WorldWideScience

Sample records for bed material agglomeration

  1. Biomass ash-bed material interactions leading to agglomeration in FBC

    DEFF Research Database (Denmark)

    Visser, H.J.M.; van Lith, Simone Cornelia; Kiel, J.H.A.

    2008-01-01

    -scale installations is "coating-induced" agglomeration. During reactor operation, a coating is formed on the surface of bed material grains and at certain critical conditions (e.g., coating thickness or temperature) sintering of the coatings initiates the agglomeration. In an experimental approach, this work...

  2. Agglomeration of bed material: Influence on efficiency of biofuel fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ryabov Georgy A.

    2003-01-01

    Full Text Available The successful design and operation of a fluidized bed combustor requires the ability to control and mitigate ash-related problems. The main ash-related problem of biomass filing boiler is agglomeration. The fluidized bed boiler with steam capacity of 66 t/h (4 MPa, 440 °C was started up at the Arkhangelsk Paper-Pi dp-Plant in 2001. This boiler was manufactured by the Russian companies "Energosofin" and "Belenergomash" and installed instead of the existing boiler with mechanical grate. Some constructional elements and steam drum of existing boiler remained unchanged. The primary air fan was installed past the common air fan, which supply part of the air into 24 secondary airports. First operating period shows that the bed material is expanded and then operator should increase the primary air rate, and the boiler efficiency dramatically decreases. Tills paper presents some results of our investigations of fuel, bed and fly ash chemical compositions and other characteristics. Special experiments were carried out to optimize the bed drain flow rate. The influence of secondly air supply improvement on mixing with the main flow and boiler efficiency are given.

  3. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  4. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  5. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  6. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration ...

  7. A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M. [Umeaa Univ. (Sweden). Dept. of Chemistry

    1997-12-31

    The present licentiate thesis is a summary and discussion of four papers, dealing with the development, evaluation and use of a new method to quantify bed agglomeration tendencies for biomass fuels. An increased utilization of biomass related fuels has many environmental benefits, but also requires careful studies of potential new problems associated with these fuels such as bed agglomeration/defluidization during combustion and gasification in fluidized beds. From a thorough literature survey, no suitable methods to determine bed agglomeration tendencies of different fuels, fuel combinations or fuels with additives appeared to be available. It therefore seemed of considerable interest to develop a new method for the quantification of fluidized bed agglomeration tendencies for different fuels. A bench scale fluidized bed reactor (5 kW), specially designed to obtain a homogeneous isothermal bed temperature, is used. The method is based on controlled increase of the bed temperature by applying external heat to the primary air and to the bed section walls. The initial agglomeration temperature is determined by on- or off-line principal component analysis of the variations in measured bed temperatures and differential pressures. Samples of ash and bed material for evaluation of agglomeration mechanisms may also be collected throughout the operation. To determine potential effects of all the process related variables on the determined fuel specific bed agglomeration temperature, an extensive sensitivity analysis was performed according to a statistical experimental design. The results showed that the process variables had only relatively small effects on the agglomeration temperature, which could be determined to 899 deg C with a reproducibility of {+-} 5 deg C (STD). The inaccuracy was determined to be {+-} 30 deg C (STD). The method was also used to study the mechanism of both bed agglomeration using two biomass fuels and prevention of bed agglomeration by co

  8. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... areas between bed particles, ultimately led to bed agglomeration. The interfaces and the presence of gas bubbles in the cement suggest a bonding material with a high surface tension and a liquid state. The cement films originate by filling of irregularities on individual and partially agglomerated bed...

  9. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  10. Tests of Bed Agglomeration Tendency Using a Rotating Furnace; Roterugn foer bedoemning av sintringsbenaegenhet

    Energy Technology Data Exchange (ETDEWEB)

    Larfeldt, Jenny; Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-08-01

    Bed sintering is a well known problem in fluidised bed boilers. In order to avoid bed sintering the bed material turn over ratio is high which leads a high consumption of bed material. This work aims at developing and evaluating a method for testing the bed agglomeration tendency of a FB bed material by using a rotating furnace. A rotating furnace has been designed and tests have shown that three temperatures describing the increasing agglomeration tendency can be evaluated; TA when several particles stick to each other and to the crucible wall, TB when half of the material sticks to the wall and TC when almost all the material forms a ball in the crucible. Comparison with bed agglomeration tests has shown that TA is between 80 deg C to 130 deg C lower than the bed agglomeration temperature from fluid bed tests. It is shown that TB is closer to the bed agglomeration temperature and finally that the temperature TC is higher than the bed agglomeration temperature. It is concluded that in the rotating furnace sticking of particles is visualised early, and that this sticking will not cause defluidisation of the bed until more than half of the material in the crucible is sticky. Repeated tests has been performed at a heating rate of 5 deg/minute and a rotating speed of 12 rpm and a furnace inclination of 20 deg was found to give distinct results in the evaluation. The evaluation has shown to be reproducible at lower temperatures. At higher temperatures, around 1,000 deg C, the evaluation was complicated by a poor picture quality which probably can be improved by proper cooling of the camera. It has also been shown that sticking of material in the rotating furnace could be detected at relatively low temperatures of 750 deg C that disappeared at higher temperatures. This is likely to be explained by melting salts that evaporates as temperature increase. At even higher temperatures the sticking reappeared until a ball was formed in the crucible. The latter sticking is

  11. Experimental study of fluidized bed agglomeration of acerola powder

    Directory of Open Access Journals (Sweden)

    G. C. Dacanal

    2008-03-01

    Full Text Available The aim of this work was to study the main effects of acerola powder on fluidized bed agglomeration. A 2(4-1 fractional factoring design was used to evaluate the main operating conditions (fluidizing air temperature, fluidizing air velocity, atomizing air flow and height of nozzle in the bed. The mechanical and physicochemical product changes were determined by analysis of particle diameter, moisture content, wetting time and bed porosity. The particle enlargement by agglomeration occurred when the relative humidity in the bed increased and, thus, the moisture of the product increased. However, the excessive increase in relative humidity resulted in a decrease in yield, caused by caking and product incrustation. The consolidation of small granules resulted in an increase in the instant properties, decreasing the wetting time and increasing the solubility in a short period of agitation.

  12. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior

    International Nuclear Information System (INIS)

    Zhou, Chunguang; Rosén, Christer; Engvall, Klas

    2016-01-01

    Highlights: • Dolomite is a superior material in preventing bed agglomeration. • Small molten ash particles deposited on magnesite at bed temperatures above 1000 °C. • The performance, when using magnesite, is sensitive to temperature disturbances. • The anti-agglomeration mechanisms of Ca- and Mg-bearing materials were discussed. - Abstract: In this study, the anti-agglomeration abilities of Ca- and Mg-containing bed materials, including dolomite and magnesite, in a pressurized bubbling fluidized bed gasifier using pine pellets and birch chips as feedstock, is investigated. The most typical bed material—silica sand—was also included as a reference for comparison. The sustainability of the operation was evaluated via analyzing the temperatures at different levels along the bed height. During the performances, the aim was to keep the temperature at the bottom zone of the reactor at around 870 °C. However, the success highly depends on the bed materials used in the bed and the temperature can vary significantly in case of agglomeration or bad mixing of bed materials and char particles. Both Glanshammar and Sala dolomites performed well with no observed agglomeration tendencies. In case of magnesite, the bed exhibited a high agglomeration tendency. Silica sand displayed the most severe agglomeration among all bed materials, even when birch chips with a low silica content was fed at a relatively low temperature. The solid samples of all the bed materials were inspected by light microscopy and Scanning Electron Microscopy (SEM). The Energy Dispersive Spectroscopy (EDS) detector was used to detect the elemental distribution in the surface. The crystal chemical structure was analyzed using X-ray Diffraction (XRD). Magnesite agglomerates glued together by big molten ash particles. There was no coating layer detected on magnesite particles at bed temperatures – below 870 °C. But when the temperature was above 1000 °C, a significant amount of small molten

  13. Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed.

    Science.gov (United States)

    Seo, Anette; Holm, Per; Schaefer, Torben

    2002-08-01

    This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.

  14. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 1. Review and Agglomeration Regime Maps

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    -TiO2. The coating experiments were conducted in a medium-scale top-spray MP-1 fluid bed, and many rheological experiments were performed on the coating formulations to support the interpretation of the fluid-bed coating results. In this first part of the study, a thorough introduction to the inorganic...... salt and polymer film coating is provided, along with a presentation of the equipment and materials being used in this and the following papers. Results from agglomeration studies over a broad range of process conditions are presented, showing that the tendency toward agglomeration is always less...

  15. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  16. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R; Patrikainen, T; Heikkinen, R; Tiainen, M; Virtanen, M [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  17. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    Scala, Fabrizio; Chirone, Riccardo

    2008-01-01

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  18. A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Martín, Lilian de, E-mail: L.DeMartinMonton@tudelft.nl; Ommen, J. Ruud van [Delft University of Technology, Department of Chemical Engineering (Netherlands)

    2013-11-15

    The estimation of nanoparticle agglomerates’ size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1–0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

  19. A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds

    International Nuclear Information System (INIS)

    Martín, Lilian de; Ommen, J. Ruud van

    2013-01-01

    The estimation of nanoparticle agglomerates’ size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1–0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces

  20. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  1. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    . Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed

  2. Agglomeration techniques for the production of spheres for packed beds

    International Nuclear Information System (INIS)

    Sullivan, J.D.

    1988-03-01

    One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling

  3. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  4. Stone Dust Agglomeration for Utilizing as Building Material

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2017-12-01

    Full Text Available In the paper we discuss the possibility of using stone dust for utilizing as building material. The tested material was amphibolite, found in the Sudeten Mountains and the Tatra Mountains in Poland. The chemical composition of dust was determined by means of spectrometry methods. Moreover, the basic physical properties of the material were designated. Stone dust was mixed with starch or cement binder. The binder addition was from 5% to 20% by weight. The water content was adjusted to about 25% humidity. The mixture was then compressed in a hydraulic press at 50 MPa. The results of the mechanical toughness of agglomerates were shown. On the basis of the results, acceptable toughness of agglomerates was found, with the addition of cement in mass share 20% and seasoning for 48 hours. However, starch was not suitable as a binder for agglomeration of amphibolite.

  5. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    Science.gov (United States)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  6. In situ x-ray imaging of nanoparticle agglomeration in fluidized beds

    International Nuclear Information System (INIS)

    Jenneson, Paul Michael; Gundogdu, Ozcan

    2006-01-01

    A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) x-ray imaging apparatus has been designed to study the agglomeration of arc plasma synthesized zinc oxide nanoparticles (average diameter of 50 nm) in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with x-ray microtomography and found to correspond to a lognormal distribution with a mean value of 0.70x10 9 μm 3 and a variance of 3.6x10 21 (μm 3 ) 2 . The average density of the agglomerates was found to be 2.9 g cm -3 compared to 5.6 g cm -3 for the individual nanoparticles. The powder assembly was then dynamically imaged using an x-ray image intensifier coupled to a digital camera using a field of view of 24.20 mm by 32.25 mm and a temporal resolution of 40 ms. Sequential frames were captured into computer memory for a range of gas flow velocities from 0.026 ms -1 to 0.313 ms -1 . The breakup energy of the agglomerates was calculated to be approximately 2x10 -8 J using a combination of dynamic observations and physical properties of the agglomerate system extracted from the x-ray microtomographic data

  7. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and ru...

  9. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  10. An improved model for estimating fractal structure of silica nano-agglomerates in a vibro-fluidized bed

    OpenAIRE

    A Esmailpour; N Mostoufi; R Zarghami

    2016-01-01

    A study has been conducted to determine the effects of operating conditions such as vibration frequency, vibration amplitude on the fractal structure of silica (SiO2) nanoparticle agglomerate in a vibro-fluidized bed. An improved model was proposed by assimilation of fractal theory, Richardson-Zaki equation and mass balance. This model has been developed to predict the properties of nanoparticle agglomerate, such as fractal dimension and its size. It has been found out the vibration intensity...

  11. Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach

    Directory of Open Access Journals (Sweden)

    M. Peglow

    2005-06-01

    Full Text Available In this paper a model for fluidized bed spray agglomeration is presented. To describe the processes of heat and mass transfer, a physical based model is derived. The model takes evaporation process from the wetted particles as well as the effects of transfer phenomena between suspension gas and bypass gas into account. The change of particle size distribution during agglomeration, modeled by population balances, is linked to the heat and mass transfer model. A new technique is derived to extract agglomeration and nucleation rates from experimental data. Comparisons of experiments and simulations are presented.

  12. An improved model for estimating fractal structure of silica nano-agglomerates in a vibro-fluidized bed

    Directory of Open Access Journals (Sweden)

    A Esmailpour

    2016-10-01

    Full Text Available A study has been conducted to determine the effects of operating conditions such as vibration frequency, vibration amplitude on the fractal structure of silica (SiO2 nanoparticle agglomerate in a vibro-fluidized bed. An improved model was proposed by assimilation of fractal theory, Richardson-Zaki equation and mass balance. This model has been developed to predict the properties of nanoparticle agglomerate, such as fractal dimension and its size. It has been found out the vibration intensity increase leads to a slight reduction in fractal dimension of agglomerate. This Paper is also indicated that the size of agglomerate has the same behavior as fractal dimension with respect to vibration intensity changes. This study demonstrated that the fractal dimension of Silica nanoparticle agglomerate is in the range of 2.61 to 2.69 and the number of primary particles in the agglomerate is in the order of 1010. The vibration frequency is more impressive than its amplitude on agglomerate size reduction. Calculated Minimum fluidization velocity by applying predicted agglomerate sizes and experimental data are acceptable fitted.

  13. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.

    Science.gov (United States)

    Pauli-Bruns, Anette; Knop, Klaus; Lippold, Bernhard C

    2010-03-01

    The one-step preparation of sustained release matrix pellets, using a melting procedure in a fluidized bed apparatus, was tested in a 2(3) full factorial design of experiments, using microcrystalline wax as lipophilic binder, theophylline as model drug and talc as additional matrix forming agent. The three influence parameters were (A) size of binder particles, (B) fraction of theophylline in solid particles and (C) fraction of microcrystalline wax in formulation. The response variables were agglomerate size and size distribution, dissolution time, agglomerate crush resistance, sphericity, yield and porosity. Nearly spherical pellets comprising a smooth, closed surface could be obtained with the used method, exhibiting the hollow core typical for the immersion and layering mechanism. The reproducibility was very good concerning all responses. The size of agglomerates is proportional to the size of the binder particles, which serve as cores for pellet formation in the molten state in the fluidized bed. Additionally, the agglomerate size is influenced by the volume of the solid particles in relation to the binder particles, with more solid particles leading to larger agglomerates and vice versa. Dissolution times vary in a very wide range, resulting from the interplay between amount of drug in relation to the meltable matrix substance microcrystalline wax and the non-meltable matrix substance talc. The change of binder particle size does not lead to a structural change of the matrix; both dissolution times and porosity are not significantly altered. Agglomerate crush resistance is low due to the hollow core of the pellets. However, it is significantly increased if the volume fraction of microcrystalline wax in the matrix is high, which means that the matrix is mechanically better stabilized. A theoretical model has been established to quantitatively explain agglomerate growth and very good accordance of the full particle size distributions between predicted and

  14. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    Science.gov (United States)

    Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong

    2013-01-01

    This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317

  15. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    Directory of Open Access Journals (Sweden)

    Geon-Yong Lee

    2013-09-01

    Full Text Available This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure.

  16. Prevention of Bed Agglomeration Problems in a Fluidized Bed Boiler by Finding the Trigging Value of Sewage Sludge Dosage Added to Combustion of Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kajsa; Gervind, Pernilla

    2009-07-01

    Agglomeration of bed sand is a common problem during combustion of biofuels with high ash content in fluidized bed boilers. Former studies have shown that co-combustion of biofuels with sewage sludge increases the agglomeration temperature. Sewage sludge has a low heating value and high ash content. It would therefore be better to use sludge as an additive to the combustion than as a co-combusted biofuel. In this study the trigging value of sludge addition to the combustion of some biofuel was investigated. The effect of adding sludge with different precipitation chemicals, iron sulphate and aluminium sulphate, was investigated. The biofuels used for the experiments were bark, refused derived fuel (RDF) and a mixture of wood and straw, 75/25 % on energy basis. All experiments were carried out in a laboratory scale fluidized bed reactor. Analyses of chemical composition of bed sand and SEM/EDX analyses were performed after the combustion. Eventually agglomeration tests were performed in order to find the agglomeration temperature of the samples. Some of the samples sintered during the combustion and were not tested for the agglomeration temperature. SEM/EDX showed that all samples of bed sand contained sand particles with more or less coatings. In some cases the coatings seemed to consist of one dense inner layer and one more porous outer layer. From SEM/EDX and chemical composition analyses it was found that the total amount of phosphorous in the bed sand samples was increased with an increased addition of sludge in all experiments. The concentration of phosphorous was especially higher in the outer layers/coatings. It was also found that elements from the sludge seem to get caught by a sticky layer at the bed sand surface and form a non-sticky or less sticky layer that prevents agglomeration. The total amount of aluminium was increased with an increased addition of sludge for the wood/straw samples, while it increased with an increased amount of combusted fuel for

  17. Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

    Directory of Open Access Journals (Sweden)

    Aditi B. Khadilkar

    2015-11-01

    Full Text Available Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA and high temperature X-ray diffraction (HT-XRD were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

  18. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    Science.gov (United States)

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  19. Fluid Bed Coating and agglomeration: Scale-up and process optimisation

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl

    2009-01-01

    gradvist dannes et coatingslag på hver partikeloverflade. De fluidiserede partikler kan vokse i størrelse enten pga. overfladecoating eller pga. partikel-partikel agglomerering. Agglomerering opstår, når våde væskebroer dannes mellem kolliderende partikler. Hvis denne væskebro er stærk nok til at modstå...... efterfølgende partikelseparation, vil væskebroen størkne og et permanent agglomerat hermed være dannet. I coatingsprocesser er agglomerering typisk uønsket, og en række andre problemer i processen inkluderer spraytørringstab af de forstøvede væskedråber, slitage og brud af partikler og af coatingslaget......; agglomererings-tendens under coating og slagstyrke af de færdige granulater. Den udledte agglomererings-model indikerer faldende agglomereringstendens med stigende tørstofindhold af coatings-opløsningen såvel som med stigende dysetryk af atomiseringsluften. Tilsvarende indikerer slagstyrkemodellen stigende...

  20. The influence of lisping material in pelletizing and agglomeration of fine coal pieces in laboratory conditions

    International Nuclear Information System (INIS)

    Vrencovski, Angele; Andreevski, Borche

    1998-01-01

    The work presents a part of laboratory results realized in academy of Firebug, carried on pelletizing and agglomeration of waste material, fine coal from thermal power station, using different lisping materials. Specially the influence of these materials in getting solid fuel, small briquette, formed by rolling press is analyzed. Special interest is attended to their characteristics: hardness and resistance. (Author)

  1. Modelling Inter-Particle Forces and Resulting Agglomerate Sizes in Cement-Based Materials

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2005-01-01

    The theory of inter-particle forces versus external shear in cement-based materials is reviewed. On this basis, calculations on maximum agglomerate size present after the combined action of superplasticizers and shear are carried out. Qualitative experimental results indicate that external shear ...

  2. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  3. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration

    Science.gov (United States)

    Vojtková, H.

    2017-10-01

    Microorganisms cause changes in the building stone, which reduce its usable life and reliability. Microalgae make important parts of the biodegradation consortia of microorganisms on the surface of building materials. Via their metabolites, microalgae affect the stability of mineral components and thus lead to the material destruction. The aim of the paper was to identify aerophytic microalgae on the surface of engineering structures in the Ostrava agglomeration, and to describe the basic interactions between such microorganisms and the building materials, which may lead to the destruction of the materials.

  4. Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    . The agglomerates are analyzed by scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS) for morphology and elemental composition. Significant differences are observed on the defluidization temperature (Td) and agglomeration mechanisms in different gas atmospheres. Td in H2 and steam...

  5. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  6. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  7. Advances in food powder agglomeration engineering.

    Science.gov (United States)

    Cuq, B; Gaiani, C; Turchiuli, C; Galet, L; Scher, J; Jeantet, R; Mandato, S; Petit, J; Murrieta-Pazos, I; Barkouti, A; Schuck, P; Rondet, E; Delalonde, M; Dumoulin, E; Delaplace, G; Ruiz, T

    2013-01-01

    Food powders are used in everyday life in many ways and offer technological solutions to the problem of food production. The natural origin of food powders, diversity in their chemical composition, variability of the raw materials, heterogeneity of the native structures, and physicochemical reactivity under hydrothermal stresses contribute to the complexity in their behavior. Food powder agglomeration has recently been considered according to a multiscale approach, which is followed in the chapter layout: (i) at the particle scale, by a presentation of particle properties and surface reactivity in connection with the agglomeration mechanisms, (ii) at the mechanisms scale, by describing the structuration dynamics of agglomerates, (iii) at the process scale, by a presentation of agglomeration technologies and sensors and by studying the stress transmission mode in the powder bed, and finally (iv) by an integration of the acquired knowledge, thanks to a dimensional analysis carried out at each scale. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Effect of process parameters on removal and recovery of Cd(II) and Cu(II) from electroplating wastewater by fixed-bed column of nano-dimensional titanium (IV) oxide agglomerates

    CSIR Research Space (South Africa)

    Debnath, S

    2014-01-01

    Full Text Available Removal performances of Cd(II) and Cu(II) from water was investigated using agglomerated nanoparticle of hydrous titanium(IV) oxide (NTO) packed fixed bed. The parameters varied were the bed depth, flow rate and feed solution concentrations...

  9. Visualization of bed material movement in a simulated fluidized bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1999-01-01

    The bulk movement of fluidized bed material was visualized by neutron radiography by introducing tracers into the bed materials. The simulated fluidized bed consisted of aluminum plates, and the bed material was sand of 99.7% SiO 2 (mean diameter: 0.218 mm, density: 2555 kg/m 3 ). Both materials were almost transparent to neutrons. Then the sand was colored by the contamination of the sand coated by CdSO 4 . Tracer particles of about 2 mm diameter were made by the B 4 C, bonded by the vinyl resin. The tracer was about ten times as large as the particle of fluidized bed material, but the traceability was enough to observe the bed-material bulk movement owing to the large effective viscosity of the fluidized bed. The visualized images indicated that the bubbles and/or wakes were important mechanism of the behavior of the fluidized bed movement

  10. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  11. Prediction of mass fraction of agglomerated debris in a LWR severe accident

    International Nuclear Information System (INIS)

    Kudinov, P.; Davydov, M.

    2011-01-01

    Ex-vessel termination of accident progression in Swedish type Boiling Water Reactors (BWRs) is contingent upon efficacy of melt fragmentation and solidification in a deep pool of water below reactor vessel. When liquid melt reaches the bottom of the pool it can create agglomerated debris and “cake” regions that increase hydraulic resistance of the bed and affect coolability of the bed. This paper discusses development and application of a conservative-mechanistic approach to quantify mass fractions of agglomerated debris. Experimental data from the DEFOR-A (Debris Bed Formation and Agglomeration) tests with high superheat of binary oxidic simulant material melt is used for validation of the methods. Application of the approach to plant accident analysis suggests that melt superheat has less significant influence on agglomeration of the debris than jet penetration depth. The paper also discusses the impact of the uncertainty in the jet disintegration and penetration behavior on the agglomeration mode map. (author)

  12. Infrared Extinction Performance of Randomly Oriented Microbial-Clustered Agglomerate Materials.

    Science.gov (United States)

    Li, Le; Hu, Yihua; Gu, Youlin; Zhao, Xinying; Xu, Shilong; Yu, Lei; Zheng, Zhi Ming; Wang, Peng

    2017-11-01

    In this study, the spatial structure of randomly distributed clusters of fungi An0429 spores was simulated using a cluster aggregation (CCA) model, and the single scattering parameters of fungi An0429 spores were calculated using the discrete dipole approximation (DDA) method. The transmittance of 10.6 µm infrared (IR) light in the aggregated fungi An0429 spores swarm is simulated by using the Monte Carlo method. Several parameters that affect the transmittance of 10.6 µm IR light, such as the number and radius of original fungi An0429 spores, porosity of aggregated fungi An0429 spores, and density of aggregated fungi An0429 spores of the formation aerosol area were discussed. Finally, the transmittances of microbial materials with different qualities were measured in the dynamic test platform. The simulation results showed that the parameters analyzed were closely connected with the extinction performance of fungi An0429 spores. By controlling the value of the influencing factors, the transmittance could be lower than a certain threshold to meet the requirement of attenuation in application. In addition, the experimental results showed that the Monte Carlo method could well reflect the attenuation law of IR light in fungi An0429 spore agglomerates swarms.

  13. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    Science.gov (United States)

    Gubernat, Maciej; Tomala, Janusz; Frohs, Wilhelm; Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw

    2016-03-01

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  14. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, Maciej [AGH University of Science and Technology, Faculty of Materials Science and Ceramics (Poland); Tomala, Janusz [SGL Carbon Polska S.A. (Poland); Frohs, Wilhelm [SGL CARBON GmbH (Germany); Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw, E-mail: blazew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics (Poland)

    2016-03-15

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  15. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  16. Measurement of the bed material of gravel-bed rivers

    Science.gov (United States)

    Milhous, R.T.; ,

    2002-01-01

    The measurement of the physical properties of a gravel-bed river is important in the calculation of sediment transport and physical habitat values for aquatic animals. These properties are not always easy to measure. One recent report on flushing of fines from the Klamath River did not contain information on one location because the grain size distribution of the armour could not be measured on a dry river bar. The grain size distribution could have been measured using a barrel sampler and converting the measurements to the same as would have been measured if a dry bar existed at the site. In another recent paper the porosity was calculated from an average value relation from the literature. The results of that paper may be sensitive to the actual value of porosity. Using the bulk density sampling technique based on a water displacement process presented in this paper the porosity could have been calculated from the measured bulk density. The principle topics of this paper are the measurement of the size distribution of the armour, and measurement of the porosity of the substrate. The 'standard' method of sampling of the armour is to do a Wolman-type count of the armour on a dry section of the river bed. When a dry bar does not exist the armour in an area of the wet streambed is to sample and the measurements transformed analytically to the same type of results that would have been obtained from the standard Wolman procedure. A comparison of the results for the San Miguel River in Colorado shows significant differences in the median size of the armour. The method use to determine the porosity is not 'high-tech' and there is a need improve knowledge of the porosity because of the importance of porosity in the aquatic ecosystem. The technique is to measure the in-situ volume of a substrate sample by measuring the volume of a frame over the substrate and then repeated the volume measurement after the sample is obtained from within the frame. The difference in the

  17. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  18. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  20. Continuous fluid bed reactor for fissionable material

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Plutonium (Pu) purification and plutonium hexafluoride (PuF 6 ) formation are achieved on a continuous basis by feeding particulate material into one end of an elongated and horizontally disposed vessel having an upper section with generally converging side walls and a lower section with generally vertical side walls, compartmented throughout its length by transversely disposed baffles, so that particulate material flows through the vessel in vertical generally zigzag fashion, being fluidized by dispersing gas that enters the compartment from a lower narrow compartment and discharges through an upper widened compartment. Vaporous PuF 6 formed from a reaction between the dispersing gas and the particulate material discharges through the upper widened compartment and solid impurities discharge for collection through a port at a far or distal end of the elongated vessel. (U.S.)

  1. Preferences of Freestall Housed Dairy Cows to Different Bedding Materials

    OpenAIRE

    MITEV, Jurii; VARLYAKOV, Ivan; MITEVA, Tchonka; VASILEV, Nasko; GERGOVSKA, Jivka; UZUNOVA, Krassimira; DIMOVA, Vania

    2012-01-01

    ABSTRACT The purpose of this study was to examine the behaviour of dairy cows during the rest periods and their preferences to different bedding materials with limited amount of straw as well as the hygienic score of dairy cows. Thirty-six Holstein dairy cows at the first to fourth lactation with live weight 610±58 kg and milk yield of 7364±1202 liter for 305 days of lactation were used for the experiment. Three types of bedding materials were used for the preference tes...

  2. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 2. Influence of Coating Solution Viscosity, Stickiness, pH, and Droplet Diameter on Agglomeration

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first part of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 49, 1914], agglomeration regime maps were developed for two types of coatings: sodium sulfate and PVA-TiO2. It was observed here how the agglomeration tendency is always lower for the salt coating...... the PVA-TiO2 coating formulation and process to achieve a low tendency of agglomeration, similar to that of the salt coating process. The best results for the PVA-TiO2 solution are obtained by substituting the PVA-TiO2 in equal amounts with Neodol 23-6.5 and further reducing the pH value in the coating...

  3. Reduced ash related operational problems (slagging, bed agglomeration, corrosion and fouling) by co-combustion biomass with peat; Minskade askrelaterade driftsproblem (belaeggning, slaggning, hoegtemperatur-korrosion, baeddagglomerering) genom inblandning av torv i biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Boman, Christoffer; Erhardsson, Thomas; Gilbe, Ram; Pommer, Linda; Bostroem, Dan; Nordin, Anders; Samuelsson, Robert; Burvall, Jan

    2006-12-15

    Combustion studies were performed in both a fluidized bed (5 kW) and in an under-feed pellets burner (20 kW) to elucidate the responsible mechanisms for the positive effects on ash related operational problems (i.e. slagging, fouling, corrosion and bed agglomeration) during co-combustion of several problematic biomass with peat. Three typical carex-containing Swedish peat samples with differences in e.g. silicon-, calcium- and sulfur contents were co-fired with logging residues, willow and straw in proportions corresponding to 15-40 weight %d.s. Mixing of corresponding 20 wt-% of peat significantly reduced the bed agglomeration tendencies for all fuels. The fuel specific agglomeration temperature were increased by 150-170 deg C when adding peat to the straw fuel and approximately 70-100 deg C when adding peat to the logging residue- and the willow fuel. The increased level of calcium in the inner bed particle layer caused by the added reactive calcium from the peat and/or removing alkali in the gas phase to a less reactive particular form via sorption and/or reaction with reactive peat ash (containing calcium, silica etc.) during which larger particles (>1{mu}m) are formed where collected potassium is present in a less reactive form, is considered to be the dominated reason for the increased agglomeration temperatures during combustion of logging residues and willow. During straw combustion, the ash forming matter were found as individual ash sticky particles in the bed. The iron, sulphur and calcium content of these individual ash particles were significantly increased when adding peat to the fuel mix thereby decreasing the stickiness of these particles i.e. reducing the agglomeration tendencies. Adding peat to the relatively silicon-poor fuels (willow and logging residues) resulted in higher slagging tendencies, especially when the relative silicon rich peat fuel (Brunnskoelen) was used. However, when co-combusting peat with the relatively silicon and potassium

  4. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  5. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  6. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)

    S. LAPPALAINEN

    2008-12-01

    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  7. Influence of material properties on TiO2 nanoparticle agglomeration.

    Directory of Open Access Journals (Sweden)

    Dongxu Zhou

    Full Text Available Emerging nanomaterials are being manufactured with varying particle sizes, morphologies, and crystal structures in the pursuit of achieving outstanding functional properties. These variations in these key material properties of nanoparticles may affect their environmental fate and transport. To date, few studies have investigated this important aspect of nanoparticles' environmental behavior. In this study, the aggregation kinetics of ten different TiO2 nanoparticles (5 anatase and 5 rutile each with varying size was systematically evaluated. Our results show that, as particle size increases, the surface charge of both anatase and rutile TiO2 nanoparticles shifts toward a more negative value, and, accordingly, the point of zero charge shifts toward a lower value. The colloidal stability of anatase sphere samples agreed well with DLVO theoretical predictions, where an increase in particle size led to a higher energy barrier and therefore greater critical coagulation concentration. In contrast, the critical coagulation concentration of rutile rod samples correlated positively with the specific surface area, i.e., samples with higher specific surface area exhibited higher stability. Finally, due to the large innate negative surface charge of all the TiO2 samples at the pH value (pH = 8 tested, the addition of natural organic matter was observed to have minimal effect on TiO2 aggregation kinetics, except for the smallest rutile rods that showed decreased stability in the presence of natural organic matter.

  8. Method for immobilizing particulate materials in a packed bed

    Science.gov (United States)

    Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas

    1999-01-01

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  9. Semi-dry flue gas desulfurization using Ca(OH)2 in a fluidized bed reactor with bed materials

    International Nuclear Information System (INIS)

    Park, Young Oak; Roh, Hak Jae; Oh, Chang Sup; Kim, Yong Ha

    2010-01-01

    The main objective of present work is to reduce sulfur dioxide emission from power plant for the environment protection. The fluidized bed (FB) was used as the reactor with bed materials in a new semi-dry flue gas desulfurization (FGD) process to achieve high desulfurization efficiency (>98%). Fine powder of Ca(OH) 2 as sorbent and water were continuously fed separately to the bed reactor where bed materials (2 mm glass beads) were fluidized vigorously with flue gas (flow 720 Nm 3 / hr) using bench scale plant of stainless steel column. We have investigated different effects of water injection flow rate, Ca/ S molar ratio and weight of bed materials on SO 2 removal. The increments in the Ca/ S molar ratio and water injection flow rate have been resulted higher desulfurization efficiency with certain disadvantages such as higher sorbent cost and lower temperature of the treated flue gas, respectively. (author)

  10. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  11. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  12. Effects of Fluidization Velocity and Bed Particle Size on Bed Defluidization during Biomass Combustion in FB boilers; Effekten av fluidiseringshastighet och kornstorlek paa agglomereringsrisk vid biobraensleeldning i FB-pannor

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Morgan; Oehman, Marcus [Umeaa Univ. (Sweden). Applied Physics and Electronics; Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockholm (Sweden)

    2004-11-01

    Studies on the effect of bed particle size and fluidization velocity on the agglomeration/defluidization risk during biomass combustion in BFB/CFB plants have not previously been published. Therefore, the objective of this project has been to determine the influence of these two parameters on the risk for agglomeration in typical biofuel fired fluidized beds. The study has also resulted in information on how variations in the coating characteristics of the bed particles are depending on the fuel ash content and the particle size of the bed material. Furthermore, the conditions at large scale commercial plants have been surveyed with respect to the choice of bed material, fluidization velocity, bed sand consumption etc. Bed materials have been sampled from seven full-scale boilers, four CFB and three BFB. The samples have been sieved to achieve sieve curves, analyzed with respect to the coating characteristics, and studied by experiments in a bench-scale fluidized bed. It could be concluded from the analyses that there are no significant differences in the coating thickness or the coating composition between fine and coarse particles in the bed samples. The bench-scale agglomeration experiments showed that increased fluidization velocity results in bed agglomeration at a higher temperature. This effect was stronger at relatively low fluidization velocities. The fluidization velocity has probably no significant effect on the risk for agglomeration at normal gas velocities in a commercial CFB boiler. Though, it could have an influence on the agglomeration in for example the recycling part of a CFB, where the gas velocity is relatively low. Also in BFB-boilers the fluidization velocity is often low enough to have a significant effect on the risk for agglomeration. By the experiments in this project it has not been possible to determine if the bed particle size has an influence on the agglomeration. Further studies with modified methods are required to find out if the

  13. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  14. Sorting it out: bedding particle size and nesting material processing method affect nest complexity.

    Science.gov (United States)

    Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N

    2017-04-01

    As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.

  15. Improved Gasifier Availability with Bed Material and Additives

    Energy Technology Data Exchange (ETDEWEB)

    Grootjes, A.J.; Van der Meijden, C.M.; Visser, H.J.M.; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    In order to valorize several feedstock, gasification is one of the technologies developed over the past decades. ECN developed the MILENA gasifier. In order for MILENA to become a commercial success, the gasifier needs to be feedstock flexible, robust and economically sound, operating with high availability. One of the characteristics of MILENA is high efficiency but with a higher tar content, compared to some other Dual Fluidized Bed (DFB) gasifiers. In order to reduce the issues that are associated with high tar levels in the product gas, the effect of a number of primary measures was studied. This paper presents results obtained in the last two years, focused on improving the gasifier availability by conducting experiments in a 25 kWth lab scale MILENA gasifier. Amongst others, gas composition, tar content and calorific value of the product gas were compared. Scanning Electron Microscope analysis was used to investigate bed material changes. Results show that Austrian olivine can be activated by Fuel B as well as by Additive A and B. The water-gas shift reaction is enhanced and the tar content is reduced significantly, especially the heavy tars that dominate the tar dew point. Activated olivine has a calcium-rich layer. The results show that with MILENA, we are able to lower and control the tar dew point, which will possibly increase the availability of a MILENA gasifier.

  16. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Agglomerate formation and growth mechanisms during melt agglomeration in a rotary processor.

    Science.gov (United States)

    Vilhelmsen, Thomas; Schaefer, Torben

    2005-11-04

    The purpose of this study was to investigate the effect of the binder particle size and the binder addition method on the mechanisms of agglomerate formation and growth during melt agglomeration in a laboratory scale rotary processor. Lactose monohydrate was agglomerated with molten polyethylene glycol (PEG) 3000 by adding the PEG either as solid particles from the size fraction 0-250, 250-500, or 500-750 microm or as droplets with a median size of 25, 48, or 69 microm. It was found that the PEG particle size, the PEG droplet size, and the massing time significantly influenced the agglomerate size and size distribution. Agglomerate formation and growth were found to occur primarily by distribution and coalescence for the PEG size fraction 0-250 microm and mainly by the immersion mechanism for the PEG size fractions 250-500 and 500-750 microm. When the PEG was sprayed upon the lactose, the mechanism of agglomerate formation was supposed to be a mixture of immersion and distribution, and the agglomerate growth was found to occur by coalescence regardless of the PEG mean droplet size. Compared to high shear mixers and conventional fluid bed granulators, the mechanisms of agglomerate formation and growth in the rotary processor resembled mostly those seen in the fluid bed granulator.

  18. Sleep Comfort Evaluation in Bedding that Utilized Phase Change Materials (PCM)

    OpenAIRE

    橋本, 一馬; 青井, 政貴; 吉田, 宏昭; 上條, 正義

    2015-01-01

    The purpose of this study is to reveal the bedding influence degree to quality of sleep. This bedding utilized Phase Change Materials (PCM). We carried out two experiments. Firstly, we experimentally confirmed thermal properties of the PCM. Secondly, we carried out overnight sleep experiment in hot and cold environment. We prepared the PCM bedding and normal bedding that is commercially-supplied. Consequently, the PCM had been the property of cold tactile sensation rather than the normal bedd...

  19. Drying of materials in fluidized bed: mathematical modeling

    International Nuclear Information System (INIS)

    Wildhagen, Gloria Regina S.; Silva, Eder F.; Calcada, Luis A.; Massarani, Giulio

    2000-01-01

    A three phase mathematical model for drying process in a fluidized bed was established. This model representing a bubble, interstitial gas and solid phase was based on principles of mass and energy conservation and on empirical relations for heat and mass transfer between phases. A fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using alumina particles as a bed charge. A good agreement between the numerical and the experimental results were observed(author)

  20. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    Science.gov (United States)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  1. Bedding material affects mechanical thresholds, heat thresholds and texture preference

    Science.gov (United States)

    Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.

    2015-01-01

    It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764

  2. Effect of Bedding Material on Dust and Ammonia Emission from Broiler Houses

    NARCIS (Netherlands)

    Harn, van J.; Aarnink, A.J.A.; Mosquera Losada, J.; Riel, van J.W.; Ogink, N.W.M.

    2012-01-01

    Ammonia emission, Bedding material, Broilers, Dust emission The objective of this study was to determine the effects of different bedding materials on fine dust (PM10 and PM2.5) and ammonia emissions from broiler houses. The effects on broiler performance and footpad lesions were also studied. The

  3. Simulation of atomic layer deposition on nanoparticle agglomerates

    NARCIS (Netherlands)

    Jin, W.; van Ommen, J.R.; Kleijn, C.R.

    2016-01-01

    Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating

  4. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  5. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials

    Directory of Open Access Journals (Sweden)

    Markku Saastamoinen

    2015-10-01

    Full Text Available Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h in the boxes in which wood shavings were used; but no exposure was Animals 2015, 5 966 observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers.

  6. Effects of gas conditions on ASH induced agglomeration

    DEFF Research Database (Denmark)

    Ma, T.; Fan, C. G.; Hao, L. F.

    2016-01-01

    Agglomeration is a serious problem for gasification and combustion of biomass in fluidized bed. Agglomeration characteristics may be affected by gas condition, but the literature is quite vague in this regard. This study focuses on the effects of gasification and combustion condition...... on agglomeration tendency with two types of biomass ash, including rice straw and wheat straw ash. The agglomerates are analyzed by SEM-EDS for morphology and elemental composition. Defluidization temperature (Td) in those two types of gas conditions is quite different. Tdin gasification condition is much lower...

  7. Sediment transport primer: estimating bed-material transport in gravel-bed rivers

    Science.gov (United States)

    Peter Wilcock; John Pitlick; Yantao Cui

    2009-01-01

    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...

  8. Catalytic activity of bed materials from industrial CFB boilers for the decomposition of N2O

    International Nuclear Information System (INIS)

    Barisic, V.; Klingstedt, F.; Kilpinen, P.; Hupa, M.; Naydenov, A.; Stefanov, P.

    2005-01-01

    The correlation between the catalytic activity towards N 2 O decomposition and fuel type was studied for the bed materials sampled from the bottom bed of two industrial CFB boilers, a 12MW th and a 550MW th , burning biomass fuels and wastes, alone or as a mixture. It was found that the elemental composition of the surface of the bed material particles changed according to the composition of the ash from the parent fuel. The measured catalytic activity of the bed material samples increased with the amount of the catalytically active oxides (CaO, MgO, Fe 2 O 3 , Al 2 O 3 ). In the case of limestone addition, the activity of the bed material was influenced by both the elemental composition of the fuel, and the ratio between lime and sulfated lime

  9. Production of renewable energy from biomass and waste materials using fluidized bed technologies

    International Nuclear Information System (INIS)

    Rozainee, M.; Rashid, M.; Looi, S.

    2000-01-01

    Malaysian industries generate substantial amount of biomass and waste materials such as wastes from agricultural and wood based industries, sludge waste from waste-water treatment plants and solid waste from municipals. Incinerating these waste materials not only produces renewable energy, but also solving their disposal problems. Fluidized bed combustors are widely used for incinerating these biomass materials. The significant advantages of fluidized bed incineration include simple design, efficient, and ability to reduce air pollution emissions. This paper discusses the opportunities and challenges of producing the green energy from biomass materials using the fluidized bed technologies. (Author)

  10. Materials characterization studies on LANA75/85 materials for replacement beds

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Kirk L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    During FY15 and FY16, a purchase order (PO) was placed with Japan Metals and Chemicals, USA after an open bidding procurement process for 282 kg of LaNi4.25Al0.75 and 226 kg. of LaNi4.15Al0.85. These materials were to be used in Tritium Facility replacement beds for existing beds that have reached the end of their useful life. As part of the PO, a 100 g. sample of each material was delivered to the SRNL Hydrogen Processing Group for characterization studies as is typically done for all newly acquired hydride materials. The PO actually employed a “trust but verify” approach where JMCUSA was allowed to ship materials it felt met specifications without SRS confirmation, as long as the data used to do so was delivered to SRS as part of the PO documentation package. Subsequent SRNL analysis revealed that the material met all specifications and was of very high quality. This report documents those findings.

  11. The Influence of Particle Size, Fluidization Velocity, and Fuel Type on Ash-Induced Agglomeration in Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gatternig, Bernhard, E-mail: bernhard.gatternig@cbi.uni-erlangen.de; Karl, Jürgen [Chair of Energy Process Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Nuremberg (Germany)

    2014-11-19

    Agglomeration of the bed material is one of the main obstacles for biomass utilization in fluidized bed combustors. Especially, high-potential fuels such as fast growing energy crops or biogeneous residues are affected because of their high content of alkaline metals. Despite ongoing research efforts, the knowledge base on what fuels are affected is still limited. This paper describes the design and installation of two lab-scale reactors for the experimental determination of agglomeration temperatures. The reactor concept and measurement method were developed under consideration of experiences from existing test rigs published in literature. Preliminary tests confirmed a reproducibility of ±5°C for both new reactors. The results of an extended measurement campaign (156 test runs of 25 fuel species at a wide range of the operational parameters “bed particle size,” “gas velocity,” and “bed ash accumulation”), based on “design of experiment” (DoE) criteria, showed high-agglomeration tendencies for residues (e.g., dried distillery grains, corn cobs) while woody energy crops (e.g., willow, alder) exhibited very stable combustion behavior. The operating parameters influenced the agglomeration behavior to a lesser degree than different ash compositions of fuel species tested. An interpolation within the DoE factor space allowed for a subsequent comparison of our results with experiments reported in literature. Good agreement was reached for fuels of comparable ash composition considering the interpolation errors of ±32°C on average.

  12. Description of agglomerate growth

    NARCIS (Netherlands)

    Schaafsma, S.H; Vonk, P; Segers, P; Kossen, N.W F

    1998-01-01

    Wet agglomeration processes have predominantly been investigated by changing operation variables of process-scale experiments. So far, most fundamental work concentrated on the strength of the liquid bonds in the agglomerate and its relation to the process. Previous studies on the relationship

  13. Tests with blast furnace slag as bed material in a 12 MW waste fired BFB boiler; Fullskalefoersoek med Hyttsand som baeddmaterial i 12 MW avfallseldad BFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Oehman, Marcus

    2004-11-01

    A full-scale trial has been performed at Saeverstaverket twin 12 MWth BFB boilers in Bollnaes using Hyttsand (a proprietary blast furnace slag) as bed material. The purpose has been to investigate if Hyttsand can be used as bed material in FB boilers for difficult types of fuels. Used fuel has been municipal waste, recovered wood fuel and different types of bio fuels. The test period was 19 days and nearly 100 tons of Hyttsand was used. The most important conclusions are: Good fluidisation can be achieved with Hyttsand as bed material. Hyttsand can fluidise without any changes in boiler settings. Hyttsand can also be mixed with Baskarpsand (a natural sand with over 90% SiO{sub 2}) and used as bed material without any negative changes to the boiler performance. Bed material make-up rate is reduced with up to 30 % when using Hyttsand compared to using Baskarpsand. Other conclusions are: Bed temperature increased slightly and bed temperature deviation decreased. Emissions was in general not affected, however emissions of SO{sub 2} increased slightly. More deposit containing more sulphur was formed on superheater surfaces when using Hyttsand. The increased amount of sulphur when using Hyttsand could be an effect of higher content of sulphur in the fuel or, which is more likely, that sulphur is released from Hyttsand and forms gaseous sulphurous gases. No significant change in produced amounts of fly-, cyclone- or bottom ash. Hyttsand and Baskarpsand had both similar coatings on their particles and similar agglomeration tendencies. There have been some start-up problems during the trials, including two more severe boiler disturbances, but most of these disturbances can be explained and avoided in the future. Previous investigations in laboratory scale using Hyttsand as bed material when firing different bio fuels have shown the advantage of Hyttsand with its higher resistance against a chemical reaction with alkali in the fuel ash compared to conventional bed materials

  14. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    Science.gov (United States)

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  15. COOLOCE debris bed experiments and simulations investigating the coolability of cylindrical beds with different materials and flow modes

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, E.; Kinnunen, T.; Holmstroem, S.; Lehtikuusi, T. [VTT Technical Research Centre of Finland (Finland)

    2013-07-15

    The COOLOCE experiments aim at investigating the coolability of debris beds of different geometries, flow modes and materials. A debris bed may be formed of solidified corium as a result of a severe accident in a nuclear power reactor. The COOLOCE-8 test series consisted of experiments with a top-flooded test bed with irregular gravel as the simulant material. The objective was to produce comparison data useful in estimating the effects of different particle materials and the possible effect of the test arrangement on the results. It was found that the dryout heat flux (DHF) measured for the gravel was lower compared to previous experiments with spherical beads, and somewhat lower compared to the early STYX experiments. The difference between the beads and gravel is at least partially explained by the smaller average size of the gravel particles. The COOLOCE-9 test series included scoping experiments examining the effect of subcooling of the water pool in which the debris bed is immersed. The experiments with initially subcooled pool suggest that the subcooling may increase DHF and increase coolability. The aim of the COOLOCE-10 experiments was to investigate the effect of lateral flooding on the DHF a cylindrical test bed. The top of the test cylinder and its sidewall were open to water infiltration. It was found that the DHF is increased compared to a top-flooded cylinder by more than 50%. This suggests that coolability is notably improved. 2D simulations of the top-flooded test beds have been run with the MEWA code. Prior to the simulations, the effective particle diameter for the spherical beads and the irregular gravel was estimated by single-phase pressure loss measurements performed at KTH in Sweden. Parameter variations were done for particle size and porosity used as input in the models. It was found that with the measured effective particle diameter and porosity, the simulation models predict DHF with a relatively good accuracy in the case of spherical

  16. STUDY OF HYDRODYNAMICS IN FIXED BED OF COMPOSITE GRANULAR MATERIALS

    Directory of Open Access Journals (Sweden)

    Stelian Petrescu

    2010-12-01

    Full Text Available This study aims at the experimental determination of pressure drop and friction factor at gas flow through fixed beds of granular silica gel, alumina and activated carbon, and establishment of an equation containing a modified friction factor Fm to calculate pressure drop. In order to calculate the modified friction factor, an equation was suggested.The experimental values for pressure drop and friction factor were determined using spherical grains of silica gel, cylindrical grains of alumina and silica gel, alumina and activated carbon impregnated with calcium chloride. By means of the suggested equation, the values of pressure drop in fixed bed were calculated and compared with the experimental values. A good agreement between the predicted and experimental data is noticed.

  17. Evaluation of cage micro-environment of mice housed on various types of bedding materials.

    Science.gov (United States)

    Smith, Ellen; Stockwell, Jason D; Schweitzer, Isabelle; Langley, Stephen H; Smith, Abigail L

    2004-07-01

    A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency. Copyright 2004 American Association for Laboratory Animal Science

  18. Compost en ander strooisel in ligboxen voor melkvee = Compost and other bedding material in cubicle housing for dairy cow

    NARCIS (Netherlands)

    Smolders, G.

    2012-01-01

    In 2011 cubicle housing with different bedding material were assessed with the welfare quality protocol, samples of the bedding and bulktank milk were taken to analyze heavy metals and bacteria. Skin damages were lowest in barns with lush bedding material with no real differences between boxcompost,

  19. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  20. An empirical study of an agglomeration network

    International Nuclear Information System (INIS)

    Zhang, Yichao; Zhang, Zhaochun; Guan, Jihong

    2007-01-01

    Recently, researchers have reported many models mimicking real network evolution growth, among which some are based on network aggregation growth. However, until now, relatively few experiments have been reported. Accordingly, in this paper, photomicrographs of real materials (the agglomeration in the filtrate of slurry formed by a GaP-nanoparticle conglomerate dispersed in water) are analyzed within the framework of complex network theory. By data mapping from photomicrographs we generate undirected networks and as a definition of degree we adopt the number of pixel's nearest neighbors while adjacent pixels define a connection or an edge. We study the topological structure of these networks including degree distribution, clustering coefficient and average path length. In addition, we discuss the self-similarity and synchronizability of the networks. We find that the synchronizability of high-concentration agglomeration is better than that of low-concentration agglomeration; we also find that agglomeration networks possess good self-similar features

  1. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  2. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  3. Accumulation of Arsenic and Mercury in Different Bio-bed Padding Materials

    Directory of Open Access Journals (Sweden)

    LIU Tian-yu

    2016-07-01

    Full Text Available In order to study the accumulation and distribution of As, Hg in different bio-bed padding materials while implementing bio-bed raising method, three kinds of bio-bed padding materials were well designed, which consisted of sawdust(S, sawdust + rice husk(SR and sawdust + rice husk + straw(SRS. For a year and a half, the contents of As, Hg at different depth were measured when four groups of fattening pig breeding had finished to analyze the accumulation and distribution of As, Hg in different bio-bed padding materials, which could provide a theoretical basis for follow-up application of bio-bed padding materials in agriculture. The results showed that, the accumulation of As and Hg, at different levels, occurred during four pig-raising cycles. When 4 groups of fattening pig breeding finished, the largest accumulation of As and Hg occurred in SRS bio-beds, respectively reached 1921.7 mg per sty and 21.1 mg per sty. The As and Hg contents of S, SR,SRS were 2.921, 2.190, 2.621 mg·kg-1 and 0.048, 0.036, 0.042 mg·kg-1, respectively, which met the China's Organic Fertilizer Agriculture Standards(NY 525-2012, and Farmland Environmental Quality Evaluation Standards For Edible Agricultural Products(HJ/T 332-2006.

  4. Apparatus for controlling fluidized beds

    Science.gov (United States)

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  5. Tests for evaluation of pellets as foundation bed material KBP1003 - ASKAR

    International Nuclear Information System (INIS)

    Johnsson, Anna

    2011-12-01

    The reference design for the backfill of deposition tunnels, described in SKB (2010), include bentonite blocks, bentonite pellets and a foundation bed of bentonite pellets or granulate. The tunnel floor needs to be flat and have sufficient bearing capacity to make it possible to stack the backfill blocks according to the reference design. To achieve a flat foundation the tunnel floor will be covered with a bed of pellets or granulate made of bentonite clay. The bed can be either compacted or non compacted. Bed tests have been performed as a part of the project KBP1003 DP1 Design, which is a subproject of KBP1003 ASKAR. The main objectives for KBP1003 DP1 is to define all requirements for the backfill and its production and installation prior to start of the large scale tests, based on given perquisites. KBP1003 is based on the reference design for the backfill of deposition tunnels which was developed in 2010 (SKB 2010). The concept for installation and block design has been further developed during the project. A new dimension of the backfill blocks has been developed; the chosen dimension makes it possible to gain overlapping joints between the blocks by block stacking. The further developed concept is hereinafter referred to as the ASKAR-concept. The purpose of the performed bed tests was to define the bed requirements in the backfill installation to enable stable stacking of backfill blocks. The tests included stacking of blocks on different bed materials, on blasted and wire sawn floor, with and without concurrent water inflow. The bed tests was subdivided into four main parts: - block stacking on different bed compositions - block stacking on bed during water inflow - block stacking in a realistic test tunnel - block stacking on the upper part of the deposition hole and bevel

  6. Tests for evaluation of pellets as foundation bed material KBP1003 - ASKAR

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, Anna (ES-Konsult AB (Sweden))

    2011-12-15

    The reference design for the backfill of deposition tunnels, described in SKB (2010), include bentonite blocks, bentonite pellets and a foundation bed of bentonite pellets or granulate. The tunnel floor needs to be flat and have sufficient bearing capacity to make it possible to stack the backfill blocks according to the reference design. To achieve a flat foundation the tunnel floor will be covered with a bed of pellets or granulate made of bentonite clay. The bed can be either compacted or non compacted. Bed tests have been performed as a part of the project KBP1003 DP1 Design, which is a subproject of KBP1003 ASKAR. The main objectives for KBP1003 DP1 is to define all requirements for the backfill and its production and installation prior to start of the large scale tests, based on given perquisites. KBP1003 is based on the reference design for the backfill of deposition tunnels which was developed in 2010 (SKB 2010). The concept for installation and block design has been further developed during the project. A new dimension of the backfill blocks has been developed; the chosen dimension makes it possible to gain overlapping joints between the blocks by block stacking. The further developed concept is hereinafter referred to as the ASKAR-concept. The purpose of the performed bed tests was to define the bed requirements in the backfill installation to enable stable stacking of backfill blocks. The tests included stacking of blocks on different bed materials, on blasted and wire sawn floor, with and without concurrent water inflow. The bed tests was subdivided into four main parts: - block stacking on different bed compositions - block stacking on bed during water inflow - block stacking in a realistic test tunnel - block stacking on the upper part of the deposition hole and bevel

  7. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  8. Evaluation of sludge from paper recycling as bedding material for broilers.

    Science.gov (United States)

    Villagrá, A; Olivas, I; Benitez, V; Lainez, M

    2011-05-01

    Several materials have been used as bedding substrates in broiler production. In this work, the sludge from paper recycling was tested for its potential use as litter material and was compared with wood shavings. Moisture content, apparent density, and water-holding capacity were measured and characterized in both materials. Later, 192 male broiler chickens were distributed among 16 experimental pens, 8 of which contained wood shavings as bedding material and 8 of which contained the sludge. Growth rate, consumption, tonic immobility, gait score, breast lesions, foot pad dermatitis, hock burn, tibial dyschondroplasia, and metatarsal thickness were determined in the birds. Although the moisture content of the sludge was high, it decreased strongly after 7 d of drying, reaching lower values than those of wood shavings. In general, few differences were found between the materials in terms of bird performance and welfare and only the incidence of hock burn was higher in the sludge than in the wood shavings. Although further research is needed, sludge from paper recycling is a possible alternative to traditional bedding materials because it achieves most of the requirements for broiler bedding materials and does not show negative effects on the birds.

  9. Preferences of dairy cows for three stall surface materials with small amounts of bedding.

    Science.gov (United States)

    Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H

    2010-01-01

    Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effect strooiselmateriaal, strooiselhoeveelheid, opvangschoteltjes en waterdruk op resultaten vleeskuikens = Influence of bedding material, bedding amount, drip cup and reduced water pressure on broiler performance

    NARCIS (Netherlands)

    Harn, van J.; Jong, de I.C.; Veldkamp, T.

    2009-01-01

    Four different bedding materials for broiler houses were compared: white wood shavings, chopped wheat straw, ground rapeseed straw and silage maize. Performance results, carcass yields, litter quality, broiler quality and gait score were measured.

  11. Influence of various alternative bedding materials on pododermatitis in broilers raised in a built-up litter system

    Science.gov (United States)

    Broilers in the United States are frequently raised on built-up litter systems, primarily bedded with pine wood chips (shavings) or sawdust. There is continuing interest in alternative bedding materials as pine products are often in short supply and prices rise accordingly. Alternative bedding mat...

  12. Agglomeration and Co-Agglomeration of Services Industries

    OpenAIRE

    Kolko, Jed

    2007-01-01

    Economic research on industry location and agglomeration has focused nearly exclusively on manufacturing. This paper shows that services are prominent among the most agglomerated industries, especially at the county level. Because traditional measures of knowledge spillovers, natural resource inputs, and labor pooling explain little of agglomeration in services industries, this paper takes an alternative approach and looks at co-agglomeration to assess why industries cluster together. By cons...

  13. Carburization in fluidized bed of carbon-graphite materials

    Energy Technology Data Exchange (ETDEWEB)

    Murav' ev, V I

    1977-01-01

    A study has been made of the diffusion saturation with carbon of the surface of titanium alloy VT1-1, molybdenum and 08KP steel with respect to the type of carbographitic materials, methods of pseudoliquefaction and heating in the temperature interval 800 to 1100/sup 0/ deg C. Used as the carburizing materials have been charcoal, acetylene black, charcoal carburizer, graphitized particles, pyrobenzene. The maximum carburizing effect is shown to be possessed by charcoal, the minimum effect - by acetylene black. Carburization in the pseudoliquid layer is 5 to 7 times as intensive as in the case of gas cementation and in a solid carburizer. No oxidation of the materials and hydrogenation of titanium has been observed in the temperature interval under study.

  14. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  15. The effect of stable bedding materials on dust levels, microbial air contamination and equine respiratory health.

    Science.gov (United States)

    Kwiatkowska-Stenzel, Agnieszka; Witkowska, Dorota; Sowińska, Janina; Stopyra, Artur

    2017-12-01

    The choice of bedding material affects the quality of air in a stable and, consequently, the respiratory health of horses and humans. The risk of respiratory problems can be mitigated by improving the quality of air in the stable. The choice of bedding material is particularly important in cold climate conditions where horses are kept indoors throughout the year. This study examined the impact of three bedding materials: straw (S), peat with shavings (PS), and crushed wood pellets (CWP). The investigated factors were air contamination, including dust contamination and microbial (bacterial and fungal) contamination, and the condition of the equine respiratory tract. The condition of the respiratory tract was evaluated based on the results of arterial blood biochemistry tests and endoscopic evaluations of the upper respiratory tract. Mechanical dust contamination was lowest for PS (1.09mg/m 3 ) and highest for CWP (4.07mg/m 3 ). Bacterial contamination (in CFU - colony forming units) was highest for PS (5.14log 10 CFU/m 3 ) and lowest for CWP (4.81log 10 CFU/m 3 ). Fungal air contamination was lowest for CWP (4.54log 10 CFU/m 3 ) and highest for S (4.82log 10 CFU/m 3 ) and PS (4.88log 10 CFU/m 3 ). An analysis of physiological indicators revealed that all horses were clinically healthy regardless of the type of applied bedding. The type of bedding material did not exert a clear influence on arterial blood biochemistry or the results of endoscopic evaluations of the respiratory tract; however, the use of alternative for straw bedding materials improved endoscopy results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    Science.gov (United States)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  17. Predicting the distribution of bed material accumulation using river network sediment budgets

    Science.gov (United States)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  18. Bodems voor vrijloopstallen = Bedding materials in loose housing systems for dairy cattle

    NARCIS (Netherlands)

    Dooren, van H.J.C.; Galama, P.J.; Smits, M.C.J.

    2012-01-01

    Sand, Compost and 'toemaak' (a mixture of reed, dredge and manure) had been used as bedding material for loose housing systems on three dairy research farms of Wageningen UR Livestock Research. Gaseous emissions, animal behavior and health and food safety aspects were measured and reported together

  19. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production

    Science.gov (United States)

    Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...

  20. Effects of bedding material on ammonia volatilization in a broiler house

    Science.gov (United States)

    Ammonia volatilization from poultry house bedding material is a major production issues because the buildup of ammonia within the facilities is a human health issue and can negatively impact the performance of the birds. Major operational cost is associated with the ventilation of poultry houses to ...

  1. Channel change and bed-material transport in the Lower Chetco River, Oregon

    Science.gov (United States)

    Wallick, J. Rose; Anderson, Scott W.; Cannon, Charles; O'Connor, Jim E.

    2010-01-01

    The lower Chetco River is a wandering gravel-bed river flanked by abundant and large gravel bars formed of coarse bed-material sediment. Since the early twentieth century, the large gravel bars have been a source of commercial aggregate for which ongoing permitting and aquatic habitat concerns have motivated this assessment of historical channel change and sediment transport rates. Analysis of historical channel change and bed-material transport rates for the lower 18 kilometers shows that the upper reaches of the study area are primarily transport zones, with bar positions fixed by valley geometry and active bars mainly providing transient storage of bed material. Downstream reaches, especially near the confluence of the North Fork Chetco River, are zones of active sedimentation and channel migration.Multiple analyses, supported by direct measurements of bedload during winter 2008–09, indicate that since 1970 the mean annual flux of bed material into the study reach has been about 40,000–100,000 cubic meters per year. Downstream tributary input of bed-material sediment, probably averaging 5–30 percent of the influx coming into the study reach from upstream, is approximately balanced by bed-material attrition by abrasion. Probably little bed material leaves the lower river under natural conditions, with most net influx historically accumulating in wider and more dynamic reaches, especially near the North Fork Chetco River confluence, 8 kilometers upstream from the Pacific Ocean.The year-to-year flux, however, varies tremendously. Some years may have less than 3,000 cubic meters of bed material entering the study area; by contrast, some high-flow years, such as 1982 and 1997, likely have more than 150,000 cubic meters entering the reach. For comparison, the estimated annual volume of gravel extracted from the lower Chetco River for commercial aggregate during 2000–2008 has ranged from 32,000 to 90,000 cubic meters and averaged about 59,000 cubic meters per

  2. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  3. Suitability of biocompost as a bedding material for stabled horses: respiratory hygiene and management practicalities.

    Science.gov (United States)

    Seedorf, J; Schröder, M; Köhler, L; Hartung, J

    2007-03-01

    Bedding material in stables has an important influence on air hygiene and information on the suitability of biocompost and wood shavings is incomplete. To compare the suitability and benefit of biocompost and wood shavings as bedding in horse stables and to determine key air factors for the evaluation of the potential impact of these materials on respiratory health. The study was conducted in a naturally ventilated stable with 4 horses. Air hygiene parameters were measured 24 h/day for 7 days with each bedding type: ammonia (NH3), inhalable and respirable dust, endotoxins, colony forming units (CFU) of total mesophilic bacteria, fungi, actinomycetes and thermophilic actinomycetes. Both bedding materials were analysed for general chemical composition, particle size distribution and natural microbial content. The animals' behaviour was monitored by video cameras, and their health and cleanliness status determined by clinical and visual examination. Concentrations of NH3, dust, endoxins and fungi were significantly higher during the monitoring period with wood shavings than with biocompost. In contrast concentrations of mesophilic bacteria, mesophilic actinomycetes and thermophilic actinomycetes microbial pollutants were highest with biocompost. The water content of bulk biocompost was considerably higher than that of wood shavings. Particles market.

  4. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  5. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    International Nuclear Information System (INIS)

    Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

    1983-11-01

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables

  6. Efficacy of pine leaves as an alternative bedding material for broiler chicks during summer season

    Directory of Open Access Journals (Sweden)

    Gourav Sharma

    2015-10-01

    Full Text Available Aim: The aim was to assess the efficacy of pine leaves as an alternative bedding material on the performance of broiler chicks. Materials and Methods: The present study was conducted in summer. Total 120, day old Vencobb straight run chicks were procured, and after 5 days of brooding, chicks were randomly distributed into four treatment groups viz. paddy husk (Group I, paddy straw (Group II, pine leaves (Group III, and combination of paddy straw and pine leaves (Group IV, each having 30 chicks with 3 replicates of 10 chicks each. Chicks were reared under intensive conditions in houses that have a semi-controlled environment, with optimum temperature and adequate ventilation. Food and water were provided as per NRC (1994 requirement. Results: The average body weight after 6 weeks of the experiment was 2018.83±31.11, 1983.80±33.27, 2007.36±35.73, and 1938.43±36.35 g. The bedding type had no significant effect on the carcass characteristics viz. evisceration rate and proportion of cut-up parts of the carcass except giblet yield. The experiment suggested that performance of broiler chicks reared on paddy straw and pine leaves as litter material, had improved body weight and feed conversion ratio as compared to rearing on paddy husk as bedding material. Bacterial count, parasitic load and the N, P, K value of manure of different bedding material shows no significant difference. Conclusion: Pine leaves have a potential to be used as an alternative source of litter material to economize poultry production in a sustainable way, so as to make poultry farming as a profitable entrepreneur.

  7. Efficacy of pine leaves as an alternative bedding material for broiler chicks during summer season.

    Science.gov (United States)

    Sharma, Gourav; Khan, Asma; Singh, Surender; Anand, Ashok Kumar

    2015-10-01

    The aim was to assess the efficacy of pine leaves as an alternative bedding material on the performance of broiler chicks. The present study was conducted in summer. Total 120, day old Vencobb straight run chicks were procured, and after 5 days of brooding, chicks were randomly distributed into four treatment groups viz. paddy husk (Group I), paddy straw (Group II), pine leaves (Group III), and combination of paddy straw and pine leaves (Group IV), each having 30 chicks with 3 replicates of 10 chicks each. Chicks were reared under intensive conditions in houses that have a semi-controlled environment, with optimum temperature and adequate ventilation. Food and water were provided as per NRC (1994) requirement. The average body weight after 6 weeks of the experiment was 2018.83±31.11, 1983.80±33.27, 2007.36±35.73, and 1938.43±36.35 g. The bedding type had no significant effect on the carcass characteristics viz. evisceration rate and proportion of cut-up parts of the carcass except giblet yield. The experiment suggested that performance of broiler chicks reared on paddy straw and pine leaves as litter material, had improved body weight and feed conversion ratio as compared to rearing on paddy husk as bedding material. Bacterial count, parasitic load and the N, P, K value of manure of different bedding material shows no significant difference. Pine leaves have a potential to be used as an alternative source of litter material to economize poultry production in a sustainable way, so as to make poultry farming as a profitable entrepreneur.

  8. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  9. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  10. Channel change and bed-material transport in the Umpqua River basin, Oregon

    Science.gov (United States)

    Wallick, J. Rose; O'Connor, Jim E.; Anderson, Scott; Keith, Mackenzie K.; Cannon, Charles; Risley, John C.

    2011-01-01

    The Umpqua River drains 12,103 square kilometers of western Oregon; with headwaters in the Cascade Range, the river flows through portions of the Klamath Mountains and Oregon Coast Range before entering the Pacific Ocean. Above the head of tide, the Umpqua River, along with its major tributaries, the North and South Umpqua Rivers, flows on a mixed bedrock and alluvium bed, alternating between bedrock rapids and intermittent, shallow gravel bars composed of gravel to cobble-sized clasts. These bars have been a source of commercial aggregate since the mid-twentieth century. Below the head of tide, the Umpqua River contains large bars composed of mud and sand. Motivated by ongoing permitting and aquatic habitat concerns related to in-stream gravel mining on the fluvial reaches, this study evaluated spatial and temporal trends in channel change and bed-material transport for 350 kilometers of river channel along the Umpqua, North Umpqua, and South Umpqua Rivers. The assessment produced (1) detailed mapping of the active channel, using aerial photographs and repeat surveys, and (2) a quantitative estimation of bed-material flux that drew upon detailed measurements of particle size and lithology, equations of transport capacity, and a sediment yield analysis. Bed-material transport capacity estimates at 45 sites throughout the South Umpqua and main stem Umpqua Rivers for the period 1951-2008 result in wide-ranging transport capacity estimates, reflecting the difficulty of applying equations of bed-material transport to a supply-limited river. Median transport capacity values calculated from surface-based equations of bedload transport for each of the study reaches provide indications of maximum possible transport rates and range from 8,000 to 27,000 metric tons per year (tons/yr) for the South Umpqua River and 20,000 to 82,000 metric tons/yr for the main stem Umpqua River upstream of the head of tide; the North Umpqua River probably contributes little bed material. A

  11. Changes in nitrogen isotopic compositions during composting of cattle feedlot manure: effects of bedding material type.

    Science.gov (United States)

    Kim, Young-Joo; Choi, Woo-Jung; Lim, Sang-Sun; Kwak, Jin-Hyeob; Chang, Scott X; Kim, Han-Yong; Yoon, Kwang-Sik; Ro, Hee-Myong

    2008-09-01

    Temporal changes in delta(15)N of cattle feedlot manure during its composting with either rice hull (RHM) or sawdust (SDM) as bedding materials were investigated. Regardless of the bedding material used, the delta(15)N of total N in the manure increased sharply from +7.6 per thousand to +9.9 per thousand and from +11.4 per thousand to +14.3 per thousand, respectively, in RHM or SDM, within 10 days from the commencement of composting. Such increases could be attributed primarily to N loss via NH(3) volatilization and denitrification based on the very high delta(15)N values (greater than +20 per thousand) of NH(4)(+) and NO(3)(-) in the co-composted manure. The delta(15)N of total N in RHM was substantially lower (by more than 3 per thousand) than that in SDM, suggesting that the delta(15)N of the composted manure was affected not only by N loss but also by the type of bedding material used. Specifically, the higher N concentration in the rice hull than in the saw dust could lead to a greater (15)N isotope dilution.

  12. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    Document available in extended abstract form only. dilute groundwater at a transmissive fracture interface, accessory phases within bentonite, such as quartz, feldspar, etc., might remain behind and form a filter bed or cake. As more and more montmorillonite is lost, the thickness of the accessory mineral bed increases and the continued transport of montmorillonite slows and possibly stops if the porosity of the filter bed is sufficiently compressed. Alternatively or concurrently, as the accessory mineral filter bed retains montmorillonite colloids, a filter cake composed of montmorillonite itself may be formed. Ultimately, depending on their extent, properties, and durability, such processes may provide the bentonite buffer system with an inherent, self-filtration mechanism which serves to limit the effects of colloidal erosion. A conceptual view of bentonite buffer extrusion and erosion in an intersecting fracture with formation of an accessory mineral filter bed and montmorillonite filter cake is presented in Figure 1. Due to the swelling pressure of the bentonite buffer, the situation described in Figure 1 may be analogous to that of the case of pressure filtration where a filter cake is formed by pressing a suspension through a filter medium and, by a mechanism known as expression, the filter cake is compressed by direct contact with a solid surface resulting in a reduction of its porosity. In order to examine whether the erosion of bentonite material through contact with dilute groundwater at a transmissive fracture interface could intrinsically result in 1) the formation of an accessory mineral filter bed and cake and/or 2) filter caking of montmorillonite itself, a series of laboratory tests were performed in a flow-through, horizontal, 1 mm aperture, artificial fracture system. Bentonite buffer material was simulated by using mixtures (75/25 weight percent ratio) of purified sodium montmorillonite and various additives serving as accessory mineral proxies

  13. Impact of biofuel in agglomeration process on production of pollutants

    Directory of Open Access Journals (Sweden)

    Lesko Jaroslav

    2017-01-01

    Full Text Available Production of agglomerate in the metallurgical company belongs among the largest sources of emissions damaging the environment. Effects of coke breeze substitution by charcoal, pine, and oak sawdust there were sintering performed in a laboratory agglomeration pan with substitution ratios of 14 % and 20 % by the emissions of CO2, CO, NOx and NO. Variations in the gas emissions might have been affected by physical and chemical properties of the input materials and the technological parameters of agglomeration. It is important and necessary to seek other methods and materials with which it would be possible to optimize the production of emissions and protect the environment.

  14. Apparatus and process for controlling fluidized beds

    Science.gov (United States)

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  15. Agglomeration Economies in Classical Music

    DEFF Research Database (Denmark)

    Borowiecki, Karol Jan

    2015-01-01

    This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...

  16. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    Science.gov (United States)

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  17. Measurement of agglomerate strength distributions in agglomerated powders

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Aking, M.; Burkhart, L.

    1986-01-01

    Strength distributions of particle agglomerates in six different yttria powders were measured using a calibrated ultrasonic sound field. The density of sintered pellets was directly related to the agglomerate strength of each powder. No systematic relation to the sintered density was observed for bulk densities or pressure-density compaction data for the loose powders, or for pore size distributions or green densities for the pressed compacts

  18. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    International Nuclear Information System (INIS)

    Huang Chao; Ma Xiuqin; Sun Youshan; Wang Meiyan; Zhang Changping; Lou Yueya

    2015-01-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m 3 , output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0–6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of −3.2. (paper)

  19. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    Science.gov (United States)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  20. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  1. Microbial effects on colloidal agglomeration

    International Nuclear Information System (INIS)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  2. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  3. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.

    Science.gov (United States)

    Le, V N P; Robins, E; Flament, M P

    2012-04-01

    Due to their small size, the respirable drug particles tend to form agglomerates which prevent flowing and aerosolisation. A carrier is used to be mixed with drug in one hand to facilitate the powder flow during manufacturing, in other hand to help the fluidisation upon patient inhalation. Depending on drug concentration, drug agglomerates can be formed in the mixture. The aim of this work was to study the agglomeration behaviour of fluticasone propionate (FP) within interactive mixtures for inhalation. The agglomerate phenomenon of fluticasone propionate after mixing with different fractions of lactose without fine particles of lactose (smaller than 32 μm) was demonstrated by the optical microscopy observation. A technique measuring the FP size in the mixture was developed, based on laser diffraction method. The FP agglomerate sizes were found to be in a linear correlation with the pore size of the carrier powder bed (R(2)=0.9382). The latter depends on the particle size distribution of carrier. This founding can explain the role of carrier size in de-agglomeration of drug particles in the mixture. Furthermore, it gives more structural information of interactive mixture for inhalation that can be used in the investigation of aerosolisation mechanism of powder. According to the manufacturing history, different batches of FP show different agglomeration intensities which can be detected by Spraytec, a new laser diffraction method for measuring aerodynamic size. After mixing with a carrier, Lactohale LH200, the most cohesive batch of FP, generates a lower fine particle fraction. It can be explained by the fact that agglomerates of fluticasone propionate with very large size was detected in the mixtures. By using silica-gel beads as ball-milling agent during the mixing process, the FP agglomerate size decreases accordingly to the quantity of mixing aid. The homogeneity and the aerodynamic performance of the mixtures are improved. The mixing aid based on ball

  4. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    OpenAIRE

    Eunjong Kim; Dong-Hyun Lee; Seunggun Won; Heekwon Ahn

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdu...

  5. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  6. Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado

    Science.gov (United States)

    Elliott, John G.

    2002-01-01

    The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment

  7. Urban Planning Problems of Agglomerations

    Science.gov (United States)

    Olenkov, V. D.; Tazeev, N. T.

    2017-11-01

    The article explores the state of the air basin of the Chelyabinsk agglomeration and gives the examples of solutions for the pollution problems from the point of view of city planning. The main features and structure of the modern urban agglomerations are considered, the methods for determining their boundaries are studied and the main problems are identified. The study of the boundaries and territorial structure of the Chelyabinsk urban agglomeration is conducted, and a general description of the territory is given. The data on the change in the volume of pollutant emissions into the atmosphere and the index of atmospheric pollution for the period 2003-2015 are given basing on the annual comprehensive reports regarding the state of the environment. The review of the world experience of city-planning actions on the decision of ecological problems is carried out. The most suitable ways for the ecological problems solving in the Chelyabinsk agglomeration are considered. The authors give recommendations for the ecological situation improving in the territory of the Chelyabinsk agglomeration.

  8. Development and linearization of generalized material balance equation for coal bed methane reservoirs

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez R, A; Bejarano, A

    1998-01-01

    A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion

  9. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Energy Technology Data Exchange (ETDEWEB)

    King, W. E., E-mail: weking@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kamath, C. [Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rubenchik, A. M. [NIF and Photon Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  10. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    Science.gov (United States)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  11. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    International Nuclear Information System (INIS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-01-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process

  12. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Science.gov (United States)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  13. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  14. On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat

    Energy Technology Data Exchange (ETDEWEB)

    Vesna Barisic; Mikko Hupa [Aabo Akademi Process Chemistry Centre, Turku (Finland). Combustion and Materials Chemistry

    2007-02-15

    This paper presents our observations on coating build up, morphology and the elemental composition of bed-material particles collected from a 550 MWth CFB boiler burning coal, bark and peat fuel/fuel mixture. The special focus was on the changes of the elemental composition of coating layer on bed-material particles when different fuels were burned. The results were obtained using a scanning electron microscope coupled with an energy depressive X-ray analyser (SEM/EDX). The results clearly show that properties of bed-material particles are a result of complex interaction between the fuels burned previously, and the fuels used at the time of sampling. Short communication. 8 refs., 1 fig., 2 tabs.

  15. Acoustic agglomeration methods and apparatus

    Science.gov (United States)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  16. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  17. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    International Nuclear Information System (INIS)

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  18. Preliminary assessment of channel stability and bed-material transport along Hunter Creek, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; Wallick, J. Rose; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Risley, John C.

    2011-01-01

    This preliminary assessment of (1) bed-material transport in the Hunter Creek basin, (2) historical changes in channel condition, and (3) supplementary data needed to inform permitting decisions regarding instream gravel extraction revealed the following: Along the lower 12.4 km (kilometers) of Hunter Creek from its confluence with the Little South Fork Hunter Creek to its mouth, the river has confined and unconfined segments and is predominately alluvial in its lowermost 11 km. This 12.4-km stretch of river can be divided into two geomorphically distinct study reaches based primarily on valley physiography. In the Upper Study Reach (river kilometer [RKM] 12.4-6), the active channel comprises a mixed bed of bedrock, boulders, and smaller grains. The stream is confined in the upper 1.4 km of the reach by a bedrock canyon and in the lower 2.4 km by its valley. In the Lower Study Reach (RKM 6-0), where the area of gravel bars historically was largest, the stream flows over bed material that is predominately alluvial sediments. The channel alternates between confined and unconfined segments. The primary human activities that likely have affected bed-material transport and the extent and area of gravel bars are (1) historical and ongoing aggregate extraction from gravel bars in the study area and (2) timber harvest and associated road construction throughout the basin. These anthropogenic activities likely have varying effects on sediment transport and deposition throughout the study area and over time. Although assessing the relative effects of these anthropogenic activities on sediment dynamics would be challenging, the Hunter Creek basin may serve as a case study for such an assessment because it is mostly free of other alterations to hydrologic and geomorphic processes such as flow regulation, dredging, and other navigation improvements that are common in many Oregon coastal basins. Several datasets are available that may support a more detailed physical assessment

  19. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  20. The influence of bedding materials on bio-aerosol exposure in dairy barns exposure in dairy barns

    NARCIS (Netherlands)

    Samadi, S.; van Eerdenburg, F.J.C.M.; Jamshidifard, A.R.; Otten, G.P.; Droppert, M.; Heederik, D.J.J.; Wouters, I.M.

    2012-01-01

    Bio-aerosol is a well-known cause of respiratory diseases. Exposure to bio-aerosols has been reported previously in dairy barns, but little is known about the sources of bio-aerosol. Bedding materials might be a significant source or substrate for bio-aerosol exposure. The aim of this study was to

  1. An Automated Processing Method for Agglomeration Areas

    Directory of Open Access Journals (Sweden)

    Chengming Li

    2018-05-01

    Full Text Available Agglomeration operations are a core component of the automated generalization of aggregated area groups. However, because geographical elements that possess agglomeration features are relatively scarce, the current literature has not given sufficient attention to agglomeration operations. Furthermore, most reports on the subject are limited to the general conceptual level. Consequently, current agglomeration methods are highly reliant on subjective determinations and cannot support intelligent computer processing. This paper proposes an automated processing method for agglomeration areas. Firstly, the proposed method automatically identifies agglomeration areas based on the width of the striped bridging area, distribution pattern index (DPI, shape similarity index (SSI, and overlap index (OI. Next, the progressive agglomeration operation is carried out, including the computation of the external boundary outlines and the extraction of agglomeration lines. The effectiveness and rationality of the proposed method has been validated by using actual census data of Chinese geographical conditions in the Jiangsu Province.

  2. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    Science.gov (United States)

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  3. Employment of fluidized bed ash as a basecourse material; Ryudosho nenshobai wo genryo to shita robanzai no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H [Nippon Hodo Co. Ltd., Tokyo (Japan); Goto, H [Electric Power Development Co. Ltd., Tokyo (Japan); Nagaoka, S [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-09-01

    Generation of coal ash from coal burning fluidized beds reaches 400,000 tons annually, which is anticipated to increase still more in the future. This paper relates to works to develop a basecourse material manufacturing technology by utilizing excellent hydration and solidification characteristics of fluidized bed ash. The developmental works have been moved forward as a subsidy operation of the Agency of Natural Resources and Energy. Upon having obtained a prospect of practical application of the development, the research results are reported in this paper. Coal ash produced in a fluidized bed boiler goes through the following processes: it is added with water and kneaded; formed into rectangular parallelepiped having sides of 10 to 30 cm long by using a forming machine of vibrating and pressurizing type; cured in steam at 60 degC; crushed into sizes smaller than 40 mm; and made into a basecourse material upon adjusting the grain size. A pilot plant completed in 1993 has produced 15,000 tons of the material to date. Properties required as a basecourse material, such as hazardous metal dissolving characteristics and strength sufficiently meet relevant standards or the targeted value. Demonstration tests of the material on roads including public roads have shown as good result as those obtained from standard basecourse materials. 8 refs., 8 figs., 7 tabs.

  4. Proceedings, volume 20, The Institute for Briquetting and Agglomeration, September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Roth, D.L. (ed.)

    1988-01-01

    32 papers are presented covering aspects of briquetting, pelletizing and agglomeration of various materials, including coal, plastics, flue gas gypsum and fertilizers. Papers on coal included the start-up of the Petrofina coal briquetting plant (UK), coal and refuse agglomeration by extrusion, coal dust reduction, agglomeration of Brazilian coal fines, use of coal and briquetting in ancient Chinese metallurgy, cooking briquettes from lignites in developing nations, use of coal-dolomite pellets to eliminate sulphur emissions, extruded coal capsule flow characteristics, and oil agglomeration as a catalyst loading method in coal liquefaction.

  5. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    Science.gov (United States)

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  6. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    Science.gov (United States)

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  7. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  8. Effect of 2 Bedding Materials on Ammonia Levels in Individually Ventilated Cages.

    Science.gov (United States)

    Koontz, Jason M; Kumsher, David M; Kelly, Richard; Stallings, Jonathan D

    2016-01-01

    This study sought to identify an optimal rodent bedding and cage-change interval to establish standard procedures for the IVC in our rodent vivarium. Disposable cages were prefilled with either corncob or α-cellulose bedding and were used to house 2 adult Sprague-Dawley rats (experimental condition) or contained no animals (control). Rats were observed and intracage ammonia levels measured daily for 21 d. Intracage ammonia accumulation became significant by day 8 in experimental cages containing α-cellulose bedding, whereas experimental cages containing corncob bedding did not reach detectable levels of ammonia until day 14. In all 3 experimental cages containing α-cellulose, ammonia exceeded 100 ppm (our maximum acceptable limit) by day 11. Two experimental corncob cages required changing at days 16 and 17, whereas the remaining cage containing corncob bedding lasted the entire 21 d without reaching the 100-ppm ammonia threshold. These data suggests that corncob bedding provides nearly twice the service life of α-cellulose bedding in the IVC system.

  9. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  10. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  11. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  12. Clay raw materials from the Triassic Red Beds (Northern JaéUy Spain for making ceramic construction materials

    Directory of Open Access Journals (Sweden)

    Vázquez, M.

    2004-03-01

    Full Text Available The suitability of Triassic Red Beds from northern Jaén in the production of structural clay products has been evaluated. These materials have high phyllosilicate contents (36-69%, although some samples are enriched in quartz (<8-54% and feldspars (<5-2I%. Dolomite (<5-20% and calcite (< 7% are present. Illite is the main phyllosilicate (96-74%, kaolinite values are rather low (<17% and chlorite is present in low content (<14%. The studied samples have high silica (39.2-74.8% and alumina (6.9-18.3% content. K4ost of the samples have low CaO and MgO concentrations (<6%. <2 pm (64-36% and 2-20 pm (68-36% are the predominant grain size fraction of the studied samples. Low plasticity for extrusion process of the Triassic Red Beds is not appropriated for making bricks and roofing tiles by themselves. However, water absorption and linear shrinkage values are often suitable for manufacturing bricks. A small number of samples are appropriated for making roofing tiles, due to the its high firing shrinkage. Mixing of these materials with different proportions of complementary raw materials would allow to make porous bodies.

    En este trabajo se ha evaluado el uso de las Capas Rojas Triásicas de la Cobertera Tabular del Macizo Ibérico del norte de la provincia de Jaén para elaborar materiales cerámicos. Estos materiales tienen altos contenidos en filosilicatos (36-69%, aunque algunas muestras son ricas en cuarzo (hasta 54% y feldespatos (hasta 21%. Los carbonatos presentes en las muestras son dolomita (<5-20% y calcita (<7%. La illita es el principal filosilicato (96-74%, mientras que la caolinita y la clorita están presentes en bajos contenidos (< 17%. Las muestras estudiadas tienen altos contenidos en sílice (39,2-74,8% y alúmina (6,9-18,3%. La mayoría de estas arcillas tienen bajas concentraciones de CaO y MgO (<6%. Las fracciones granulométricas predominantes son la< 2 pm (64-36% y la situada entre 2 y 20 pm (68-36%. La baja plasticidad

  13. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  14. Process for agglomerating fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Austin, L J; Misbach, P

    1976-06-24

    The invention concerns a process for agglomerating black coal in mud or powder form in the presence of a mineral oil product dispersed in water. During this process, the nutty slack is added to a portion - approximately 5 - 15% of its weight in the case of anhydrous coal - of a bitumen emulsion and thoroughly mixed. The emulsion should contain mineral oil bitumen with a penetration value 25/sup 0/ less than 5, or a Conradson value of over 35. In a further finishing process the emulsion contains alkaline naphthenate.

  15. Influence of different types of bedding materials on immune response and serum biochemical profile of caged mice

    Directory of Open Access Journals (Sweden)

    Vijayakumar . R

    Full Text Available Contact bedding material is an important environmental factor and welfare creator for laboratory mice. It can alter important physiological process and create potential chance for experimental variation which puts hurdle for comparability. The present experiment was conducted to assess the possible impact of different types of bedding material viz CPS, NWS and PH with fifty one albino mice for a period of fifteen weeks in Laboratory Animal Facility. It was observed that local immunity in mice was enhanced in NWS. During in vitro immune assays, mice from NWS showed higher OD value for reactive oxygen radical, produced more NO2 and higher stimulation index i.e. 0.71 ± 0.01, 30.67 ± 0.88 μM and 7.90 ± 0.17, respectively than PH (0.23 ± 0.01, 17.0 ± 1.15 μM and 6.33 ± 0.21 and CPS (0.33 ± 0.03, 15.67 ± 1.20 μM and 6.46 ± 0.27. There was no influence of bedding type on systemic response. Reduced glutathione value in liver was higher in NWS than PH and CPS i.e. 8.54 ± 0.2, 7.09 ± 0.18 and 6.96 ± 0.14 μmole/ gm of tissue. But heart reduced glutathione showed no variation among different types of bedding materials. Serum analysis showed significantly (p<0.05 higher total protein and albumin value for enriched groups. But globulin value was not significantly differing for enriched and non-enriched groups. [Veterinary World 2010; 3(9.000: 417-420

  16. Powder agglomeration in a microgravity environment

    Science.gov (United States)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  17. Effect of 2 Bedding Materials on Ammonia Levels in Individually Ventilated Cages

    Science.gov (United States)

    2016-01-01

    Koontz,1* David M Kumsher,2 Richard Kelly III,3 and Jonathan D Stallings1 This study sought to identify an optimal rodent bedding and cage-change...March 2015]. Available at: http://www.ssponline.com/. 15. Silverman J, Bays DW, Cooper SF, Baker SP. 2008. Ammonia and carbon dioxide concentrations

  18. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  19. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  20. Generation of nanoparticle agglomerates and their dispersion in lung serum simulant or water

    International Nuclear Information System (INIS)

    Wong, B A; Moss, O R; Nash, D G

    2009-01-01

    Nanoparticles released into the atmosphere, due to their high diffusivity, will likely begin to agglomerate. The state of agglomeration upon inhalation and the potential to disperse back into nanoparticles may affect the toxicity of the inhaled material. In order to investigate particle dispersion, a system was set up to generate aggregates from agglomerates. Primary particles, composed of zinc, were generated using zinc rods in a spark generator (Palas GFG-1000, Karlsrhue, Germany). These particles formed agglomerates which were passed through a room temperature aging chamber or through a tube furnace (Carbolite HST, Derbyshire, UK). Agglomerate size was measured with a scanning mobility particle sizer (SMPS model 3936, TSI Inc., Shoreview, MN). When furnace temperature was set near the zinc coalescence temperature, instead of decreasing in size, agglomerate size increased up to 30%; a percentage increase duplicated with the room temperature aging chamber. Starting with an aerosol of primary zinc particles, equal concentrations of agglomerate and aggregrate aerosol were produced. The extent of breakup and dispersion of agglomerates and aggregates to individual nanoparticles in lung serum simulant will be assessed using transmission electron microscopy.

  1. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    OpenAIRE

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; Guss, Gabe; Matthews, Manyalibo J.

    2017-01-01

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas...

  2. Occurrence of emerging contaminants in water and bed material in the Missouri River, North Dakota, 2007

    Science.gov (United States)

    Damschen, William C.; Lundgren, Robert F.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Standing Rock Sioux Tribe, conducted a reconnaissance study to determine the occurrence of emerging contaminants in water and bed sediment within the Missouri River upstream and downstream from the cities of Bismarck and Mandan, North Dakota, and upstream from the city of Fort Yates, North Dakota, during September-October 2007. At each site, water samples were collected twice and bed-sediment samples were collected once. Samples were analyzed for more than 200 emerging contaminants grouped into four compound classes - wastewater compounds, human-health pharmaceutical compounds, hormones, and antibiotics. Only sulfamethoxazole, an antibiotic, was present at a concentration higher than minimum detection limits. It was detected in a water sample collected downstream from the cities of Bismarck and Mandan, and in bed-sediment samples collected at the two sites downstream from the cities of Bismarck and Mandan and upstream from Fort Yates. Sulfamethoxazole is an antibiotic commonly used for treating bacterial infections in humans and animals.

  3. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    Science.gov (United States)

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  4. Transient thermal response of a packed bed for energy storage unit utilizing phase change material: experimental and numerical study

    International Nuclear Information System (INIS)

    Bemansour, A.

    2006-01-01

    The present work concerns the numerical and experimental study of the transient response of a packed bed latent heat thermal energy storage system. Experiments were carried out to measures the transient temperature distributions inside a cylindrical bed, which is randomly packed with spheres having uniform sizes and encapsulated the paraffin wax as a phase change material (PCM), with air as a working fluid. A two-dimensional separate phases formulation is used to develop a numerical analysis of the transient response of the bed, considering the influence of both axial and radial thermal dispersion. The fluid energy equation was transformed by finite difference approximation and solved by alternating direction implicit scheme, while the PCM energy equation was solved using fully explicit scheme. This analysis can be applied for both charging and recovery modes and a broad range of Reynolds numbers. Measurements of both fluid and PCM temperature were conducted at different axial and radial positions and at different operating parameters. Experimental measurements of temperature distribution compare favorably with the numerical results over a broad range of Reynolds numbers.(Author)

  5. Modeling of Particle Agglomeration in Nanofluids

    Science.gov (United States)

    Kanagala, Hari Krishna

    Nanofluids are colloidal dispersions of nano sized particles (life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.

  6. Agglomeration economies, competitiveness and entrepreneurial performance

    OpenAIRE

    Páger, Balázs; Komlósi, Éva

    2015-01-01

    This paper aims to elaborate the role of agglomeration effects on countries' competitiveness and entrepreneurial performance. Our research contributes to the understanding of the relationship that exists between a country's urban system characterized by spatial agglomeration (concentration) or deglomeration (deconcentration) processes, and its competitiveness and entrepreneurial performance, respectively. Urbanization economies refer to considerable cost savings generated through the locating...

  7. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  8. Fluidized bed furnace for coating nuclear fuel and/or breeder material cores. Wirbelschichtofen zur Beschichtung von nuklearen Brennstoff- und/oder Brutstoffkernen

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, E; Ringel, H; Schmitz, H; Zimmer, E

    1982-10-21

    The insulation of the fluidized bed chamber is divided into two parts, where the inner part can have a mechanical load on it, while the outer part has a low thermal conductivity. The latter makes it possible to use cooling gases, instead of water, for cooling the fluidized bed furnace. The cooling gas has no effect on the critical mass to be taken into account in dimensioning the volume of the fluidized bed, and the quantity of fuel and/or breeder material can be increased by about 20 times in the fluidized bed chamber, compared with the water-cooled fluidized bed furnace. For safety reasons, particularly in order to reduce the fire danger if there is a fault, inert gases, for example nitrogen, carbon dioxide etc. are preferred as cooling gases.

  9. UTILIZATION OF PINE NEEDLES AS BED MATERIAL IN SOLID STATE FERMENTATION FOR PRODUCTION OF LACTIC ACID BY LACTOBACILLUS STRAINS

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Ghosh

    Full Text Available Pine needles, which are abundantly found as underexploited biomass in coniferous forests, are responsible for fire hazards and air pollution. Utilization of pine needles as bed material in lactic acid production with solid state fermentation (SSF has been studied here. This investigation compared lactic acid production by pure strains of Lactobacilli, (1 L. delbrueckii (NCIM2025; (2 L. pentosus (NCIM 2912; (3 Lactobacillus sp. (NCIM 2734; (4 Lactobacillus sp. (NCIM2084; and a co-culture of the first two strains. The studies required 6 g per flask powdered dry pine needles as bed material, 2 g/L (inoculum, liquid production media based on pure glucose or whey substituted glucose, at 60, 80, and 120 g/L sugar levels, 37 oC, and an initial pH of 6.5. Co-culture attained a maximum lactic acid concentration of 45.10 g/L, followed by that of strain-1, 43.87 g/L and strain-4, 26.15 g/L, in 80 g/L pure glucose media. With 120g/L total sugar in whey-substituted media, the co-culture attained maximum lactic acid production of 44.88 g/L followed by that of strain-1, 43.67 g/L. The present experimental studies indicated better compatibility of pine needle bed with co-culture in solid state fermentation of lactic acid, which may prove to be an eco-friendly technology for utilization of biomass as well as minimizing fires in coniferous forests.

  10. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853-5201 (United States)

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  11. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit; Koch, Donald L.

    2015-01-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  12. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit

    2015-11-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  13. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    Science.gov (United States)

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  14. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    Science.gov (United States)

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Development Of A Sensor Network Test Bed For ISD Materials And Structural Condition Monitoring

    International Nuclear Information System (INIS)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-01-01

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  16. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  17. Particle agglomeration and properties of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yijun; Oztekin, Alparslan, E-mail: alo2@lehigh.edu; Neti, Sudhakar [Lehigh University, Department of Mechanical Engineering and Mechanics (United States); Mohapatra, Satish [Dynalene Inc. (United States)

    2012-05-15

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  18. Particle agglomeration and properties of nanofluids

    International Nuclear Information System (INIS)

    Yang Yijun; Oztekin, Alparslan; Neti, Sudhakar; Mohapatra, Satish

    2012-01-01

    The present study demonstrates the importance of actual agglomerated particle size in the nanofluid and its effect on the fluid properties. The current work deals with 5 to 100 nm nanoparticles dispersed in fluids that resulted in 200 to 800 nm agglomerates. Particle size distributions for a range of nanofluids are measured by dynamic light scattering (DLS). Wet scanning electron microscopy method is used to visualize agglomerated particles in the dispersed state and to confirm particle size measurements by DLS. Our results show that a combination of base fluid chemistry and nanoparticle type is very important to create stable nanofluids. Several nanofluids resulted in stable state without any stabilizers, but in the long term had agglomerations of 250 % over a 2 month period. The effects of agglomeration on the thermal and rheological properties are presented for several types of nanoparticle and base fluid chemistries. Despite using nanodiamond particles with high thermal conductivity and a very sensitive laser flash thermal conductivity measurement technique, no anomalous increases of thermal conductivity was measured. The thermal conductivity increases of nanofluid with the particle concentration are as those predicted by Maxwell and Bruggeman models. The level of agglomeration of nanoparticles hardly influenced the thermal conductivity of the nanofluid. The viscosity of nanofluids increased strongly as the concentration of particle is increased; it displays shear thinning and is a strong function of the level of agglomeration. The viscosity increase is significantly above of that predicted by the Einstein model even for very small concentration of nanoparticles.

  19. A CONCEPTUAL APPROACH TO ECONOMIC AGGLOMERATIONS

    Directory of Open Access Journals (Sweden)

    Mădălina-Ștefania Dîrzu

    2012-09-01

    Full Text Available Technological progress and rapid structural adjustments have characterized a lot of economies in the last century and they still feature pronounced structures. An important observation is that economic activities tend to agglomerate in space as a result of some kind increasing returns, forming eventually economic agglomerations. When various companies gather together, they establish specific forms of interaction. Increasing returns produce when this mutual interplay creates positive externalities for those firms which operate into an agglomeration. In this context, it is crucial to raise a question: what is an economic agglomeration and what do different scientists imply when using the concept? The phenomenon of agglomeration has attracted researchers from various disciplines employing a hybrid set of analytical perspectives. This whole framework is still puzzled with contradictory conceptualizations which are often used in an ambiguous way. Scientists tend to utilize notions such as agglomeration, cluster, territorial network, specialization, concentration somewhat interchangeably and with little concern about how to operationalize them. To shed a light on this issue, the aim of this paper is to provide a comprehensive analyze of different theoretical framework in which economic agglomerations have been debated and researched.

  20. Shapes of agglomerates in plasma etching reactors

    International Nuclear Information System (INIS)

    Huang, F.Y.; Kushner, M.J.

    1997-01-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller (<100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. copyright 1997 American Institute of Physics

  1. Modeling of particle agglomeration in nanofluids

    International Nuclear Information System (INIS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-01-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed

  2. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    Directory of Open Access Journals (Sweden)

    Eunjong Kim

    2016-05-01

    Full Text Available Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30% for aerobic composting due to the sawdust’s coarse particle size and bulking effect.

  3. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    Science.gov (United States)

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  4. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials

    Directory of Open Access Journals (Sweden)

    G. P. Sancinetti

    2012-03-01

    Full Text Available The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC. The reactors were operated with a hydraulic retention time (HRT of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

  5. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials.

    Science.gov (United States)

    van Gastelen, S; Westerlaan, B; Houwers, D J; van Eerdenburg, F J C M

    2011-10-01

    The aim was to obtain data regarding the effects of 4 freestall bedding materials (i.e., box compost, sand, horse manure, and foam mattresses) on cow comfort and risks for lameness and mastitis. The comfort of freestalls was measured by analyzing the way cows entered the stalls, the duration and smoothness of the descent movement, and the duration of the lying bout. The cleanliness of the cows was evaluated on 3 different body parts: (1) udder, (2) flank, and (3) lower rear legs, and the bacteriological counts of the bedding materials were determined. The combination of the cleanliness of the cows and the bacteriological count of the bedding material provided an estimate of the risk to which dairy cows are exposed in terms of intramammary infections. The results of the hock assessment revealed that the percentage of cows with healthy hocks was lower (20.5 ± 6.7), the percentage of cows with both damaged and swollen hocks was higher (26.8 ± 3.2), and the severity of the damaged hock was higher (2.32 ± 0.17) on farms using foam mattresses compared with deep litter materials [i.e., box compost (64.0 ± 10.4, 3.5 ± 4.7, 1.85 ± 0.23, respectively), sand (54.6 ± 8.2, 2.0 ± 2.8, 1.91 ± 0.09, respectively), and horse manure (54.6 ± 4.5, 5.5 ± 5.4, 1.85 ± 0.17, respectively)]. In addition, cows needed more time to lie down (140.2 ± 84.2s) on farms using foam mattresses compared with the deep litter materials sand and horse manure (sand: 50.1 ± 31.6s, horse manure: 32.9 ± 0.8s). Furthermore, the duration of the lying bout was shorter (47.9 ± 7.4 min) on farms using foam mattresses compared to sand (92.0 ± 12.9 min). These results indicate that deep litter materials provide a more comfortable lying surface compared with foam mattresses. The 3 deep litter bedding materials differed in relation to each other in terms of comfort and their estimate of risk to which cows were exposed in terms of intramammary infections [box compost: 17.8 cfu (1.0(4)) ± 19.4/g

  6. Which Agglomeration Externalities Matter Most and Why?

    NARCIS (Netherlands)

    de Groot, H.L.F.; Poot, J.; Smit, M.J.

    2016-01-01

    This paper revisits the ongoing discussion on the importance of agglomeration externalities – specifically specialization, diversity and competition effects – that may contribute to innovation, productivity and urban employment growth. Previous meta-analyses suggested that the evidence on

  7. Agglomeration of microparticles in complex plasmas

    International Nuclear Information System (INIS)

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-01-01

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  8. Which Agglomeration Externalities Matter Most and Why?

    NARCIS (Netherlands)

    de Groot, Henri L.F.; Poot, Jacques; Smit, Martijn J.

    2016-01-01

    This paper revisits the ongoing discussion on the importance of agglomeration externalities – specifically specialization, diversity and competition effects – that may contribute to innovation, productivity and urban employment growth. Previous meta‐analyses suggested that the evidence on

  9. Effect of agglomerate strength on sintered density for yttria powders containing agglomerates of monosize spheres

    International Nuclear Information System (INIS)

    Ciftcioglu, M.; Akine, M.; Burkhart, L.

    1987-01-01

    The effect of agglomerate strength on sintered density was determined for several yttria powders made by intentionally agglomerating 0.1-μm, monodisperse yttriuim hydrocarbonate precursor spheres and calcining separate portions of the precursor at different temperatures to vary the strength of the intraaglomeate bonds. In this way, the effects of differences in particle morphology and other characteristics among the powders were minimized and the effect of agglomerate strength could be seen more clearly

  10. Transport and storage of bed material in a gravel-bed channel during episodes of aggradation and degradation: a field and flume study

    Science.gov (United States)

    Bonnie Smith Pryor; Thomas Lisle; Diane Sutherland Montoya; Sue Hilton

    2011-01-01

    The dynamics of sediment transport capacity in gravel-bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment-routing models in drainage systems. We examine transport-storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and...

  11. Hotel Performance and Agglomeration of Tourist Districts

    OpenAIRE

    Marco-Lajara, Bartolomé; Claver Cortés, Enrique; Úbeda García, Mercedes; Zaragoza Sáez, Patrocinio del Carmen

    2014-01-01

    This paper measures the impact on profitability of the geographical area where the vacation hotels of the Spanish Mediterranean are situated. It places a special emphasis on analysing the tourist districts existing in this coastal Spanish area and the extent to which the degree of business agglomeration at each destination affects hotel profit. Due to the characteristics of the service sector, and after a revision of the agglomeration literature, a ‘U’-shaped relationship is hypothesized betw...

  12. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  13. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    Science.gov (United States)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  14. Predicting the Agglomeration of Cohesive Particles in a Gas-Solid Flow and its Effect on the Solids Flow

    Science.gov (United States)

    Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine

    2017-11-01

    In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.

  15. Diffusion and reaction in microbead agglomerates.

    Science.gov (United States)

    Nunes Kirchner, Carolina; Träuble, Markus; Wittstock, Gunther

    2010-04-01

    Scanning electrochemical microscopy has been used to analyze the flux of p-aminonophenol (PAP) produced by agglomerates of polymeric microbeads modified with galactosidase as a model system for the bead-based heterogeneous immunoassays. With the use of mixtures of enzyme-modified and bare beads in defined ratio, agglomerates with different saturation levels of the enzyme modification were produced. The PAP flux depends on the intrinsic kinetics of the galactosidase, the local availability of the substrate p-aminophenyl-beta-D-galactopyranoside (PAPG), and the external mass transport conditions in the surrounding of the agglomerate and the internal mass transport within the bead agglomerate. The internal mass transport is influenced by the diffusional shielding of the modified beads by unmodified beads. SECM in combination with optical microscopy was used to determine experimentally the external flux. These data are in quantitative agreement with boundary element simulation considering the SECM microelectrode as an interacting probe and treating the Michaelis-Menten kinetics of the enzyme as nonlinear boundary conditions with two independent concentration variables [PAP] and [PAPG]. The PAPG concentration at the surface of the bead agglomerate was taken as a boundary condition for the analysis of the internal mass transport condition as a function of the enzyme saturation in the bead agglomerate. The results of this analysis are represented as PAP flux per contributing modified bead and the flux from freely suspended galactosidase-modified beads. These numbers are compared to the same number from the SECM experiments. It is shown that depending on the enzyme saturation level a different situation can arise where either beads located at the outer surface of the agglomerate dominate the contribution to the measured external flux or where the contribution of buried beads cannot be neglected for explaining the measured external flux.

  16. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  17. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    Science.gov (United States)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  19. Effect of the primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates

    International Nuclear Information System (INIS)

    Schilde, Carsten; Westphal, Bastian; Kwade, Arno

    2012-01-01

    Depending on the application of nanoparticles, certain characteristics of the product quality such as size, morphology, abrasion resistance, specific surface, dispersibility and tendency to agglomeration are important. These characteristics are a function of the physicochemical properties, i.e. the micromechanical properties of the nanostructured material. The micromechanical properties of these nanostructured agglomerates such as the maximum indentation force, the plastic and elastic deformation energy and the strength give information on the product properties, e.g. the efficiency of a dispersion process of the agglomerates, and can be measured by nanoindentation. In this study a Berkovich indenter tip was used for the characterisation of model aggregates out of sol–gel produced silica and precipitated alumina agglomerates with different primary particle morphologies (dimension of 15–40 nm). In general, the effect of the primary particle morphology and the presence or absence of solid bonds can be characterised by the measurement of the micromechanical properties via nanoindentation. The micromechanical behaviour of aggregates containing solid bonds is strongly affected by the elastic–plastic deformation behaviour of the solid bonds and the breakage of solid bonds. Moreover, varying the primary particle morphology for similar particle material and approximately isotropic agglomerate behaviour the particle–particle interactions within the agglomerates can be described by the elementar breaking stress according to the formula of Rumpf.

  20. Bed Bugs

    Science.gov (United States)

    Prevent, identify, and treat bed bug infestations using EPA’s step-by-step guides, based on IPM principles. Find pesticides approved for bed bug control, check out the information clearinghouse, and dispel bed bug myths.

  1. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  2. Fluidised bed combustion system

    International Nuclear Information System (INIS)

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  3. Understanding Sediment Sources, Pathways, and Sinks in Regional Sediment Management: Application of Wash Load and Bed-Material Load Concept

    National Research Council Canada - National Science Library

    Biedenham, David S; Hubbard, Lisa C; Thome, Colin R; Watson, Chester C

    2006-01-01

    ... through the fluvial system for sediments derived from various bed, bank, gully, and catchment sources thereby providing a reliable analytical foundation for effective regional sediment management...

  4. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-01-01

    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  5. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  6. From picture to porosity of river bed material using Structure-from-Motion with Multi-View-Stereo

    Science.gov (United States)

    Seitz, Lydia; Haas, Christian; Noack, Markus; Wieprecht, Silke

    2018-04-01

    Common methods for in-situ determination of porosity of river bed material are time- and effort-consuming. Although mathematical predictors can be used for estimation, they do not adequately represent porosities. The objective of this study was to assess a new approach for the determination of porosity of frozen sediment samples. The method is based on volume determination by applying Structure-from-Motion with Multi View Stereo (SfM-MVS) to estimate a 3D volumetric model based on overlapping imagery. The method was applied on artificial sediment mixtures as well as field samples. In addition, the commonly used water replacement method was applied to determine porosities in comparison with the SfM-MVS method. We examined a range of porosities from 0.16 to 0.46 that are representative of the wide range of porosities found in rivers. SfM-MVS performed well in determining volumes of the sediment samples. A very good correlation (r = 0.998, p < 0.0001) was observed between the SfM-MVS and the water replacement method. Results further show that the water replacement method underestimated total sample volumes. A comparison with several mathematical predictors showed that for non-uniform samples the calculated porosity based on the standard deviation performed better than porosities based on the median grain size. None of the predictors were effective at estimating the porosity of the field samples.

  7. The effects of chronic exposure to common bedding materials on the metabolic rate and overall health of male CD-1 mice.

    Science.gov (United States)

    Becker, Corey E; Mathur, Carolyn F; Rehnberg, Bradley G

    2010-01-01

    Anecdotes and personal Web pages claim that cedar and pine beddings cause respiratory distress in rodents, although no previous research could be found to support these claims. There have, however, been published studies of respiratory distress in cedar and pine mill workers. That research links exposure to wood dust to asthma and to bronchial and alveolar damage in humans. This study looks at the effects of 3 types of bedding (CareFRESH Original, cedar, and pine) on the growth, food intake, oxygen consumption, IgE antibody concentrations, and general appearance and behavior in male CD-1 mice. Mice who were housed on these beddings for approximately 4 months did not show significant differences in any of these variables. This suggests that these 3 materials provide equally healthy substrates for long-term rearing of mice and possibly other rodents.

  8. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  9. Parking lots, store chains and spatial agglomeration

    Czech Academy of Sciences Publication Activity Database

    Noguera, Jose

    2005-01-01

    Roč. 84, č. 2 (2005), s. 145-158 ISSN 1056-8190 Institutional research plan: CEZ:AV0Z70850503 Keywords : agglomeration * bid -rent * residential district Subject RIV: AH - Economics Impact factor: 0.475, year: 2005

  10. Hydrodynamic perspective on asphaltene agglomeration and deposition

    NARCIS (Netherlands)

    Schutte, K.C.J.; Portela, L.M.; Twerda, A.; Henkes, R.A.W.M.

    2015-01-01

    In this work, we propose a detailed numerical model for asphaltene agglomeration and deposition, as induced by a resolved turbulent liquid carrier phase flow, in which transport, breakup, and re-entrainment are also taken into account. Asphaltene phase separation is represented by the appearance of

  11. Understanding Lateritic Ore Agglomeration Behaviour as a ...

    African Journals Online (AJOL)

    Processing such ores through cost-competitive heap (4-10 m high) leaching as an alternative, requires successful agglomeration of the feed into robust and porous granules. To date, produc-ing of granules with desirable attributes poses a major geotechnical challenge to industry. In the present work, we investigate ...

  12. Industrial Agglomeration and Use of the Internet

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2015-01-01

    textabstractTaiwan has been hailed as a world leader in the development of global innovation and industrial clusters for the past decade. This paper investigates the effects of industrial agglomeration on the use of the internet and internet intensity for Taiwan manufacturing firms, and analyses

  13. Welfare benefits of agglomeration and worker heterogenity

    NARCIS (Netherlands)

    Teulings, C.N.; Ossokina, I.V.; de Groot, H.L.F.

    2014-01-01

    The direct impact of local public goods on welfare is relatively easy to measure from land rents. However, the indirect effects on home and job location, on land use, and on agglomeration benefits are hard to pin down. We develop a spatial general equilibrium model for the valuation of these

  14. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    Science.gov (United States)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  15. Soft- and hard-agglomerate aerosols made at high temperatures.

    Science.gov (United States)

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  16. Filtration behavior of silver nanoparticle agglomerates and effects of the agglomerate model in data analysis

    International Nuclear Information System (INIS)

    Buha, Jelena; Fissan, Heinz; Wang, Jing

    2013-01-01

    In many data evaluation procedures for particle measuring devices and in filtration models, spherical particles are assumed. However, significant fractions of aerosol particles are agglomerates of small primary spheres. The morphology of particles in filtration processes may not be known a priori and if the filtration data are processed with wrong assumption, errors can be induced. In this work, we have quantified such errors for the case of open-structured agglomerates. Filtration efficiency tests with polydisperse silver nanoparticle agglomerates and their sintered spheres were performed. After the sintering process, particles with a compact structure with the shape close to a sphere are obtained, which are referred to as sintered spheres in the present study. The testing method involved generation of particulate forms, passing the particles through the testing section, and measurement of the particle number concentrations and size distributions before and after the filter. Measurements of the aerosols upstream and downstream of the filter were conducted using scanning mobility particle sizers (SMPS, TSI Inc.), which covered the rage from 10 to 480 nm. Particles were additionally characterized from the electron microscopic images and the average primary particle size was determined to be 16.8 nm. The number-size distribution curves were obtained and used for penetration calculation. The penetration was dependent on the particle size and morphology. Silver-sintered spheres were captured with a lower efficiency than agglomerates with the same mobility diameter because of the stronger interception effect for agglomerates. Data analysis of the number-size distribution for agglomerates was processed based on sphere assumption and using the model for open-structured agglomerates developed by Lall and Friedlander. The efficiencies based on total concentrations of number, surface and volume were affected when the agglomerate model was used. The effect was weakest for the

  17. Pu-rich MOX agglomerate-by-agglomerate model for fuel pellet burnup analysis

    International Nuclear Information System (INIS)

    Chang, G.S.

    2004-01-01

    In support of potential licensing of the mixed oxide (MOX) fuel made from weapons-grade (WG) plutonium and depleted uranium for use in United States reactors, an experiment containing WG-MOX fuel is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The WG-MOX comprises five percent PuO 2 and 95% depleted UO 2 . Based on the Post Irradiation Examination (PIE) observation, the volume fraction (VF) of MOX agglomerates in the fuel pellet is about 16.67%, and PuO 2 concentration of 30.0 = (5 / 16.67 x 100) wt% in the agglomerate. A pressurized water reactor (PWR) unit WG-MOX lattice with Agglomerate-by-Agglomerate Fuel (AbAF) modeling has been developed. The effect of the irregular agglomerate distribution can be addressed through the use of the Monte Carlo AbAF model. The AbAF-calculated cumulative ratio of Agglomerate burnup to U-MAtrix burnup (AG/MA) is 9.17 at the beginning of life, and decreases to 2.88 at 50 GWd/t. The MCNP-AbAF-calculated results can be used to adjust the parameters in the MOX fuel fission gas release modeling. (author)

  18. Laboratory observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.

    2018-04-27

    Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.

  19. Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates

    International Nuclear Information System (INIS)

    Orts-Gil, Guillermo; Natte, Kishore; Drescher, Daniela; Bresch, Harald; Mantion, Alexandre; Kneipp, Janina; Österle, Werner

    2011-01-01

    The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity.

  20. Agglomeration during wet milling of LAST (lead-antimony-silver-tellurium) powders

    International Nuclear Information System (INIS)

    Hall, B.D.; Case, E.D.; Ren, F.; Johnson, J.R.; Timm, E.J.

    2009-01-01

    LAST (lead-antimony-silver-tellurium) compounds comprise a family of semiconducting materials with good thermoelectric properties. However, the as-cast form of LAST exhibits large grain size and hence low mechanical strength. Powder processing can produce a fine powder particle size that enhances fracture strength, however the powders tend to agglomerate if the individual powder diameters are less than a few microns across. Dry milling or wet milling (hexane additions of 0 cm 3 and 10 cm 3 ) produced hard agglomerates roughly 40 μm in diameter while wet milling with hexane additions of 25 cm 3 , 30 cm 3 or 50 cm 3 resulted in small, porous agglomerates roughly 20 μm in diameter. Thus, by adjusting the amount of milling liquid used while milling LAST powders, one can shift from hard to soft agglomerates, where the literature shows that soft agglomerates are less harmful to the final, sintered product. Also, in agreement with the results from the literature on other materials, wet milling of LAST powders produced smaller particle sizes but required longer times to reach the grindability limit

  1. Application of Dredged Materials and Steelmaking Slag as Basal Media to Restore and Create Seagrass Beds: Mesocosm and Core Incubation Experiments

    Science.gov (United States)

    Tsukasaki, A.; Suzumura, M.; Tsurushima, N.; Nakazato, T.; Huang, Y.; Tanimoto, T.; Yamada, N.; Nishijima, W.

    2016-02-01

    Seagrass beds stabilize bottom sediments, improve water quality and light conditions, enhance species diversity, and provide habitat complexity in coastal marine environments. Seagrass beds are now experiencing worldwide decline by rapid environmental changes. Possible options of seagrass bed restoration are civil engineering works including mounding to raise the bottom to elevations with suitable light for seagrass growth. Reuse or recycling of dredged materials (DM) and various industrial by-products including steelmaking slags is a beneficial option to restore and create seagrass beds. To evaluate the applicability of DM and dephosphorization slag (Slag) as basal media of seagrass beds, we carried out mesocosm experiments and core incubation experiments in a land-based flow-through seawater tank over a year. During the mesocosm experiment, no difference was found in growth of eelgrass (Zostera marina L.) and macrobenthic community structures between Slag-based sediments and sand-based control experiments, even though Slag-based sediments exhibited substantially higher pH than sand-based sediments. During the core incubation experiment, we investigated detailed variation and distributions of pH and nutrients, and diffusion fluxes of nutrients between the sediment/seawater interface. Though addition of Slag induced high pH up to 10.7 in deep layers (sediments, whereas dissolved phosphate concentration was substantially reduced by the addition of Slag. The low concentrations of phosphate was likely due to precipitation with calcium under high pH condition. Diffusion fluxes of nutrients from the cores were comparable with those reported in natural coastal systems. It was suggested that the mixture of Slag and DM is applicable as basal media for construction of artificial seagrass beds.

  2. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Science.gov (United States)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  3. Gas and particle concentrations in horse stables with individual boxes as a function of the bedding material and the mucking regimen.

    Science.gov (United States)

    Fleming, K; Hessel, E F; Van den Weghe, H F A

    2009-11-01

    The aim of this study was to compare different types of bedding and mucking regimens used in horse stables on the generation of airborne particulate matter bedding material (wheat straw, straw pellets, and wood shavings) used for horses were assessed according to their ammonia generation. Each type of bedding was used for 2 wk, with 3 repetitions. The mean ammonia concentrations within the stable were 3.07 +/- 0.23 mg/m(3) for wheat straw, 4.79 +/- 0.23 mg/m(3) for straw pellets, and 4.27 +/- 0.17 mg/m(3) for wood shavings. In Exp. 2, the effects of the mucking regimen on the generation of ammonia and PM10 from wheat straw (the bedding with the least ammonia generation in the previous experiment) were examined using 3 different daily regimens: 1) no mucking out, 2) complete mucking out, and 3) partial mucking out (removing only feces). The mean ammonia concentrations in the stable differed significantly among all 3 mucking regimens (P bedding regimen without mucking out was evaluated with regard to gas and airborne particle generation. The ammonia values were found not to increase constantly during the course of the 6-wk period. The average weekly values for PM10 also did not increase constantly but varied between approximately 90 and 140 microg/m. It can be concluded from the particle and gas generation patterns found in the results of all 3 experiments that wheat straw was the most suitable bedding of the 3 types investigated and that mucking out completely on a daily basis should not be undertaken in horse stables.

  4. Bed Bug Information Clearinghouse

    Science.gov (United States)

    Its purpose is to help states, communities, and consumers in efforts to prevent and control bed bug infestations. Currently includes only reviewed material from federal/state/local government agencies, extension services, and universities.

  5. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    Energy Technology Data Exchange (ETDEWEB)

    Jux, Maximilian, E-mail: maximilian.jux@dlr.de [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Finke, Benedikt [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany); Mahrholz, Thorsten [DLR Braunschweig, Institute of Composite Structures and Adaptive Systems (FA) (Germany); Sinapius, Michael [TU Braunschweig, Institute of Adaptronic and Functional Integration (IAF) (Germany); Kwade, Arno; Schilde, Carsten [TU Braunschweig, Institute for Particle Technology (IPAT) (Germany)

    2017-04-15

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  6. Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties

    International Nuclear Information System (INIS)

    Jux, Maximilian; Finke, Benedikt; Mahrholz, Thorsten; Sinapius, Michael; Kwade, Arno; Schilde, Carsten

    2017-01-01

    Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.

  7. Backscattering and negative polarization of agglomerate particles.

    Science.gov (United States)

    Zubko, Evgenij; Shkuratov, Yuriy; Hart, Matthew; Eversole, Jay; Videen, Gorden

    2003-09-01

    We used the discrete dipole approximation to study the backscattering of agglomerate particles consisting of oblong monomers. We varied the aspect ratio of the monomers from approximately 1 (sphere) to 4, while we kept the total particle volume equivalent to that of an x = 10 sphere for m = 1.59 + i0 and 1.50 + i0 and considered two values of agglomerate packing density: rho = 0.25 and rho = 0.1. We found that these particles do not display a prominent brightness opposition effect but do produce significant negative polarization over a range of near-backscattering angles. Increasing the monomers' aspect ratio can make the negative polarization much more prominent. We have noted also that decreasing m and p can reduce the amplitude of the negative polarization for these particles.

  8. Tiny is mighty: seagrass beds have a large role in the export of organic material in the tropical coastal zone.

    Science.gov (United States)

    Gillis, Lucy G; Ziegler, Alan D; van Oevelen, Dick; Cathalot, Cecile; Herman, Peter M J; Wolters, Jan W; Bouma, Tjeerd J

    2014-01-01

    Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be

  9. Agglomeration in the European automobile supplier industry

    OpenAIRE

    Klier, Thomas; McMillen, Dan

    2013-01-01

    Motor vehicle and motor vehicle parts production plants tend to exhibit a strong degree of agglomeration. This paper estimates a spatial model utilizing detailed plant-level data that is pooled across seven countries in Europe. The paper makes several contributions. First, we assemble a set of nearly 1,800 European plant locations of the largest motor vehicle parts suppliers, as well as the location of all light vehicle assembly plants operational in 2010. Second, we obtain detailed spatial d...

  10. Agglomeration Premium and Trading Activity of Firms

    OpenAIRE

    Gabor Bekes; Peter Harasztosi

    2010-01-01

    Firms may benefit from proximity to each other due to the existence of several externalities. The productivity premia of firms located in agglomerated regions an be attributed to savings and gains from external economies. However, the capacity to absorb information may depend on activities of the firm, such as involvement in international trade. Importers, exporters and two-way traders are likely to employ a different bundle of resources and be organised differently so that they would appreci...

  11. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  12. Assessing Agglomeration Impacts in Auckland: Phase 2

    OpenAIRE

    Williamson, John; Paling, Richard; Staheli, Ramon; Waite, David

    2008-01-01

    Agglomeration effects, or the productivity benefits that stem from high employment densities, are being achieved in Auckland's central business district (CBD). This provides support for Auckland's economic transformation. However, questions remain as to the nature of these effects, and whether other factors may help to explain the CBD's observed productivity premium. Using 2001 census area unit data, this paper examines to what extent the CBD's productivity advantages can be explained by sect...

  13. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    Science.gov (United States)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these

  14. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  15. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.

    Science.gov (United States)

    Dzwinel, Witold; Yuen, David A

    2002-03-15

    The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex

  16. Two-stage agglomeration of fine-grained herbal nettle waste

    Science.gov (United States)

    Obidziński, Sławomir; Joka, Magdalena; Fijoł, Olga

    2017-10-01

    This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.

  17. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    Science.gov (United States)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction

  18. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    International Nuclear Information System (INIS)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; Mccann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M.V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Highlights: • Ilmenite-based oxygen carriers were developed for packed-bed chemical looping. • Addition of Mn_2O_3 increased mechanical strength and microstructure of the carriers. • Oxygen carriers were able to withstand creep and thermal cycling up to 1200 °C. • Ilmenite-based granules are a promising shape for packed-bed reactor conditions. - Abstract: Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO_2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance. It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn_2O_3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

  19. Nearshore dynamics of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  20. The soundscape dynamics of human agglomeration

    International Nuclear Information System (INIS)

    Ribeiro, Haroldo V; De Souza, Rodolfo T; Lenzi, Ervin K; Mendes, Renio S; Evangelista, Luiz R

    2011-01-01

    We report on a statistical analysis of the people agglomeration soundscape. Specifically, we investigate the normalized sound amplitudes and intensities that emerge from human collective meetings. Our findings support the existence of non-trivial dynamics characterized by heavy tail distributions in the sound amplitudes, long-range correlations in the sound intensity and non-exponential distributions in the return interval distributions. Additionally, motivated by the time-dependent behavior present in the volatility/variance series, we compare the observational data with those obtained from a minimalist autoregressive stochastic model, namely the generalized autoregressive conditional heteroskedastic process (the GARCH process), and find that there is good agreement.

  1. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  2. Utilization of coal ash from fluidized-bed combustion boilers as road base material; Sekitandaki ryudoso boiler kara no sekitanbai no robanzai to shite no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kozasa, K. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-03-01

    Coal ash from the fluidized bed boiler is evaluated for its properties as is, as solidified or granulated, and as the roadbed material. The coal ash tested in the experiment is a mixture of ash from the fluidized bed boiler bottom, ash from the cyclone separator, and ash from the bag filter. In the manufacture of solid or granulated bodies, coal ashes are kneaded in water whose amount puts the mixture near the plasticization limit, are pressed in a low-pressure press and made into solid bodies by a 15-hour curing in 60degC saturated steam, and the solid bodies are crushed into solid granules. A content release test is conducted about the release of dangerous substances, and road paving experiments are conducted to learn the workability and serviceability of the granulated material as a road paving material. A study of the experimental results discloses what is mentioned below. Coal ash containing 10-20vol% of CaO and 15vol% or less of unburnt carbon turns into a high-strength solid after curing in saturated steam whose temperature is not higher than 60degC. The granulated solid satisfies the standards that an upper subbase material is expected to satisfy. It also meets the environmental standards in a release content test for soil set forth by Environment Agency notification No.46. 8 refs., 8 figs., 4 tabs.

  3. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders

    NARCIS (Netherlands)

    Willemsz, T.A.; Hooijmaijers, R.; Rubingh, C.M.; Tran, T.N.; Frijlink, H.W.; Vromans, H.; Maarschalk, K.V.D.V.

    2012-01-01

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity.

  4. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    OpenAIRE

    Trojanowicz Karol; Wojcik Wlodzimierz

    2016-01-01

    Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of par...

  5. Aerosol mass deposition: the importance of gravitational agglomeration

    International Nuclear Information System (INIS)

    Bamford, G.J.; Ketchell, N.; Dunbar, I.H.

    1992-01-01

    Sedimentation, Brownian agglomeration and gravitational agglomeration timescales are mapped out for a set of simple systems. Analysis of these timescales has highlighted when and why gravitational agglomeration becomes the dominant factor determining overall mass deposition rates in hypothetical severe nuclear reactor accidents. This work was funded by the United Kingdom Department of Trade and Industry as part of the General Nuclear Safety Research Programme. (Author)

  6. Acid agglomeration heap leaching: present status, principle and applications

    International Nuclear Information System (INIS)

    Zeng Yijun

    2004-01-01

    For extracting valuable metal from clay-bearing acidic ores of poor permeability, agglomerated acid heap leaching appears to be the most effective method, whereas conventional leaching and general heap leaching bring about unsatisfactory recovery and poor economic returns. The present state of research work on acid agglomeration worldwide and its basic principle are discussed. The first commercial application employing acid agglomeration-heap leaching in China is also introduced

  7. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and

  8. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  9. Lateral and vertical channel movement and potential for bed-material movement on the Madison River downstream from Earthquake Lake, Montana

    Science.gov (United States)

    Chase, Katherine J.; McCarthy, Peter M.

    2012-01-01

    and to investigate the potential for bed material movement along the same reach. The purpose of this report is to present information about the lateral and vertical movement of the Madison River from 1970 to 2006 for a 1-mile reach downstream from Earthquake Lake and for Raynolds Pass Bridge, and to provide an analysis of the potential for bed-material movement so that MADTAC can evaluate the applicability of the previously determined threshold streamflow for initiation of damaging erosion. As part of this study channel cross sections originally surveyed by the USGS in 1971 were resurveyed in 2006. Incremental channel-movement distances were determined by comparing the stream centerlines from 14 aerial photographs taken between 1970 and 2006. Depths of channel incision and aggregation were determined by comparing the 2006 and 1971 cross-section and water-surface data. Particle sizes of bed and bank materials were measured in 2006 and 2008 using the pebble-count method and sieve analyses. A one-dimensional hydraulic-flow model (HEC-RAS) was used to calculate mean boundary-shear stresses for various streamflows; these calculated boundary-shear stresses were compared to calculated critical-shear stresses for the bed materials to determine the potential for bed-material movement. A comparison of lateral channel movement distances with annual peak streamflows shows that streamflows higher than the 3,500-ft3/s threshold were followed by lateral channel movement except from 1991 to 1992 and possibly from 1996 to 1997. However, it was not possible to discern whether the channel moved gradually or suddenly, or in response to one peak flow, to several peak flows, or to sustained flows. The channel moved between 2002 and 2005 even when streamflows were less than the threshold streamflow of 3,500 ft3/s. Comparisons of cross sections and aerial photographs show that the channel has moved laterally and incised and aggraded to varying degrees. The channel has developed meander bends

  10. Characterization of the pneumatic behavior of a novel spouted bed apparatus with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, O.; Heinrich, S.; Miteva, V.; Deen, N.G.; Kuipers, J.A.M.; Jacob, M.; Morl, L.

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Within this work the fluid dynamics of a novel spouted bed plant with two adjustable gas inlets is investigated. By analysis of

  11. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Bingqiao Yang

    2018-06-01

    Full Text Available In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10−5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough. Keywords: Hydrophobic agglomeration, Apatite fines, Agglomeration degree, Fractal dimension, Sodium oleate

  12. Coagulation of Agglomerates Consisting of Polydisperse Primary Particles.

    Science.gov (United States)

    Goudeli, E; Eggersdorfer, M L; Pratsinis, S E

    2016-09-13

    The ballistic agglomeration of polydisperse particles is investigated by an event-driven (ED) method and compared to the coagulation of spherical particles and agglomerates consisting of monodisperse primary particles (PPs). It is shown for the first time to our knowledge that increasing the width or polydispersity of the PP size distribution initially accelerates the coagulation rate of their agglomerates but delays the attainment of their asymptotic fractal-like structure and self-preserving size distribution (SPSD) without altering them, provided that sufficiently large numbers of PPs are employed. For example, the standard asymptotic mass fractal dimension, Df, of 1.91 is attained when clusters are formed containing, on average, about 15 monodisperse PPs, consistent with fractal theory and the literature. In contrast, when polydisperse PPs with a geometric standard deviation of 3 are employed, about 500 PPs are needed to attain that Df. Even though the same asymptotic Df and mass-mobility exponent, Dfm, are attained regardless of PP polydispersity, the asymptotic prefactors or lacunarities of Df and Dfm increase with PP polydispersity. For monodisperse PPs, the average agglomerate radius of gyration, rg, becomes larger than the mobility radius, rm, when agglomerates consist of more than 15 PPs. Increasing PP polydispersity increases that number of PPs similarly to the above for the attainment of the asymptotic Df or Dfm. The agglomeration kinetics are quantified by the overall collision frequency function. When the SPSD is attained, the collision frequency is independent of PP polydispersity. Accounting for the SPSD polydispersity in the overall agglomerate collision frequency is in good agreement with that frequency from detailed ED simulations once the SPSD is reached. Most importantly, the coagulation of agglomerates is described well by a monodisperse model for agglomerate and PP sizes, whereas the detailed agglomerate size distribution can be obtained by

  13. Fluidized-bed calcination of simulated commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    Freeby, W.A.

    1975-11-01

    Work is in progress at the Idaho Chemical Processing Plant to verify process flowsheets for converting simulated commercial high-level liquid wastes to granular solids using the fluidized-bed calcination process. Primary emphasis in the series of runs reported was to define flowsheets for calcining simulated Allied-General Nuclear Services (AGNS) waste and to evaluate product properties significant to calcination, solids storage, or post treatment. Pilot-plant studies using simulated high-level acid wastes representative of those to be produced by Nuclear Fuel Services, Inc. (NFS) are also included. Combined AGNS high-level and intermediate-level waste (0.26 M Na in blend) was successfully calcined when powdered iron was added (to result in a Na/Fe mole ratio of 1.0) to the feed to prevent particle agglomeration due to sodium nitrate. Long-term runs (approximately 100 hours) showed that calcination of the combined waste is practical. Concentrated AGNS waste containing sodium at concentrations less than 0.2 M were calcined successfully; concentrated waste containing 1.13 M Na calcined successfully when powdered iron was added to the feed to suppress sodium nitrate formation. Calcination of dilute AGNS waste by conventional fluid-bed techniques was unsuccessful due to the inability to control bed particle size--both particle size and bed level decreased. Fluid-bed solidification of AGNS dilute waste at conditions in which most of the calcined solids left the calciner vessel with the off-gas was successful. In such a concept, the steady-state composition of the bed material would be approximately 22 wt percent calcined solids deposited on inert particles. Calcination of simulated NFS acid waste indicated that solidification by the fluid-bed process is feasible

  14. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  15. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  16. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  17. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  18. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  19. Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media

    Directory of Open Access Journals (Sweden)

    Verónica Freyre-Fonseca

    2016-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NP are possible carcinogenic materials (2B-IARC and their toxicity depends on shape, size, and electrical charge of primary NP and on the system formed by NP media. The aim of this work was to characterize agglomerates of three TiO2 NP by evaluating their morphometry, stability, and zeta potential (ζ in liquid media and their changes with time. Sizes of agglomerates by dynamic light scattering (DLS resulted to be 10–50 times larger than those obtained by digital image analysis (DIA given the charged zone around particles. Fractal dimension (FD was highest for agglomerates of spheres and belts in F12K, and in E171 in FBS media. E171 and belts increased FD with time. At time zero, using water as dispersant FD was larger for agglomerates of spheres than for of E171. Belts suspended in water had the smallest values of circularity (Ci which was approximately unchanged with time. All dispersions had ζ values around −30 mV at physiological pH (7.4 and dispersions of NP in water and FBS showed maximum stability (Turbiscan Lab analysis. Results help in understanding the complex NP geometry-size-stability relationships when performing in vivo and in vitro environmental-toxicity works and help in supporting decisions on the usage of TiO2 NP.

  20. Primary particles and their agglomerate formation as modifying risk factors of nonfibrous nanosized dust.

    Science.gov (United States)

    Schneider, J; Walter, D; Brückel, B; Rödelsperger, K

    2013-01-01

    The incidence of certain cancers correlates with the number of dust particles in the air. Nanosized particles differ from coarser particles by their increasing tendency to form agglomerates. The dissociation of biodurable agglomerates after deposition in the alveolar region resulted in a higher toxic potential. Biodurable dusts in the urban and workplace environment were analyzed to determine an effect-relevant exposure parameter. The characterization of the dusts relating to their number of primary particles (P(p)) and agglomerates and aggregates (A + A) was performed by electron microscopy. Diesel soot, toner material, and seven further dust samples in the workplace environment are composed of high numbers of nanosized primary particles (agglomerates. Primary particles of rock, kaoline, and seven further dusts sampled in the workplace are not nanosized. In a multivariate analysis that predicted lung tumor risk, the mass, volume, and numbers of A + A and P(p) per milligram dust were shown to be relevant parameters. Dose-response relationships revealed an increased tumor risk in rats with higher numbers of P(p) in nanosized dust, which occurs unintentionally in the environment.

  1. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.

    Science.gov (United States)

    Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey

    2011-10-25

    Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results

  2. Mobility and settling rate of agglomerates of polydisperse nanoparticles

    Science.gov (United States)

    Spyrogianni, Anastasia; Karadima, Katerina S.; Goudeli, Eirini; Mavrantzas, Vlasis G.; Pratsinis, Sotiris E.

    2018-02-01

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=(1/-{ρf/ρp})g 3 π μ m/dm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs

  3. Urban Agglomerations in Regional Development: Theoretical, Methodological and Applied Aspects

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Shmidt

    2016-09-01

    Full Text Available The article focuses on the analysis of the major process of modern socio-economic development, such as the functioning of urban agglomerations. A short background of the economic literature on this phenomenon is given. There are the traditional (the concentration of urban types of activities, the grouping of urban settlements by the intensive production and labour communications and modern (cluster theories, theories of network society conceptions. Two methodological principles of studying the agglomeration are emphasized: the principle of the unity of the spatial concentration of economic activity and the principle of compact living of the population. The positive and negative effects of agglomeration in the economic and social spheres are studied. Therefore, it is concluded that the agglomeration is helpful in the case when it brings the agglomerative economy (the positive benefits from it exceed the additional costs. A methodology for examination the urban agglomeration and its role in the regional development is offered. The approbation of this methodology on the example of Chelyabinsk and Chelyabinsk region has allowed to carry out the comparative analysis of the regional centre and the whole region by the main socio-economic indexes under static and dynamic conditions, to draw the conclusions on a position of the city and the region based on such socio-economic indexes as an average monthly nominal accrued wage, the cost of fixed assets, the investments into fixed capital, new housing supply, a retail turnover, the volume of self-produced shipped goods, the works and services performed in the region. In the study, the analysis of a launching site of the Chelyabinsk agglomeration is carried out. It has revealed the following main characteristics of the core of the agglomeration in Chelyabinsk (structure feature, population, level of centralization of the core as well as the Chelyabinsk agglomeration in general (coefficient of agglomeration

  4. Mobility and settling rate of agglomerates of polydisperse nanoparticles.

    Science.gov (United States)

    Spyrogianni, Anastasia; Karadima, Katerina S; Goudeli, Eirini; Mavrantzas, Vlasis G; Pratsinis, Sotiris E

    2018-02-14

    Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO 2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter d m and is compared with that from scaling laws for fractal-like agglomerates. The ratio d m /d g of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant d m and mean d p , the agglomerate settling rate, u s , increases with increasing PP geometric standard deviation σ p,g (polydispersity). A linear relationship between u s and agglomerate mass to d m ratio, m/d m , is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the u s of agglomerates consisting of polydisperse PPs is then derived, u s =1-ρ f ρ p g3πμmd m (ρ f is the density of the fluid, ρ p is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of

  5. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance of transp......Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  6. Study on the agglomeration kinetics of uranium peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.; Mojica Rodriguez, L.A. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Process Department, 17171, Bagnols-sur-Ceze 30207 (France); Muhr, H.; Plasari, E. [Reaction and Process Engineering Laboratory, CNRS, University of Lorraine. 1 rue Grandville, BP 20451, Nancy 54001 (France); Auger, F. [Areva Mines/SEPA. 2 route de Lavaugrasse, Bessines-sur-Gartempe 87250 (France)

    2016-07-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  7. Study on the agglomeration kinetics of uranium peroxide

    International Nuclear Information System (INIS)

    Bertrand, M.; Mojica Rodriguez, L.A.; Muhr, H.; Plasari, E.; Auger, F.

    2016-01-01

    Considering the previous study dealing with thermodynamic and kinetic phenomena (nucleation and crystal growth) during the uranium peroxide precipitation, this work focuses on the agglomeration mechanism. It provides the results obtained from the experiments carried out in a mixed suspension - mixed product removal (MSMPR) mixer operating at steady state. The influence of the operating parameters on the uranium peroxide agglomerates was studied in order to identify the agglomeration kernel. The method is based on the resolution of the population balance equation using the method of moments and the experimental particle size distributions. The results lead to a size-independent kernel directly proportional to the crystal growth rate. Under the stirring conditions studied, the agglomeration appears to be significantly reduced by mixing which results in a kernel inversely proportional to the average shear rate. The agglomeration kinetic law obtained in this study will be used for the process modelling in a further study. (authors)

  8. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloridetalc agglomerates prepared by crystallo-co-agglomeration.

    Science.gov (United States)

    Jadhav, Namdeo; Pawar, Atmaram; Paradkar, Anant

    2010-03-01

    The objective of the investigation was to study the effect of bromhexine hydrochloride (BXH) content and agglomerate size on mechanical, compressional and drug release properties of agglomerates prepared by crystallo-co-agglomeration (CCA). Studies on optimized batches of agglomerates (BXT1 and BXT2) prepared by CCA have showed adequate sphericity and strength required for efficient tabletting. Trend of strength reduction with a decrease in the size of agglomerates was noted for both batches, irrespective of drug loading. However, an increase in mean yield pressure (14.189 to 19.481) with an increase in size was observed for BXT2 having BXH-talc (1:15.7). Surprisingly, improvement in tensile strength was demonstrated by compacts prepared from BXT2, due to high BXH load, whereas BXT1, having a low amount of BXH (BXH-talc, 1:24), showed low tensile strength. Consequently, increased tensile strength was reflected in extended drug release from BXT2 compacts (Higuchi model, R(2) = 0.9506 to 0.9981). Thus, it can be concluded that interparticulate bridges formed by BXH and agglomerate size affect their mechanical, compressional and drug release properties.

  9. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available medium beneficiation using a fluidized bed was investigated. Bed materials of sand, magnetite and ilmenite were used in a laboratory sized cylindrical fluidized bed. The materials were individually tested, as were mixes of sand and heavy minerals. Coal...

  10. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Impregnation/Agglomeration Laboratory Tests of Heavy Fuel from Prestige to Improve Its Manageability and Removal from Seawater Surface. (Physical Behaviour of Fuel Agglomates)

    International Nuclear Information System (INIS)

    Garcia Frutos, F. J.; Rodriguez, V.; Otero, J.

    2002-01-01

    The handling and removal problems showed by heavy fuel floating in seawater could be improved or solved by using materials that agglomerate it. These materials must fulfill the following conditions: be inert materials in marine environment, the agglomerated fuel/material should float and its application and removal should be done using simple technologies. Based on these requirements, clay minerals, pine chips, mineral coal and charcoal were selected. The preliminary/results on impregnation/agglomeration with the materials mentioned above of heavy fuel from Prestige at lab scale are presented in this paper. The results have shown that only hydrophobic materials, such as mineral coal and charcoal, are able to agglomerate with fuel, which is also a hydrophobic substance. Whereas the agglomerates fuel/mineral coal sink, the agglomerates fuel/charcoal keep floating on water surface. It can be concluded that the addition of charcoal on dispersed fuel in seawater could improve its handling and removal. In this sense, pilot scale and eventually controlled in situ tests to study the feasibility of the proposed solution should be performed. (Author) 2 refs

  12. Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

    Science.gov (United States)

    Marquis, G. A.; Roy, A. G.

    2012-02-01

    This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.

  13. Evaluating the effects of bedding materials and elevated platforms on contact dermatitis and plumage cleanliness of commercial broilers and on litter condition in broiler houses.

    Science.gov (United States)

    Kaukonen, E; Norring, M; Valros, A

    2017-10-01

    1. Experiment 1, comparing wood shavings and ground straw bedding with peat, was performed on 7 broiler farms over two consecutive batches during the winter season. Experiment 2, assessing the effect of elevated (30 cm) platforms, was conducted in three farms replicated with 6 consecutive batches. 2. Footpad lesions were inspected at slaughter following the Welfare Quality® (WQ) assessment and official programme. Hock lesions, plumage cleanliness and litter condition were assessed using the WQ assessment. Litter height, pH, moisture and ammonia were determined. 3. Footpad condition on wood shavings appeared to be worse compared with peat using both methods of assessment and was accompanied by inferior hock skin health. WQ assessment resulted in poorer footpad and hock skin condition on ground straw compared with peat. Farms differed in footpad and hock skin condition. Footpad and hock lesions were not affected by platform treatment. Peat appeared more friable than ground straw. The initial pH of wood shavings was higher and moisture was lower than in peat, but at the end of production period there were no differences. Ground straw exhibited higher initial and lower end pH, and was drier in the beginning than peat. Litter condition and quality were not affected by platform treatment. 4. This study provides new knowledge about the applicability of peat as broiler bedding and shows no negative effects of elevated platforms on litter condition or the occurrence of contact dermatitis in commercial environments. The results suggest a complicated relationship between litter condition, moisture and contact dermatitis. Furthermore, it is concluded that the farmer's ability to manage litter conditions is important, regardless of the chosen litter material. Peat bedding was beneficial for footpad and hock skin health compared with wood shavings and ground straw.

  14. Operational source receptor calculations for large agglomerations

    Science.gov (United States)

    Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael

    2016-04-01

    For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission

  15. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    Science.gov (United States)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  16. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  17. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  18. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Miyazawa, Tomohisa; Ito, Shin-ichi; Kunimori, Kimio; Koyama, Shuntarou; Tomishige, Keiichi

    2004-01-01

    The gasification of cedar wood in the presence of Rh/CeO 2 /SiO 2 has been conducted in the laboratory scale fluidized bed reactor using air as a gasifying agent at low temperatures (823-973 K) in order to produce high-quality fuel gas for gas turbine for power generation. The performance of the Rh/CeO 2 /SiO 2 catalyst has been compared with conventional catalysts such as commercial steam reforming catalyst G-91, dolomite and noncatalyst systems by measurements of the cold gas efficiency, tar concentration, carbon conversion to gas and gas composition. The tar concentration was completely negligible in the Rh/CeO 2 /SiO 2 -catalyzed product gas whereas it was about 30, 113, and 139 g/m 3 in G-91, dolomite and noncatalyzed product gas, respectively. Since the carbon conversion to useful gas such as CO, H 2 , and CH 4 are much higher on Rh/CeO 2 /SiO 2 catalyst than others at 873 K, the cold gas efficiency is much higher (71%) in this case than others. The hydrogen content in the product gas is much higher (>24 vol%) than the specified level (>10 vol%) for efficient combustion in the gas turbine engine. The char and coke formation is also very low on Rh/CeO 2 /SiO 2 catalyst than on the conventional catalysts. Although the catalyst surface area was slightly decreased after using the same catalyst in at least 20 experiments, the deactivation problem was not severe

  19. Radioisotope studies on the paradox in dispersion and agglomeration of sewage greases discharged from ocean outfalls

    International Nuclear Information System (INIS)

    Davison, A.; Easy, J.F.; Seatonberry, B.W.

    1981-04-01

    Experiments have been undertaken in the ocean off Sydney, Australia to monitor the movement and the dispersion of sewage solids. These solids were labelled with a radioisotope, gold-198 prior to ocean discharge. The labelled material was followed at sea using submersible scintillation detectors. Lateral and vertical dispersion coefficients were determined. The experiments showed that under some conditions the labelled sewage grease dispersed and under others the grease agglomerated. This variation is explained in terms of non-conservative processes

  20. Fragmentation and bond strength of airborne diesel soot agglomerates

    Directory of Open Access Journals (Sweden)

    Messerer Armin

    2008-06-01

    Full Text Available Abstract Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging" was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot.

  1. Fragmentation and bond strength of airborne diesel soot agglomerates

    Science.gov (United States)

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  2. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol

    2016-09-01

    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  3. The emissions of VOCs during co-combustion of coal with different waste materials in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; A. Gregorio; A. Garcia-Garcia; D. Boavida; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2004-06-01

    The combustion of different fuels gives rise to the formation of small but appreciable amounts of volatile organic compounds (VOCs). They basically result from incomplete combustion and their emissions have negative repercussions on health and on the environment in general. As their measurement is difficult, costly, and very time-consuming, very little is reported on the emissions of VOCs from combustion installations. In this study, various blends of two different coals with several wastes were burned in a pilot-scale fluidized bed combustor and measurements of VOCs at several locations along the combustor height as well as just before the stack were carried out. The results demonstrate that the parameters important for the formation of VOCs are temperature, excess air levels, and the effectiveness of the mixing of air with fuel. Furthermore, it was observed that coal was the principal source of VOCs, but the combustion of volatiles from fuels such as biomass, occurring in the freeboard, was important in reducing the emissions of VOCs to almost zero. 8 refs., 6 figs., 6 tabs.

  4. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  5. Formulation of cilostazol spherical agglomerates by crystallo-co-agglomeration technique and optimization using design of experimentation.

    Science.gov (United States)

    Deshkar, Sanjeevani Shekhar; Borde, Govind R; Kale, Rupali N; Waghmare, Balasaheb A; Thomas, Asha Biju

    2017-01-01

    Spherical agglomeration is one of the novel techniques for improvement of flow and dissolution properties of drugs. Cilostazol is a biopharmaceutics classification system Class II drug with poor solubility resulting in limited bioavailability. The present study aims at improving the solubility and dissolution of cilostazol by crystallo-co-agglomeration technique. Cilostazol agglomerates were prepared using various polymers with varying concentration of hydroxypropyl methylcellulose E 50 (HPMC E50), polyvinyl pyrrolidone K30 (PVP K30), and polyethylene glycol 6000. The influence of polymer concentration on spherical agglomerate formation was studied by 3 2 factorial design. Cilostazol agglomerates were evaluated for percent yield, mean particle size, drug content, aqueous solubility, and in vitro dissolution and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The agglomeration process resulted in optimized formulation, F3 with mean agglomerate size of 210.0 ± 0.56 μm, excellent flow properties, approximately 15-fold increase in solubility than pure cilostazol and complete drug release in 60 min. Process yield, agglomerate size, and drug release were affected by amount of PVP K 30 and HPMC E50. The presence of drug microcrystal was confirmed by SEM, whereas FTIR study indicated no chemical change. Increase in drug solubility was attributed to change of crystalline drug to amorphous form that is evident in DSC and XRD. Crystallo-co-agglomeration can be adopted as an important approach for increasing the solubility and dissolution of poorly soluble drug.

  6. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  7. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    International Nuclear Information System (INIS)

    Hill, S.R.

    2010-01-01

    . The unconfined compressive strength of samples from this testing, measured by a pocket penetrometer, infers that their shear strength may be between 120 kPa and 170 kPa (PNNL-16496). These short-duration hydrothermal tests were conducted at temperatures much greater than the temperature of the T Plant canyon cells (-7 C to 33 C); however, the strength results provide an initial bounding target for sludge stored for many years, and an upper range for simulants (042910-53451-TP02 Rev 1). Sampling and characterization activities conducted in 2009 have measured the total uranium content and speciation for sludge stored in Engineered Containers SCS-CON-220, -240, -250, and -260 (PNNL-19035). Based on on-going testing that has measured the shear strength of uranium samples containing varying uranium (IV) to uranium (VI) ratios and the characterization of the Engineered Containers SCS-CON-220, -240, -250, and -260, it is unlikely that agglomerates will form on a large scale in this sludge. The highest measured total uranium concentration in the Engineered Container SCS-CON-220 sludge is 35.2 wt% and only 4 wt% to 6 wt% (dry) in Engineered Containers SCS-CON -240, -250, and -260. The uranium concentrations in Engineered Containers SCS-CON-220, -240, -250, and -260 sludge are below the threshold for agglomerate formation. Settler sludge however is estimated to contain ∼ 80 wt% (dry) total uranium, which could lead to the formation of high strength agglomerates depending on the relative concentrations of U(IV) and U(VI) compounds. One of the chief concerns of the STP is sludge dry-out. Samples archived in PNNL hot cells have been known to dry out and form hard clods of material, which are then difficult to reconstitute (HNF-6705). In 1996, all but one of the samples archived at the 222-S Laboratory dried out. These samples were composed of sludge collected from the KE Basin floor and Weasel Pit. However, in the STP's current design plans for sludge stored in STSCs at T Plant

  8. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    HILL SR

    2010-06-10

    canister sludge. The unconfined compressive strength of samples from this testing, measured by a pocket penetrometer, infers that their shear strength may be between 120 kPa and 170 kPa (PNNL-16496). These short-duration hydrothermal tests were conducted at temperatures much greater than the temperature of the T Plant canyon cells (-7 C to 33 C); however, the strength results provide an initial bounding target for sludge stored for many years, and an upper range for simulants (042910-53451-TP02 Rev 1). Sampling and characterization activities conducted in 2009 have measured the total uranium content and speciation for sludge stored in Engineered Containers SCS-CON-220, -240, -250, and -260 (PNNL-19035). Based on on-going testing that has measured the shear strength of uranium samples containing varying uranium (IV) to uranium (VI) ratios and the characterization of the Engineered Containers SCS-CON-220, -240, -250, and -260, it is unlikely that agglomerates will form on a large scale in this sludge. The highest measured total uranium concentration in the Engineered Container SCS-CON-220 sludge is 35.2 wt% and only 4 wt% to 6 wt% (dry) in Engineered Containers SCS-CON -240, -250, and -260. The uranium concentrations in Engineered Containers SCS-CON-220, -240, -250, and -260 sludge are below the threshold for agglomerate formation. Settler sludge however is estimated to contain {approx} 80 wt% (dry) total uranium, which could lead to the formation of high strength agglomerates depending on the relative concentrations of U(IV) and U(VI) compounds. One of the chief concerns of the STP is sludge dry-out. Samples archived in PNNL hot cells have been known to dry out and form hard clods of material, which are then difficult to reconstitute (HNF-6705). In 1996, all but one of the samples archived at the 222-S Laboratory dried out. These samples were composed of sludge collected from the KE Basin floor and Weasel Pit. However, in the STP's current design plans for sludge

  9. Agglomeration economies in manufacturing industries: the case of Spain

    OpenAIRE

    Olga Alonso-Villar; José-María Chamorro-Rivas; Xulia González-Cerdeira

    2001-01-01

    This paper analyses the extent of geographical concentration of Spanish industry between 1993 and 1999, and study the agglomeration economies that could underlie that concentration. The results confirm that there is major geographic concentration in a number of industries with widely varying characteristics, including high-tech businesses and those linked to the provision of natural resources as well as traditional industries. The analysis of the scope of spillovers behind this agglomeration ...

  10. Industrial agglomeration and production costs in Norwegian salmon aquaculture

    OpenAIRE

    Tveterås, Ragnar

    2002-01-01

    During the last decade, empirical evidence of regional agglomeration economies has emerged for some industries. This paper argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries, such as aquaculture. Econometric analyses in this literature have primarily estimated rather restrictive production function specifications on aggregated industry data. Here, cost functions are estimated o...

  11. Effects of regional agglomeration of salmon : aquaculture on production costs

    OpenAIRE

    Tveterås, Ragnar

    2001-01-01

    During the last decade empirical evidence of regional agglomeration economies has emerged for some industries. This report argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries such as aquaculture. Econometric analyses in this literature have primarily estimated production functions on aggregated industry data. Here, cost functions are estimated on firm level observations of Norwegian salmon aquacu...

  12. Characterization of the geometrical properties of agglomerated aerosol particles

    International Nuclear Information System (INIS)

    Weber, A.P.

    1992-12-01

    A method for the absolute mass determination of agglomerated aerosol particles is presented. Based on this method it is possible to determine simultaneously and in situ mass, exposed surface and mobility diameter. From these measurements the fractal dimension of aerosol particles can be derived. For silver agglomerates produced by spark discharge it was found that they are bifractal. The fractal dimension was 3 in the free molecular regime and 1.9 in the transition regime. By variation of the gas mean free path it was shown that the region where the agglomerate structure changes from close-packed particle to low density agglomerates depends on the Knudsen number. In the free molecular regime the fractal dimension was not at all affected by any change of the generation conditions. Only sintering caused an increase in the density which was attributed to mass transport within the agglomerate. In the transition regime the fractal dimension remained constant with increasing monomer concentration and with increasing flow rate, but it increased with increasing pressure, increasing Ar:He ratio and with increasing sintering temperature. For sintering this effect was explained by the minimization of the surface free energy. It was found that the structure changing rate is proportional to the product of sintering temperature and residence time in the sintering oven. By carefully adjusting the temperature it is possible to produce agglomerates of a well defined structure. In desorption experiments of 136 I from silver and carbon agglomerates it could be shown that the desorption behavior is different. It was found that the desorption enthalpy of iodine from graphite and silver particles were -142 kJ/mol and -184 kJ/mol, respectively. Moreover, it was demonstrated that the 136 I attachment to particles is different for silver agglomerates with the same mobility, but different structures. (author) 41 figs., refs

  13. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  14. Business agglomeration in tourist districts and hotel performance

    OpenAIRE

    Marco-Lajara, Bartolomé; Claver Cortés, Enrique; Úbeda García, Mercedes

    2014-01-01

    Purpose – The present paper aims to analyze how the performance of hotels located on the Spanish Mediterranean coast (peninsular and Balearic) and Canary coast is affected by the degree of business agglomeration in tourist districts. If agglomeration affects hotels positively, then the externalities generated in tourist districts will be relevant when locating an establishment. Otherwise, the reason why hotels group together geographically would be more related to the suitability of beaches a...

  15. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  16. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  17. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  18. Agglomeration Control during Ultrasonic Crystallization of an Active Pharmaceutical Ingredient

    Directory of Open Access Journals (Sweden)

    Bjorn Gielen

    2017-02-01

    Full Text Available Application of ultrasound during crystallization can efficiently inhibit agglomeration. However, the mechanism is unclear and sonication is usually enabled throughout the entire process, which increases the energy demand. Additionally, improper operation results in significant crystal damage. Therefore, the present work addresses these issues by identifying the stage in which sonication impacts agglomeration without eroding the crystals. This study was performed using a commercially available API that showed a high tendency to agglomerate during seeded crystallization. The crystallization progress was monitored using process analytical tools (PAT, including focus beam reflectance measurements (FBRM to track to crystal size and number and Fourier transform infrared spectroscopy (FTIR to quantify the supersaturation level. These tools provided insight in the mechanism by which ultrasound inhibits agglomeration. A combination of improved micromixing, fast crystal formation which accelerates depletion of the supersaturation and a higher collision frequency prevent crystal cementation to occur. The use of ultrasound as a post-treatment can break some of the agglomerates, but resulted in fractured crystals. Alternatively, sonication during the initial seeding stage could assist in generating nuclei and prevent agglomeration, provided that ultrasound was enabled until complete desupersaturation at the seeding temperature. FTIR and FBRM can be used to determine this end point.

  19. Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions

    International Nuclear Information System (INIS)

    Ninduangdee, Pichet; Kuprianov, Vladimir I.

    2014-01-01

    Highlights: • Safe burning of palm kernel shell is achievable in a FBC using alumina as the bed material. • Thermogravimetric analysis of the shell with different particle sizes is performed. • Optimal values of the shell particle size and excess air lead to the minimum emission costs. • Combustion efficiency of 99.4–99.7% is achievable when operated under optimal conditions. • CO and NO emissions of the FBC are at levels substantially below national emission limits. - Abstract: This work presents a study on the combustion of palm kernel shell (PKS) in a conical fluidized-bed combustor (FBC) using alumina sand as the bed material to prevent bed agglomeration. Prior to combustion experiments, a thermogravimetric analysis was performed in nitrogen and dry air to investigate the effects of biomass particle size on thermal and combustion reactivity of PKS. During the combustion tests, the biomass with different mean particle sizes (1.5 mm, 4.5 mm, 7.5 mm, and 10.5 mm) was burned at a 45 kg/h feed rate, while excess air was varied from 20% to 80%. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were recorded along the axial direction in the reactor as well as at stack. The experimental results indicated that the biomass particle size and excess air had substantial effects on the behavior of gaseous pollutants (CO, C x H y , and NO) in different regions inside the reactor, as well as on combustion efficiency and emissions of the conical FBC. The CO and C x H y emissions can be effectively controlled by decreasing the feedstock particle size and/or increasing excess air, whereas the NO emission can be mitigated using coarser biomass particles and/or lower excess air. A cost-based approach was applied to determine the optimal values of biomass particle size and excess air, ensuring minimum emission costs of burning the biomass in the proposed combustor. From the optimization analysis, the best combustion and emission performance of the

  20. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.

    Science.gov (United States)

    Schwyzer, Irène; Kaegi, Ralf; Sigg, Laura; Nowack, Bernd

    2013-08-01

    Carbon nanotubes (CNTs) are often processed in suspended form and therefore a release of CNT-suspensions into the aquatic environment is plausible. In this study, the behaviour of two physico-chemically very different CNT types in the presence of varying, environmentally relevant calcium-containing media was investigated, including the long-term colloidal stability and the sedimentary structures of settled CNTs. Calcium induced CNT flocculation, however, the stability of the CNTs in the medium did not monotonously decrease with increasing calcium concentration. At intermediate calcium concentrations (0.5-1.5 mM Ca) pre-dispersed CNTs were stabilized in humic acid medium to similar, temporarily even to higher degree than in the absence of calcium. Between pH 5 and 8 only at the highest pH an influence on CNT stability was observed by either promoting flocculation or stabilisation depending on the CNT type. Humic acid stabilized CNTs much better than fulvic acid. Generally, the colloidal stability of the long, thick CNTs with higher surface oxygen content was less affected by the media composition. An investigation of the settled CNT material using analytical electron microscopy revealed the presence of spheroidal, bundle-like and net like CNT-agglomerate structures. Calcium possibly acted as bridging agent linking CNTs in a network like manner, temporarily increasing the CNT concentrations stabilized in the supernatants due to the low density of these structures. With increasing settling time the CNTs formed a fluffy sediment layer at the bottom of the reaction vessels. Bundle-like CNT agglomerates were also observed within that layer of settled CNTs, possibly caused by calcium neutralizing the surface charges. Furthermore, the CNT suspensions contained spheroidal CNT agglomerates, most likely residues from the original dry powder that were not disaggregated. The analysis of settled CNT material is a novelty and illustrates CNT agglomerate structures possibly

  1. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 3. The Role of Tackiness and the Tack Stokes Number

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first and second parts of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 48, 1893 and 1905], agglomeration tendencies were studied for two types of coatings: sodium sulfate and PVA-TiO2. Results showed that the agglomeration tendency is always lower for the salt...... of agglomeration, similar to the salt coating process. With the PVA-TiO2, coating liquid layer thicknesses encountered during these fluid-bed coating processes, agglomeration seems to be governed primarily by liquid surface phenomena. A modification to the original viscous Stokes number is suggested in the present...... paper, which defines the Stokes number in terms of the work needed to reach maximum tack instead of the viscous dissipation energy. The new tack Stokes number correlates well with the observed levels of agglomeration and, as a promising feature, proportionality is observed between the agglomeration...

  2. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    Science.gov (United States)

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The processing of bed ashes of fluidized bed boilers to an applicable ingredient for building materials. Het bewerken van bedassen van wervelbedketels tot een geschikte grondstof voor toepassing in bouwprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, W

    1988-01-01

    A study- and test program has been carried out to determine in what way bed ashes of fluidized bed boilers can be processed to applicate the products in building products. The program consisted of selecting applicable ashes; physical-chemical research; slack lime, present in the ashes; grinding and wind-sifting of the ashes; evaluation of the quality of the acquired samples for application in calcium-silicate brick and in mortar; the making of flow-sheets of the processing in the potential demonstration projects. The used sample was a bed ash with active CaO content of 21%. Conclusions were stated and recommendations were made. 6 figs., 6 refs., 9 tabs., 2 app.

  4. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production.

    Science.gov (United States)

    Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2011-02-01

    This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    Science.gov (United States)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  6. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  7. The role of nanoparticulate agglomerates in TiO{sub 2} photocatalysis: degradation of oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Irina [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany); Mendive, Cecilia B., E-mail: cbmendive@mdp.edu.ar [Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Departamento de Química (Argentina); Bahnemann, Detlef [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany)

    2016-07-15

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO{sub 2} suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO{sub 2} agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO{sub 2} materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.Graphical AbstractFig.: Deaggregation of TiO{sub 2} particle agglomerates upon UV illumination.

  8. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  9. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Otanicar, Todd, E-mail: todd-otanicar@utulsa.edu; Hoyt, Jordan; Fahar, Maryam [University of Tulsa, Department of Mechanical Engineering (United States); Jiang, Xuchuan [University of New South Wales, School of Materials Science and Engineering (Australia); Taylor, Robert A. [University of New South Wales, School of Mechanical and Manufacturing Engineering (Australia)

    2013-11-15

    Nanoparticles have garnered significant interest because of their ability to enhance greatly the optical properties of the base fluid in which they are suspended. The optical properties of nanoparticles are sensitive to the materials used, as well as to the host medium. Most fluids exhibit refractive indices that are highly temperature-dependent, resulting in nanoparticle suspensions which also exhibit temperature-dependent optical properties. Previous work has shown that temperature increases result in decreased absorption in nanoparticle suspensions. Here, we expand previous work to include core–shell particles due to the potential spectral shifts in optical properties that will arise from the base fluid with temperature changes and the role of agglomeration under temperature cycling through both experimental and numerical efforts. Thermal cycling tests for silica and gold, the constituents of the core–shell nanoparticles used in this study, were tested to determine the extent of particle agglomeration resulting from up to 200 accelerated heating cycles. Optical properties were recorded after heating two base fluids (water and ethylene glycol) with multiple surfactants for silver nanospheres and silica–gold core–shell nanoparticles. It was found that the temperature results in a small increase in the transmittance for both particle types and a blue shift in the spectral transmittance for core–shell nanoparticles. Further, the coupling effect of temperature and agglomeration played a significant role in determining both the spectral properties—particularly the resulting transmittance—of the silver nanoparticle suspensions.

  10. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    Science.gov (United States)

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  11. [Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].

    Science.gov (United States)

    Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi

    2017-06-18

    With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.

  12. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    Science.gov (United States)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  13. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  14. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract

  15. Bacillus cereus in free-stall bedding.

    Science.gov (United States)

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the

  16. A stochastic pocket model for aluminum agglomeration in solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Gallier, Stany [SNPE Materiaux Energetiques, Vert le Petit (France)

    2009-04-15

    A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well-known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  18. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres

    Energy Technology Data Exchange (ETDEWEB)

    Arkar, C.; Medved, S. [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)

    2005-11-01

    With the integration of latent-heat thermal energy storage (LHTES) in building services, solar energy and the coldness of ambient air can be efficiently used to reduce the energy used for heating and cooling and to improve the level of living comfort. For this purpose, a cylindrical LHTES containing spheres filled with paraffin was developed. For the proper modelling of the LHTES thermal response the thermal properties of the phase change material (PCM) must be accurately known. This article presents the influence of the accuracy of thermal property data of the PCM on the result of the prediction of the LHTES's thermal response. A packed bed numerical model was adapted to take into account the non-uniformity of the PCM's porosity and the fluid's velocity. Both are the consequence of a small tube-to-sphere diameter ratio, which is characteristic of the developed LHTES. The numerical model can also take into account the PCM's temperature-dependent thermal properties. The temperature distribution of the latent heat of the paraffin (RT20) used in the experiment in the form of apparent heat capacity was determined using a differential scanning calorimeter (DSC) at different heating and cooling rates. A comparison of the numerical and experimental results confirmed our hypothesis relating to the important role that the PCM's thermal properties play, especially during slow running processes, which are characteristic for our application.

  19. Ruedersdorf cement works substitutes raw material and fuel by means of a circulating fluidised bed; Roh- und Brennstoffsubstitution mit einer Zirkulierenden Wirbelschicht im Zementwerk Ruedersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Scur, P. [Ruedersdorfer Zement GmbH, Ruedersdorf (Germany)

    1998-09-01

    The purpose of the present paper is to point out the great potential the cement industry holds for the utilisation of waste materials. There are meanwhile sufficient studies and measuring results to demonstrate the environmental acceptability of the processes and products involved. The solution found for Ruedersdorf cement kiln of using a circulating a fluidised bed for waste utilisation is a good example of the potential still available for conserving natural resources and landfill area. Efficient industrial applications of this kind should become a future mainstay of the waste industry. [Deutsch] In dem vorliegenden Beitrag sollte gezeigt werden, dass die Zementindustrie ueber ein hohes Potential zur thermischen und stofflichen Verwertung von Abfallstoffen verfuegt. Es liegen ausreichende Untersuchungen und konkrete Messergebnisse vor, mit denen die Umweltvertraeglichkeit von Prozess und Produkt nachgewiesen werden kann. Die Loesung zur Abfallverwertung an der Ruedersdorfer Zementofenanlage mit Hilfe einer Zirkulierenden Wirbelschicht ist ein Beispiel fuer die Reserven zur Schonung natuerlicher Ressourcen und zur Einsparung von Deponieraeumen. Derartige sinnvolle industrielle Einsatzmoeglichkeiten sollten ein wichtiges Standbein fuer die zukuenftige Abfallwirtschaft sein. (orig.)

  20. The optimal design of the bed structure of bedstand based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Wang, Song

    2017-12-01

    Hydraulic transmission bedstand is one kind of the most commonly used in engineering machinery companies, and the bed structure is the most important part. Based on the original hydraulic transmission bedstand bed structure and the CAE technology, the original bed structure is improved. The optimized bed greatly saves the material of the production bed and improves the seismic performance of the bed. In the end, the performance of the optimized bed was compared with the original bed.

  1. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity.

    Science.gov (United States)

    Cohen, Joel M; Beltran-Huarac, Juan; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-04-01

    Typical in vitro assays used for high throughput toxicological screening and measuring nano-bio interactions are conducted by pipetting suspensions of engineered nanomaterials (ENMs) dispersed in nutrient-rich culture media directly onto cells. In order to achieve fairly monodisperse and stable suspensions of small agglomerates, ultrasonic energy is usually applied to break apart large agglomerates that can form upon suspension in liquid. Lack of standardized protocols and methods for delivering sonication energy can introduce variability in the ENM suspension properties ( e.g . agglomerate size, polydispersity, suspension stability over time), and holds significant implications for in vitro dosimetry, toxicity, and other nano-bio interactions. Careful assessment of particle transformations during dispersion preparation and sonication is therefore critical for accurate interpretation of in vitro toxicity studies. In this short communication, the difficulties of preparing stable suspensions of rapidly settling ENMs are presented. Furthermore, methods to optimize the delivery of the critical sonication energy required to break large agglomerates and prepare stable, fairly monodispersed suspensions of fast settling ENMs are presented. A methodology for the efficient delivery of sonication energy in a discrete manner is presented and validated using various rapidly agglomerating and settling ENMs. The implications of continuous vs. discrete sonication on average hydrodynamic diameter, and polydispersity was also assessed for both fast and slow settling ENMs. For the rapidly agglomerating and settling ENMs (Ag15%/SiO 2 , Ag and CeO 2 ), the proposed discrete sonication achieved a significant reduction in the agglomerate diameter and polydispersity. In contrast, the relatively slow agglomerating and settling Fe 2 O 3 suspension did not exhibit statistically significant differences in average hydrodynamic diameter or polydispersity between the continuous and discrete

  2. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    Science.gov (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    a visual indicator of the formation of gold clusters on the SiO2 . The glass would make observing a color change in the gold film easier later in the...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A fabrication process for creating a silicon dioxide ( SiO2 ) light-trapping structure as part of...even distribution of irregular agglomerates, also known as “complete islanding”. By using these gold agglomerations as a metal mask, the SiO2 can be

  4. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  5. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Serata, S.; Milnor, S.W.

    1979-01-01

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  6. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I., E-mail: lorite@physik.uni-leipzig.de [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049, Madrid (Spain); Division of Superconductivity and Magnetism, Faculty of Physics and Earth Sciences, Linnestrasse 5, D-04103 Leipzig (Germany); Romero, J. J.; Fernandez, J. F. [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049, Madrid (Spain)

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

  7. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J. J.; Fernandez, J. F.

    2015-01-01

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error

  8. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    Science.gov (United States)

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry.

  9. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  10. Agglomeration of dust in convective clouds initialized by nuclear bursts

    Science.gov (United States)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  11. A multipurpose shopping trip model to assess retail agglomeration effects

    NARCIS (Netherlands)

    Arentze, T.A.; Oppewal, H.; Timmermans, H.J.P.

    2005-01-01

    Multipurpose shopping is a prominent and relevant feature of shopping behavior. However, no methodology is available to assess empirically how the demand for multipurpose shopping depends on retail agglomeration or, in general, the characteristics of retail supply, such as the numbers and types of

  12. Quantitative characterization of nanoparticle agglomeration within biological media

    International Nuclear Information System (INIS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-01-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  13. Experimental studies of the gravitational agglomeration of aerosols. Pt. 2

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Longley, K.A.; Mitchell, J.P.; Ketchell, N.

    1990-12-01

    Experiments have been performed to investigate the influence of gravitational agglomeration as an aerosol depletion process in a small containment vessel. The resulting data will aid in the development of computer codes that describe aerosol transport processes following severe reactor accidents. (author)

  14. Agglomeration and Deposition Behaviour of Solid Recovered Fuel

    DEFF Research Database (Denmark)

    Pedersen, Morten Nedergaard; Jensen, Peter Arendt; Hjuler, Klaus

    2016-01-01

    formation, or accumulation of impurities. The combustion of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), wood, and SRF were studied in a rotary drum furnace. The combustion was recorded on a camera (60 frames per second), so that any agglomeration or deposition of fuel or ash...

  15. Knowledge Externalities, Agglomeration Economies, and Employment Growth in Dutch Cities

    NARCIS (Netherlands)

    van Soest, D.P.; Gerking, S.D.; van Oort, F.G.

    2002-01-01

    This paper extends the work of Glaeser et al.(1992) by looking at effects of agglomeration economies on employment growth in Dutch city-industries and in very small (postal) zip code-industries in the Dutch province of South-Holland. At both levels of geographic detail, findings are broadly

  16. Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, N. [Renewable Energy Technology Center (CETER), ' ' Jose Antonio Echeverria' ' Polytechnical University, Calle 127 s/n, CP 19390, Apdo. 6028, Habana 6 Marianao, Ciudad de La Habana (Cuba); Montalvo, S. [Department of Chemical Engineering, Santiago de Chile University, Ave. Lib. Bernardo O' Higgins 3363, Santiago de Chile (Chile); Borja, R.; Travieso, L.; Raposo, F. [Instituto de la Grasa (CSIC), Avenida Padre Garcia Tejero 4, 41012 Sevilla (Spain); Guerrero, L. [Department of Chemical, Biotechnological and Environmental Processes, Federico Santa Maria Technical University, Casilla 110-V, Valparaiso (Chile); Sanchez, E.; Colmenarejo, M.F. [Centro de Ciencias Medioambientales (CSIC), C/Serrano, 115-Duplicado, 28006 Madrid (Spain); Cortes, I. [Environment Nacional Center, Chile University, Ave. Larrain 9975, La Reina, Santiago de Chile (Chile)

    2008-11-15

    The performance of two laboratory-scale fluidized bed reactors with natural zeolite as support material when treating high-strength distillery wastewater was assessed. Two sets of experiments were carried out. In the first experimental set, the influences of the organic loading rate (OLR), the fluidization level (FL) and the particle diameter of the natural zeolite (D{sub P}) were evaluated. This experimental set was carried out at an OLR from 2 to 5 g COD (chemical oxygen demand)/l d, at FL 20% and 40% and with D{sub P} in the range of 0.2-0.5 mm (reactor 1) and of 0.5-0.8 mm (reactor 2). It was demonstrated that OLR and FL had a slight influence on COD removal, whereas they had a strong influence on the methane production rate. The COD removal was slightly higher for the highest particle diameter used. The second experimental set was carried out at an OLR from 3 to 20 g COD/l d with 25% of fluidization and D{sub P} in the above-mentioned ranges for reactors 1 and 2. The performance of the two reactors was similar; no significant differences were found. The COD removal efficiency correlated with the OLR based on a straight line. COD removal efficiencies higher than 80% were achieved in both reactors without significant differences. In addition, a straight line equation with a slope of 1.74 d{sup -1} and an intercept on the y-axis equal to zero described satisfactorily the effect of the influent COD on the COD removal rate. It was also observed that both COD removal rate and methane production (Q{sub M}) increased linearly with the OLR, independently of the D{sub P} used. (author)

  17. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    Science.gov (United States)

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-22

    Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.

  19. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  20. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    OpenAIRE

    Kiil, Søren

    2017-01-01

    This work concerns the development of simulation tools for mapping of pigment dispersion. Focus has been on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates, and the full agglomerate particle size distribution was simulated. Data from previous experimental investigations with organic pigments were used for model validation.When the linear rate of agglomerate surface erosion was taken to be pr...

  1. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO2 Aggregates and Loosely Bound Agglomerates

    International Nuclear Information System (INIS)

    Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen

    2017-01-01

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO 2 dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s −1 for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s −1 , somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s −1 . Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  2. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  3. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  4. Solid fuel feed system for a fluidized bed

    Science.gov (United States)

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  5. Effect of agglomeration of silver nanoparticle on nanotoxicity depression

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Eunjoo; Yi, Jongheop [Seoul National University, Seoul (Korea, Republic of); Lee, Byung-Cheun; Choi, Kyunghee [National Institute of Environmental Research, Incheon (Korea, Republic of); Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2013-02-15

    Silver nanoparticles (AgNPs) are used commercially in a variety of applications, including textiles, cosmetics, spray cleaning agents, and metal products. AgNP itself, however, is classified as an environmental hazard by Environmental Protection Agency (EPA, USA) Nanotechnology White Paper, due to its toxic, persistent and bioaccumulative characteristics when exposed to the environment. We investigated the cumulative mortality and abnormalities in Japanese medaka (Oryziaslatipes) embryos after exposure to AgNPs. Free AgNPs in solution have a high activity with respect to biological interactions regarding blocking blood flow and distribution of AgNPs into the cells from head to tail of hatched O. latipes. Interestingly, the agglomeration of AgNPs (loss of nanosized characteristics) played an important role in the environmental toxicity. The present study demonstrated that when the AgNPs were exposed in the ecosystem and then formed agglomerates, nanotoxicity was reduced.

  6. Effect of agglomeration of silver nanoparticle on nanotoxicity depression

    International Nuclear Information System (INIS)

    Bae, Eunjoo; Yi, Jongheop; Lee, Byung-Cheun; Choi, Kyunghee; Kim, Younghun

    2013-01-01

    Silver nanoparticles (AgNPs) are used commercially in a variety of applications, including textiles, cosmetics, spray cleaning agents, and metal products. AgNP itself, however, is classified as an environmental hazard by Environmental Protection Agency (EPA, USA) Nanotechnology White Paper, due to its toxic, persistent and bioaccumulative characteristics when exposed to the environment. We investigated the cumulative mortality and abnormalities in Japanese medaka (Oryziaslatipes) embryos after exposure to AgNPs. Free AgNPs in solution have a high activity with respect to biological interactions regarding blocking blood flow and distribution of AgNPs into the cells from head to tail of hatched O. latipes. Interestingly, the agglomeration of AgNPs (loss of nanosized characteristics) played an important role in the environmental toxicity. The present study demonstrated that when the AgNPs were exposed in the ecosystem and then formed agglomerates, nanotoxicity was reduced

  7. Public Action and Innovationsupport Institutions in New Technological Agglomerations

    DEFF Research Database (Denmark)

    Borras, Susana; Bacaria, Jordi; Fernandez-Ribas, Andrea

    2002-01-01

    In all industrial and technological agglomerations several types of public and semi-public actors coexist. The same happens with the levels of government. Consequently, the daily reality of agglomerations is characterized by a wide diversity of innovation-support institutions more or less actively...... on the major efforts of different public actors in the territory since the 1980s, mainly through the establishment and enhancement of innovation-support institutions, and analyses succinctly their effects through selected successful and failed cases. Two normative statements are suggested from the analysis....... The first is that policy strategies should not try to be hegemonic. Instead, they should be elaborated seeking complementarity and coexistence. A second normative conclusion is the necessity of fostering the learning processes within and across institutions, by mobilizing collectively the assets of the area...

  8. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  9. Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-01-01

    Roč. 11, Aug (2016), s. 1-5, č. článku 367. ISSN 1556-276X Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * nanoparticles * colloids * agglomeration Subject RIV: BO - Biophysics Impact factor: 2.833, year: 2016

  10. Agglomeration, accessibility and industrial location: evidence from spanish municipalities

    OpenAIRE

    Alañón Pardo, Ángel; Arauzo Carod, Josep María

    2011-01-01

    This paper deals with the location decisions of manufacturing firms in Spain. We analyse how agglomeration economies and transport accessibility influence the location decisions of firms at municipality level and in three industries. The main empirical contributions of this paper are the econometric techniques used (spatial econometric models) and some of the explanatory variables (local gross domestic product, road accessibility, and the characteristics of firms in neighbouring municipalitie...

  11. Heterogeneous skills and homogeneous land: segmentation and agglomeration

    OpenAIRE

    Matthias Wrede

    2013-01-01

    This paper analyzes the impact of skill heterogeneity on regional patterns of production and housing in the presence of pecuniary externalities within a general-equilibrium framework assuming monopolistic competition at intermediate good markets. It shows that the interplay of heterogeneous skills and relatively homogeneous land demand triggers skill segmentation and agglomeration. The core region, being more attractive to high skilled workers, has a disproportionately large share of producti...

  12. The joint effect of demographic change on growth and agglomeration

    OpenAIRE

    Theresa Grafeneder-Weissteiner

    2011-01-01

    Recently, there has been wide interest in the "economics" of population aging. Demographic change has crucial consequences for economic behavior; it e.g. implies that consumption and investment decisions vary over the life-cycle. The latter has important implications for economic growth, whereas the former is decisive for the location of economic activity as emphasized in the New Economic Geography (NEG) literature. Both growth and agglomeration processes are, however, themselves interlinked,...

  13. Agglomeration Economies and the High-Tech Computer

    OpenAIRE

    Wallace, Nancy E.; Walls, Donald

    2004-01-01

    This paper considers the effects of agglomeration on the production decisions of firms in the high-tech computer cluster. We build upon an alternative definition of the high-tech computer cluster developed by Bardhan et al. (2003) and we exploit a new data source, the National Establishment Time-Series (NETS) Database, to analyze the spatial distribution of firms in this industry. An essential contribution of this research is the recognition that high-tech firms are heterogeneous collections ...

  14. Prediction of bed level variations in nonuniform sediment bed channel

    Indian Academy of Sciences (India)

    B R Andharia

    2018-04-12

    Apr 12, 2018 ... A fully-coupled 1D mobile-bed model (CAR-. ICHAR) was introduced ...... for sediment trap, water level sensor, tail gate operated by lever arm at .... materials were brought back to upstream to feed the same through sediment ...

  15. Oriënterend laboratoriumonderzoek naar ammoniakemissie uit bodempakketten voor vrijloopstallen = Laboratory study of ammonia emission from bedding materials of freestall dairy cattle houses

    NARCIS (Netherlands)

    Smits, M.C.J.; Dousma, F.; Kupers, G.C.C.; Blanken, K.

    2009-01-01

    In the Netherlands there is growing interest amongst dairy farmers in new housing systems in which animal welfare and health are improved. A promising system in this area is a loose housing system (without cubicles) where cows have a large area with a soft bedding where they can both being active

  16. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations

  17. Experimental studies of the gravitational agglomeration of aerosols. Pt. 1

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Mitchell, J.P.; Kissane, M.P.

    1990-06-01

    Experiments have been performed to determine the extent of gravitational agglomeration between micron-sized airborne particles suspended initially as two discrete log-normal number-size distributions. These aerosols were generated from commercially-available glass microspheres using a standard dry powder dispersing technique. They were injected directly into a sedimentation vessel and their settling behaviour was studied using a TSI Aerodynamic Particle Sizer (APS33B) to obtain particle number-size data, and a deposition sampler to obtain the corresponding mass-based data. Additionally, samples were collected on membrane filters to measure total aerosol mass concentrations, and a Faraday-cup aerosol electrometer was used to determine the net average electrostatic charge of the particles. While mass-based techniques were not sufficiently sensitive to detect gravitational agglomeration, the process could be monitored with reasonable success by number-based methods. APS33B measurements were made in the presence and absence of larger particles. No significant increase in the rate of removal of the small particles was observed. These studies therefore indicated that gravitational agglomeration is small or negligible under the specified test conditions. (author)

  18. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  19. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  20. Analysis on the Spatial-Temporal Dynamics of Financial Agglomeration with Markov Chain Approach in China

    Directory of Open Access Journals (Sweden)

    Weimin Chen

    2014-01-01

    Full Text Available The standard approach to studying financial industrial agglomeration is to construct measures of the degree of agglomeration within financial industry. But such measures often fail to exploit the convergence or divergence of financial agglomeration. In this paper, we apply Markov chain approach to diagnose the convergence of financial agglomeration in China based on the location quotient coefficients across the provincial regions over 1993–2011. The estimation of Markov transition probability matrix offers more detailed insights into the mechanics of financial agglomeration evolution process in China during the research period. The results show that the spatial evolution of financial agglomeration changes faster in the period of 2003–2011 than that in the period of 1993–2002. Furthermore, there exists a very uneven financial development patterns, but there is regional convergence for financial agglomeration in China.

  1. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  2. Mechanical properties of individual MgAl2O4 agglomerates and their effects on densification

    International Nuclear Information System (INIS)

    Rufner, Jorgen F.; Castro, Ricardo H.R.; Holland, Troy B.; Benthem, Klaus van

    2014-01-01

    The presence of agglomerates during nanopowder sintering can be problematic and can limit achievable final densities. Typically, the practical solution is to use high pressures to overcome agglomerate breakdown strengths to reach higher packing fractions. The strength of agglomerates is often difficult to determine and makes processing parameters challenging to optimize. In this work, we used in situ transmission electron microscopy nanoindentation experiments to assess the mechanical properties of individual MgAl 2 O 4 agglomerates under constant indenter head displacement rates. Electron microscopy revealed highly porous agglomerates with pores on both the micron and nanometric length scales. Individual agglomerate strength, at fracture, was calculated from compression tests with deformation behavior correlating well with previously reported modeling results. Macroscopic powder properties were also investigated using green-pressed pellets consolidated at pressures up to 910 MPa. The unexpectedly high strength is indicative of the role agglomerates play in MgAl 2 O 4 nanopowder densification

  3. Preparation and characterization of nano fluids: Influence of variables on its stability, agglomeration state and physical properties

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2014-01-01

    In recent years it has spread the use of suspensions containing nano metre sized particles, known as nano fluids, in many applications owing the good properties having nanocrystalline materials. One of the main advantages of using nano fluids is its high stability, which causes the particles do not settle over long periods of time. This stability depends on the preparation conditions such as pH, the presence of electrolytes or the solids content. Moreover, there are a number of physical properties which are influenced and altered by agglomeration of the particles. This article will analyze all the variables that affect agglomeration of the particles, nano fluids stability and properties from which it can obtain information on the state of suspension. It then lays out the different methods of dispersion of nanoparticles and their effectiveness. (Author)

  4. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Ruth, A. A., E-mail: a.ruth@ucc.ie [Physics Department and Environmental Research Institute, University College Cork, Cork (Ireland); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333-CA Leiden (Netherlands)

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles’ spectroscopic and optical properties with those of carbonaceous materials indicate a sp{sup 3}/sp{sup 2} hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  5. Oriënterend laboratoriumonderzoek naar ammoniakemissie uit bodempakketten voor vrijloopstallen = Laboratory study of ammonia emission from bedding materials of freestall dairy cattle houses

    OpenAIRE

    Smits, M.C.J.; Dousma, F.; Kupers, G.C.C.; Blanken, K.

    2009-01-01

    In the Netherlands there is growing interest amongst dairy farmers in new housing systems in which animal welfare and health are improved. A promising system in this area is a loose housing system (without cubicles) where cows have a large area with a soft bedding where they can both being active and rest, so called freestalls. Although these systems are already applied in the USA and Israel, little is known about the environmental impacts, and particularly the ammonia emission. The aim of th...

  6. Development and application of a process window for achieving high-quality coating in a fluidized bed coating process

    NARCIS (Netherlands)

    Laksmana, F.L.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van Der Voort Maarschalk, K.

    Next to the coating formulation, process conditions play important roles in determining coating quality. This study aims to develop an operational window that separates layering from agglomeration regimes and, furthermore, the one that leads to the best coating quality in a fluidized bed coater. The

  7. Investigation of melt agglomeration process with a hydrophobic binder in combination with sucrose stearate.

    Science.gov (United States)

    Heng, Paul Wan Sia; Wong, Tin Wui; Cheong, Wai See

    2003-08-01

    The melt agglomeration process of lactose powder with hydrogenated cottonseed oil (HCO) as the hydrophobic meltable binder was investigated by studying the physicochemical properties of molten HCO modified by sucrose stearates S170, S770 and S1570. The size, size distribution, micromeritic and adhesion properties of agglomerates as well as surface tension, contact angle, viscosity and specific volume of molten HCO, with and without sucrose stearates, were examined. The viscosity, specific volume and surface tension of molten HCO were found to be modified to varying extents by sucrose stearates which are available in different HLB values and melt properties. The growth of melt agglomerates was promoted predominantly by an increase in viscosity, an increase in specific volume or a decrease in surface tension of the molten binding liquid. The agglomerate growth propensity was higher with an increase in inter-particulate binding strength, agglomerate surface wetness and extent of agglomerate consolidation which enhanced the liquid migration from agglomerate core to periphery leading to an increased surface plasticity for coalescence. The inclusion of high concentrations of completely meltable sucrose stearate S170 greatly induced the growth of agglomerates through increased specific volume and viscosity of the molten binding liquid. On the other hand, the inclusion of incompletely meltable sucrose stearates S770 and S1570 promoted the agglomeration mainly via the reduction in surface tension of the molten binding liquid with declining agglomerate growth propensity at high sucrose stearate concentrations. In addition to being an agglomeration modifier, sucrose stearate demonstrated anti-adherent property in melt agglomeration process. The properties of molten HCO and melt agglomerates were dependent on the type and concentration of sucrose stearate added.

  8. Fluidised bed cereal cooking

    International Nuclear Information System (INIS)

    Jenkins, Simon Anthony

    2002-01-01

    comparison was made to photographic footage. Experimental data shows that starch conversion can be achieved in whole wheat grains at high temperatures in a fluidised bed without adding water. It also indicates that the material formed can be burnt, brittle and glassy. (author)

  9. Practice Hospital Bed Safety

    Science.gov (United States)

    ... Home For Consumers Consumer Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options ... It depends on the complexity of the bed." Safety Tips CDRH offers the following safety tips for ...

  10. Bed Bugs and Schools

    Science.gov (United States)

    Bed bugs have long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. They are successful hitchhikers, and can move from an infested site to furniture, bedding, baggage, boxes, and clothing.

  11. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  12. Life cycle assessment for emerging materials: case study of a garden bed constructed from lumber produced with three different copper treatments

    Science.gov (United States)

    Although important data and methodological challenges facing LCA and emerging materials exist, this LCA captures material and process changes that are important drivers of environmental impacts. LCA methods need to be amended to reflect properties of emerging materials that deter...

  13. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    Science.gov (United States)

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  14. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  15. Method of fungal mycelium treatment for metal retention by agglomeration

    International Nuclear Information System (INIS)

    Votapek, V.; Marval, E.; Stamberg, K.; Jilek, R.

    1980-01-01

    The mycelium of microorganisms in the native or the dry state is introduced by stirring into the dispersion medium of nonpolar organic solvents (toluene, xylene, chlorobenzene) forming an azeotropic mixture with water. The biomass agglomerates into granules by gradual addition of the solutions of polymerizable or polycondensable reinforcing components. The resulting granules are solidified by polymerization or polycondensation in the presence of a catalyst, eg., ferric chloride, ammonium chloride, and by heating to a temperature of 105 to 145 degC with simultaneous distillation of water. The reaction mixture is maintained at the said temperature for 0.25 to 4 hours. (J.P.)

  16. THE IMPACT OF TAXATION AND AGGLOMERATION ECONOMIESON FDI

    Directory of Open Access Journals (Sweden)

    Silvia Golem

    2013-07-01

    Full Text Available This paper aims at extending the empirical literature on foreign direct investment(FDI determinants by examining how FDI reacts to corporate tax rates andwhether this reaction is conditional on some other economic factors, such asagglomeration economies. To that end, we gather the relevant data on developedmarket economies and employ an appropriateeconometric technique (PooledMean Group- PMG estimator which allows for both dynamics and parameterheterogeneity to be included in the model. Our results suggest that both taxationand agglomeration economies play an important role in attracting FDI.

  17. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  18. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  19. A phenomenological model for improving understanding of the ammonium nitrate agglomeration process

    Directory of Open Access Journals (Sweden)

    Videla Leiva Alvaro

    2016-01-01

    Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.

  20. Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    2017-01-01

    The purpose of this work is to develop a mathematical model that can quantify the dispersion of pigments, with a focus on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates. The full agglomerate pa.......g., in the development of novel dispersion principles and for analysis of dispersion failures. The general applicability of the model, beyond the three pigments considered, needs to be confirmed....

  1. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    Science.gov (United States)

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  2. Incineration as a treatment option for shredder light fractions (SLF) by a stationary fluidised bed combustion; Untersuchungen zur Verbrennung von Shredderleichtfraktionen in einer stationaeren Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Gaston

    2011-07-15

    In this paper the suitability of the stationary fluidised bed combustion as a treatment option for shredder light fractions (SLF) is discussed. This SLF, SLF coarse grain and SLF generated in a further mechanical treatment were burned. The results show a strong change in grain size distribution of the bed material during the combustion the SLF and SLF-coarse fractions. The formation of agglomerates significantly impaired the fluidization. The main reason for this effect is the high content of alkali and alkaline earth metals in the SLF. During the incineration of SLF generated by further mechanical treatment the change in grain size distribution declines much more slowly. This results from the separation of hard plastics with higher calcium contents during further mechanical processing. The tests also showed a complete burnout and a significant enrichment of metals in the solid combustion residues (fabric filter ash bed ash, cyclone ash). These residues represent a recycling concentrate, which needs to be open in the future. (orig.)

  3. Fluidization bed coating of copper bars with epoxy powder

    OpenAIRE

    Soh, Chiaw Min

    2014-01-01

    Fluidized bed coating (FBC) is a process where preheated material is dipped into a flowing liquid bed of powder. Although FBC has existed for more than half a century, however there is little knowledge about the fluidized bed design that gives excellent fluidization quality as well as reducing powder entrainment. The objectives of this thesis are to investigate the effect of two different types of distributor with different pressure drop on powder coating, hydrodynamics of fluidized bed coati...

  4. Automated Manufacture of Fertilizing Agglomerates from Burnt Wood Ash

    Energy Technology Data Exchange (ETDEWEB)

    Svantesson, Thomas

    2002-12-01

    In Sweden, extensive research is conducted to find alternative sources of energy that should partly replace the electric power production from nuclear power. With the ambition to create a sustainable system for producing energy, the use of renewable energy is expected to grow further and biofuels are expected to account for a significant part of this increase. However, when biofuels are burned or gasified, ash appears as a by-product. In order to overcome the problems related to deposition in land fills, the idea is to transform the ashes into a product - agglomerates - that easily could be recycled back to the forest grounds; as a fertilizer, or as a tool to reduce the acidification in the forest soil at the spreading area. This work considers the control of a transformation process, which transforms wood ash produced at a district heating plant into fertilizing agglomerates. A robust machine, built to comply with the industrial requirements for continuous operation, has been developed and is controlled by an industrial control system in order to enable an automated manufacture.

  5. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  6. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    were in good quantitative agreement with experimental data. The only adjustable parameter used was an apparent rate constant for the linear agglomerate erosion rate. Model simulations, at selected values of time, for the full agglomerate particle size distribution were in good qualitative agreement...... distribution was simulated. Data from previous experimental investigations with organic pigments were used for model validation.When the linear rate of agglomerate surface erosion was taken to be proportional to the external agglomerate surface area, simulations of the volume-moment mean diameter over time...

  7. Fluidized bed volume reduction of diverse radwastes

    International Nuclear Information System (INIS)

    McFee, J.N.; McConnell, J.W.; Waddoups, D.A.; Gray, M.F.; Harwood, L.E.; Clayton, N.J.; Drown, D.C.

    1981-01-01

    Method and apparatus for a fluidized bed radwaste volume reduction system are claimed. Low level radioactive wastes, combustible solids, ion exchange resins and filter sludges, and liquids, emanating from a reactor facility are introduced separately through an integrated waste influent system into a common fluidized bed vessel where volume reduction either through incineration or calcination occurs. Addition of a substance to the ion exchange resin before incineration inhibits the formation of low-melting point materials which tend to form clinkers in the bed. Solid particles are scrubbed or otherwise removed from the gaseous effluent of the vessel in an off-gas system, before the cooled and cleaned off-gas is released to the atmosphere. Iodine is chemically or physically removed from the off-gas. Otherwise, the only egress materials from the volume reduction system are containerized dry solids and tramp material. The bed material used during each mode may be circulated, cleaned, stored and exchanged from within the bed vessel by use of a bed material handling system. An instrumentation and control system provides operator information, monitors performance characteristics, implements start up and shut down procedures, and initiates alarms and emergency procedures during abnormal conditions

  8. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  9. Evaluation of polymeric materials packed in fixed bed column for oil water remediation; Avaliacao de materiais polimericos empacotados em colunas de leito fixo para a remediacao de aguas oleosas

    Energy Technology Data Exchange (ETDEWEB)

    Queiros, Yure G.C.; Barros, Cintia Chagas; Oliveira, Roberta S.; Marques, Luiz R.S.; Cunha, Luciana; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: yuregomes@ima.ufrj.br, e-mail: elucas@ima.ufrj.br

    2007-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 50 ppm were prepared. Data obtained from eluted waters did not outweigh 10% of the TOG values of starting solutions in some blends of resins with a pretty good mechanical stability under the increase of pressure. Organoclay material showed a good retention performance, but has presented a mechanical instability too, compromising its use for larger amounts of wastewater. (author)

  10. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.

    Science.gov (United States)

    Phenrat, Tanapon; Kim, Hye-Jin; Fagerlund, Fritjof; Illangasekare, Tissa; Lowry, Gregory V

    2010-11-25

    Controlled emplacement of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) particles at high particle concentration (1-10 g/L) is needed for effective in situ subsurface remediation using NZVI. Deep bed filtration theory cannot be used to estimate the transport and deposition of concentrated polyelectrolyte-modified NZVI dispersions (>0.03 g/L) because particles agglomerate during transport which violates a fundamental assumption of the theory. Here we develop two empirical correlations for estimating the deposition and transport of concentrated polyelectrolyte-modified NZVI dispersions in saturated porous media when NZVI agglomeration in porous media is assumed to reach steady state quickly. The first correlation determines the apparent stable agglomerate size formed during NZVI transport in porous media for a fixed hydrogeochemical condition. The second correlation estimates the attachment efficiency (sticking coefficient) of the stable agglomerates. Both correlations are described using dimensionless numbers derived from parameters affecting deposition and agglomeration in porous media. The exponents for the dimensionless numbers are determined from statistical analysis of breakthrough data for polyelectrolyte-modified NZVI dispersions collected in laboratory scale column experiments for a range of ionic strength (1, 10, and 50mM Na(+) and 0.25, 1, and 1.25 mM Ca(2+)), approach velocity (0.8 to 55 × 10(-4)m/s), average collector sizes (d(50)=99 μm, 300 μm, and 880 μm), and polyelectrolyte surface modifier properties. Attachment efficiency depended on approach velocity and was inversely related to collector size, which is contrary to that predicted from classic filtration models. High ionic strength, the presence of divalent cations, lower extended adsorbed polyelectrolyte layer thickness, decreased approach velocity, and a larger collector size promoted NZVI agglomeration and deposition and thus limited its mobility in porous media. These effects

  11. Bed and bed-site reuse by western lowland gorillas (Gorilla g. gorilla) in Moukalaba-Doudou National Park, Gabon.

    Science.gov (United States)

    Iwata, Yuji; Ando, Chieko

    2007-01-01

    In this paper we describe bed (nest) and bed-site reuse by western lowland gorillas (Gorilla g. gorilla) in Moukalaba-Doudou National Park, south-eastern Gabon. During an eight-month study 44 bed sites and 506 beds were found. Among these, 38.6% of bed sites and 4.1% of beds were reused. We analyzed the monthly frequency of bed-site reuse in relation to rainfall, fruit abundance, and fruit consumption by the gorillas. The different frequency of bed-site reuse in the rainy and dry seasons was not significant. More bed-site reuse was observed during the fruiting season than during the non-fruiting season. Results from fecal analysis suggested that gorillas ate more fruit in the fruiting season than in the non-fruiting season. The frugivorous diet of western gorillas may possibly cause gorillas to stay in some areas and, consequently, reuse their bed sites. Reuse of bed sites by gorillas suggests their frequent return to an area where preferred fruit is readily available. A higher percentage of arboreal beds may also affect bed-site reuse, because of the shortage of bed material.

  12. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin

    2007-09-01

    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  13. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    This work investigates the prospect of reducing the concentrations of alkali chlorides in the flue gas by lowering the temperature in the bottom zone of a fluidized bed (FB) furnace below the often used 850 deg C. The directive of a retention time of at least two seconds above 850 deg C is fulfilled by the raise of the flue gas temperature that follows the combustion of unburned gases at the point of injection of secondary and tertiary air, above the bottom bed zone. The aim of the present experiments is to determine the dependency between the temperature and the amount of alkali metals leaving the bottom bed for some selected waste and biomass fuels. The results are intended for plant owners as well as boiler manufacturers. The experiments were performed in an FB-reactor, which was externally heated to specific temperatures between 550 and 850 deg C. The reactor is made of a quartz glass tube with an inner diameter of 60 mm and a length of 1.2 m. The fluidized bed rests upon a porous plate of sintered quartz. The bed material used was 180 gram purified sea sand with particle sizes between 0.1 and 0.3 mm. The fluidizing gas was a mixture of nitrogen and air, introduced in the bottom of the reactor by mass flow controllers. At the outlet of the reactor, the flue gas was divided between conventional gas analyzers and an ICP-MS instrument. The gas flow to the ICP-MS instrument was cooled before a slip stream was sucked out via a capillary to a nebulizer from which the sample gas was led to the ICP-MS instrument. The function of the nebulizer is normally to form an aerosol of liquids, but here it was used solely as a pump. In addition, a known flow of krypton was added into the nebulizer to be used as an internal standard. The novel technique to measure the amount of alkali metals on-line from a batch fired FB-reactor has been shown to work in practice and to provide interesting results, which so far is qualitative only. Further development and calibration work is

  14. Coating of Si3N4 fine particles with AlN by fluidized bed-CVD; Ryudoso CVD ho ni yoru Si3N4 biryushi no AlN hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Oyama, Y. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K.; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1996-03-10

    Agglomerates of 100-250 {mu}m consisting of Si3N4 primary particles of 0.76 {mu}m were made with a rotary vibrating sieve. Si3N4 fine particles were coated with AlN by gas phase reaction with AlCl3 and NH3 in some fluidized beds of the agglomerates. The cross sectional distribution of AlN in the agglomerate was measured by EPMA analysis. As a result, uniform deposition of AlN was obtained at a relatively low reaction temperature and low gas velocity. 4 refs., 3 figs.

  15. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  16. Method and apparatus for preventing agglomeration within fluid hydrocarbons

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1979-01-01

    This invention relates to a process for treating a fluid hydrocarbon fuel for retarding the agglomeration between particles thereof and for retarding the growth of bacteria and fungi therein. The process includes that steps of transporting a plurality of unit volumes of said fluid hydrocarbon fuel through an irradiating location and irradiating each unit of the plurality of unit volumes at the irradiating location with either neutron or gamma radiation. An apparatus for treating the fluid hydrocarbon fuels with the nuclear radiation also is provided. The apparatus includes a generally conical central irradiating cavity which is surrounded by a spiral outer irradiating cavity. The fluid hydrocarbon fuel is transported through the cavities while being irradiated by the nuclear radiation

  17. Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles

    International Nuclear Information System (INIS)

    Tuttle, R.F.; Loyalka, S.K.

    1982-12-01

    Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method

  18. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    International Nuclear Information System (INIS)

    Elzey, Sherrie; Grassian, Vicki H.

    2010-01-01

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  19. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Elzey, Sherrie; Grassian, Vicki H., E-mail: vicki-grassian@uiowa.ed [University of Iowa, Department of Chemical and Biochemical Engineering (United States)

    2010-06-15

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 {+-} 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  20. Humid storage conditions increase the dissolution rate of diazepam from solid dispersions prepared by melt agglomeration

    DEFF Research Database (Denmark)

    Jørgensen, Anna Cecilia; Torstenson, Anette Seo

    2008-01-01

    The purpose of this study is to investigate the effect of cooling mode and storage conditions on the dissolution rate of a solid dispersion prepared by melt agglomeration. The aim has been to relate this effect to the solid state properties of the agglomerates. The cooling mode had an effect on t...

  1. Theories of estimation of differentiation for regulation of social-economic development of the city agglomeration

    OpenAIRE

    Anikina, Yu; Litovchenko, V.

    2009-01-01

    Theories of estimation of differentiation of social-economic development of territorial units in city agglomeration are discussed in the article. Approbation of the given methods helped find out successfulness of the regulation of municipal development of administrative-territorial units in Krasnoyarsk agglomeration, set the goals of regional policy on peculiarities of development of the phenomenon of differentiation.

  2. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach

    NARCIS (Netherlands)

    Willemsz, Tofan A.; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W.; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-01-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbrnumber equals the ratio between the kinetic energy density

  3. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  4. Problems of Research, Projects and Mechanisms for Their Implementation in Chelyabinsk City Agglomeration

    Science.gov (United States)

    Bolshakov, V. V.

    2017-11-01

    The article analyzes the research and design methods of urban agglomerations in the context of the Chelyabinsk agglomeration from the point of view of correctness, objectivity and consistency of the results obtained. The completed and approved project of the Chelyabinsk agglomeration is analysed to provide architectural and planning solutions for sustainable social and economic development according to the theories that have been formed to date. The possibility of effectuation and implementation of the approved project of the Chelyabinsk agglomeration taking in account existing specific natural, historical and socio-economic factors characteristic for the territory under consideration is examined. The authors draw the conclusions the project of the Chelyabinsk agglomeration has been developed in line with the town-planning solutions that do not reflect modern approaches based on the competitive advantages of territories and do not form a space providing transition to a modernized and innovative economy. Specific town-planning decisions have a weak justification and an undeveloped methodology for pre-project analysis and methodology for designing urban agglomerations because of absence of a full study of the phenomenon of urban agglomeration and processes occurring in it today. It is necessary to continue research in the field of development of the Chelyabinsk agglomeration with the use of a logical and objective methodology to analyze the territory and design which can lead to the formation of an urban-planning information model that reflects all the system processes and allows for predicting project solutions.

  5. Multilevel approaches and the firm-agglomeration ambiguity in economic growth studies

    NARCIS (Netherlands)

    van Oort, F.G.|info:eu-repo/dai/nl/107712741; Burger, M.J.|info:eu-repo/dai/nl/371741092; Knoben, J.; Raspe, O.

    2012-01-01

    Empirical studies in spatial economics have shown that agglomeration economies may be a source of the uneven distribution of economic activities and economic growth across cities and regions. Both localization and urbanization economies are hypothesized to foster agglomeration and growth, but recent

  6. Multilevel approaches and the firm-agglomeration ambiguity in economic growth studies

    NARCIS (Netherlands)

    Oort, F.G. van; Burger, M.J.; Knoben, J.; Raspe, O.

    2012-01-01

    Empirical studies in spatial economics have shown that agglomeration economies may be a source of the uneven distribution of economic activities and economic growth across cities and regions. Both localization and urbanization economies are hypothesized to foster agglomeration and growth, but

  7. Performance differentials of agglomeration and strategic groups: a test of incubation and new venture strategy

    NARCIS (Netherlands)

    Amezcua, A.S.; Ratinho, Tiago; Jayamohan, P.

    2013-01-01

    Our paper investigates how nascent firms ‘performance is affected by strategic group membership and industrial agglomeration. Agglomeration is defined using geographical concentration while strategic groups are measured as incubated firms that belong to the industry most highly represented within an

  8. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  9. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.

    Science.gov (United States)

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Huck, Deborah; Makein, Lisa; Price, Robert

    2015-01-15

    The aim of the study was to investigate how the fine particle content of lactose carriers prepared with different types of lactose fines regulates dry powder inhaler (DPI) formulation performance of a cohesive batch of micronised budesonide. Budesonide formulations (0.8 wt%) were prepared with three different lactose carriers (Lactohale (LH) LH100, 20 wt% LH210 in LH100 and 20 wt% LH300 in LH100). Fine particle fraction of emitted dose (FPFED) and mean mass aerodynamic diameter (MMAD) of budesonide was assessed with a Next Generation Impactor (NGI) using a Cyclohaler at 90 l/min. Morphological and chemical characteristics of particles deposited on Stage 2 were determined using a Malvern Morphologi G3-ID. The results indicate that increasing concentration of lactose fines (agglomerates. Presence of agglomerates on Stage 2 was confirmed by morphological analysis of particles. Raman analysis of material collected on Stage 2 indicated that the more fine lactose particles were available the more agglomerates of budesonide and lactose were delivered to Stage 2. These results suggest drug-fines agglomerate formation is an important mechanism for how lactose fines improve and regulate DPI formulation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of acoustic agglomerators for emergency use in liquid-metal fast breeder reactor plants

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.

    1979-01-01

    The use of acoustic agglomerators for the suppression of sodium-fire aerosols in the case of a hypothetical core disruptive accident of a liquid-metal fast breeder reactor is discussed. The basic principle for the enhancement of agglomeration of airborne particles under the influence of an acoustic field is first discussed, followed by theoretical predictions of the optimum operating conditions for such application. It is found that with an acoustic intensity of 160 dB (approx. 1 W/cm 2 ), acoustic agglomeration is expected to be several hundred times more effective than gravitational agglomeration. For particles with a radius larger than approx. 2 μm, hydrodynamic interaction becomes more important than the inertial capture. For radii between 0.5 and 2 μm, both mechanisms have to included in the theoretical predictions of the acoustic agglomeration rate

  11. Influence of primary-particle density in the morphology of agglomerates.

    Science.gov (United States)

    Camejo, M D; Espeso, D R; Bonilla, L L

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works.

  12. Technical application of agglomerated acidic heap leaching of clay-bearing uranium ore in China

    International Nuclear Information System (INIS)

    Zeng Yijun; Li Jianhua; Li Tieqiu; Zhong Pingru

    2002-01-01

    The permeability of ore mass has a great influence on the leaching period of heap leaching and the leaching efficiency, hence the uranium ores with high content of clay is difficult to acidic heap leaching. The Research Institute of Uranium Mining has engaged several years studies on the cementing agents of acidic agglomeration, agglomeration conditions, as well as the curing measures of agglomerated balls. On the basis of these studies, several types of clay-bearing ores have been tested with good results. The technique of agglomerated acidic heap leaching has been successfully applied in a uranium mine. Since agglomeration has effectively increased the permeability of ore heap, its leaching period is decreased from 200 days to 60 days, the leaching efficiency is increased to 96% from less than 40% comparing with direct heap leaching program

  13. Solid phase transport in series fluidised bed reactors

    International Nuclear Information System (INIS)

    Hayes, M.R.

    1980-01-01

    In a multistage counter-current fluidised bed column, fluidised bed material is recycled within each stage and a fraction is continuously withdrawn to the next lower stage at a rate dependent only on the rate of removal of the fluidised bed material from the base of the column. It has a particular application to the ion exchange treatment of liquids containing suspended solids, for example leach solutions from uranium ores. (author)

  14. Particle bed reactor scaling relationships

    Science.gov (United States)

    Slovik, G.; Araj, K.; Horn, F. L.; Ludewig, H.; Benenati, R.

    The Particle Bed Reactor (PBR) concept can be used in several applications both as part of a power generating system or as a direct propulsion unit. In order to carry out optimization studies of systems involving a PBR, it is necessary to know the variation of the critical mass with pertinent system parameters such as weight, size, power level and thrust level. A parametric study is presented for all the practical combinations of fuel and moderating material. The PBR is described, the practical combinations of materials and dimensions are discussed, and an example is presented.

  15. Studies on agglomeration of colloidal suspensions in an alternating electric field; Untersuchungen zur Agglomeration kolloidaler Suspensionen im elektrischen Wechselfeld

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M. [Inst. fuer Mechanische Verfahrenstechnik und Mechanik, Univ. Karlsruhe (Germany); Loeffler, F. [Inst. fuer Mechanische Verfahrenstechnik und Mechanik, Univ. Karlsruhe (Germany)

    1996-07-01

    Colloidal solutions contain particles in the {mu}m range whose agglomeration and coagulation is of interest for certain applications. `Electrocoagulation` means that in an electric field droplets or particles in a disperse phase have higher kinetic energy so that the probability of overcoming repulsive forces and of forming bigger aggregates will increase. The electrocoagulation technique is applied for emulsion cracking of water-in-oil systems (desalination and dewatering of petroleum, petroleum cracking) and, in some cases, also for cracking oil-in-water systems. Removal of colloidal solids from aqueous solution during electrochemical waste water treatment is often carried out with the aid of dissolving aluminium or iron electrodes. The authors describe experiments in which the flow of an electric current, which would cause the electrodes to dissolve, was to be prevented. An alternating field was to induce oscillation of the particles, i.e. relative motion of the particles with respect to each other. (orig./SR) [Deutsch] Kolloidale Loesungen enthalten Partikel im {mu}m-Bereich. In manchen Bereichen ist deren Agglomeration bzw. Koagulation von Interesse. Unter dem Begriff der Elektrokoagulation versteht man im allgemeinen das Phaenomen, dass in einem elektrischen Feld Tropfen oder Partikel in einer dispersen Phase eine hoehere kinetische Energie besitzen, und dadurch die Wahrscheinlichkeit zur Ueberwindung von Abstossungskraeften und zur Bildung groesserer Aggregate steigt. Das Verfahren der Elektrokoagulation wird bisher zur Emulsionsspaltung von Wasser/Oel-Systemen (Entsaltzung und Entwaesserung von Erdoel/Erdoelspaltung) und z.T. auch zur Spaltung von Oel/Wasser-Systemen eingesetzt. Zur Entfernung kolloidaler Feststoffe aus waessrigen Loesungen bei der elektrochemischen Aufarbeitung von Abwasser wird haeufig mit sich aufloesenden Aluminium- oder Eisenelektroden gearbeitet. In den im folgenden dargestellten Untersuchungen sollte ein Stromfluss durch die

  16. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    Science.gov (United States)

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  17. Impregnation/Agglomeration Laboratory Tests of Heavy Fuel from Prestige to Improve Its Manageability and Removal from Seawater Surface. (Physical Behaviour of Fuel Agglomates); Ensayos a Nivel de Laboratorio de Impregnacion/Aglomeracion del Fuel Procedente del Prestige para Facilitar su Manipulacion y Recogida en la Superficie del Mar (Comportamiento Fisico de los Aglomerados de Fuel)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frutos, F. J.; Rodriguez, V.; Otero, J.

    2002-07-01

    The handling and removal problems showed by heavy fuel floating in seawater could be improved or solved by using materials that agglomerate it. These materials must fulfill the following condition: be inert materials in marine environment, the agglomerated fuel/material should float and its application and removal should be done using simple technologies. Based on these requirements, clay minerals, pine chips, mineral coal and charcoal were selected. The preliminary results on impregnation/agglomeration with the materials mentioned above of heavy fuel from Prestige at lab scale are presented in this paper. The results have shown that only hydrophobic materials, such as mineral coal and charcoal, are able to agglomerate with fuel, which is also a hydrophobic substance. Whereas the agglomerates fuel/mineral coal sink, the agglomerates fuel/charcoal keep floating on water surface. It can be concluded that the addition of charcoal on dispersed fuel in seawater could improve its handling and removal. In this sense, pilot scale and eventually controlled in situ tests to study the feasibility of the proposed solution should be performed. (Author) 2 refs.

  18. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential.

    Science.gov (United States)

    Walker, Claire-Dominique; Bath, Kevin G; Joels, Marian; Korosi, Aniko; Larauche, Muriel; Lucassen, Paul J; Morris, Margaret J; Raineki, Charlis; Roth, Tania L; Sullivan, Regina M; Taché, Yvette; Baram, Tallie Z

    2017-09-01

    The immediate and long-term effects of exposure to early life stress (ELS) have been documented in humans and animal models. Even relatively brief periods of stress during the first 10 days of life in rodents can impact later behavioral regulation and the vulnerability to develop adult pathologies, in particular an impairment of cognitive functions and neurogenesis, but also modified social, emotional, and conditioned fear responses. The development of preclinical models of ELS exposure allows the examination of mechanisms and testing of therapeutic approaches that are not possible in humans. Here, we describe limited bedding and nesting (LBN) procedures, with models that produce altered maternal behavior ranging from fragmentation of care to maltreatment of infants. The purpose of this paper is to discuss important issues related to the implementation of this chronic ELS procedure and to describe some of the most prominent endpoints and consequences, focusing on areas of convergence between laboratories. Effects on the hypothalamic-pituitary adrenal (HPA) axis, gut axis and metabolism are presented in addition to changes in cognitive and emotional functions. Interestingly, recent data have suggested a strong sex difference in some of the reported consequences of the LBN paradigm, with females being more resilient in general than males. As both the chronic and intermittent variants of the LBN procedure have profound consequences on the offspring with minimal external intervention from the investigator, this model is advantageous ecologically and has a large translational potential. In addition to the direct effect of ELS on neurodevelopmental outcomes, exposure to adverse early environments can also have intergenerational impacts on mental health and function in subsequent generation offspring. Thus, advancing our understanding of the effect of ELS on brain and behavioral development is of critical concern for the health and wellbeing of both the current

  19. Gypsum as a bedding source for broiler chickens

    Science.gov (United States)

    Three trials examined the feasibility of flue gas desulfurization gypsum as a bedding material for raising broilers. Gypsum was used alone, under or on top of pine shavings and pine bark. Test materials were placed as bedding in pens to simulate commercial broiler production through three growout cy...

  20. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  1. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  2. Water droplet spreading and recoiling upon contact with thick-compact maltodextrin agglomerates.

    Science.gov (United States)

    Meraz-Torres, Lesvia Sofía; Quintanilla-Carvajal, María Ximena; Téllez-Medina, Darío I; Hernández-Sánchez, Humberto; Alamilla-Beltrán, Liliana; Gutiérrez-López, Gustavo F

    2011-11-01

    The food and pharmaceutical industries handle a number of compounds in the form of agglomerates which must be put into contact with water for rehydration purposes. In this work, liquid-solid interaction between water and maltodextrin thick-compact agglomerates was studied at different constituent particle sizes for two compression forces (75 and 225 MPa). Rapid droplet spreading was observed which was similar in radius to the expected one for ideal, flat surfaces. Contact angle determinations reported oscillations of this parameter throughout the experiments, being indicative of droplet recoiling on top of the agglomerate. Recoiling was more frequent in samples obtained at 225 MPa for agglomerate formation. Agglomerates obtained at 75 MPa exhibited more penetration of the water. Competition between dissolution of maltodextrin and penetration of the water was, probably, the main mechanism involved in droplet recoiling. Micrographs of the wetting marks were characterized by means of image analysis and the measurements suggested more symmetry of the wetting mark at higher compression force. Differences found in the evaluated parameters for agglomerates were mainly due to compaction force used. No significant effect of particle size in recoiling, penetration of water into the agglomerate, surface texture and symmetry was observed. Copyright © 2011 Society of Chemical Industry.

  3. Agglomeration of amorphous silicon film with high energy density excimer laser irradiation

    International Nuclear Information System (INIS)

    He Ming; Ishihara, Ryoichi; Metselaar, Wim; Beenakker, Kees

    2007-01-01

    In this paper, agglomeration phenomena of amorphous Si (α-Si) films due to high energy density excimer laser irradiation are systematically investigated. The agglomeration, which creates holes or breaks the continuous Si film up into spherical beads, is a type of serious damage. Therefore, it determines an upper energy limit for excimer laser crystallization. It is speculated that the agglomeration is caused by the boiling of molten Si. During this process, outbursts of heterogeneously nucleated vapor bubbles are promoted by the poor wetting property of molten silicon on the SiO 2 layer underneath. The onset of the agglomeration is defined by extrapolating the hole density as a function of the energy density of the laser pulse. A SiO 2 capping layer (CL) is introduced on top of the α-Si film to investigate its influence on the agglomeration. It is found that effects of the CL depend on its thickness. The CL with a thickness less than 300 nm can be used to suppress the agglomeration. A thin CL acts as a confining layer and puts a constraint on bubble burst, and hence suppresses the agglomeration

  4. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  5. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny

    2017-01-01

    to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottomashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded thatLT-CFB gasification and co-gasification is a highly effective way to purify...

  6. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  7. Agglomeration of Ni-nanoparticles in the gas phase under gravity and microgravity conditions

    International Nuclear Information System (INIS)

    Lösch, S; Günther, B H; Iles, G N; Schmitz, B

    2011-01-01

    The agglomeration of metallic nanoparticles can be performed using the well-known inert gas condensation process. Unfortunately, thermal effects such as convection are created by the heating source and as a result the turbulent aerosol avoids ideal conditions. In addition, the sedimentation of large particles and/or agglomerates influences the self-assembly of particles. These negative effects can be eliminated by using microgravity conditions. Here we present the results of the agglomeration of nanoscale Ni-particles under gravity and microgravity conditions, the latter provided by adapted microgravity platforms namely the European sounding rocket MAXUS 8 and the European Parabolic Flight aircraft, Airbus A300 Zero-G.

  8. Kinetic and Thermodynamic Effects on the Agglomeration of Magnetite Nanoparticles by Magnetic Field

    International Nuclear Information System (INIS)

    Jin, Daeseong; Kim, Hackjin

    2016-01-01

    The dynamics of agglomeration of magnetite nanoparticles studied by measuring the magnetic weight shows the kinetics of stretched exponential. During the growth of the magnetic weight, the structure of agglomerate fluctuates by temperature change. This fast relaxation that can be interpreted in terms of Boltzmann distribution indicates that the thermal equilibration is established promptly with the temperature change. Agglomerate of nanoparticles resembles protein in that both of them exist in complex structures of various conformations with different formation energies, which requires the energy landscape for understanding of dynamics in detail

  9. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    Science.gov (United States)

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  10. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  11. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  12. Fluidized-bed firing of washery wastes

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Yu M; Gavrik, M V

    1978-01-01

    Tailings containing SiO2 (56.76%), A12O3 (25.63%), Fe2O3 (10.22%) plus CaO, MgO and SOat3 were fluidized at 1.7-2.0 m/s. This gives a uniform pressure of 6 kg-f/m2 at bed heights of 100 mm, though this is higher in the upper layers where the fine material tends to concentrate. The resistance of the bed is directly proportional to its height. Minimum oxygen, maximum carbon dioxide and maximum temperature are found in the section 250-300 mm above the grid (bed height 500 mm); in the upper zone of the bed, some decrease in temperature and carbon dioxide, and increase in oxygen are associated with the ingress of air through the discharge chute. Waste heat should be utilised to help to cover costs of desulphurising stack gases.

  13. Reducing adhesion and agglomeration within a cloud of combustible particles

    Science.gov (United States)

    Ross, Howard D.

    1988-01-01

    The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.

  14. Combustion and agglomeration of aluminized high-energy compositions

    International Nuclear Information System (INIS)

    Korotkikh, A G; Slyusarskiy, K V; Arkhipov, V A; Glotov, O G

    2015-01-01

    The results of combustion study for high-energy compositions (HECs) based on ammonium perchlorate (AP), butadiene rubber and ultrafine powder (UFP) aluminum Alex, and agglomeration of metal particles on the burning surface and composition of condensed combustion products (CCPs) are presented. It was found that partial replacement 2 wt. % of Alex by iron UFP in HEC increases the burning rate 1.3—1.4 times at the range of nitrogen pressure 2.0-7.5 MPa and reduces the mean diameter of CCPs particles d 43 from 37.4 μm to 33.5 μm at pressure ∼ 4 MPa. Upon partial replacement 2 wt. % of Alex by boron UFP in HEC the recoil force of gasification products outflow from burning surface is increased by 9 % and the burning rate of HEC does not change in the above pressure range, while the mean diameter of CCPs particles is reduced to 32.6 μm at p ∼ 4 MPa. (paper)

  15. Capillary condensation onto titania (TiO2) nanoparticle agglomerates.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-02-27

    A capillary condensation process was developed for the purpose of forming interconnections between nanoparticles at low temperatures. The process was performed in a temperature-controlled flow chamber on nanoparticle agglomerates deposited at submonolayer coverage on a transmission electron microscope grid. The partial pressure of the condensing species, tetraethyl orthosilicate, and the temperature of the chamber were adjusted in order to obtain the various saturation conditions for capillary condensation. The modified samples were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET surface area method, and scanning transmission electron microscopy with electron energy-loss spectrometry. Experimental results show that bridge-shaped layers were dominantly formed in the neck region between particles and were composed of amorphous silica. The analysis of TEM micrographs verified that the coverage of the layers is strongly dependent on the saturation ratio. Image analysis of TEM micrographs shows that this dependency is qualitatively in agreement with theoretical predictions based on the classical Kelvin equation for the specific geometries in our system.

  16. PARTICULATE MATTER IN ATMOSPHERIC AIR IN URBAN AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2017-05-01

    Full Text Available The study aimed to determine the mass concentration of PM10 in the air in urban area. The specific objective of the research was to analyze and assess the impact of transport road emissions on the level of concentration of particulate matter in the atmosphere in the Lublin agglomeration. The measuring points were located in places at different distances from the communications emission sources and, at the same time, possibly varying degrees of air pollution dust. Measuring the concentration of dust at the measuring points was performed using an indirect method using a laser photometer. In the research point which was not under direct influence of a heavy traffic road dust levels lower by 10.5% to 65.4% than in the vicinity of the transport route were reported. Small particle air pollution at all the points covered by the study increased significantly during the heating season. Based on the comparison of the obtained values of PM10 concentrations with legal standards, it was found that the air pollution exceeded the limits in all measurement points only during a series of measurements in the months of November-December. The recorded increase in air pollution during the heating season should be associated with an increased dust emissions in this period from the "low" emitters - local house boilers and detached houses.

  17. Branched-linear and agglomerate protein polymers as vaccine platforms.

    Science.gov (United States)

    Wang, Leyi; Xia, Ming; Huang, Pengwei; Fang, Hao; Cao, Dianjun; Meng, Xiang-Jin; McNeal, Monica; Jiang, Xi; Tan, Ming

    2014-09-01

    Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Radon concentration in spring and groundwater of Shillong agglomeration

    International Nuclear Information System (INIS)

    Walia, D.; Wahlang, P.; Lyngdoh, A.C.; Saxena, A.; Sharma, Y.; Maibam, D.

    2010-01-01

    Water samples in the month of February 2010 to April 2010 are collected from 06 springs (sample code S1-S6) and 18 wells (sample code W1-W18) of the Shillong agglomeration in radon-tight 1L bottles, considering the geological structures, nearness to the steep slopes and accessibility of the water sources. The measurement of radon in water samples is carried out using ionization chamber Alphaguard along with an accessory (fabricated in the laboratory). Initially, background radon of the empty set-up is measured for 30 minutes before every water-sample measurement. The water samples are placed in a closed gas cycle in degassing vessel and then radon is expelled using the pump and magnetic stirrer. The security vessel is connected with the degassing vessel to minimize the inflow of water vapour to the Alphaguard. The measuring cycle is repeated 3 times in order to obtain a better precision. The arithmetic mean of the radon concentrations are used for calculating the annual effective dose for ingestion of water from each bore well and spring. The pH, electrical conductivity and temperature are measured so as to correlate the meteorological parameters with the radon emanation

  19. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. V. MULTIPLE IMPACTS OF DUSTY AGGLOMERATES AT VELOCITIES ABOVE THE FRAGMENTATION THRESHOLD

    International Nuclear Information System (INIS)

    Kothe, Stefan; Guettler, Carsten; Blum, Juergen

    2010-01-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO 2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s -1 . The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing

  20. Bed Bugs FAQs

    Science.gov (United States)

    ... Europe. Bed bugs have been found in five-star hotels and resorts and their presence is not ... Health – Division of Parasitic Diseases Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs ...

  1. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    Science.gov (United States)

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Engineering the size and density of silicon agglomerates by controlling the initial surface carbonated contamination

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł., E-mail: Lukasz.Borowik@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Chevalier, N.; Mariolle, D.; Martinez, E.; Bertin, F.; Chabli, A.; Barbé, J.-C. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-04-01

    Actually, thermally induced thin-films dewetting silicon in the silicon-on-insulator is a way to obtain silicon agglomerates with a size and a density fixed by the silicon film thickness. In this paper we report a new method to monitor both the size and the density of the Si agglomerates thanks to the deposition of a carbon-like layer. We show that using a 5-nm thick layer of silicon and additional ≤1-nm carbonated layer; we obtain agglomerates sizes ranging from 35 nm to 60 nm with respectively an agglomerate density ranging from 38 μm{sup −2} to 18 μm{sup −2}. Additionally, for the case of strained silicon films an alternative dewetting mechanism can be induced by monitoring the chemical composition of the sample surface.

  3. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  4. Proceedings, volume 26, the Institute for Briquetting and Agglomeration, November 1999

    Energy Technology Data Exchange (ETDEWEB)

    Roth, D.L. [ed.

    2000-07-01

    Topics covered by the 22 papers include: porosity of agglomerates, optimising roller compaction processing, determining velocity of powder in the roll rigs region of a roll press, binders, and briquetting for blast furnaces.

  5. Spatial Welfare Economics versus Ecological Footprint: Modeling Agglomeration, Externalities and Trade

    NARCIS (Netherlands)

    Grazi, F.; van den Bergh, J.C.J.M.; Rietveld, P.

    2007-01-01

    A welfare framework for the analysis of the spatial dimensions of sustainability is developed. It covers agglomeration effects, interregional trade, negative environmental externalities, and various land use categories. The model is used to compare rankings of spatial configurations according to

  6. A uHPLC-MS mathematical modeling approach to dry powder inhaler single agglomerate analysis.

    Science.gov (United States)

    Pennington, Justin; Lena, John; Medendorp, Joseph; Ewing, Gary

    2011-10-01

    Demonstration of content uniformity (CU) is critical toward the successful development of dry powder inhalers (DPIs). Methods for unit dose CU determination for DPI products are well-established within the field of respiratory science. Recent advances in the area include a uHPLC-MS method for high-throughput uniformity analysis, which allows for a greater understanding of blending operations as the industry transitions to a quality-by-design approach to development. Further enhancements to this uHPLC-MS method now enable it to determine CU and sample weight at the single agglomerate level, which is roughly 50× smaller than a unit dose. When coupled with optical microscopy-based agglomerate sizing, the enhanced uHPLC-MS method can also predict the density and porosity of individual agglomerates. Expanding analytical capabilities to the single agglomerate level provides greater insights and confidence in the DPI manufacturing process.

  7. De-agglomeration of thorium oxalate - a method for the synthesis of sinteractive thoria

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Anthonysamy, S.; Singh, Alok; Vasudeva Rao, P.R.

    2002-01-01

    Thorium oxalate was obtained by precipitation in water and in non-aqueous solvents and de-agglomerated by ultrasonication in both aqueous as well as non-aqueous media. Sinteractive thoria (crystallite size 6-20 nm) obtained from the de-agglomerated thorium oxalate was characterised for residual carbon, crystallite size, specific surface area, particle size distribution and bulk density. Microstructure of the precursor and the product was studied using TEM and HRTEM. The morphology of the sintered pellets was studied using SEM. The reactivity of the calcined powders was determined by measuring the density of the sintered compacts. The solvent used for de-agglomeration was found to have significant influence on the microstructure of the powders. Thoria derived through aqueous precipitation route could be sintered to a density of 9.7 Mg m -3 at 1673 K. It was demonstrated that ultrasonic de-agglomeration could be a useful method for obtaining sinteractive thoria

  8. Staged fluidized-bed combustion and filter system

    International Nuclear Information System (INIS)

    Mei, J.S.; Halow, J.S.

    1994-01-01

    A staged fluidized-bed combustion and filter system are described for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste. 10 figures

  9. Tritium measurement technique using ''in-bed'' calorimetry

    International Nuclear Information System (INIS)

    Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

    1991-01-01

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ''heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ''in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to 3 He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of ±1.6% of a tritium filled hydride storage bed

  10. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    Science.gov (United States)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  11. A model for the description of the evolution of PU agglomerates in MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Federici, E [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France); Blanpain, P [FRAMATOME, Lyon (France); Permezel, P [Electricite de France, Moret-sur-Loing (France)

    1997-08-01

    In order to describe the irradiation behavior of Pu agglomerates under LWR steady state conditions in MIMAS MOX fuels, a model including the neutronic evolution of the heavy atoms and their diffusion processes between the agglomerates and the matrix has been developed. It leads to the calculations of Pu enrichment in the two phases and of the agglomerates size evolution during irradiation. The calculated distribution of the fission in the fuel gives access to the local power and burnup heterogeneity factor. Electron probe microanalyses (EPMA) have been carried out on fuels irradiated up to 45000 MWd/tM. Diametral and local distribution of Pu are used to calculate the enrichments of the agglomerates and the matrix, which are then compared to the results of the model. During irradiation, the Pu concentration falls markedly in the agglomerates and increases steadily in the matrix, leading to a homogenization of the fuel on a microstructural scale. Heterogeneity factors give an estimate of the deviation from homogeneity. Knowing the local fission rate and burnup in the agglomerates and the matrix enables the calculation of the local fission gas concentrations, which are compared to the xenon EPMA diametral distribution. Comparison with the calculated matrix xenon concentration at the edge of the pellet where there is no gas release, shows that some fission gas atoms which originated from the agglomerates, have been dissolved in the matrix by recoil. The calculated gas concentrations give an estimate of the quantity of gas dissolved. This work has been performed with the intent to improved fuel rod performance code estimates of fission gas concentrations retained or released in both the matrix and the agglomerates. (author). 4 refs, 7 figs.

  12. A model for the description of the evolution of PU agglomerates in MOX fuels

    International Nuclear Information System (INIS)

    Federici, E.; Blanpain, P.; Permezel, P.

    1997-01-01

    In order to describe the irradiation behavior of Pu agglomerates under LWR steady state conditions in MIMAS MOX fuels, a model including the neutronic evolution of the heavy atoms and their diffusion processes between the agglomerates and the matrix has been developed. It leads to the calculations of Pu enrichment in the two phases and of the agglomerates size evolution during irradiation. The calculated distribution of the fission in the fuel gives access to the local power and burnup heterogeneity factor. Electron probe microanalyses (EPMA) have been carried out on fuels irradiated up to 45000 MWd/tM. Diametral and local distribution of Pu are used to calculate the enrichments of the agglomerates and the matrix, which are then compared to the results of the model. During irradiation, the Pu concentration falls markedly in the agglomerates and increases steadily in the matrix, leading to a homogenization of the fuel on a microstructural scale. Heterogeneity factors give an estimate of the deviation from homogeneity. Knowing the local fission rate and burnup in the agglomerates and the matrix enables the calculation of the local fission gas concentrations, which are compared to the xenon EPMA diametral distribution. Comparison with the calculated matrix xenon concentration at the edge of the pellet where there is no gas release, shows that some fission gas atoms which originated from the agglomerates, have been dissolved in the matrix by recoil. The calculated gas concentrations give an estimate of the quantity of gas dissolved. This work has been performed with the intent to improved fuel rod performance code estimates of fission gas concentrations retained or released in both the matrix and the agglomerates. (author). 4 refs, 7 figs

  13. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  14. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations

    OpenAIRE

    Cong Xu; Shixin Wang; Yi Zhou; Litao Wang; Wenliang Liu

    2016-01-01

    On 16 March 2014, the State Council of China launched its first urbanization planning initiative dubbed “National New Urbanization Planning (2014–2020)” (NNUP). NNUP put forward 20 urban agglomerations and a sustainable development approach aiming to transform traditional Chinese urbanization to sustainable new urbanization. This study quantitatively evaluates the level of sustainability of the present new urbanization process in 20 Chinese urban agglomerations and provides some positive sugg...

  15. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  16. Porosity of Lead Agglomerate as Function of CaO and SiO2 Proportion

    OpenAIRE

    , A. Haxhiaj; , A. Terziqi; , E. Haxhiaj

    2016-01-01

    Agglomerate porosity is correlated with strength of its pieces and it is main parameter for reductive melting process in Water-jacket furnace. Treatment is oriented toward achieving porosity and optimal strength. The paper deals with the process in te-mperature about 9000C and with less than 10% composition CaO in rapport with lead. In order to achieve optimal results of agglomerate porosity and quality, it is necessary during the roasting process of lead concentration to correlate the conten...

  17. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2008-01-01

    understood. This paper provides a systematic and up-to-date review of two-fluid nozzle designs and principles together with a presentation of nozzle fundamentals introducing basic nozzle theory and thermodynamics. Correlations for the prediction of mean droplet diameters are reviewed, compared...

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  19. Ageing and Water-Based Processing of LiFeMnPO4 Secondary Agglomerates and Its Effects on Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Benjamin Starke

    2017-12-01

    Full Text Available LiFeMnPO4 secondary agglomerates have been aged under different temperature and moisture conditions. The aged and pristine powder samples were then processed to water- and solvent-based cathodes. Structural studies by means of neutron and X-ray diffraction revealed that neither ageing nor water-based processing significantly modified the crystal structure of LiFeMnPO4 secondary agglomerates. Electrochemical characterization was carried out with full-cells. It was found that long-term cycling is similar independent of the solvent used for slurry preparation. Full-cells assembled with water-based cathodes show a better C-rate capability due to a more homogeneous distribution of cathode constituents compared to solvent-based ones. In no case was any negative effect of initial active material ageing on the electrochemical performance found. During ageing and processing, LiFeMnPO4 is effectively protected by carbon coating and water can be completely removed by drying since it is only reversibly bound. This contribution shows that LiFeMnPO4 secondary agglomerates allow simplified active material handling and have a high potential for sustainable water-based electrode manufacturing.

  20. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash

    Science.gov (United States)

    Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng

    2018-02-01

    As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.

  1. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A.; Shcherbina, M.E. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Kirichenko, N.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation)

    2015-05-01

    Highlights: • Pulsed laser irradiation of dense gold nanoparticles colloidal solution can result in their agglomeration. • Gas bubbles in-phase pulsation induced by laser radiation accounts for nanoparticles agglomeration. • Time evolution of the size distribution function proceeds in activation mode. • The electrostatic-like model of nanoparticles agglomeration is in good correspondence with the experimental data. - Abstract: Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 10{sup 14} particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  2. Experimental investigation of acoustic agglomeration systems for fine particle control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.T.; Lee, P.; Wegrzyn, J.; Chou, K.H.; Cheng, M.T.; Patel, S.

    1979-10-01

    The feasibility of using an acoustic agglomerator (AA) as a preconditioner in the upstream of conventional devices such as an electrostatic precipitator, a scrubber, a filter, or a cyclone are investigated. The objective is to agglomerate all finer particles into coarser ones in an acoustic agglomerator and then remove them more effectively by one of the conventional devices. Laboratory-scale experiments were performed using NH/sub 4/Cl and fly ash redispersed aerosols. Turbulence caused by intensive sound fields under standing-wave condition has been found to be extremely effective for aerosol agglomeration. The nature and the energy dissipation rate of the acoustic turbulence are determined by using hot-film (or hot-wire) anemometry and Fast Fourier Transform (FFT) data processing equipment. The root-mean-square turbulent velocity, which is directly proportional to acoustic agglomeration rate, is experimentally found to have a I/sup 1/2/(I: acoustic intensity) dependence, but is relatively independent of the acoustic frequency. The results obtained from this program show that acoustic agglomeration is effective as a particle pre-conditioner which can increase approximately one order of magnitude in mean particle diameter (2..mu..m ..-->.. 20..mu..m). As a flow-through standing wave device, it can be used to facilitate the removal of dust particles in a subsequent inertia base separation device.

  3. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka

    2017-06-26

    Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.

  4. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field

    International Nuclear Information System (INIS)

    Lima, E Jr; De Biasi, E; Mansilla, M Vasquez; Saleta, M E; Granada, M; Troiani, H E; Zysler, R D; Effenberger, F B; Rossi, L M; Rechenberg, H R

    2013-01-01

    The role of agglomeration and magnetic interparticle interactions in heat generation of magnetic ferrofluids in an ac magnetic field is still unclear, with apparent discrepancy between the results presented in the literature. In this work, we measured the heat generating capability of agglomerated ferrite nanoparticles in a non-invasive ac magnetic field with f = 100 kHz and H 0 = 13 kA m -1 . The nanoparticles were morphologically and magnetically characterized, and the specific absorption rate (SAR) for our ac magnetic field presents a clear dependence on the diameter of the nanoparticles, with a maximum SAR = 48 W g -1 for 15 nm. Our agglomerated nanoparticles have large hydrodynamic diameters, thus the mechanical relaxation can be neglected as a heat generation mechanism. Therefore, we present a model that simulates the SAR dependence of the agglomerated samples on the diameter of the nanoparticles based on the hysteresis losses that is valid for the non-linear region (with H 0 comparable to the anisotropy field). Our model takes into account the magnetic interactions among the nanoparticles in the agglomerate. For comparison, we also measured the SAR of non-agglomerated nanoparticles in a similar diameter range, in which Néel and Brown relaxations dominate the heat generation.

  5. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  6. Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation

    International Nuclear Information System (INIS)

    Liu, Haoyang Haven; Lanphere, Jacob; Walker, Sharon; Cohen, Yoram

    2015-01-01

    The effect of hydration repulsion on the agglomeration of nanoparticles in aqueous suspensions was investigated via the description of agglomeration by the Smoluchowski coagulation equation using constant number Monte–Carlo simulation making use of the classical DLVO theory extended to include the hydration repulsion energy. Evaluation of experimental DLS measurements for TiO 2 , CeO 2 , SiO 2 , and α-Fe 2 O 3 (hematite) at high IS (up to 900 mM) or low |ζ-potential| (≥1.35 mV) demonstrated that hydration repulsion energy can be above electrostatic repulsion energy such that the increased overall repulsion energy can significantly lower the agglomerate diameter relative to the classical DLVO prediction. While the classical DLVO theory, which is reasonably applicable for agglomeration of NPs of high |ζ-potential| (∼>35 mV) in suspensions of low IS (∼<1 mM), it can overpredict agglomerate sizes by up to a factor of 5 at high IS or low |ζ-potential|. Given the potential important role of hydration repulsion over a range of relevant conditions, there is merit in quantifying this repulsion energy over a wide range of conditions as part of overall characterization of NP suspensions. Such information would be of relevance to improved understanding of NP agglomeration in aqueous suspensions and its correlation with NP physicochemical and solution properties. (paper)

  7. Influence of the composition and agglomeration pressure on the compaction level of the fertilizers based on biomass ash and digestate

    Directory of Open Access Journals (Sweden)

    Wróbel Marek

    2018-01-01

    Full Text Available The paper presents the results of research aimed at determining the influence of the composition of the fertilizer mixtures and the compaction pressure on the specific density and density index of fertilizer granules. Investigated mixtures were prepared from fly ash from power plant fuelled by biomass and digestate from biogas plant. The urea, sulfur and phosphorite were also added as enhancing additives. For granule samples made on a strength machine, their specific density was determined on a quasifluid-pycnometer. To determine the effect of agglomerate pressure on the compaction process, the absolute density of the materials was omitted. In such case it was needed to introduce a density index AI. Such a presentation of the results obtained has made it possible to clearly determine how the density of the test mixture results in the applied agglomeration pressure. The specific density of the resulting granules was in the range of 0.85-1.27 g/cm3. The determined density index for the given pressure was in the following ranges: 0.44-0.49 g/cm3 (pressure 100MPa, 0.47-0.51 g/cm3 (pressure 150MPa 0.51 - 0.59 g/cm3 (200MPa pressure. This means that, regardless of the contribution of components to the mixture at the given pressure, a similar degree of compaction was obtained.

  8. Response to fire, thermal insulation and acoustic performance of rigid polyurethane agglomerates with addition of natural fiber

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Rizzo

    2015-03-01

    Full Text Available This paper aims to reuse rigid polyurethane waste in the preparation of composites with the addition of banana fibers and cellulose in order to qualify the acoustic performance, thermal insulation and reaction to fire the material with the addition of 7% of polysulfone. Agglomerated with 100% of polyurethane and either with 20% of banana fiber or 20% of cellulose were characterized in the sound transmission loss, thermal conductivity and reaction to fire, take into account variations in the granulometry of the solid polyurethane and type of pressing. Natural fiber composites had lower thermal conductivity, higher acoustic insulation in medium frequencies and the addition of polysulfone delayed the total time of firing the material.

  9. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  10. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  11. Dryout heat flux experiments with deep heterogeneous particle bed

    International Nuclear Information System (INIS)

    Lindholm, I.; Holmstroem, S.; Miettinen, J.; Lestinen, V.; Hyvaerinen, J.; Pankakoski, P.; Sjoevall, H.

    2006-01-01

    A test facility has been constructed at Technical Research Centre of Finland (VTT) to simulate as accurately as possible the ex-vessel core particle bed in the conditions of Olkiluoto nuclear power plant. The STYX particle bed reproduces the anticipated depth of the bed and the size range of particles having irregular shape. The bed is immersed in water, creating top flooding conditions, and internally heated by an array of electrical resistance heating elements. Dryout tests have been successfully conducted at 0.1-0.7 MPa pressure for both uniformly mixed and stratified bed geometries. In all tests, including the stratified ones, the dry zone first formed near the bottom of the bed. The measured dryout heat fluxes increased with increasing pressure, from 232 kW/m 2 at near atmospheric pressure to 451 kW/m 2 at 0.7 MPa pressure. The data show some scatter even for the uniform bed. The tests with the stratified bed indicate a clear reduction of critical power due to the presence of a layer of small particles on top of the uniform bed. Comparison of data with various critical power (dryout heat flux) correlations for porous media shows that the most important parameter in the models is the effective particle diameter. Adiabatic debris bed flow resistance measurements were conducted to determine the most representative particle diameter. This diameter is close, but not equal, to the particle number-weighted average diameter of the bed material. With it, uniform bed data can be calculated to within an accuracy of 3-28% using Lipinski's 0-D model. In the stratified bed experiments, it appears that the top layer was partially fluidized, hence the measured critical power was significantly higher than calculated. Future experiments are being planned with denser top layer material to eliminate non-prototypic fluidization

  12. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  13. Biomass equipments. Dryers. Drying, crushing, agglomeration of agro-industrial products; Materiels pour la biomasse. Les secheurs, sechage, broyage, agglomeration de produits agro-industriels

    Energy Technology Data Exchange (ETDEWEB)

    Deur, O. [Promill (France)

    1997-12-31

    This paper describes the French Promill Company activity in the design and manufacturing of complete drying-crushing-agglomerating units for agro-industrial products (pulp of beet, lucerne, etc..). The paper focusses on the thermal and mechanical efficiency of the high temperature dryer and on the pulp granulating squeezer. (J.S.)

  14. Pebble-bed reactor

    International Nuclear Information System (INIS)

    Lohnert, G.; Mueller-Frank, U.; Heil, J.

    1976-01-01

    A pebble-bed nuclear reactor of large power rating comprises a container having a funnel-shaped bottom forming a pebble run-out having a centrally positioned outlet. A bed of downwardly-flowing substantially spherical nuclear fuel pebbles is positioned in the container and forms a reactive nuclear core maintained by feeding unused pebbles to the bed's top surface while used or burned-out pebbles run out and discharge through the outlet. A substantially conical body with its apex pointing upwardly and its periphery spaced from the periphery of the container spreads the bottom of the bed outwardly to provide an annular flow down the funnel-shaped bottom forming the runout, to the discharge outlet. This provides a largely constant downward velocity of the spheres throughout the diameter of the bed throughout a substantial portion of the down travel, so that all spheres reach about the same burned-out condition when they leave the core, after a single pass through the core area

  15. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  16. Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution.

    Science.gov (United States)

    Goudeli, Eirini; Eggersdorfer, Maximilian L; Pratsinis, Sotiris E

    2015-02-03

    Agglomeration occurs in environmental and industrial processes, especially at low temperatures where particle sintering or coalescence is rather slow. Here, the growth and structure of particles undergoing agglomeration (coagulation in the absence of coalescence, condensation, or surface growth) are investigated from the free molecular to the continuum regime by discrete element modeling (DEM). Particles coagulating in the free molecular regime follow ballistic trajectories described by an event-driven method, whereas in the near-continuum (gas-slip) and continuum regimes, Langevin dynamics describe their diffusive motion. Agglomerates containing about 10-30 primary particles, on the average, attain their asymptotic fractal dimension, D(f), of 1.91 or 1.78 by ballistic or diffusion-limited cluster-cluster agglomeration, corresponding to coagulation in the free molecular or continuum regimes, respectively. A correlation is proposed for the asymptotic evolution of agglomerate D(f) as a function of the average number of constituent primary particles, n̅(p). Agglomerates exhibit considerably broader self-preserving size distribution (SPSD) by coagulation than spherical particles: the number-based geometric standard deviations of the SPSD agglomerate radius of gyration in the free molecular and continuum regimes are 2.27 and 1.95, respectively, compared to ∼1.45 for spheres. In the transition regime, agglomerates exhibit a quasi-SPSD whose geometric standard deviation passes through a minimum at Knudsen number Kn ≈ 0.2. In contrast, the asymptotic D(f) shifts linearly from 1.91 in the free molecular regime to 1.78 in the continuum regime. Population balance models using the radius of gyration as collision radius underestimate (up to about 80%) the small tail of the SPSD and slightly overpredict the overall agglomerate coagulation rate, as they do not account for cluster interpenetration during coagulation. In the continuum regime, when a recently developed

  17. Bed-load transportmeter for find sand "Sphinx"

    NARCIS (Netherlands)

    Vinckers, J.B.; Bijker, E.W.; Schijf, J.B.

    1953-01-01

    A new bed-load transportmeter has been designed particularly for very fine bed material (below 400 micron). The basic conception is the same as for the so-called Delft-bottle used for measuring transport by turbulent suspension. The instrument is of the flow-through type. The flow enters through a

  18. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO{sub 2} Aggregates and Loosely Bound Agglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Whizin, Akbar D.; Colwell, Joshua E. [Dept. of Physics, Center for Microgravity Research, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816 (United States); Blum, Jürgen, E-mail: Akbar.Whizin@ucf.edu [Institut für Geophysik und extraterrestrische Physik, University of Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany)

    2017-02-10

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO{sub 2} dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s{sup −1} for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s{sup −1}, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s{sup −1}. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  19. River Bed Sediment Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat in rivers often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein ...

  20. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    Directory of Open Access Journals (Sweden)

    Arlene Garcia

    2014-12-01

    Full Text Available The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°, five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay, two moistures (dry or wet bedding; >50% moisture over two seasons (>23.9 °C summer, <23.9 °C winter were assessed for slips/falls/vocalizations (n = 6,000 pig observations. “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01. Providing bedding reduced (P < 0.05 scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01. Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was