperature gas-cooled reactor (HTGR) significantly. Through a series of three dimensional DEM (discrete element method) simulations it is shown that reducing friction can be beneficial and create a uniform and consistent flow field required by nuclear engineering. Particle–wall friction poses a decisive impact on flow pattern, and particle–particle friction usually plays a secondary role; relation between particle–wall friction and flow pattern transition is also concluded. Moreover, new criteria are created to describe flow patterns quantitatively according to crucial issues in HTGR like stagnant zone, radial uniformity and flow sequence. Last but not least, it is proved that friction control of hopper part is more important than that of cylinder part in practical pebble beds, so reducing friction between pebbles and hopper surface is the engineering priority.

  12. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  13. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  14. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  15. Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane

    NARCIS (Netherlands)

    Brunetti, A.; Caravella, A.; Fernandez Gesalaga, E.; Pacheco Tanaka, D. A.; Gallucci, F.; Drioli, E.; Curcio, E.; Viviente, J. L.; Barbieri, G.

    2015-01-01

    In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream.

  16. Continuous hyperpolarization with parahydrogen in a membrane reactor

    Science.gov (United States)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  17. Analysis of the start-up and control of a particle bed reactor

    International Nuclear Information System (INIS)

    Lazareth, O.W.; Araj, K.J.; Horn, F.L.; Ludewig, H.; Powell, J.R.

    1987-01-01

    This study describes the modeling of start-up transients in Particle Bed Reactors (PBR) for burst electric power. Two computer programs have been developed to analyze the start-up process. The first program (named KINETIC) analyzes the entire fuel element, calculating time dependent solutions for power and the temperature distribution in the packed bed. The second program (named SPHEAT, for Spherical Heating) calculates time-dependent temperatures inside individual, cladded fuel particles. The two programs provide powerful analytical tools for evaluation of material and geometrical options, power and time constraints, and conditions that could lead to element failures

  18. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  19. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  20. The combustion of coal blends in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    Combustion studies of five coals of different origin were carried out in a laboratory scale fluidised bed combustor. Five blends prepared by mixing two coals based on their petrological characterisation, in varying amounts, were selected to study the possibility of reduction NO{sub x}, N{sub 2}O and SO{sub 2} emissions. The results showed that some blends had the opposite behaviour concerning the release of NO{sub x} and SO{sub 2} in relation to parent coals, and the emissions were higher than expected. The N{sub 2}O amounts observed were, however, in almost all blends tested, lower than predicted values. With some blends, the mixing levels intended to reduce SO{sub 2} were not always found to correspond to those for simultaneous decrease of Nox. Most of the blends studied showed some evidence of interaction between them. Varying the proportion of the blend components was observed to alter the temperatures at which interactions were stronger.

  1. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core

    International Nuclear Information System (INIS)

    Jiang, S.Y.; Yang, X.T.; Tang, Z.W.; Wang, W.J.; Tu, J.Y.; Liu, Z.Y.; Li, J.

    2012-01-01

    Highlights: ► The experimental installation has been built to investigate the pebble flow. ► The feasibility of two-region pebble bed reactor has been verified. ► The pebble flow is more uniform in a taller vessel than that in a lower vessel. ► Larger base cone angle will decrease the scale of the stagnant zone. - Abstract: The pebble flow is the principal issue for the design of the pebble bed reactor. In order to verify the feasibility of a two-region-designed pebble bed reactor, the experimental installation with a taller vessel has been built, which is proportional to the real pebble bed reactor. With the aid of the experimental installation, the stable establishment and maintenance of the two-region arrangement has been verified, at the same time, the applicability of the DEM program has been also validated. Research results show: (1) The pebble's bouncing on the free surface is an important factor for the mixing of the different colored pebbles. (2) Through the guide plates installed in the top of the pebble packing, the size of the mixing zone can be reduced from 6–7 times to 3–4 times the pebble diameter. (3) The relationship between the width of the central region and the ratio of loading pebbles is approximately linear in the taller vessel. (4) The heighten part of the pebble packing can improve the uniformity of the flowing in the lower. (5) To increase the base cone angle can decrease the scale of the stagnant zone. All of these conclusions are meaningful to the design of the real pebble reactor.

  2. Radioisotope tracer study in a pilot-scale trickle bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.J.; Pendharkar, A.S. [Bhabha Atomic Research Centre, Isotope Applications Div, Bombay (India); Prasad, J.S.; Maiti, R.N.; Chawla, R.; Lahri, R.N.; Ram Babu, D. [Engineers India Limited, Gurgaon, Haryana (India); Berne, Ph. [CEA Grenoble, DTEN/SAT, 38 (France)

    2001-07-01

    Trickle bed reactor (TBR) is a reactor in which a liquid and a gas phase flow concurrently downwards through a fixed bed of catalyst particles while the reaction takes place. The trickle bed reactors find a number of applications in petroleum refining, chemical. petro-chemical and bio-chemical processes due to their suitability for hydro-processing operations.The knowledge of radial distribution, mean residence time (MRT). liquid holdup and degree of axial mixing is a basic requirement to evaluate the reactor performance of a TBR, its optimal size, the physical and chemical interactions and the pumping requirements. Measurement and analysis of residence time distribution (RTD) of liquid phase facilitate the determination of these parameters. This paper describes the measurement of RTD of liquid phase in a pilot-scale trickle bed reactor operating at high pressure. Kerosene and nitrogen were used as liquid and gas phase, respectively. Porous alumina catalyst particles were used as packing. Bromine-82 as para-di-bromo benzene was used as a tracer to measure RTD of organic liquid phase. The RTD of kerosene was measured as a function of liquid and gas flow rates and pressure. The axial dispersion model with exchange between active and dead zones was proposed and used to simulate the measured RTD data and model parameters i.e mean residence time ({tau}), Peclet Number (Pe), dynamic fraction of the liquid ({phi}) and the number of transfer units (N) were obtained. The results of the simulations indicated intermediate degree of axial mixing of liquid phase. The RTD predicted by the axial dispersion model with exchange between active and dead zones fits well to the experimentally measured RTD data and thus is a suitable model to describe the dynamics of the liquid phase in TBRs filled with porous catalyst particles. (authors)

  3. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  4. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    Science.gov (United States)

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  5. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  6. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  7. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  8. Integrated design approach of the pebble BeD modular reactor using models

    International Nuclear Information System (INIS)

    Venter, Pieter J.; Mitchell, Mark N.

    2007-01-01

    The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR

  9. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  10. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Vilhena, M.T. de.

    1988-01-01

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  11. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  12. Rotating-bed reactor as a power source for EM gun applications

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.; Botts, T.; Stickley, C.M.; Meth, S.

    1980-01-01

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m/sup 3/), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 300/sup 0/K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications.

  13. Adjustement of Dancoff factor for calculating the cell of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1988-01-01

    A new nuclear reactor design based on the fluidized bed concept is under reserch and development. It utilized spherical fuel of slightly enriched zircaloy-clad uranium dioxide fluidized by light water under pressure since the Leopard code has been developed for light water reactor analysis, it was necessary to develop a method to determine the dimensions of the hypothetical fuel rod lattice, which are neutronically equivalent to the spherical fuel pellet lattice. This method is shown to calculate the Dancoff factor correctly. (author) [pt

  14. Rotating-bed reactor as a power source for EM gun applications

    International Nuclear Information System (INIS)

    Powell, J.; Botts, T.; Stickley, C.M.; Meth, S.

    1980-01-01

    Electromagnetic gun applications of the Rotating Bed Reactor (RBR) are examined. The RBR is a compact (approx. 1 m 3 ), (up to several thousand MW(th)), high-power reactor concept, capable of producing a high-temperature (up to approx. 300 0 K) gas stream with a MHD generator coupled to it, the RBR can generate electric power (up to approx. 1000 MW(e)) in the pulsed or cw modes. Three EM gun applications are investigated: a rail gun thruster for orbit transfer, a rapid-fire EM gun for point defense, and a direct ground-to-space launch. The RBR appears suitable for all applications

  15. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  16. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    Science.gov (United States)

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  17. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    Science.gov (United States)

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results.

  18. Analysis of impact of mixing flow on the pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Hao Chen; Li Fu; Guo Jiong

    2014-01-01

    The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)

  19. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  20. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  1. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  2. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  3. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  4. Trickle bed reactor for the oxidation of phenol over active carbon catalyst

    OpenAIRE

    Gabbiye, Nigus; Font Capafons, Josep; Fortuny Sanromá, Agustín; Bengoa, Christophe José; Fabregat Llangotera, Azael; Stüber, Frank Erich

    2009-01-01

    The catalytic wet air oxidation of phenol using activated carbon has been performed in a laboratory trickle bed reactor over a wide range of operating variables (PO2, T, FL and Cph,o) and hydrodynamic conditions. The influence of different start-up procedures (saturation of activated carbon) has also been tested. Further improvement of activity and stability has been checked for by using dynamic TBR operation concept or impregnated Fe/carbon catalyst. The results obtained confi...

  5. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  6. Cleaning of porous filters in fluidized bed reactors. Use of one ejector for various filters

    International Nuclear Information System (INIS)

    Sancho Rod, J.; Rodrigo Otero, A.

    1966-01-01

    Tests to know the efficiency of a porous filters cleaning system by blow-back that uses on ejector for each set of simultaneously cleaned filters were carried out. A Calculation method to obtain the optimum ejector for this system was shown, taking n=2, as optimum number of working for the fluidized bed reactors belonging to the Pilot plant of the Materials Division at JEN. That is two filters for each ejector. (Author)

  7. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    International Nuclear Information System (INIS)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-01-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  8. A bibliographic review of mathematical models of packed-bed biological reactors (PBR

    Directory of Open Access Journals (Sweden)

    Deisy Corredor

    2005-09-01

    Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.

  9. A particle bed reactor based NTP in the 112,500 N thrust class

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Lazareth, O.W. Jr.; Todosow, M.

    1993-01-01

    This paper discusses the application of a Particle Bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals

  10. A particle bed reactor based NTP in the 112,500 N thrust class

    Science.gov (United States)

    Ludewig, Hans; Powell, James R.; Lazareth, Otto W.; Todosow, Michael

    1993-01-01

    This paper discusses the application of a Particle Bed Reactor (PBR) to a 112,500 N thrust Nuclear Thermal Propulsion (NTP) Engine. The method of analysis is described, followed by a presentation of the results. It is concluded that the PBR would result in a very competitive NTP engine. In addition, due to the high power densities possible with a PBR, high thrust/weight ratios are possible. This conclusion can be used to satisfy a variety of mission goals.

  11. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation

    OpenAIRE

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2015-01-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, ...

  12. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    Science.gov (United States)

    Powell, James R.; Ludewig, Hans; Maise, George

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  13. Operation of a steam hydro-gasifier in a fluidized bed reactor

    OpenAIRE

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    Carbonaceous material, which can comprise municipal waste, biomass, wood, coal, or a natural or synthetic polymer, is converted to a stream of methane and carbon monoxide rich gas by heating the carbonaceous material in a fluidized bed reactor using hydrogen, as fluidizing medium, and using steam, under reducing conditions at a temperature and pressure sufficient to generate a stream of methane and carbon monoxide rich gas but at a temperature low enough and/or at a pressure high enough to en...

  14. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-07-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  15. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Maise, G.

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified

  16. Liquid distribution in trickle-bed reactor; Distribution du liquide en reacteur a lit ruisselant

    Energy Technology Data Exchange (ETDEWEB)

    Marcandelli, C.; Wild, G. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Lamine, A.S. [CNRS-Universite de Paris-Nord, Lab. d' Ingenierie des Materiaux et des Hautes Pressions, 93 - Villetaneuse (France); Bernard, J.R. [Elf Antar France, Centre de Recherche Elf de Solaize, 69 - Solaize (France)

    2000-07-01

    The aim of this study is to develop techniques to qualify the efficiency of liquid distribution in trickle-bed reactors, using cold mockups. The experimental setup consists mainly in a 0.3-m-ID packed-bed column with three different plates used to vary the quality of inlet liquid distribution. Liquid distribution has been qualified using several techniques: global pressure drop measurements, global RTD (Residence-Time Distribution) of the liquid, local heat transfer probes, capacitance tomography, collector at the bottom of the reactor with nine equal zones. The bed pressure drop and the overall external liquid saturation decrease when the maldistribution increases; quantitative information is however difficult to obtain this way. Global RTD of the liquid allows quantifying of the average liquid distribution in the bed. The local thermal sensors give an indication of local liquid velocity and indicate possible local maldistribution of the liquid (scale mm) even when global distribution is good. Concerning the results obtained with the collector, a maldistribution index is defined ranging from 0 (ideal distribution) to 1 (worst possible distribution), and the influence of the different operating parameters (gas and liquid velocities, particle shape) is discussed. (authors)

  17. Random detailed model for probabilistic neutronic calculation in pebble bed Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Perez Curbelo, J.; Rosales, J.; Garcia, L.; Garcia, C.; Brayner, C.

    2013-01-01

    The pebble bed nuclear reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed type HTRs, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. Pebble bed reactors (PBR) offer the opportunity to meet the sustainability requirements, such as nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. In order to simulate PBRs correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCPN code. The main reason is that there is a limited number of cells and surfaces to be defined. In this study, a computational tool which allows getting a new geometrical model of fuel pebbles for neutronic calculations with MCNPX code, was developed. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. Four proposed fuel pebble models were compared regarding their effective multiplication factor and energy liberation profiles. Such models are: Homogeneous Pebble, Five Zone Homogeneous Pebble, Detailed Geometry, and Randomly Detailed Geometry. (Author)

  18. Chaotic behavior in a hydrodynamic model of a fluidized bed reactor

    International Nuclear Information System (INIS)

    Schouten, J.C.; van den Bleek, C.M.

    1991-01-01

    Recent preliminary experimental studies using time-series analysis have demonstrated that the multi-phase flow in fluidized bed reactors can be characterized as chaotic. In the present paper, it is therefore argued that the chaotic time-dependence of fluidization is a characteristic feature which should be included in scaling rules for fluidized bed reactors. For example, the similarity groups applied in dimensionless fluidized bed scaling should be improved by extending them with functions of the relevant numbers from chaos theory, such as the correlation and embedding dimension or the maximum Lyapunov exponent. This requires that the dependence of these numbers on fluidization parameters must be theoretically and experimentally investigated. The concept of chaos in fluidization also requires that the classical, empirically developed, hydrodynamic models that are applied in fluidized bed scaling are amended to include time-dependence, non-linearity as well as a sufficient level of complexity before they can predict any chaotic behavior. An example is given of chaotic behavior generated in the classical counter-current flow model according to Van Deemter by writing the upwards solids velocity as a harmonic oscillating function of time. A low-dimensional strange attractor is found, embedded in two-dimensional phase space, of which the correlation dimension depends on the solids exchange coefficient

  19. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  20. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was

  1. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  2. Studi Awal Desain Pebble Bed Reactor Berbasis Htr-pm Dengan Skema Resirkulasi Bahan Bakar Once-through-then-out

    OpenAIRE

    Setiadipura, Topan; Pane, Jupiter Sitorus; Zuhair, Zuhair

    2016-01-01

    STUDI AWAL DESAIN PEBBLE BED REACTOR BERBASIS HTR-PM DENGAN RESIRKULASI BAHAN BAKAR ONCE-THROUGH-THEN-OUT. Reaktor nuklir tipe pebble bed reactor (PBR) adalah salah satu reaktor canggih dengan fitur keselamatan pasif yang kuat. Pada desain tipe ini berpotensi untuk dilakukan kogenerasi yang bermanfaat untuk pengolahan berbagai mineral di berbagai pulau di Indonesia. Operasi PBR dapat lebih disederhanakan dengan menerapkan skema pengisian bahan bakar once-through-then-out (OTTO) dimana bahan b...

  3. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  4. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    International Nuclear Information System (INIS)

    Dolan, M.D.; Donelson, R.; Dave, N.C.

    2010-01-01

    Conceptual 300 tonne per day (tpd) H 2 -from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO 2 removal and PSA-based H 2 purification systems, these studies provide a benchmark against which alternative H 2 -from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO 2 at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H 2 -from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 μm Pd or 40 μm Pd-25Ag wt%). Experiments to measure CO conversion, and H 2 flux and yield were conducted at 400 C with a feed pressure of 20 bar H 2 O:C ratio of 3 and a H 2 product pressure of 1 bar. Under the optimum conditions examined (with a 40 μm-thick Pd-25Ag membrane and 2 would be required to provide a throughput of 300 tpd with 85% H 2 yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer cost parity, with a plant cost of $US 44 million and a total membrane area of ∝13,000 m 2 . Meeting these performance and cost targets would likely require a shift to very thin Pd-alloy membranes or highly-permeable Group IV, V body-centred-cubic alloys. (author)

  5. Design Strategy for CO2 Adsorption from Ambient Air Using a Supported Amine Based Sorbent in a Fixed Bed Reactor

    NARCIS (Netherlands)

    Yu, Qian; Brilman, D. W.F.

    In this work, a fixed bed reactor is evaluated for CO2 capture from ambient air using an amine based ion exchange resin. Using adsorption experiments, the effect of superficial velocity and bed length on process economics is investigated. It is shown that the optimal conditions are found at an

  6. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  7. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    International Nuclear Information System (INIS)

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-01-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming

  8. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  9. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  10. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  11. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  12. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  13. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    Science.gov (United States)

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  15. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials

    Directory of Open Access Journals (Sweden)

    G. P. Sancinetti

    2012-03-01

    Full Text Available The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC. The reactors were operated with a hydraulic retention time (HRT of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

  16. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2016-01-01

    A wastewater treatment system composed of an upflow anaerobic sludge blanket (UASB) reactor followed by a packed-bed reactor (PBR) filled with Sorbulite(®) and Polonite(®) filter material was tested in a laboratory bench-scale experiment. The system was operated for 50 weeks and achieved very efficient total phosphorus (P) removal (99%), 7-day biochemical oxygen demand removal (99%) and pathogenic bacteria reduction (99%). However, total nitrogen was only moderately reduced in the system (40%). A model focusing on simulation of organic material, solids and size of granules was then implemented and validated for the UASB reactor. Good agreement between the simulated and measured results demonstrated the capacity of the model to predict the behaviour of solids and chemical oxygen demand, which is critical for successful P removal and recovery in the PBR.

  17. Cold flow study of liquid cooled pebble bed reactor (LC-PBR) through radioisotope techniques

    International Nuclear Information System (INIS)

    Verma, Rupesh; Upadhyay, Rajesh K.; Pant, H.J.

    2017-01-01

    As the world's demand for energy continues to increase burning of coal, oil and natural gases continue to increase which will eventually cause build-up in emission of greenhouse gasses. To overcome this challenge worldwide effort is in progress to develop an economical, more efficient and safer nuclear power. Higher thermal efficiency and enhances safety feature of Generation IV liquid cooled pebble bed reactor (LC-PBR) makes it viable option to replace existing nuclear reactor. However, this reactor is still in research stage and need detailed study before commercialization. In current work, hydrodynamics of LC-PBR is studied by using radioisotope based techniques, radioactive particle tracking and gamma-ray densitometry. Pebble flow profile and distribution are measured for different operating conditions. Optimal operating parameters are identified for operating LC-PBR based on hydrodynamics. (author)

  18. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor.

    Science.gov (United States)

    Napoli, Fabio; Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2010-06-01

    In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon rings as a carrier. The medium was a solution of lactose (15-30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h(-1) (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h(-1): the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%(w).

  19. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies.

  20. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 2. Conceptual balance of plant design

    International Nuclear Information System (INIS)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. This volume describes the conceptual balance-of-plant (BOP) design and was prepared by United Engineers and Constructors, Inc. of Philadelphia, Pennsylvania. The major emphasis of the BOP study was a preliminary design of an overall plant to provide a basis for future studies

  1. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    Science.gov (United States)

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  2. Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Gomez, D., E-mail: d.villagomez@unesco-ihe.org [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands); Ababneh, H.; Papirio, S.; Rousseau, D.P.L.; Lens, P.N.L. [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands)

    2011-08-15

    Highlights: {yields} Sulfide concentration governs the location of metal precipitates in sulfate reducing bioreactors. {yields} High dissolved sulfide induces metal precipitation in the bulk liquid as fines. {yields} Low dissolved sulfide concentrations yield local supersaturation and thus metal precipitation in the biofilm. -- Abstract: The effect of the sulfide concentration on the location of the metal precipitates within sulfate-reducing inversed fluidized bed (IFB) reactors was evaluated. Two mesophilic IFB reactors were operated for over 100 days at the same operational conditions, but with different chemical oxygen demand (COD) to SO{sub 4}{sup 2-} ratio (5 and 1, respectively). After a start up phase, 10 mg/L of Cu, Pb, Cd and Zn each were added to the influent. The sulfide concentration in one IFB reactor reached 648 mg/L, while it reached only 59 mg/L in the other one. In the high sulfide IFB reactor, the precipitated metals were mainly located in the bulk liquid (as fines), whereas in the low sulfide IFB reactor the metal preciptiates were mainly present in the biofilm. The latter can be explained by local supersaturation due to sulfide production in the biofilm. This paper demonstrates that the sulfide concentration needs to be controlled in sulfate reducing IFB reactors to steer the location of the metal precipitates for recovery.

  3. Global scaling analysis for the pebble bed advanced high temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E.D.; Peterson, P.F.

    2009-01-01

    Scaled Integral Effects Test (IET) facilities play a critical role in the design certification process of innovative reactor designs. Best-estimate system analysis codes, which minimize deliberate conservatism, require confirmatory data during the validation process to ensure an acceptable level of accuracy as defined by the regulator. The modular Pebble Bed Advanced High Temperature Reactor (PB-AHTR), with a nominal power output of 900 MWth, is the most recent UC Berkeley design for a liquid fluoride salt cooled, solid fuel reactor. The PB-AHTR takes advantage of technologies developed for gas-cooled high temperature thermal and fast reactors, sodium fast reactors, and molten salt reactors. In this paper, non-dimensional scaling groups and similarity criteria are presented at the global system level for a loss of forced circulation transient, where single-phase natural circulation is the primary mechanism for decay heat removal following a primary pump trip. Due to very large margin to fuel damage temperatures, the peak metal temperature of primary-loop components was identified as the key safety parameter of interest. Fractional Scaling Analysis (FSA) methods were used to quantify the intensity of each transfer process during the transient and subsequently rank them by their relative importance while identifying key sources of distortion between the prototype and model. The results show that the development of a scaling hierarchy at the global system level informs the bottom-up scaling analysis. (author)

  4. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  5. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor

    International Nuclear Information System (INIS)

    Liu, Hongbing; Du, Dong; Han, Zandong; Zou, Yirong; Pan, Jiluan

    2015-01-01

    Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor. - Highlights: • The kinetic equations of the fuel element in pneumatic transportation are derived. • The dynamic characteristics of the fuel element are analyzed. • Some important parameters are calculated based on the kinetic equations. • The experimental results were consistent with the analysis and verified the analysis. • This paper may offer an important guide to the research of a pebble bed reactor

  6. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors

    International Nuclear Information System (INIS)

    Vasiliadou, I.A.; Karanasios, K.A.; Pavlou, S.; Vayenas, D.V.

    2009-01-01

    The aim of this work was to study hydrogenotrophic denitrification in packed-bed reactors under draw-fill and continuous operation. Three bench-scale packed-bed reactors with gravel in different sizes (mean diameter 1.75, 2.41 and 4.03 mm) as support media were used, in order to study the effect of particle size on reactors performance. The maximum denitrification rate achieved under draw-fill operation was 4.4 g NO 3 - -N/ld for the filter with gravel of 2.41 mm. This gravel size was chosen to perform experiments under continuous operation. Feed NO 3 - -N concentrations and hydraulic loadings (HL) ranged between 20-200 mg/l and 5.7-22.8 m 3 /m 2 d, respectively. A comparison between the two operating modes showed that, for low HL the draw-fill operation achieved higher denitrification rates, while for high HL and intermediate feed concentrations (40-60 mg NO 3 - -N/l) the continuous operation achieved higher denitrification rates (4.67-5.65 g/ld). Finally, experiments with three filters in series (with gravels of 4.03, 2.41 and 1.75 mm mean diameter) were also performed under continuous operation. The maximum denitrification rate achieved was 6.2 g NO 3 - -N/ld for feed concentration of 340 mg/l and HL of 11.5 m 3 /m 2 d. A model, which describes denitrification in packed-bed reactors, was also developed. The model predicts the concentration profiles of NO 3 - -N along filter height, in draw-fill as well as in continuous operation, satisfactorily.

  7. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  8. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  9. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  10. Galacto-oligosaccharide production with immobilized ß-galactosidase in a packed-bed reactor vs. free ß-galactosidase in a batch reactor

    NARCIS (Netherlands)

    Warmerdam, A.; Benjamins, E.; Leeuw de, T.F.; Broekhuis, T.A.; Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    We report here that the usage of immobilized enzyme in a continuous packed bed reactor (PBR) can be a good alternative for GOS production instead of the traditional use of free enzyme in a batch reactor. The carbohydrate composition of the product of the PBR with immobilized enzyme was comparable to

  11. Numerical investigation of the flow at the pebble bed of the high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Costa, Franklin C.; Navarro, Moyses A.; Santos, Andre A.C.

    2011-01-01

    This paper presents a numerical investigation of the thermal and fluid dynamics among the fuel spheres and the cooling fluid, appearing in the core of pebble bed reactor (PBR-Peeble Bed Reactor) using the CFD-Computational Fluid Dynamics CFX 13.0. The paper presents the two analysis results. In the first phase it was considered two heat transfer models for the fuel spheres. In a model it was established volumetric load generation, with thermal conduction for both the fuel and coating. The other model prescribes a heat flux at the sphere surfaces. In this analysis, it was proceed two simulation in the two sphere arrangements, one considering the spheres in contact, and the other with 2 mm spacing between them. At the second analysis it was evaluated the sphere arrangement influence on the thermal and fluid dynamic behavior of the bed. The four simulations present differences in the flow and in the surface and maximum temperature profiles of the coating.(author)

  12. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    Science.gov (United States)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  13. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure

    Energy Technology Data Exchange (ETDEWEB)

    A. Aho; N. Kumar; K. Eranen; T. Salmi; M. Hupa; D.Yu. Murzin [Aabo Akademi University, Aabo/Turku (Finland). Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering

    2008-09-15

    Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450{sup o}C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite. 12 refs., 9 figs., 5 tabs.

  14. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Capareda, Sergio C.; Ashwath, Nanjappa; Kongkasawan, Jinjuta

    2015-01-01

    Energy conversion efficiencies of three pyrolysis reactors (bench-scale auger, batch, and fluidized bed) were investigated using rice straw as the feedstock at a temperature of 500 °C. The highest bio-oil yield of 43% was obtained from the fluidized bed reactor, while the maximum bio-char yield of 48% was obtained from the batch reactor. Similar bio-oil yields were obtained from the auger and batch type reactors. The GCMS and FTIR were used to evaluate the liquid products from all reactors. The best quality bio-oil and bio-char from the batch reactor was determined to have a heating value of 31 MJ/kg and 19 MJ/kg, respectively. The highest alkali mineral was found in the bio-char produced from the auger reactor. The energy conversion efficiencies of the three reactors indicated that the majority of the energy (50–64%) was in the bio-char products from the auger and batch reactors, while the bio-oil from the fluidized bed reactor contained the highest energy (47%). A Sankey diagram has been produced to show the flows of product energy from each pyrolysis process. The result will help determine which conversion process would be optimal for producing specific products of bio-char, bio-oil, and gas depending on the needs. - Highlights: • Pyrolysis products from auger, batch, and fluidized bed reactor were examined. • O/C ratios of bio-oils stayed in specific ranges depending on the process reactors. • The largest quantity of bio-oil from fluidized, while the best quality from batch. • The highest alkali concentration of 37 g/kg included in the auger based bio-char. • Sankey diagram was used to understand the energy distribution from reactors.

  16. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    NARCIS (Netherlands)

    Groenestijn, van J.W.; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.H.; Stams, A.J.M.; Claassen, P.A.M.

    2009-01-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at

  17. Performance and population analysis of a non-sterile trickle bed reactor inoculated with caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.M.; Stams, A.J.M.; Claassen, P.A.M.

    2009-01-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 molH 2mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at

  18. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas

    NARCIS (Netherlands)

    Spallina, V.; Chiesa, P.; Martelli, E; Gallucci, F.; Romano, M.C.; Lozza, G.; Sint Annaland, van M.

    2015-01-01

    This paper deals with the design and operation strategies of dynamically operated packed-bed reactors (PBRs) of a chemical looping combustion (CLC) system included in an integrated gasification combined cycle (IGCC) for electric power generation with low CO2 emission from coal. The CLC reactors,

  19. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  20. Method of neutronic calculations for a spherical cell equivalent to cylindrical one for using computer codes in light water reactors in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.; Rastogi, E.P.; Huria, H.C.; Krishnani, P.D.

    1989-01-01

    In order to use the existing light water reactor cell calculation codes for fluidized bed nuclear reactor having spherical fuel cells, an equivalence method has been developed. This method is shown to be adequate in calculation of the Dancoff factor. This method also was applicable in LEOPARD code and the results obtained in calculation of K ∞ was compared with the obtained using the DTF IV code, the results showed that the method is adequate for the calculations neutronics of the fluidized bed nuclear reactor. (author) [pt

  1. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  2. A Photocatalytic Active Adsorbent for Gas Cleaning in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Peter Pucher

    2008-01-01

    Full Text Available Efficient photocatalysis for gas cleaning purposes requires a large accessible, illuminated active surface in a simple and compact reactor. Conventional concepts use powdered catalysts, which are nontransparent. Hence a uniform distribution of light is difficult to be attained. Our approach is based on a coarse granular, UV-A light transparent, and highly porous adsorbent that can be used in a simple fixed bed reactor. A novel sol-gel process with rapid micro mixing is used to coat a porous silica substrate with TiO2-based nanoparticles. The resulting material posses a high adsorption capacity and a photocatalytic activity under UV-A illumination (PCAA = photocatalytic active adsorbent. Its photocatalytic performance was studied on the oxidation of trichloroethylene (TCE in a fixed bed reactor setup in continuous and discontinuous operation modes. Continuous operation resulted in a higher conversion rate due to less slip while discontinuous operation is superior for a total oxidation to CO2 due to a user-defined longer residence time.

  3. Engineering aspects of fluidized bed reactor operation applied to lactase treatment of whole whey

    Energy Technology Data Exchange (ETDEWEB)

    Metzdorf, C; Fauquex, P F; Flaschel, E; Renken, A

    1985-01-01

    An interesting possibility for the use of lactoserum in human nutrition is the hydrolysis of lactose to glucose and galactose, sugars which exhibit a better digestibility, a higher solubility, and which have a greater sweetening power than lactose. The hydrolysis is catalyzed by an enzyme, the ..beta..-galactosidase which, due to its high price, must be used continuously, preferentially in immobilized form. The enzyme used for these studies has been immobilized on silica gel precoated with chitosan. When whole whey or partially deproteinized whey is treated, a fluidized bed reactor seems to be the most appropriate to circumvent problems with protein adsorption and reactor plugging. However the fluidization of fine particles with a small density difference between the solid and the liquid may give rise to stability problems. In order to prevent unstable operation of the fluidized bed, the reactor has been equipped with special internals. They impose a radial distribution of the liquid and the solid phase and increase the linear velocity required to achieve a given expansion by a factor of five. Besides the resulting high solids content, the back-mixing of the liquid decreases significantly when static mixer-packings are used.

  4. Early stages in biofilm development in methanogenic fluidized-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, A.M.; Heinen, W.; Gorris, L.G.M.; Drift, C. van der (Katholieke Univ. Nijmegen (Netherlands). Dept. of Microbiology and Evolution Biology)

    1990-06-01

    Biofilm development in methanogenic fluidized-bed reactors with sand as the carrier was studied on a laboratory scale. The microorganisms present in consecutive layers of the biofilm of mature sludge granules were prelimilarily characterized on the basis of their morphology, element composition and adhesion capacity and were compared to bacteria which take part in the initial colonization of sand. The early phase of biofilm development was monitored with reactors receiving waste-waters containing different mixtures of volatile fatty acids and inoculated with fluidized-bed reactor effluent for different lengths of time. The results obtained indicate that facultative anaerobic bacteria abundantly present in the outermost biofilm layers of mature sludge granules are probably the main primary colonizers of the sand. Methanothrix spp. or other methanogens were rarely observed among the primary colonizers. The course of biofilm formation was comparable under the various start-up conditions employed including variations in waste-water composition, inoculation and anaerobicity. However, omission of waste-water and thus of substrate resulted in rapid wash-out of the attached biomass. (orig.).

  5. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  6. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  7. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes [1000 and 3000 MW(t)] and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950 0 C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950 0 C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG

  8. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    Science.gov (United States)

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-09-01

    An aluminum dioxide (Al 2 O 3 ) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m 2 h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m 3 , which is only about 17% of the electrical energy that could be generated with the methane produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multienzyme Immobilized Polymeric Membrane Reactor for the Transformation of a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Rupam Sarma

    2018-04-01

    Full Text Available We have developed an integrated, multienzyme functionalized membrane reactor for bioconversion of a lignin model compound involving enzymatic catalysis. The membrane bioreactors were fabricated through the layer-by-layer assembly approach to immobilize three different enzymes (glucose oxidase, peroxidase and laccase into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase to oxidative conversion of a lignin model compound, guaiacylglycerol-β-guaiacyl ether (GGE. Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes at a residence time of approximately 22 s. GGE conversion product analysis revealed the formation of oligomeric oxidation products upon reaction with peroxidase, which may be a potential hazard to membrane bioreactors. These oxidation products could further be degraded by laccase enzymes in the multienzymatic membranes, explaining the potential of multi enzyme membrane reactors. The multienzyme incorporated membrane reactors were active for more than 30 days of storage time at 4 °C. During this time span, repetitive use of the membrane reactor was demonstrated involving 5–6 h of operation time for each cycle. The membrane reactor displayed encouraging performance, losing only 12% of its initial activity after multiple cycles of operation.

  10. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  12. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  13. Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, P.; Haute, A. van

    1984-01-01

    In the last few years, the use of fluidized-bed reactors for biological wastewater treatment has got increasing attention. In 1981, Shieh et al. proposed a model to predict the biomass concentration in a fluidized-bed reactor. From this model one can see that the biofilm density plays a very important role in determining the total biomass hold-up. In this article the influence of the type of carbon source on the biomass concentration, and as a consequence the type of organisms selected, is studied. The growth of a filamentous, budforming bacteria in a reactor treating nitrate rich surface water supplied with methanol as carbon source, results in a biomass concentration only half of the concentration which can normally be obtained in a fluidized-bed reactor treating synthetic wastewater; in this latter case rod-shaped bacteria are enriched which permit a dense packing.

  14. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  15. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  16. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  17. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  18. Studies on the inhomogeneous core density of a fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hagen, T.H.J.J.; Van Dam, H.; Hoogenboom, J.E.; Khotylev, V.A. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.; Harteveld, W.; Mudde, R.F.

    1997-12-31

    Results are reported on the expected time dependent core density profile of a fluidized-bed nuclear fission reactor. Core densities have been measured in a test facility by the gamma-transmission technique. Bubble and particle-cluster sizes, positions, velocities and frequencies could be determined. Neutronic studies have been performed on the influence of core voids on reactivity using Monte-Carlo and neutron-transport codes. Fuel-particle importance has been determined. Point-kinetic parameters have been calculated for linking reactivity perturbations to power fluctuations. (author)

  19. Post-treatment of Fly Ash by Ozone in a Fixed Bed Reactor

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Melia, M. C.; Jensen, Anker Degn

    2009-01-01

    to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O-3/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data....... prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found...

  20. Renewable side reflector structure for a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The description is given of a renewable side reflector structure for a pebble bed high temperature reactor of the kind comprising a cylindrical graphite vessel constituting the neutron reflector, this vessel being filled with graphite pebbles containing the nuclear fuel and enclosed in a concrete protective containment. The internal peripheral area of the vessel is constituted by a line of adjacent graphite rods mounted so that they can rotate about their longitudinal axis and manoeuvrable from outside the concrete containment by means of a shaft passing into it [fr

  1. The fluidized bed reactor in the anaerobic treatment of wine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Converti, A; Zilli, M; Del Borghi, M; Ferraiolo, G [Genoa Univ. (Italy). Inst. of Chemical Engineering Science and Technology

    1990-02-13

    The aim of the present work is the performance evaluation of a fluidized bed reactor in the anaerobic treatment of a wastewater deriving from the washing operations of the wine industry. The results are in agreement with the ones obtained using a mixture of municipal and food processing waste waters containing high organic contents. A comparison with other liquid wastes shows that no subtrate inhibition phenomenon occurs with the above substrates. A saturation kinetic model is also presented for describing the dependence of the COD removal rate on the organic loading rate. (orig.).

  2. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  3. The Behavior of Pilot Trickle-Bed Reactor under Periodic Operation

    Czech Academy of Sciences Publication Activity Database

    Tukač, V.; Šimíčková, M.; Chyba, V.; Lederer, J.; Kolena, J.; Hanika, Jiří; Jiřičný, Vladimír; Staněk, Vladimír; Stavárek, Petr

    2007-01-01

    Roč. 62, 18-20 (2007), s. 4891-4895 ISSN 0009-2509. [International Symposium on Chemical Reaction Engineering - From Science to Innovative Engineering /19./. Potsdam/Berlin, 03.09.2006-06.09.2006] R&D Projects: GA MPO(CZ) FT-TA/039 Grant - others:CYCLOP(XE) G1RD/CT2000/00225 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : olefine hydrogenation * pilot-scale * trickle-bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.775, year: 2007

  4. Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    M.A. Moharram

    2016-04-01

    The efficiencies of Total nitrogen removal ranged between 2.23 and 10.83% with an apparent decrease during the low temperature high rate stages. Nitrite removal was in the range of (23.08–77% with up to the 2 mg/L in the effluent water when obtaining high organic loading and warm temperature. These results demonstrated that the domestic wastewater could be anaerobically treated in a fluidized bed UASB reactor with very low HRT reaching 2.5 h.

  5. Packed bed reactor for degradation of simulated cyanide-containing wastewater

    OpenAIRE

    Kumar, Virender; Kumar, Vijay; Bhalla, Tek Chand

    2014-01-01

    The discharge of cyanide-containing effluents into the environment contaminates water bodies and soil. Effective methods of treatment which can detoxify cyanide are the need of the hour. The aim of the present study is to develop a bioreactor for complete degradation of cyanide using immobilized cells of Serratia marcescens RL2b. Alginate-entrapped cells of S. marcescens RL2b were used for complete degradation of cyanide in a packed bed reactor (PBR). Cells grown in minimal salt medium (pH 6....

  6. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  7. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  8. Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors

    International Nuclear Information System (INIS)

    Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.

    2010-01-01

    A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)

  9. Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Diogo; Chibante, Vania; Mendes, Adelio; Madeira, Luis M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Zheng, Ju-Meng [Dutch Separation Technology Institute (DSTI), 3800 AE Amersfoort (Netherlands); Tosti, Silvano; Borgognoni, Fabio [ENEA, Unita Tecnica Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy)

    2010-11-15

    In this work, it is described an experimental study regarding the performance of a Pd-Ag membrane reactor recently proposed and suitable for the production of ultra-pure hydrogen. A dense metallic permeator tube was assembled by an innovative annealing and diffusion welding technique from a commercial flat sheet membrane of Pd-Ag. A ''finger-like'' configuration of the self-supported membrane has been designed and used as a packed-bed membrane reactor (MR) for producing ultra-pure hydrogen via water-gas shift reaction (WGS). A CuO/ZnO/Al{sub 2}O{sub 3} catalyst, from REB Research and Consulting, was used for packing the WGS membrane reactor. The performance of the reactor was evaluated in terms of CO conversion and H{sub 2} recovery in a wide range of conditions: temperature from 200 C to 300 C, feed pressure from 1.0 bar to 4.0 bar, vacuum and sweep-gas modes and with a simulated reformate feed (4.70% CO, 34.78% H{sub 2}O, 28.70% H{sub 2}, 10.16% CO{sub 2} balanced in N{sub 2}). Also, the effect of the reactants feed composition was investigated and discussed. CO conversions remained in most conditions above the thermodynamic equilibrium based on feed conditions. In particular, it is worth mentioning that around 100% of CO conversion and almost complete H{sub 2} recovery was achieved when operating the MR at 300 C with a GSHV = 1200 L{sub N} kg{sub cat}{sup -1} h{sup -1}, P{sub feed} = 4 bar, P{sub perm} = 3 bar and using 1000 mL{sub N} min{sup -1} of sweep-gas. (author)

  10. Particle bed reactor propulsion vehicle performance and characteristics as an orbital transfer rocket

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Lazareth, O.W.

    1986-01-01

    The particle bed reactor designed for 100 to 300 MW power output using hydrogen as a coolant is capable of specific impulses up to 1000 seconds as a nuclear rocket. A single space shuttle compatible vehicle can perform extensive missions from LEO to 3 times GEO and return with multi-ton payloads. The use of hydrogen to directly cool particulate reactor fuel results in a compact, lightweight rocket vehicle, whose duration of usefulness is dependent only upon hydrogen resupply availability. The LEO to GEO mission had a payload capability of 15.4 metric tons with 3.4 meters of shuttle bay. To increase the volume limitation of the shuttle bay, the use of ammonia in the initial boost phase from LEO is used to give greater payload volume with a small decrease in payload mass, 8.7 meters and 12.7 m-tons. 5 refs., 15 figs

  11. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  12. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  13. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

    2017-01-01

    A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...

  14. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    Science.gov (United States)

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  15. Investigations on accidents with massive water ingress exemplified by the pebble bed reactor PNP-500

    International Nuclear Information System (INIS)

    Moormann, R.

    1986-01-01

    A computer code is used for analyses of massive water ingress accidents in the High-Temperature Gas Cooled Reactor concept PNP-500 with pebble bed core. The analyses are mainly focussed on graphite corrosion processes. For the investigated accidents a correct reactor shut down in assumed. The mass of water ingressing into the primary circuit is varied between 1000 and 7500 kg (i.e., up to hypothetical values). The dependence of accident consequences on parameters such as intensity and starting time of the afterheat removal system or kinetic values of the chemical processes is examined. The results show that even under pessimistic assumptions the extent of the graphite corrosion is relatively low; significant damaging of fuel elements or graphite components does not occur. A primary circuit depressurization, combined with local burning of water gas, would probably not affect the fission product retention potential of the (gastight) containment. Summing up, the risk caused by these accidents remains small. (orig.) [de

  16. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young

    2008-01-01

    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  17. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  18. Development of an enzyme fluidized bed reactor equipped with static mixers: application to lactose hydrolysis in whey

    Energy Technology Data Exchange (ETDEWEB)

    Fauquex, P F; Flaschel, E; Renken, A

    1984-01-01

    Reactor operation with immobilized enzymes in fixed bed arrangement is often impaired due to the presence of finely divided solid matter, adsorbing substances or gas. The fluidized bed reactor would be applied in such cases owing to a limited pressure drop, a controlled voidage, and the avoidance of perforated plates for catalyst retention. Since enzymic reactions are often slow processes, catalysts of high external surface area should be provided together with sufficient time. However, classical fluidized beds suffer from hydrodynamic instability under these conditions. Therefore, a new reactor design was developed which used motionless mixers as internals. Fluidized bed reactors equipped with internals exhibit an outstanding hydrodynamic stability accompanied by an increase of the operating range in terms of flow rate by a factor of 4 compared to the classical fluidized bed. Results are presented, with emphasis on the backmixing and expansion characteristics. Various motionless mixers were investigated in columns of 39 and 150 mm in diameter. The fluidized bed equipped with internals was used for lactose hydrolysis in partially deproteinized whey. The lactase from Aspergillus niger immobilized on silica gel particles of 125-160 molm had a half-life of approximately 1 mo.

  19. Plutonium burning in a pebble-bed type high temperature nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bende, E.E

    2000-01-24

    This thesis deals with the pebble-bed High Temperature Reactor that is fuelled with pure reactor-grade plutonium. It is stressed that neither burnable poisons nor fertile materials like 238U and 212Th are present in the calculational models throughout this thesis. Chapter 2 discusses the general properties of the pebble-bed HTR: the passive safety features of this reactor; different fuel scenarios according to which the pebble-bed HTR can be operated; properties of the pebbles and the coated particles (CPs), including a concise overview of the mechanisms that can lead to coated particle failure. Special attention is paid to the effect of Pu as fuel inside these CPs thereby aiming to indicate which mechanisms are of concern when such CPs are considered as fuel in future reactors. In the last part of this chapter constraints are listed that were imposed to the models considered in the framework of this thesis. Chapter 3 presents the results of unit-cell calculations performed with three code systems. The main objective of this chapter is to compare the calculational results of one particular code system, which is a candidate for the generation of cross sections for a full-core calculation, to those of the other two code systems. Also some reactor physics interpretations of the calculational results are presented. The unit-cell calculations embrace the computation of a number of reactor physics parameters for pebbles with a varying plutonium mass per pebble and with different types of coated particles. For one pebble configuration, these parameters have been calculated for various fuel temperatures and over-all (uniform) temperatures. For that particular pebble configuration, also the results of a two burnup calculations were compared. Chapter 4 reports the results of a parameter study in which the number of coated particles per pebble as well as the type and size of the CPs have been varied. The effect of different pebble configurations on several reactor physics

  20. Gas Reactor International Cooperative program. Pebble bed reactor plant: screening evaluation. Volume 3. Appendix A. Equipment list

    International Nuclear Information System (INIS)

    1979-11-01

    This report consists of three volumes which describe the design concepts and screening evaluation for a 3000 MW(t) Pebble Bed Reactor Multiplex Plant (PBR-MX). The Multiplex plant produces both electricity and transportable chemical energy via the thermochemical pipeline (TCP). The evaluation was limited to a direct cycle plant which has the steam generators and steam reformers in the primary circuit. Volume 1 reports the overall plant and reactor system and was prepared by the General Electric Company. Core scoping studies were performed which evaluated the effects of annular and cylindrical core configurations, radial blanket zones, burnup, and ball heavy metal loadings. The reactor system, including the PCRV, was investigated for both the annular and cylindrical core configurations. Volume 3 is an Appendix containing the equipment list for the plant and was also prepared by United Engineers and Constructors, Inc. It tabulates the major components of the plant and describes each in terms of quantity, type, orientation, etc., to provide a basis for cost estimation

  1. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    Science.gov (United States)

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  2. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  3. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  4. Pd-Ag membrane reactor for steam reforming reactions: a comparison between different fuels

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2008-01-01

    The simulation of a dense Pd-based membrane reactor for carrying out the methane, the methanol and the ethanol steam reforming (SR) reactions for pure hydrogen production is performed. The same simulation is also performed in a traditional reactor. This modelling work shows that the use of membrane

  5. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  6. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  7. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2018-05-01

    Full Text Available To improve the reactor efficiency, this study investigated the influence of temperature on the biological hydrogen methanation (BHM in trickle-bed reactors (TBR. Rising temperatures increase the metabolic activity of methanogenic microorganisms, thus leading to higher reactor specific methane formation rates (MFR. In order to quantify the potential for improved performance, experiments with four different operating temperatures ranging from 40 to 55 °C were carried out. Methane content increased from 88.29 ± 2.12 vol % at 40 °C to 94.99 ± 0.81 vol % at 55 °C with a stable biological process. Furthermore, a reactor specific methane formation rate (MFR of up to 8.85 ± 0.45 m3 m−3 d−1 was achieved. It could be shown that the microorganisms were able to adapt to higher temperatures within hours. The tests showed that TBR performance with regard to BHM can be significantly increased by increasing the operating temperature.

  8. Phenolic Wastewater Treatment using Activated Carbon in a Three Phase Fluidized-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Pornsiri Tongprem

    2009-11-01

    Full Text Available Phenolic wastewater treatment was investigated using activated carbon in a lab scale three phase fluidized-bed reactor. The reactor with effective volume of 272 ml, 300 mm in height and 40 mm in diameter was made from transparent acrylic that allowed to observe the phenomena occurring inside. Phenol 10 mg/l and air were used as representative agents that were continuously fed to the reactor at a constant flow rate of 1 and 2 l/min with co-current and up-flow, respectively. Comparison of the phenolic adsorption under five different conditions: (a fresh Acs, (b 1st reused Acs, (c fresh Fe/Acs, (d 1st reused Fe/Acs, and (e 2nd reused Fe/Acs, have been carried out. The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time. The experimental adsorption results revealed that both fresh Acs and Fe/Acs gave the better results than reused Acs and reused Fe/Acs, respectively. The adsorption in all cases of Acs and Fe/Acs would follow Pseudo-second order kinetic.

  9. Modeling and simulation of a packed bed reactor for hydrogen by methanol steam reforming

    International Nuclear Information System (INIS)

    Aboudheir, A.; Idem, R.

    2004-01-01

    'Full text:' The performance of a catalytic packed bed tubular reactor for hydrogen production depends on mass transport characteristics and temperature distribution in the reactor. To accurately predict this performance, a rigorous numerical model has been developed based on coupled mass, energy, and momentum balance equations in cylindrical coordinates. This comprehensive model takes into account the variations of the concentration and temperature in both the axial and radial directions as well as the pressure drop along the packed reactor. Also, experimental measurements for hydrogen production were collected using a manganese-promoted co-precipitated Cu-Al catalyst for methanol-steam reforming in a micro-reactor having 10 mm i.d. and 460 mm overall length. The operating temperature ranged from 443 to 523 K and the space-time ranged from 0.1 to 2.5 kg cat h/kmol CH3OH. The simulation results were found to be in close agreement with the experimental data over the various operating conditions. This confirms the validity of both the numerical model of this work and our previous published kinetics models for this reaction system. In addition, the model formulation is applicable to handle reactions, not only for the microreactor presented in this work, but also, for other laboratory size and industrial scale processes for hydrogen production by hydrocarbon reformation. (author)

  10. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  11. Treatment of chemical-pharmaceutical wastewater in packed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nacheva, P.M.; Pena-Loera, B.; Moralez-Guzman, F. [Mexican Institute for Water Technology, Jiutepec (Mexico)

    2006-07-01

    Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23-31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80-98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m{sup -3} d{sup -1}. The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17kg m{sup -3} d{sup -1} and higher than 80% with loads up to 26 kg m{sup -3} d{sup -1}. Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m{sup -3} d{sup -1}. The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m{sup -3} d{sup -1} in the GAC-reactor and at loads higher than 3.6 kg m{sup -3} d{sup -1} in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m{sup 33}CH4/kg CODremoved.

  12. Adsorptive control of water in esterification with immobilized enzymes: II. fixed-bed reactor behavior.

    Science.gov (United States)

    Mensah, P; Gainer, J L; Carta, G

    1998-11-20

    Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. Copyright 1998 John Wiley & Sons, Inc.

  13. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  14. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  15. Feasibility study of a reverse flow catalytic membrane reactor with porous membranes for the production of syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper a novel reverse flow catalytic membrane reactor (RFCMR) is proposed for the partial oxidation of CH4 to syngas. The feasibility of the RFCMR concept has been investigated for industrial conditions on basis of a simulation study employing a reactor model, which includes a detailed

  16. Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation

    Science.gov (United States)

    Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie

    2018-04-01

    A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.

  17. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  18. Start-up and performance characteristics of a trickle bed reactor degrading toluene

    Directory of Open Access Journals (Sweden)

    Ondrej Misiaczek

    2007-09-01

    Full Text Available The objective of this work was to evaluate toluene degradation in a trickle bed reactor when the loading was carried out by changing the air flow rate. The biofiltration system was inoculated with a mixed microbial population, adapted to degradation of hydrophobic compounds. Polypropylene high flow rings were used as a packing material. The system was operated for a period of 50 days at empty bed residence times ranging from 106s to 13s and with a constant inlet concentration of toluene of 100 mg.m-3. The reactor showed high removal efficiency at higher contact times and increasing elimination capacity with higher air-flow rates. The highest EC value reached was 9.8 gC.m-3.h-1 at EBRT = 13s. During the experiment, the consumption of NaOH solution was also measured. No significant variation of this value was found and an average value of 3.84 mmol of NaOH per gram of consumed carbon was recorded.

  19. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Science.gov (United States)

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors

    International Nuclear Information System (INIS)

    Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.

    1997-01-01

    A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)