WorldWideScience

Sample records for bed heat recovery

  1. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  2. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2016-10-08

    Multi-bed adsorption cycle with the internal heat recovery between the condenser and the evaporator is investigated for desalination application. A numerical model is developed for a 4-bed adsorption cycle implemented with the master-and-slave configuration and the aforementioned internal heat recovery scheme. The present model captures the reversed adsorption/desorption phenomena frequently associated with the unmatched switching periods. Mesoporous silica gel and water vapor emanated from the evaporation of the seawater are employed as the adsorbent and adsorbate pair. The experimental data and investigation for such configurations are reported for the first time at heat source temperatures from 50 °C to 70 °C. The numerical model is validated rigorously and the parametric study is conducted for the performance of the cycle at assorted operation conditions such as hot and cooling water inlet temperatures and the cycle times. The specific daily water production (SDWP) of the present cycle is found to be about 10 m/day per tonne of silica gel for the heat source temperature at 70 °C. Performance comparison is conducted for various types of adsorption desalination cycles. It is observed that the AD cycle with the current configuration provides superior performance whilst is operational at unprecedentedly low heat source temperature as low as 50 °C.

  3. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  4. Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon

    OpenAIRE

    Lam, Su Shiung; Mahari, Wan Adibah Wan; Cheng, Chin Kui; Omar, Rozita; Chong, Cheng Tung; Chase, Howard Allaker

    2016-01-01

    Microwave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed provided rapid heating (∼18 °C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased production of a biofuel product in a process taking less than 25 min. It...

  5. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  6. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  7. Waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  8. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  9. Experimental comparison on heat transfer-enhancing component of metal hydride bed

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun-goo, E-mail: hgkang@nfri.re.kr; Chung, Dong-you; Oh, Yun Hee; Chang, Min Ho; Yun, Sei-Hun

    2016-11-01

    Highlights: • Two small ZrCo metal hydride beds were developed. • Copper foam or fin as heat transfer-enhancing component are experimentally compared. • Copper foam bed is more efficient for uniform and rapid heating of metal hydride. • Copper foam bed is more efficient in removal of reaction heat during absorption. - Abstract: Metal hydride bed will be one of the key components for safe handling of tritium in fusion fuel cycle. In case of normal or emergency shutdown of fuel cycle, metal hydride bed installed in storage and delivery system (SDS) of tritium plant will absorb tritium gas in the system as soon as possible. Supply of hydrogen isotope gas to fueling system of fusion reactor will start from the metal hydride beds. Rapid delivery, rapid recovery including rapid heating and cooling are key issues. For better performance of metal hydride bed, various forms of heat transfer enhancing component or design can be applied. This study aims to help the selection of heat transfer enhancing component. Two small ZrCo beds with copper foam and copper fin were developed and experimented with hydrogen gas. Recovery and delivery performance, heating and cooling performance are compared. Experimental results show metal hydride bed with copper foam has improved performance. Uniform heating of metal hydride during desorption and removal of reaction heat during absorption are more efficient with copper foam bed than copper fin bed.

  10. Performance analysis of a single stage four bed metal hydride cooling system, part A: Influence of mass recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Kevin; Prakash Maiya, M.; Srinivasa Murthy, S. [Refrigeration and Air-conditioning Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai (India)

    2003-01-01

    The concept of mass recovery in metal hydride systems is studied with a single stage multi-bed cooling system as example. Mass recovery results in variation of bed temperatures due to removal or addition of heat of desorption or absorption respectively. Coefficient of performance and cold output increase while required heat input decreases for the mass recovery cycle. Thus mass recovery between hydride reactors is found to improve system performance compared to that of a basic system. (authors)

  11. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  12. Heat recovery system series arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  13. Heat exchanger support apparatus in a fluidized bed

    Science.gov (United States)

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  14. Use of nuclear process heat from pebble bed high temperature reactors to obtain oil by tertiary recovery methods. Final report. Vol. 2

    International Nuclear Information System (INIS)

    Jaeger, H.; Hermges, H.; Kammel, R.; Kugeler, K.; Phlippen, P.W.; Scheuch, H.; Schmidt, F.; Schmidtlein, P.; Schreiner, P.

    1988-01-01

    Volume II of this report examines: 1. The use of nuclear process heat in the further processing of crude oil (refinery processes, heat coupling, steam reforming helium-heated pipe furnace), 2. Analyses for process questions, 3. Questions of economy, 4. Environmental aspects, 5. Work on underground methanisation. (RB) [de

  15. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  16. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  17. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  18. Gas engine heat recovery unit

    Science.gov (United States)

    Kubasco, A. J.

    1991-07-01

    The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.

  19. Heat recovery from solids in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.J.

    1988-01-01

    Heat recovery from solids in industrial heat-treatment processes is considered. There are two main ways to improve the energy efficiency and economy of the heating process. The waste energy can again be used in the process to preheat the cool input. Another possibility is to use the waste energy in a process requiring a lower-temperature level. Heat-recovery arrangements both for continuous and discontinuous processes are presented. The energy demand of a heating or a heat-treatment process (in metal, clay, glass, and food industries) can greatly be decreased by the heat recovery. New methods for the heat-treatment processes requiring much less energy are presented. Several heat-recovery arrangements are described, and analytical solutions for the efficiency of the heat recovery are presented.

  20. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  1. Heat Recovery Potential from Urban Underground Infrastructures

    OpenAIRE

    Davies, G; Boot-Handford, N; Grice, J; Dennis, W; Ajileye, A; Revesz, A; Maidment, GG

    2018-01-01

    This paper describes the results from a collaborative research project in the UK, focussing on the recovery of waste heat from underground railway tunnels, using London as a case study. The aim of the project was to investigate the feasibility of combining cooling of London’s underground railway tunnels with a waste heat recovery system. The recovered heat will then be transferred to a heat pump to upgrade its temperature, before delivery to a district heating network for reuse. The paper des...

  2. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  3. Fluid flow with heat transfer in a fix-bed

    International Nuclear Information System (INIS)

    Gasparetto, C.A.

    1982-01-01

    Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt

  4. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  5. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  6. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  7. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  8. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  9. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    NARCIS (Netherlands)

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall

  10. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.

  11. Heated brine secondary recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, B.W.

    1988-03-15

    A method for recovering residual hydrocarbons from a subterranean formating is described comprising: extending an injection well and a producing well into the formation of horizontally spaced locations; treating water containing in excess of 1,000 ppm total dissolved solids, and significant quantities of sale-forming ions, with a water soluble scale inhibitor compound in the minimum amount of such inhibitor required to maintain at least 90% of the scale forming ions in solution during subsequent heating of the water to a temperature not exceeding 400/sup 0/F; heating the water by contact with a heat exchange medium having a temperature not exceeding 400/sup 0/F; then pumping the heated water containing the inhibitor down the injection well and into the formation under a pressure adequate to displace hydrocarbons toward the production well.

  12. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    OpenAIRE

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall (alpha)w, into the one-dimensional overall heat transfer coefficient U results in a length dependence of U. It is shown that the ratio (alpha)w/U develops from unity at the bed inlet to a final value...

  13. Waste water heat recovery system

    OpenAIRE

    Markovi?, G.; Vranayov?, Z.; K?posztasov?, D.

    2016-01-01

    After heating and cooling, water heating is typically the second largest user of energy in the home. There are a lot of purposes and uses of hot water in buildings - showers, tubs, sinks, dishwashers and clothes washers etc. In most cases, these hot waste waters are discarded direct to sewer system. When we take into the account all of these purposes in every households, the wastewater retains a considerable portion of its initial energy ? energy that could be recovered and use...

  14. A computational fluid dynamic model for fluidized bed heat transfer

    International Nuclear Information System (INIS)

    Yusuf, R.; Melaaen, M.C.; Mathiesen, V.

    2005-01-01

    The objective of this work is to study heat transfer from a heated wall in a gas fluidized bed using the computational fluid dynamic (CFD) approach. An Eulerian-Eulerian simulation of a two dimensional bubbling bed at ambient conditions with a heated wall is carried out on the in-house code FLOTRACS-MP-3D. An empirical as well as a mechanistic model for solid phase thermal conductivity is tested. Effect of operating parameters like velocity and particle size are also investigated. The fluid dynamic model is able to predict the qualitative trends for the influence of operating parameters as well as high heat transfer coefficients observed in gas fluidized beds. (author)

  15. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    Klein, J.E.

    2005-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  16. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    KLEIN, JAMES

    2004-01-01

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  17. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  18. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  19. Frost-proof heat recovery; Frostsikker varmegjenvinning

    Energy Technology Data Exchange (ETDEWEB)

    Groenbaek, Henning; Jenssen, Henning Bent

    2011-07-01

    Technical regulations (TEK10) sets high standards for temperature efficiency of ventilation systems. Heat recovery equipment should be selected from the risk of leakage. Rotating heat exchanger has normally no problem with icing before the temperature approaches -20 C. For the countercurrent heat exchanger bypass-icing is the best method of frost resistant heat exchanger. In addition to selecting the best frost protection method, it is also important how to monitor the formation of ice in the exchanger. The best way is to measure the pressure drop over the heat exchanger. Bypass deicing requires that the unit is designed so that outside air can be led outside heat exchanger and directly to the heater. (AG)

  20. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  1. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  2. Concept of Heat Recovery from Exhaust Gases

    Science.gov (United States)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  3. Rock bed storage with heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, H.E.; Mills, G.L.

    1979-05-01

    The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

  4. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  5. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-06-21

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  6. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    International Nuclear Information System (INIS)

    Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru

    2009-01-01

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  7. MHD heat and seed recovery technology project

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facility, which will be a 20-MW pilot plant of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as 1) NO/sub x/ behavior in the radiant boiler and secondary combustor; 2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed slag separation; 3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; 4) formation, growth, and deposition of seed-slag particles, 5) character of the combustion gas effluents, and 6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is reported.

  8. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  10. Human thermoregulatory function during exercise and immersion after 35 days of horizontal bed-rest and recovery.

    Science.gov (United States)

    Mekjavic, Igor B; Golja, Petra; Tipton, Michael J; Eiken, Ola

    2005-10-01

    The present study evaluated the effect of 35 days of experimental horizontal bed-rest on exercise and immersion thermoregulatory function. Fifteen healthy male volunteers were assigned to either a Control (n = 5) or Bed-rest (n = 10) group. Thermoregulatory function was evaluated during a 30-min bout of submaximal exercise on a cycle ergometer, followed immediately by a 100-min immersion in 28 degrees C water. For the Bed-rest group, exercise and immersion thermoregulatory responses observed post-bed-rest were compared with those after a 5 week supervised active recovery period. In both trials, the absolute work load during the exercise portion of the test was identical. During the exercise and immersion, we recorded skin temperature, rectal temperature, the difference in temperature between the forearm and third digit of the right hand (DeltaT(forearm-fingertip))--an index of skin blood flow, sweating rate from the forehead, oxygen uptake and heart rate at minute intervals. Subjects provided ratings of temperature perception and thermal comfort at 5-min intervals. Exercise thermoregulatory responses after bed-rest and recovery were similar. Subjective ratings of temperature perception and thermal comfort during immersion indicated that subjects perceived similar combinations of Tsk and Tre to be warmer and thermally less uncomfortable after bed-rest. The average (SD) exercise-induced increase in Tre relative to resting values was not significantly different between the Post-bed-rest (0.4 (0.2) degrees C) and Recovery (0.5 (0.2) degrees C) trials. During the post-exercise immersion, the decrease in Tre, relative to resting values, was significantly (P immersions, respectively. The gain of the shivering response (increase in VO(2) relative to the decrease in Tre; VO(2)/Tre) was 1.19 l min(-1) degrees C(-1) in the Recovery trial, and was significantly attenuated to 0.51 l min(-1) degrees C(-1) in the Post-bed-rest trial. The greater cooling rate observed in the post-bed

  11. Cross-flow heat transfer in fixed bed

    Science.gov (United States)

    Ma, Hongfang; Zhang, Haitao; Ying, Weiyong; Fang, Dingye

    2013-06-01

    Radial flow reactor operated at cross-flow heat transfer is focused for large scale methanol synthesis. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer were investigated and results show that the temperature profile of the area in front of the heating pipe is slightly affected by all the operating conditions. The main area whose temperature profile is influenced is located behind the heating pipe. The heat transfer direction is related to the direction of the flow. In order to obtain the basic parameters for radial flow reactor designing calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which were calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated values shows that the calculated values fit the experimental data satisfactorily and the formulas can be used for reactor designing calculation.

  12. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...

  13. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...... Rankine cycle technology presents larger performances compared to steam Rankine cycle units, whereas the implementation of air bottoming cycle modules is not attractive from an economic and environmental perspective compared to the other two technologies. Despite the relatively high cost of the expander...

  14. Optimum length of finned pipe for waste heat recovery

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2008-01-01

    A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system

  15. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    refrigerator with heat recovery cabinet by 20% more than that of the operation of refrigerator only. This improvement is due to the reduction in the condenser exit temperature by 4 to 6 C˚, and the super heat removing process in reheating cabinet. The temperature of the cabinet reachs to 60 C˚ which is a sufficient for the food heating. A small amount of refrigerant pressure reduction due to these additions, and its effect on the preformace of the refrigerator  may be not considerable.

  16. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  17. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-01-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  18. An experimental study of boiling heat transfer and dryout in heated particulate beds

    International Nuclear Information System (INIS)

    Trenberth, R.; Stevens, G.F.

    1980-07-01

    Boiling heat transfer and dryout occurring in a liquid while it permeates through a bed of self-heated particulate material are phenomena of relevance to reactor safety since they control the rate of heat removal from beds of core debris. Considerable attention is being given to the subject throughout the world, and studies include both in-reactor and laboratory experiments. Results are presented from laboratory experiments in which water was the coolant and in which the particulate material was plated iron shot. The bed of plated iron shot was of rectangular cross-section and was heated by passing low voltage alternating current through the particles. The results presented relate mainly to a systematic study of the effects of bed depth and particle size on dryout power density, but the effect of an additive which significantly reduces the surface tension of the coolant was also examined, as theoretical considerations suggest that this is important. The data exhibit a high degree of consistency, and thus will prove to be valuable in validation of theoretical models. (author)

  19. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  20. Exergy optimization in a steady moving bed heat exchanger.

    Science.gov (United States)

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.

  1. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  2. Heat and mass transfer enforcement of vibrating fluidized bed

    Science.gov (United States)

    Chu, Zhide; Yang, Junhong; Li, Xuhui; Song, Yang

    1994-12-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad, elaborates the vibration properties of vibrating fluidized bed, the fluidizing velocity and pressure drop of the bed layer. It also deduces the non-steady state drying dynamic equations of vibrating fluidized bed, analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  3. New expanded bed adsorbents for the recovery of DNA

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Olander, M. A.; Sondergaard, M.

    2000-01-01

    A 20-40 mum pellicular high density (similar to3.7 g cm(-3)) expanded bed material has been designed for the capture of DNA and other large macromolecules. Anion exchangers fashioned out of these supports exhibited dramatically enhanced DNA binding capacities over commercial anion exchange...

  4. Optimal waste heat recovery and reuse in industrial zones

    International Nuclear Information System (INIS)

    Stijepovic, Mirko Z.; Linke, Patrick

    2011-01-01

    Significant energy efficiency gains in zones with concentrated activity from energy intensive industries can often be achieved by recovering and reusing waste heat between processing plants. We present a systematic approach to target waste heat recovery potentials and design optimal reuse options across plants in industrial zones. The approach first establishes available waste heat qualities and reuse feasibilities considering distances between individual plants. A targeting optimization problem is solved to establish the maximum possible waste heat recovery for the industrial zone. Then, a design optimization problem is solved to identify concrete waste heat recovery options considering economic objectives. The paper describes the approach and illustrates its application with a case study. -- Highlights: → Developed a systematic approach to target waste heat recovery potentials and to design optimal recovery and reuse options across plants in industrial zones. → Five stage approach involving data acquisition, analysis, assessment, targeting and design. → Targeting optimization problem establishes the maximum possible waste heat recovery and reuse limit for the industrial zone. → Design optimization problem provides concrete waste heat recovery and reuse network design options considering economic objectives.

  5. On dryout heat flux and pressure drop of a submerged inductively heated bed flow from below

    International Nuclear Information System (INIS)

    Tsai, F.F.; Catton, I.

    1983-01-01

    An experimental investigation of dryout heat flux in a saturated porous medal with forced flow from below has been conducted using methanol as a coolant. The mass flux varied from 0 to 0.557 kg/m 2 sec. Particle sizes were 590-790 μm, 1.6 mm, 3.2 mm, and 4.8 mm. The dryout heat flux increases as the mass flux increases, and asymptotically goes to the total evaporation energy of the inlet flow. The pressure drop across the bed changed very rapidly near the dryout point due to the formation of dry zone

  6. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  7. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Science.gov (United States)

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  8. Heat recovery from ground below the solar pond

    NARCIS (Netherlands)

    Ganguly, S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    The method of heat recovery from the ground below solar ponds is investigated in the present brief note. Solar ponds lose considerable amount of heat from its bottom to the ground due to temperature gradient between them. This waste heat from ground, which is at different temperature at different

  9. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding......In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... sensitivity to inter-particle bridging by nucleic acid polymers, gave low DNA recoveries (0.8 mg ml(-1)) capture of plasmid...

  10. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  11. Possibilities of heat energy recovery from greywater systems

    Directory of Open Access Journals (Sweden)

    Niewitecka Kaja

    2018-01-01

    Full Text Available Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  12. Design of heat-recovery and seed-recovery units in MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.

    1974-01-01

    Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.

  13. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...

  14. Open-loop heat-recovery dryer

    Science.gov (United States)

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  15. Simultaneous heat and mass transfer in packed bed brying of seeds having a mucilage coating

    Directory of Open Access Journals (Sweden)

    M. M. Prado

    2008-03-01

    Full Text Available The simultaneous heat and mass transfer between fluid phase and seeds having a mucilaginous coating was studied during packed bed drying. To describe the process, a two-phase model approach was employed, in which the effects of bed shrinkage and nonconstant physical properties were considered. The model took into account bed contraction by employing moving coordinates. Equations relating shrinkage and structural parameters of the packed bed with moisture content, required in the drying model, were developed from experimental results in thick-layer bed drying. The model verification was based on a comparison between experimental and predicted data on moisture content and temperature along the bed. Parametric studies showed that the application of correlations capable of incorporating changes in bed properties gives better data simulation. By experimental-theoretical analysis, the importance of shrinkage for a more accurate interpretation of heat and mass transfer phenomena in the drying of porous media composed of mucilaginous seeds is corroborated.

  16. Analisa Heat Balance Thermal Oxidizer dengan Waste Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Alfian Bani Susiloputra

    2017-03-01

    Full Text Available Central Processing Plant (CPP merupakan plant yang memproses feed gas hingga menjadi natural gas siap pakai. Pengolahan feed gas di CPP menimbulkan dampak limbah berupa waste gas. Thermal Oxidizer (TOX memiliki peran penting dalam mengatasi waste gas. Energi panas gas buang (flue gas dimanfaatkan pada Waste Heat Recovery Unit (WHRU yang berada diatas chamber, digunakan untuk memanaskan hot oil. Kondisi operasional pembakaran TOX di CPP saat ini, jumlah input sangat berbeda dengan desain awal. Suhu pembakaran juga sangat tinggi, yaitu diatas 1.144 K. Sementara itu WHRU belum berjalan secara normal, suhu hot oil pada outlet WHRU masih 438-444 K. Analisa pembakaran TOX dilakukan dengan analisa termodinamika pada jumlah bahan bakar serta jumlah excess air untuk mendapatkan pembakaran sempurna pada suhu ideal chamber, yaitu 1.088-1.144 K. Bahan bakar yang digunakan sejumlah 60%-100% dari fuel gas operasional, sedangkan excess air yang digunakan 10%-35%. Selain itu pemanfaatan energi panas flue gas pada WHRU dilakukan analisa supaya suhu hot oil keluar WHRU mencapai 449 K. Analisa WHRU dilakukan dengan analisa perpindahan panas, untuk mendapatkan flowrate dari hot oil dari suhu dan laju aliran massa flue gas hasil variasi pembakaran TOX tersebut. Dari penelitian ini, suhu TOX hasil pembakaran operasional yang sesuai dengan desain awal yaitu pada 60% fuel gas dengan excess air (EA antara 30% hingga 35%. Pada 60% fuel gas dengan EA antara 30% hingga 35% didapatkan suhu antara 1.095 K hingga 1.138 K. Pada hasil analisa WHRU, untuk mencapai suhu hot oil sebesar 449,817 K pada variasi TOX tersebut diperlukan laju aliran massa hot oil sebesar 1.257.720 kg/jam dan 1.481.420 kg/jam.

  17. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    of performance and sustainability. The fluid was novel and generated through the framework. In the second case study, waste heat recovery from a milk powder production spray dryer was addressed. A heat pump was designed with a mixed working fluid for the optimal heat recovery and transfer for the low-grade waste...... heat from effluent spray dryer air. 25% isobutene and 75% 1,3-difluoropropane and a process with a coefficient of performance of 3.22 was designed. The design provided new binary mixture and optimized cycle process that was an improvement compared to conventional systems. Furthermore, the fluids were...

  18. Recovery of Seamount Precious Coral Beds From Heavy Trawling Disturbance

    Science.gov (United States)

    Morgan, N.; Baco-Taylor, A.; Roark, B.

    2016-02-01

    Resilience and the related concept of recovery provide insights into ecosystem function, connectivity, and succession. Most marine resilience studies have focused on shallow-water ecosystems. However, increasing anthropogenic impacts in the deep sea make studies of resilience and recovery in the deep sea time-critical, with deep-sea hard-substrate habitats and large-scale disturbances having received the least attention. Ironically one of the key anthropogenic impacts to the seafloor, trawling, provides an ideal experimental design to understand processes of recovery from large-scale disturbance in the deep sea. Seamount hard-substrate habitats in particular are thought to have low resilience due to the slow growth rates and recruitment limitations of key structure-forming taxa. The goal of our project is to test the hypothesis of low resilience by examining a series of locations in the far Northwestern Hawaiian Islands and the Emperor Seamount Chain. These sites have had some of the heaviest trawl impacts in the world, from both fish and precious coral fisheries, and include sites that are still trawled as well as ones that have been protected since the establishment of the US Exclusive Economic Zone in 1977. We compare these to untrawled sites as part of a three "treatment" design. During two cruises in 2014 and 2015 we used the AUV Sentry to image nine features (three per treatment). CTD data were also collected. Images were analyzed for all visible megafauna as well as substrate parameters (rugosity, slope, composition, relief). Yuryaku, in the "still trawled" treatment was characterized by extensive areas of bare substrate with abundant trawl scars. This feature also had lower diversity and lower abundance of megafauna compared to the recovering and never trawled locations. Preliminary data suggest recovering and never trawled features have overlapping species, but not in comparable abundances.

  19. Experimental heat transfer coefficients between a surface and fixed and fluidized beds with PCM

    OpenAIRE

    Izquierdo-Barrientos, María Asunción; Sobrino, Celia; Almendros-Ibáñez, José Antonio

    2015-01-01

    This work presents an experimental study to determine the capacity of a phase change material (PCM) in granular form to be used in fixed and bubbling fluidized beds for thermal energy storage. The experimental measurements are focused on determination of the heat transfer coefficient between a heated surface immersed in the bed and the granular PCM. The flow rate is varied to quantify its influence on the heat transfer coefficient. The PCM used is Rubitherm GR50 with a phase change tem...

  20. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates

    Science.gov (United States)

    Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.

    2015-01-01

    Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991

  1. Measurement of the thermal conductivity and heat transfer coefficient of a binary bed of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.

    1998-01-01

    The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)

  2. Recovery of intertidal mussel beds in the Waddensea: use of habitat maps in the management of the fishery

    NARCIS (Netherlands)

    Dankers, N.M.J.A.; Brinkman, A.G.; Meijboom, A.; Dijkman, E.M.

    2001-01-01

    In the Waddensea, musselbed distribution and abundance has decreased. Management is aiming at increase of area of beds. Fisheries have been regulated. Mussel beds are slowly recovering, and localities where recovery occurs can be predicted reasonably well. Active restoration of beds has not been

  3. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  4. Investigations of waste heat recovery from bulk milk cooler

    Directory of Open Access Journals (Sweden)

    S.N. Sapali

    2014-11-01

    Full Text Available Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recovered to improve the energy efficiency of plant. The waste heat is utilized to heat the water which is used to clean the milk processing equipments thus saving thermal or electrical energy used to heat the water separately. Shell and coil type heat exchanger is designed and used to recover the waste heat during condensation process. Heat rejected in condensation process consists of superheat and latent heat of the refrigerant. In this work, attempt has been made to recover complete superheat along with part of latent heat which is a present research issue. The results show that complete superheat and 35% of latent heat is recovered. Heat recovery rate is measured for various mass flow rates. Water is flowing on shell side and refrigerant through tubes. The effectiveness of the heat exchanger is determined and the results achieved are presented in this paper. Significant improvements have been achieved and COP of the system is increased from 3 to 4.8.

  5. Heat transfer in a fixed bed and mass transfer in a counter-current moving bed

    Science.gov (United States)

    Dellaretti, F. O.

    The behavior of gas-solid reactors known as compact-fixed and moving beds, is analyzed from a theoretical viewpoint. For a compact fixed-bed the solution of the energy balance equations is obtained for the cases of a uniform temperature inside the solid pellets (i.e., the Biot number is zero) and for the case in which there are temperature gradients within the pellets (Bi 0). For short contact times, beds with Bi 0 have gas- and solid- temperatures which are greater than the temperatures within beds with Bi = 0. For long times, the situation is reversed. For a compact-moving bed the solution of the mass balance equations is obtained for the cases of a feed-solid with an oscillating concentration. For both types of beds there is an equivalence between mass transfer and energy transfer so that the solutions can be interchanged with suitable definitions of dimensionless variables.

  6. Heat recovery from nuclear power plants

    International Nuclear Information System (INIS)

    Safa, H.

    2012-01-01

    The thermodynamic efficiency of a standard Nuclear Power Plant (NPP) is around 33%. Therefore, about two third of the heat generated by the nuclear fuel is literally wasted in the environment. Given the fact that the steam coming out from the high pressure turbine is superheated, it could be advantageously used for non electrical applications, particularly for district heating. Considering the technological improvements achieved these last years in heat piping insulation, it is now perfectly feasible to envisage heat transport over quite long distances, exceeding 200 km, with affordable losses. Therefore, it could be energetically wise to revise the modifications required on present reactors to perform heat extraction without impeding the NPP operation. In this paper, the case of a French reactor is studied showing that a large fraction of the wasted nuclear heat can be actually recovered and transported to be injected in the heat distribution network of a large city. Some technical and economical aspects of nuclear district heating application are also discussed. (author)

  7. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  8. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...... like the Northern Europe or in arctic climate like in Greenland or Alaska these ventilation systems will typically face problems with ice formation in the heat exchanger. When the warm humid room air comes in contact with the cold surfaces inside the exchanger (cooled by the outside air), the moisture...

  9. Sun Coke heat recovery coke technology at Indiana Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.N. [Sun Coke Company (USA). Operations

    1999-12-01

    Sun Coke heat recovery coke technology was fully established for the first time at Indiana Harbor Coke Company, East Chicago, Indiana (USA). The plant supplies continuous heat to waste heat boilers which provide steam for a 94 MW turbine generator whilst producing 1,350,00 NT per year of metallurgical coke. The paper briefly describes the development of the technology and discusses specific design aspects of the Indiana Harbor plant. 3 refs., 2 figs., 2 tabs.

  10. Evaluation of heat transfer in a catalytic fixed bed reactor at high temperatures

    OpenAIRE

    JORGE,L. M. M.; JORGE,R. M. M.; FUJII,F.; GIUDICI,R.

    1999-01-01

    Experimental results of fixed-bed heat-transfer experiments with no chemical reaction are presented and discussed. The runs were carried out in a tubular integral reactor heated by an electrical furnace at temperatures in the range of 100 to 500°C. Experimental temperature profiles were determined for the electrical furnace, for the reactor wall, and for the fixed bed center. Industrial catalyst for the prereforming of hydrocarbons was employed as the packing material. The effects of process ...

  11. Use of photovoltaics for waste heat recovery

    Science.gov (United States)

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  12. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  13. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    Science.gov (United States)

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  15. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  16. Overview of renewable and recovery heat - Release Autumn 2017

    International Nuclear Information System (INIS)

    Payen, Elodie; Descat, Marie; Purdue, Julie; Apolit, Robin; Richard, Axel; Billerey, Elodie; Jouet, Francoise; Laplagne, Valerie

    2017-09-01

    This publication proposes an overview of the different sources of renewable heat or of heat recovery. It addresses the biomass sector (collective, individual and tertiary biomass, domestic wood-based heating, biomass characteristics and stakes), the direct geothermal and heat pumps sectors, the thermal solar sector (key figures, installed power, characteristics and stakes), the sector of energetic valorisation of wastes for heat production (key figures, installed power, stakes and objectives, typology and regulation), and heat networks as energy vectors (key figures, characteristics of heat networks and of cold networks). The development framework is also presented with the objectives of the multi-year energy programming (PPE), the economic and regulatory framework. Agencies and professional bodies are briefly presented

  17. Evaluation of heat transfer in a catalytic fixed bed reactor at high temperatures

    Directory of Open Access Journals (Sweden)

    JORGE L. M. M.

    1999-01-01

    Full Text Available Experimental results of fixed-bed heat-transfer experiments with no chemical reaction are presented and discussed. The runs were carried out in a tubular integral reactor heated by an electrical furnace at temperatures in the range of 100 to 500°C. Experimental temperature profiles were determined for the electrical furnace, for the reactor wall, and for the fixed bed center. Industrial catalyst for the prereforming of hydrocarbons was employed as the packing material. The effects of process conditions (furnace temperature, gas flow rate on the heat-transfer coefficients were evaluated. The experimental results were analyzed in terms of the external, wall, and internal thermal resistances, associated in series, and compared with model predictions. Under the conditions studied, the overall coefficient was mostly a function of the external effective heat-transfer coefficient. An alternative data treatment was proposed to determine the internal heat-transfer coefficient in fixed beds when wall temperature is not constant.

  18. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity......With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly...... under part-load conditions most of the time in order to accommodate any short term peak loads. Gas turbines with flexibility with respect to fuel type, resulting in low turbine inlet and exhaust gas temperatures, are often employed. The typical gas turbine efficiency for an offshore application might...

  19. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  20. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal...... conductivity experiments were performed on a wheat straw sample, which were cut in a shredder with two different sieves, 4 and 8 mm, and packed loosely in the thermal conductivity apparatus. The model, using external porosity and char diameter, compared reasonable well with experiments. The two straw samples...... were also packed densely, and the model, using measured external porosity together with the diameter from the loosely packed sample, compared reasonable well with experiments. The verified model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity...

  1. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  2. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values

  3. Evaluation of Heat Shields from RTS Wright Industries Magnesium and Uranium Beds

    CERN Document Server

    Korinko, P S

    2002-01-01

    Heat shields from a factory test of the furnaces that will be used to heat the magnesium and uranium beds for the tritium extraction facility (TEF) were examined to determine the cause of discoloration. The samples were examined using visual, optical microscopy, electron microscopy, x-ray spectroscopy, and Auger electron spectroscopy.

  4. A study of ion-exchange chromatography in an expanded bed for bovine albumin recovery

    Directory of Open Access Journals (Sweden)

    João Batista Severo Jr.

    2009-04-01

    Full Text Available In the present work, the effect of bed expansion on BSA adsorption on Amberlite IRA 410 ion-exchange resin was studied. The hydrodynamic behavior of an expanded bed adsorption column on effects of the biomolecules and salt addition and temperature were studied to optimize the conditions for BSA recovery on ion-exchange resin. Residence time distribution showed that HEPT, axial dispersion and the Pecletl number increased with temperature and bed height, bed voidage and linear velocity. The binding capacity of the resin increased with bed height. The Amberlite IRA 410 ion-exchange showed an affinity for BSA with a recovery yield of 78.36 % of total protein.No presente trabalho foi estudado o efeito da expansão do leito sobre a adsorção de BSA na resina de troca iônica Amberlite IRA 410. O comportamento hidrodinâmico de uma coluna de adsorção em leito expandido sob efeito da adição de biomoléculas, sal e variação da temperatura também foi estudado para obter as condições ótimas de recuperação da BSA sob a resina de troca iônica. A distribuição do tempo de residência mostrou que a HEPT, a dispersão axial e o número de Pecletl aumentaram com a temperatura, altura do leito, porosidade do leito e velocidade linear. A capacidade de ligação da resina aumentou com a expansão do leito. A resina de troca iônica Amberlite IRA 410 mostrou ter afinidade pela BSA, com uma recuperação de 78,36 % da proteína total.

  5. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  6. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  7. Latent heat storage in a fixed-bed packed with cross-linked polymer particles

    Science.gov (United States)

    Morita, Hiroki; Miyatake, Osamu

    Experimental and numerical analyses were carried out to investigate the discharge characteristics of a fixed-bed, using form-stable cross-linked cylindrical polymer particles as a phase change type of heat storage material and ethylene glycol as heat transfer fluid. Firstly, particle-to-fluid heat transfer coefficient in a fixed-bed, essential for analyzing the discharge characteristics of the latent heat storage column, were evaluated experimentally using Schumann's extended theory, and an empirical formula for estimating the heat transfer coefficient was presented. Secondly, by using the empirical formula, the transient temperature distribution in the column and the transient response of the outlet temperature of the heat transfer fluid were calculated numerically, and the latter was compared with measurements of the outlet temperature of the fluid. The numerical results were found to be in good agreement with the experimental results.

  8. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  9. Compound circuit heat recovery unit with bleeding point in the brine circuit for the extraction of heat by the heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Juettemann, H.

    1982-09-01

    For the recovery of heat in ventilating installations normally now-a-days a heat recovery unit is applied. For the supply of heat to the building often a heat pump is used. Instead of external air for the heat pump as the source of heat preference is given to the extract air after it has passed through the heat recovery unit, as this air contains a few more degrees Kelvin then the external air. The most primitive method would provide a heat exchanger for heat removal by the heat pump after the exhaust air heat recovery unit. With a compound circuit heat recovery unit this heat exchanger can be omitted by bleeding the brine circuit for the extraction of heat by the heat pump.

  10. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  11. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  12. Modelling the viability of heat recovery from combined sewers.

    Science.gov (United States)

    Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S

    2014-01-01

    Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP.

  13. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...

  14. Treatment of synthetic refinery wastewater in anoxic-aerobic sequential moving bed reactors and sulphur recovery.

    Science.gov (United States)

    Mallick, Subrat Kumar; Chakraborty, Saswati

    2017-11-10

    Objective of the present study was to simultaneously biodegrade synthetic petroleum refinery wastewater containing phenol (750 mg/L), sulphide (750 mg/L), hydrocarbon (as emulsified diesel of 300 mg/L), ammonia-nitrogen (350 mg/L) at pH >9 in anoxic-aerobic sequential moving bed reactors. The optimum mixing speed of anoxic reactor was observed at 20 rpm and beyond that, removal rate remained constant. In anoxic reactor the minimum hydraulic retention time was observed to be 2 days for complete removal of sulphide, 40-50% removal of phenol and total hydrocarbons and 52% of sulphur recovery. The optimum HRT of aerobic moving bed reactor was observed as 16 h (total HRT of 64 h for anoxic and aerobic reactors) for complete removals of phenol, total hydrocarbons, COD (chemical oxygen demand) and ammonia-nitrogen with nitrification.

  15. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    OpenAIRE

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.; Reinholdt, Lars; Elmegaard, Brian

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures. Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and...

  16. Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations

    Directory of Open Access Journals (Sweden)

    S. Heinrich

    2005-06-01

    Full Text Available A model was developed taking into consideration the heat and mass transfer processes in liquid-sprayed fluidized beds. Such fluidized beds (FB are used for granulation, coating and agglomeration. Conclusions are drawn on the relevance of particle dispersion, spraying and drying to temperature and concentrations distributions. In extension, the model was coupled with a population balance model to describe the particle size distribution and the seeds formation for continuous external FBSG (fluidized bed spray granulation with non-classifying product discharge and a screening and milling unit in the seeds recycle. The effects of seeds formation on the stability of the process is discussed.

  17. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    Blacker, P.T.; McLain, D.R.

    1962-04-01

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  18. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  19. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  20. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  1. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  2. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  3. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  4. A review of dryout heat fluxes and coolability of particle beds. APRI 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Lindholm, Ilona

    2002-04-01

    Dryout heat flux experiments on particle beds have been reviewed. The observed dryout heat flux varies from some tens of kW/m 2 to well over 1 MW/m 2 . The variation can be qualitatively and to some extent also quantitatively explained. The effect of particle diameter has been clearly demonstrated. For particles having diameter less than about 1 mm, the dryout heat flux on the order of 100-200 kW/m 2 , and increases on square of the particle diameter. For larger than 1 mm particles the dryout heat flux increases on square root of the particle diameter. Typical values for ∼ 5 mm particles is 500 kW/m 2 to 1 MW/m 2 . An effect of bed thickness can be seen for small particles and medium range (50-500 mm) beds. For thick beds, > 500 mm, the dryout heat flux does not any more change as the bed height increases. The dryout heat flux increases with increasing coolant pressure. This can be explained by the increasing vapour density, which can remove more latent heat from the bed. Debris bed stratification, with small particles on top, clearly decreases the dryout heat flux. The dryout heat flux in a stratified bed can even be smaller than a heat flux of an equivalent debris bed consisting of the smaller particles alone. This is due to the capillary force, which draws liquid towards the smaller particles and causes the dryout to occur at the interface of the particle layers. A model has been developed by Lipinski to estimate dryout heat fluxes in a particle bed. The model has been derived based on solution of momentum, energy and mass conservation equations for two phases. The 1-D model can take into account variable particle sizes (stratification) along the bed and different coolant entry positions. It has been shown that the model can quite well predict the observed dryout characteristics in most experiments. The simpler 0-D model can give reasonable estimates for non-stratified beds. Results and observations of several tests on melt jet fragmentation in a water pool

  5. Strain Recovery by TiNi Element Under Fast Heating

    Science.gov (United States)

    Volkov, Aleksandr E.; Miszuris, Wiktoria; Volkova, Natalia A.

    2018-01-01

    A theoretical and experimental study of strain recovery under fast heating of a shape memory alloy (SMA) rod preliminarily stretched in the martensitic state is carried out. Two theoretical models are considered: instantaneous heating and heating with temperature variation during a finite time. In the first case, it is supposed that the straight SMA rod experiences an instantaneous reverse martensitic transformation, and in the second the transformation is supposed to progress at a rate corresponding to the temperature rate. Analytical expression for the time dependence of the rod free-end displacement is obtained. In the experiment, a wire specimen made of titanium-nickel SMA was heated by a short impulse of electric current. The variation of the specimen length in time was registered. Thus, it has been shown that the minimum operation time of an SMA actuator (time needed for the strain recovery) can be reduced to 20 µs. Comparison of the theoretical results with the experimental ones leads to the conclusion that the displacement variation in time is controlled by the rate of heating and the inertia of the specimen. The incubation time of the martensitic transformation on the microscale apparently is estimated as less than 1 µs.

  6. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  7. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  8. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  9. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  10. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  11. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  12. Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery

    Science.gov (United States)

    Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado

    2013-02-01

    Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.

  13. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  14. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  15. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  16. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  17. Performance analysis of cylindrical metal hydride beds with various heat exchange options

    Energy Technology Data Exchange (ETDEWEB)

    Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kolesnikov, A.; Moropeng, M.L. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Tarasov, B.P. [Laboratory of Hydrogen Storage Materials, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prospect Semenova, 1, Chernogolovka 142432 (Russian Federation); Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • 3D numerical model for the comparison of H{sub 2} uptake performances in MH reactors. • 4 options of heat exchange between heat transfer fluid and MH in cylindrical reactor compared. • Straight tube internal heat exchanger. • Helical coil internal heat exchanger. • External heat exchange without and with transversal fins in the MH reactor. - Abstract: A 3D numerical heat-and-mass transfer model was used for the comparison of H{sub 2} uptake performances of powdered cylindrical MH beds comprising MmNi{sub 4.6}Al{sub 0.4} hydrogen storage material. The considered options of heat exchange between the MH and a heat transfer fluid included internal cooling using straight (I) or helically coiled (II) tubing, as well as external cooling of the MH bed without (III) and with (IV) transversal fins. The dynamic performances of these layouts were compared based on the numerical simulation. The effect of heat transfer coefficient was also analysed.

  18. Interactions among Carbon Dioxide, Heat, and Chemical Lures in Attracting the Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae

    Directory of Open Access Journals (Sweden)

    Narinderpal Singh

    2012-01-01

    Full Text Available Commercial bed bug (Cimex lectularius L. monitors incorporating carbon dioxide (CO2, heat, and chemical lures are being used for detecting bed bugs; however, there are few reported studies on the effectiveness of chemical lures in bed bug monitors and the interactions among chemical lure, CO2, and heat. We screened 12 chemicals for their attraction to bed bugs and evaluated interactions among chemical lures, CO2, and heat. The chemical lure mixture consisting of nonanal, 1-octen-3-ol, spearmint oil, and coriander Egyptian oil was found to be most attractive to bed bugs and significantly increased the trap catches in laboratory bioassays. Adding this chemical lure mixture when CO2 was present increased the trap catches compared with traps baited with CO2 alone, whereas adding heat did not significantly increase trap catches when CO2 was present. Results suggest a combination of chemical lure and CO2 is essential for designing effective bed bug monitors.

  19. An investigation into heat recovery from the surface of a cyclone dust collector attached to a downdraft biomass gasifier

    International Nuclear Information System (INIS)

    Nwokolo, Nwabunwanne; Mamphweli, Sampson; Makaka, Golden

    2016-01-01

    Highlights: • At a temperature of 450 °C–500 °C, hot syngas is regarded as a good heat carrier. • A significant quantity of energy (665893.07 kcal) is lost via the surface of the cyclone. • The surface temperature 150 °C–220 °C was within the low waste heat recovery temperature. - Abstract: The gas leaving the reactor of a downdraft biomass gasifier contains large quantities of heat energy; this is due to the fact that the gas passes through a hot bed of charcoal before leaving the reactor. This heat is normally wasted in the gas scrubber/cooler that cools it from between 400 °C–500 °C to ambient temperature (around 25 °C). The waste heat stream under consideration is the raw syngas that emanates from a gasification process in a downdraft gasifier situated at Melani Village, Eastern Cape. This loss of heat is undesirable as it impacts on the thermal efficiency of the system. This study investigates the feasibility of heat recovery from the surface of the cyclone dust collector prior to entering the gas scrubber. It was shown that there was a downward decrease in temperature along the length of the cyclone. It is found that the total quantity of heat contained in the gas was 665893.07 kcal, which could indicate the viability of recovering heat from the cyclone.

  20. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both...... technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  1. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures....... Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and return temperatures of the heat sink (condenser or gas cooler) of the heat pump are most important...... for the coefficient of performance, COP. By comparing the cycles it is found that for each set of operating conditions the two refrigerants perform equally well at one given inlet temperature of the heat sink. Above this temperature ammonia cycles have the best COP and below CO2 cycles perform best. A general...

  2. The heat recovery with heat transfer methods from solar photovoltaic systems

    Science.gov (United States)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-04-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc.

  3. Nonlinear thermal interaction between a heat-generating particulate bed and a solid

    International Nuclear Information System (INIS)

    Cheung, F.B.; Stein, R.P.; Epstein, M.; Gabor, J.D.; Bingle, J.D.

    1980-01-01

    The process of combined conduction and radiation in a large, heat-generating, dry particulate bed in sudden contact with a semi-infinite solid is studied analytically by a successive approximation method and numerically by a finite difference method. The transient behavior of the system, in particular, the behavior of the temperature at the particulate bed-solid interface, is obtained as a function of two dimensionless controlling parameters. Also obtained are the conditions leading to incipient melting of the system. Based upon the finite difference solution, the present approximate method, which is shown to be rather simple and convenient to use, is found to yield rapidly converging and sufficiently accurate results

  4. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  5. Optimization of enhanced coal-bed methane recovery using numerical simulation

    Science.gov (United States)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  6. Application of image processing on struvite recovery from swine wastewater by using the fluidized bed.

    Science.gov (United States)

    Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua

    2018-01-01

    Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.

  7. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  8. Safety and human factors engineering analysis. Heat recovery incinerator installation

    Science.gov (United States)

    1982-09-01

    This report contains a safety and human factors analysis of the Navy's heat recovery incinerator (HRI) systems. These requirements were based on current military standards and an evaluation of the HRI's at NAS, Jacksonville and NS, Mayport, Fl. The data collected were used to develop preliminary design criteria for future HRIs. The safety analysis lists specific areas where problems can occur and what should be done to prevent injury to plant personnel. The human factors design criteria section lists steps that can be taken to improve personnel and plant operating efficiency. Finally, specific problems that are occurring at NAS, Jacksonville and NS, Mayport are given.

  9. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    Science.gov (United States)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  10. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  11. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  12. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  13. CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha

    OpenAIRE

    D. Salari; A. Niaei; P. Chitsaz Yazdi; M. Derakhshani; S. R. Nabavi

    2007-01-01

    This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section ...

  14. Is baby too warm? The use of infant clothing, bedding and home heating in Victoria, Australia.

    Science.gov (United States)

    Watson, L; Potter, A; Gallucci, R; Lumley, J

    1998-05-29

    Overheating of infants has been associated with a raised risk for sudden infant death syndrome (SIDS). Data on the use of heating, bedding and clothing and other measures affecting the thermal environment of 4 week old infants were collected at a home interview for infants of women born in Australia (Anglo-Celtic background), in Southern Europe, in Asia and of women who had a planned out-of-hospital birth. These groups have different risks of SIDS not explained by the classic social and perinatal risk factors nor associated with the currently promoted 'new' risk factors. Thermal insulation of the infant's bedding and clothing and excess thermal insulation (for any observed room temperature) were calculated. Bed sharing differed significantly between the groups as did the use of a sheepskin, tucking in firmly, the closing of doors and windows and the use of heating in the infant's room. After stratifying by bed sharing practice and season of interview, it was found that bed sharing infants had more thermal insulation than those sleeping alone irrespective of season of interview. Infants sleeping alone in the Asian-born and Southern European-born groups were kept warmer than infants in the other two groups. Cultural factors appear to affect the thermal environment in which infants are raised. Some bed sharing infants in all four groups were inappropriately warm, particularly in colder weather, but this was more likely in the Asian-born (low risk) group than in the home birth (high risk) group. These results do not explain the differences in SIDS incidence between the groups.

  15. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    Science.gov (United States)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  16. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  17. A comparison of two low grade heat recovery options

    International Nuclear Information System (INIS)

    Walsh, Conor; Thornley, Patricia

    2013-01-01

    Low grade heat (LGH) recovery is one way of increasing industrial energy efficiency and reducing associated greenhouse gas emissions. The organic Rankine cycle (ORC) and condensing boiler are two options that can be used to recover low grade heat ( 2 annually, but the high carbon intensity of the coking process means this has a negligible influence (<1%) on the overall process lifecycle impacts. However, if the electricity generated offsets the external purchasing of electricity this results in favourable economic payback periods of between 3 and 6 years. The operation of a condensing boiler within a woodchip boiler reduces the fuel required to achieve an increased thermal output. The thermal efficiency gains reduce the lifecycle impacts by between 11 and 21%, and reflect payback periods as low as 1.5–2 years, depending on the condenser type and wood supply chain. The two case studies are used to highlight the difficulty in identifying LGH recovery solutions that satisfy multiple environmental, economic and wider objectives

  18. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  19. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mal, Joyabrata, E-mail: joyabrata2006@gmail.com [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Nancharaiah, Yarlagadda V. [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu (India); Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai 400094 (India); Maheshwari, Neeraj [CNRS UMR 7338, BMBI University de Technologie Compiegne, 60200 Compiegne (France); Hullebusch, Eric D. van [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée (France); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere (Finland)

    2017-04-05

    Highlights: • Tellurite bioreduction coupled to recovery of biogenic Te(0) nanocrystals. • First report on continuous tellurite removal in a UASB reactor. • Biogenic Te(0) was mainly associated with loosely-bound EPS of granular sludge. • Repeated exposure to tellurite caused compositional changes in the EPS matrix. - Abstract: Continuous removal of tellurite (TeO{sub 3}{sup 2−}) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30 °C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6 g COD L{sup −1} d{sup −1}. After establishing efficient and stable COD removal, the reactor was fed with 10 mg TeO{sub 3}{sup 2−} L{sup −1} for 42 d before increasing the influent concentration to 20 mg TeO{sub 3}{sup 2−} L{sup −1}. Tellurite removal (98 and 92%, respectively, from 10 and 20 mg Te L{sup −1}) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.

  20. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor

    International Nuclear Information System (INIS)

    Mal, Joyabrata; Nancharaiah, Yarlagadda V.; Maheshwari, Neeraj; Hullebusch, Eric D. van; Lens, Piet N.L.

    2017-01-01

    Highlights: • Tellurite bioreduction coupled to recovery of biogenic Te(0) nanocrystals. • First report on continuous tellurite removal in a UASB reactor. • Biogenic Te(0) was mainly associated with loosely-bound EPS of granular sludge. • Repeated exposure to tellurite caused compositional changes in the EPS matrix. - Abstract: Continuous removal of tellurite (TeO 3 2− ) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30 °C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6 g COD L −1 d −1 . After establishing efficient and stable COD removal, the reactor was fed with 10 mg TeO 3 2− L −1 for 42 d before increasing the influent concentration to 20 mg TeO 3 2− L −1 . Tellurite removal (98 and 92%, respectively, from 10 and 20 mg Te L −1 ) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.

  1. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  2. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  3. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  4. A multi-biofuel, fluidised-bed district heating plant in Sweden

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At the end of 1984, the city of Haessleholm in Sweden started up a 65 MW district heating plant which included a 14 MW solid fuel plant. The plant included a specially-designed fluidised-bed boiler, capable of burning all grades of solid fuel, including organic fuel of such low grade that no other boilers around Haessleholm could use it. By 1992, the district heating system served some 250 detached houses and 6,000 flats as well as several schools and industrial premises. The biofuel boiler provides almost 60% of the energy required. (UK)

  5. Markers of muscle damage and performance recovery following exercise in the heat

    DEFF Research Database (Denmark)

    Nybo, Lars; Girard, Olivier; Mohr, Magni

    2013-01-01

    PURPOSE: To determine whether competitive intermittent exercise in the heat affects recovery, aggravates markers of muscle fiber damage, and delay the recovery of performance and muscle glycogen stores. METHODS: Plasma creatine kinase, serum myoglobin, muscle glycogen and performance parameters...

  6. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  7. French use household waste for heating and resource recovery

    Energy Technology Data Exchange (ETDEWEB)

    Larane, A.

    2000-01-01

    The Arc en Ciel municipal waste incineration plant in Nantes, France, which combines an eye-pleasing architecture in its waste disposal facility with producing electricity for resale to the public distributor and generating steam for use by a neighbouring metal refinery is described. The plant was built by Onyx, part of the CGEA Group, which also operates the largest incineration plant in the world near Miami, Florida. Onyx is currently developing technology for fluidized bed furnaces which is suitable for waste of high calorific value and produces thermal efficiency of the order of 80 per cent, which is higher than the inclined grate-type furnaces most frequently used until recently. Thermal decomposition is also a new technique that has potential for energy recovery from household waste especially in small cities. In this process the organic content in the waste is broken down into a combustible product that is easily stored and transported. The end product resembles charcoal which, however, contains heavy metals and other toxic compounds and requires special precaution when incinerated. The heavy metals are contained in the flyash which combine with oxygen in the air to produce toxic dioxins. Hence the scrubbing of flue gases is the most critical and most expensive part of the incineration process. Various companies in France, Andrin among them, are in the process of developing equipment capable of extracting metals from the clinker. One such machine, installed in the incineration plant of the French city of Toulon, on the Mediterranean coast, is described.

  8. Do the effective heat conductivity and the heat transfer coefficient at the wall inside a packed bed depend on a chemical reaction? Weaknesses and applicability of current models

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1989-01-01

    Many studies have been on the effective heat conductivity (λeff) and the transfer coefficient at the wall (αw) inside packed beds. It has been mentioned that the values of λef and αw are changed when a chemical reaction occurs in the packed bed. We give an explanation for such a phenomenon. The

  9. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  10. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M$, corresponding to a payback time of approximately 4.5 years. The total weight...... that the once-trough single pressure steam cycle has a combined cycle thermal efficiency of 40.8% and net present value of 13.5 M$. The total weight of the steam Rankine cycle is estimated to be around 170 ton....

  11. Electrochemical Recovery of Gold from Waste Electric and Electronic Equipment Using Circulating Particulate Bed Reactor (CPBE)

    Science.gov (United States)

    Ravinder, T.; Ali, U. F. M.; Ridwan, F. M.; Ibrahim, N.; Azmi, N. H.

    2017-06-01

    The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing {{AuCl}}4- and {{AuCl}}2- of less than 0.5 mol m-3(< 102 g m-3). Elemental gold was successfully obtained on 0.5-1 mm gr particles in an electrochemical reactor incorporating a cation- permeable membrane and operated in bath recycle mode. Depletion to concentration < 5 × 10-3 mol m-3 (< 1 g m-3) appeared to be mass transport controlled at an applied potential of +0.20 V (SCE), specific electrical energy consumption (SEEC) of ca. 800-1300 kWh h (tonne Au)-1 for cell voltages (U) of 2.0-3.0 V, and fractional current efficiencies of ca. 0.95. However, atomic absorption and UV spectrophotometry established that as the ([{{AuCl}}4-+[{{AuCl}}2-]) concentration decayed, the [{{AuCl}}4-]:[{{AuCl}}2-] molar ratio changed. A multi-step mechanism for reduction of {{AuCl}}4- ions explained this behavior in terms of changing overpotentials for {{AuCl}}4- and {{AuCl}}2- reduction as total dissolved gold concentration decreased. In addition, SEM images confirmed that adherent and coherent Au deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).

  12. Advanced Waste Heat Recovery Systems within Hybrid Powertrains

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2018-01-01

    Full Text Available A waste heat recovery system (WHRS is very well known to provide no advantage during the cold start driving cycles, such as the New European Driving Cycle (NEDC, which are used for certification of emissions and assessment of fuel economy. Here, we propose a novel integrated WHRS using the internal combustion engine (ICE coolant passages and an exchanger on the exhaust working as pre-heater / boiler / super-heater of a Rankine cycle. The expander is connected to an electric generator unit (GU, and the pump is connected to an electric motor unit (MU. The vehicle is also fitted with an electric, kinetic energy recovery system (KERS. The expander and condenser are bypassed during the first part of the NEDC when the vehicle covers the four ECE-15 (Economic Commission for Europe - 15 - UDC (Urban Drive Cycle segments where the engine warms-up.  Only after the engine is fully warmed up, during the last part of the NEDC, the extra urban driving cycle (EUDC segment, the expander and condenser are activated to recover part of the coolant and exhaust energy.

  13. Testing heated flint palaeodose protocols using dose recovery procedures

    International Nuclear Information System (INIS)

    Richter, D.; Temming, H.

    2006-01-01

    Thermoluminescence (TL) dating of materials from archaeological contexts has been shown to be an accurate method when comparisons are made with other chronometric dating methods; however, little has been published on the verification of the measurement protocols used to determine the equivalent dose (palaeodose). Instead of testing TL dating protocols for heated flint using archaeological material with unknown thermal and radiation history, dose recovery tests for three samples of different geological origin are presented. These samples exhibit TL emission in the UV, blue and orange-red wavelengths. In addition to the two multiple aliquot protocols (standard additive-regeneration and normalization) generally used to determine the palaeodose, the single-aliquot-regenerative-dose (SAR) TL and OSL procedure, a 'short' SAR-TL and isothermal luminescence (IT) decay procedures are applied using detection windows limited to these emissions. Accurate dose recovery is obtained for the standard and normalization protocols in the commonly employed detection window (UV-blue), the 'short' SAR in the orange-red window and some IT measurements. While the standard techniques give the most accurate and precise results, detection of the TL and IT orange-red emission in connection with a 'short' SAR protocol also gave accurate and precise results. Such procedures are especially suitable for samples too small for standard multiple aliquot techniques, which require large samples

  14. Investigation of Heat Exchange Efficiency in the Heat Exchanger Waste Heat Recovery with Granular Nozzle

    Directory of Open Access Journals (Sweden)

    Boshkova I.L.

    2016-12-01

    Full Text Available The article analyzes the characteristics of the heat transfer process between the dispersed and gaseous medium for the moving and fixed layer of particulate material. The methods of calculus of thermal and hydraulic regimes of heat exchangers with a dense layer of particles were elaborated. The results of experimental studies of the process of heating of different kinds of granular material, intended for use as a nozzle in the recuperative heat exchanger. The influence of the height of heating chamber, the particle diameter on the output temperature of the granular material has been determined. The dependence of the temperature of the gas and solid components of the height of the nozzle has been presented.

  15. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  16. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  17. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.

    Science.gov (United States)

    Liu, Guo-Tian; Wang, Jun-Fang; Cramer, Grant; Dai, Zhan-Wu; Duan, Wei; Xu, Hong-Guo; Wu, Ben-Hong; Fan, Pei-Ge; Wang, Li-Jun; Li, Shao-Hua

    2012-09-28

    Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs

  18. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  19. Optimal operation of integrated processes. Studies on heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Glemmestad, Bjoern

    1997-12-31

    Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.

  20. Optimization of soybean heat-treating using a fluidized bed dryer.

    Science.gov (United States)

    Martínez, Marcela L; Marín, María A; Ribotta, Pablo D

    2013-12-01

    This study was designed to optimize drying and inactivation of heat-labile inhibitors conditions of soybean by using a fluidized bed dryer, in order to shorten treatment time and to reduce losses in end-product quality such as soy flour color and soy protein solubility. The independent variables were initial moisture of soybeans, heating time and temperature of air entering the fluidization chamber. The response variables studied were final moisture of soybeans, inactivation of urease, soy flour color and soy protein solubility. Response surface methodology was able to model the response of the different studied variables. For each response group, relevant terms were included into an equation; the behavior of response was predicted within the experimental area and was presented as a response surface. The results suggested that a combination of soybean initial moisture of 0.14 g/g (wb), treatment time of 3.4 min and hot-air temperature of 136.5 °C could be a good processing combination of parameters for heating soybean using hot-air in order to reduce treatment time and quality losses in soybean flour. Thus, fluidized bed drying technology may be used as an alternative industrial method to eliminate the antinutritional factors.

  1. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  2. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Vilhena, M.T. de.

    1988-01-01

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  3. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  4. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-12-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion.

  5. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  6. An experimental study of heat transfer to a horizontal tube in a large particle fluidized bed at elevated temperature

    Science.gov (United States)

    George, A. H.

    Experimental data for the time-average local heat transfer coefficient to a single horizontal tube in a large particle fluidized bed at elevated temperature, are presented. Refractory particles with surface mean diameter 2.14 mm and 3.23 mm were fluidized by combustion products of propane at bed temperatures of 810 K and 1053 K. The particle sizes are near the largest presently used in pilot plant fluidized bed coal combustors. The superficial gas velocity ranged from that required for minimum fluidization, or slightly packed, to the velocity where slugging first occurred, or the highest velocity air blower capacity would allow. Heat transfer results indicate that a stack of defluidized particles remain on top of the tube at low superficial gas velocities. A very low local heat transfer coefficient was obtained under these conditions. There was less than 10 percent difference in the maximum spatial average heat transfer coefficients for the two particle sizes considered.

  7. Investigation of hydrodynamics and heat transfer in pseudo 2D spouted beds with and without draft plates

    Directory of Open Access Journals (Sweden)

    S. H. Hosseini

    Full Text Available Abstract In the present study, hydrodynamics and gas to particle heat transfer in pseudo two dimensional spouted beds (2DSB with and without draft plates were investigated using the Eulerian-Eulerian approach. The main objective of the study was to provide an understanding of effects of the presence of draft plates on the hydrodynamics and heat transfer behavior of solid particles in the spouted beds. To validate the model, the predicted mean particle vertical velocity at the bed axis, the lateral profiles of vertical particle velocity at different bed heights for both systems, and the particle velocity vector fields in the beds were compared with the experimental measurements. A close agreement between the CFD results and the experimental data was found for both systems. The simulation results showed that the particle volume fraction in the spout and fountain regions of the spouted bed with draft plates is considerably lower than that in a conventional spouted bed (without draft plates. Simulation results also showed significant differences between the temperature distributions of gas and solid phases in spouted beds with and without draft plates.

  8. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    Energy Technology Data Exchange (ETDEWEB)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  9. Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Date, Abhijit; Orr, Bradley; Ding, Lai Chet; Singh, Baljit; Affandi, Nor Dalila Nor; Akbarzadeh, Aliakbar

    2016-01-01

    Highlights: • A new passive combined heat recovery and power generation system was tested. • Heat pipes and thermoelectrics were used for recovering industrial waste heat. • The system could recover approximately 1079 W of heat and produce approximately 7 W of electric power. - Abstract: This paper explores a new method of recovering industrial waste heat and conversion to electricity using a Thermo-Electric Generator (TEG). For this purpose, a lab scale bench-top prototype of waste heat recovery and electricity conversion system was designed and fabricated. This bench top system consists of Bismuth Telluride (Bi 2 Te 3 ) based TEG sandwiched between two heat pipes. The first heat pipe was connected to the hot side of the TEG and the second to the cold side of TEG. The waste heat was simulated by using a 2 kW electric heater for heating the air in the system. Experiments were conducted to evaluate the system performance in terms of the heat transfer rate, heat exchanger effectiveness, and maximum output power. It was found that the highest heat exchanger effectiveness of 41% was achieved when the airspeed was set at 1.1 m/s. The system could recover around 1079 W of heat and produce around 7 W of electric power. This equated to 0.7% of thermal-to-electric conversion efficiency. The theoretical predictions showed good agreement compared to the experimental results.

  10. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  11. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  12. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.

    Science.gov (United States)

    Yan, Shuiping; Zhao, Shuaifei; Wardhaugh, Leigh; Feron, Paul H M

    2015-02-17

    The gas-liquid membrane contactor generally used as a nonselective gas absorption enhancement device is innovatively proposed as a condenser for heat recovery in liquid-absorbent-based carbon capture. The membrane condenser is used as a heat exchanger to recover the latent heat of the exiting vapor from the desorber, and it can help achieve significant energy savings when proper membranes with high heat-transfer coefficients are used. Theoretical thermodynamic analysis of mass and heat transfer in the membrane condensation system shows that heat recovery increases dramatically as inlet gas temperature rises and outlet gas temperature falls. The optimal split mass flow rate is determined by the inlet gas temperature and the overall heat-transfer coefficient in the condensation system. The required membrane area is also strongly dependent on the overall heat-transfer coefficient, particularly at higher inlet gas temperatures. Mass transfer across the membrane has an insignificant effect on heat transfer and heat recovery, suggesting that membrane wetting may not be an issue when a membrane condenser is used for heat recovery. Our analysis provides important insights into the energy recovery performance of the membrane condensation system as well as selection of operational parameters, such as split mass flow rate and membrane area, thickness, and thermal conductivity.

  13. Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant

    International Nuclear Information System (INIS)

    Ashrafi, Omid; Navarri, Philippe; Hughes, Robin; Lu, Dennis

    2016-01-01

    Pinch Analysis was used to improve the energy performance of a typical steam-assisted gravity drainage (SAGD) process. The objective of this work was to reduce the amount of natural gas used for steam generation in the plant and the associated greenhouse gas emissions. The INTEGRATION software was used to analyze how heat is being used in the existing design and identify inefficient heat exchanges causing excessive use of energy. Several modifications to improve the base case heat exchanger network (HEN) were identified. The proposed retrofit projects reduced the process heating demands by improving the existing heat recovery system and by recovering waste heat and decreased natural gas consumption in the steam production unit by approximately 40 MW, representing approximately 8% of total consumption. As a result, the amount of glycol used to transfer energy across the facility was also reduced, as well as the electricity consumption related to glycol pumping. It was shown that the proposed heat recovery projects reduced natural gas costs by C$3.8 million/y and greenhouse gas emissions by 61,700 t/y of CO 2 . - Highlights: • A heat integration study using Pinch analysis was performed in a SAGD process. • Several modifications are suggested to improve the existing heat recovery system. • Heat recovery projects increased boiler feed water and combustion air temperatures. • The proposed modifications reduced natural gas use for steam generation. • Heat recovery significantly reduced operating costs and greenhouse gas emissions.

  14. Experimental Evaluation of a Total Heat Recovery Unit with Polymer Membrane Foils

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Nie, Jinzhe

    2014-01-01

    A laboratory experimental study was conducted to investigate the energy performance of a total heat recovery unit using a polymer membranes heat exchanger. The study was conducted in twin climate chambers. One of the chambers simulated outdoor climate conditions and the other simulated the climate...... condition indoors. The airflows taken from the two chambers were connected into the total heat recovery unit and exchange heat in a polymer membrane foil heat exchanger installed inside the unit. The temperature and humidity of the air upstream and downstream of the heat exchanger were measured. Based...... on the measured temperature and humidity values, the temperature, humidity, and enthalpy efficiencies of the total heat recovery unit were calculated. The experiment was conducted in different combinations of outdoor climate conditions simulating warm and humid outdoor climates and air-conditioned indoor climate...

  15. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  16. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations

  17. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...... capacities of 1.2 and 3.4 mg ml(-1) were recorded for prototype diethylaminoethyl-and polyethylene imine-linked adsorbents which were respectively 25 and 70 fold higher than those of equivalently derivatised commercial expanded bed materials. The prototype polyethylene imine-coupled material exhibited severe...

  18. An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems

    International Nuclear Information System (INIS)

    Daghigh, Roonak; Shafieian, Abdellah

    2016-01-01

    Highlights: • The power output of the cycle is about 53 kW in the mass flow rate of 0.6 kg/s. • The output cooling water temperature of evaporator is 3.64 °C. • The absorption chiller has a coefficient of performance equal to 0.94. - Abstract: High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the

  19. Heat and Mass Transfer in a Reforming Catalyst Bed: Quantitative Evaluation of the Controlling Factor by Experiment

    Science.gov (United States)

    Usami, Yutaka; Fukusako, Shoichiro; Yamada, Masahiko

    Heat and mass transfer characteristics in a reforming catalyst bed have been experimentally investigated. Experiments were carried out with a single bench-scaled reforming tube which was filled with reforming catalyst. The tube wall was uniformly heated, and mixtures of steam and methane or propane were reformed through the catalyst bed. Most part of the reaction was completed in the upper part of the test tube. The effects of space velocity, which is a ratio of volumetric flow rate of process gas to the catalyst volume, steam carbon molar ratio, wall temperature, bed temperature, and catalyst particle diameter on the transport phenomena with chemical reaction, were determined. A correlation to heat transfer coefficient was determined by Nu, Rep, Pr, dp/d, and Da. The prediction of the overall methane conversion rate was also presented.

  20. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas

    International Nuclear Information System (INIS)

    Xu, Gang; Huang, Shengwei; Yang, Yongping; Wu, Ying; Zhang, Kai; Xu, Cheng

    2013-01-01

    Highlights: • Four typical flue gas heat recovery schemes are quantitatively analyzed. • The analysis considers thermodynamic, heat transfer and hydrodynamics factors. • Techno-economic analysis and optimization design are carried out. • High-stage steam substitute scheme obtains better energy-saving effect. • Large heat transfer area and high flue gas resistances weaken overall performance. - Abstract: Coal-fired power plants in China consume nearly half of available coals, and the resulting CO 2 emissions cover over 40% of total national emissions. Therefore, reducing the energy expenditure of coal-fired power plants is of great significance to China’s energy security and greenhouse gas reduction programs. For coal-fired power plants, the temperature of a boiler’s exhaust gas reaches 120–150 °C or even higher. The thermal energy of boiler’s exhaust accounts for approximately 3–8% of the total energy of fuel input. Given these factors, we conducted a techno-economic analysis and optimization design of the heat recovery system using boiler exhaust gas. This research is conformed to the principles of thermodynamic, heat transfer, and hydrodynamics. Based on the data from an existing 1000 MW typical power generation unit in China, four typical flue gas heat recovery schemes are quantitatively analyzed from the thermodynamics perspective. The impacts of flue gas heat recovery on net work output and standard coal consumption rate of various schemes are performed. Furthermore, the transfer area of heat recovery exchanger and the draft fan work increment due to the flue gas pressure drop are analyzed. Finally, a techno-economic analysis of the heat recovery schemes is conducted, and some recommendations on optimization design parameters are proposed, with full consideration of various factors such as the decrease on fuel cost due to energy conservation as well as the investment cost of heat recovery retrofitting. The results revealed that, high

  1. Compacting of coal for heat recovery ovens, Illawarra Coke Company Pty Ltd., Coalcliffe, NSW, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.; Schuecker, F.; Kim, R. [Illawara Coke Company, NSW (Australia)

    2006-07-01

    This paper described a simple method of compacting coal for heat-recovery coke making. Coal carbonization tests in commercial non-recovery coke ovens have shown that coal densities greater than 1100 kg/m{sup 3} were obtained in a simple manner by means of hydraulically actuated compression plates. The tests and the results have significantly increased the level of knowledge regarding compacting technology. The coke produced from the compacted cakes is comparable to well-known qualities from non-recovery coke ovens using top charging technology. The quality of stamp charged heat recovery coke will provide a positive impact on blast furnace performance. 2 refs., 5 figs., 11 photos.

  2. Drain water heat recovery storage-type unit for residential housing

    OpenAIRE

    Torras Ortiz, Santiago; Oliet Casasayas, Carles; Rigola Serrano, Joaquim; Oliva Llena, Asensio

    2016-01-01

    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The drain water heat recovery (DWHR) system is an interesting household technology to reduce energy costs and environmental impact. The objective of the utilisation of these devices is the recovery of the waste heat from domestic warm drain water, and transferring it to cold water entering the house. A drain water heat recovery unit has been built in this work. The aut...

  3. Split radiator design for heat rejection optimization for a waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  4. EXPERIMENTAL STUDY ON HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR OF Al2O3 NANOFLUID IN A PACKED BED COLUMN

    Directory of Open Access Journals (Sweden)

    G. Srinivasa Rao

    2011-12-01

    Full Text Available The forced convection heat transfer coefficient and friction factor are determined for the flow of water and nanofluid in a vertical packed bed column. The analysis is undertaken in the laminar and transition Reynolds number range. The column is filled with spherical glass beads as the bed material. The heat transfer coefficients with Al2O3 nanofluid increased by 12% to 15% with the increase of volume concentration from 0.02% to 0.5% compared with water. The experimental values of axial temperature are in good agreement with the NTU-ε method proposed by Schumann’s model.

  5. Beyond the extreme: Recovery dynamics following heat and drought stress in trees

    Science.gov (United States)

    Ruehr, N.; Duarte, A. G.; Arneth, A.

    2016-12-01

    Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.

  6. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G

    2006-01-01

    Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... homeostasis after subsequent heat stress. Several metabolites were identified as responsive to heat stress and could be related to known physiological and biochemical responses. The time course of the recovery of metabolite homeostasis mirrored general changes in gene expression, showing that recovery follows...

  7. Industrial applications study. Volume IV. Industrial plant surveys. Final report. [Waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence M.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1977-01-01

    An initial evaluation of the waste heat recovery and utilization potential in the manufacturing portion of the industrial sector is presented. The scope of this initial phase addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, the methodology and approaches for data gathering and assessment were established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. This study represents an important first step in the evaluation of waste heat recovery potential.

  8. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.

    2015-01-01

    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  9. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  10. Evaluating work/recovery schedules in terms of whole body heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, S.G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Stapleton, J.M.; Kenny, G.P. [Ottawa Univ., Ottawa, ON (Canada). School of Human Kinetics, Human and Environmental Physiology Research Unit; Allen, C. [Vale Inco, Copper Cliff, ON (Canada)

    2010-07-01

    This paper reported on heat stress related research aimed at better managing the heat exposure of underground miners. The potential for underground miners to experience heat stress or strain is increasing due to greater mining depth; mechanization, and a trend towards larger diesel equipment; an aging workforce; an increasing amount of personal protective equipment worn to prevent injuries (that has led to most of the miner's body being covered) and increases in the surface climate that are superimposed through the underground workplace. This paper focused on research involving metabolic heat storage and the possibility of heat strain from elevated core temperatures. It targeted work/recovery cycles and the recovery strategies between work bouts. The first study examined the cumulative change in body heat content for a moderate metabolic rate and increasing the recovery allocation as per the TLV screening criteria to offset an increase in the wet bulb globe temperature (WBGT). The second study examined strategies that could be used between work bouts and how they affect the thermoregulatory system, heat generation or losses and net cumulative heat storage. The calorimeter based work suggested that a miner's clothing may be improved to promote evaporative cooling, and that work recovery regimes could be modified to maximize recovery. 10 refs., 1 tab., 6 figs.

  11. Experimental study on iron recovery by microwave carbon heat reduction-magnetic separation from red mud

    Directory of Open Access Journals (Sweden)

    Y. L. Cong

    2018-01-01

    Full Text Available To explore new ways to recycle red mud, this paper study on iron recovery by microwave carbon heat reductionmagnetic separation from red mud. Using orthogonal experimental method,study the effect of carbon to oxygen ratio, microwave power, heating time and slag former ratio on recovery of iron. The results show that microwave power is the main factor affecting iron recovery. After optimized by orthogonal experimental results, in the case when carbon to oxygen ratio is 1,5, microwave power is 3 000 W, heating time is 45 min, slag former ratio is 5 %, the grade and recovery of iron reach to 64,58 % and 90,64 % respectively. Analyzed comprehensivly by X-ray diffraction (XRD, Scanning Electron Microscope (SEM and Energy Dispersive Spectrometer (EDS, Fe2O3 in red mud is reduced to Fe3O4 and Fe by microwave carbon heat reduction.

  12. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  13. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  14. Simultaneous molecular and process design for waste heat recovery

    International Nuclear Information System (INIS)

    Palma-Flores, Oscar; Flores-Tlacuahuac, Antonio; Canseco-Melchor, Graciela

    2016-01-01

    Processing streams featuring low temperatures are common in industrial systems. Because of low temperatures it turns out to be a challenge to use these type of streams for energy recovery. This is especially true if water is used as the main fluid for energy recovery since large amounts of energy are required for water vaporization. To cope with this energy problem different types of organic fluids used in Rankine-like thermodynamic cycles have been proposed. However, high cost and sustainability issues (i.e. large toxicity) related to organic fluids call for the design of a new type of working fluids suitable for low-temperature energy recovery. This generation of new working fluids should feature target properties such as high vapor pressure and low flammability and toxicity values. Moreover, the performance of these new working fluids also depends on the operating conditions of the thermodynamic cycle where such working fluids will be used. In this work we address the simultaneous product and process design problem of working fluids for energy recovery from low-temperature energy sources in Rankine-like cycles to obtain improved optimal solutions. We compare the energy recovery performance of both the new family of working fluids and processing conditions against similar energy performance obtained using organic fluids previously used for the same aim. By using a system of coupled cycles, work production was increased. Moreover, the new working fluids feature improved safety margins. The results indicate the benefits of the simultaneous product and process design approach and permit us to identify a family of working fluids with better sustainability characteristics. - Highlights: • The efficient energy recovery from low-temperature sources is addressed. • A product/process design method is used for waste energy recovery. • The novel organic fluids lead to better energy recovery features. • Globally improved waste energy recovery was achieved.

  15. Optimized Design and Feasibility of a Heating System with Energy Storage by Pebble Bed in a Solar Attic

    OpenAIRE

    Hao Cheng; Xinke Wang; Min Zhou

    2017-01-01

    For efficient application of solar energy, a pebble bed energy storage heating system in a solar attic is optimally designed and operated. To study the characteristics of the heating system, a numerical model for the system is presented and is validated with the experiment data in the literature. Based on the model, the influence of the envelopes of the solar house and the meteorological condition on the system performance is investigated. The results show that the envelopes, except those on ...

  16. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....

  17. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    Science.gov (United States)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  18. Impact of supersaturation ratio on phosphorus recovery from synthetic anaerobic digester supernatant through a struvite crystallization fluidized bed reactor.

    Science.gov (United States)

    Ghosh, Shayok; Lobanov, Sergey; Lo, Victor K

    2018-02-15

    Over the past few decades, several technologies have been developed to recover phosphorus (P) as struvite from wastewater. Although these technologies have achieved reasonable P-removal efficiencies, these technologies are associated with several shortcomings such as high capital and operating costs, longer crystallization time and production of low-quality product. This study focussed on the development of an efficient technology by designing a new fluidized bed reactor (FBR) and determining its optimum operating conditions. The supersaturation ratio is the most important process parameter for struvite recovery. This study exerted effort to establish a range of supersaturation ratios in order to achieve optimum P-removal and recovery with a lesser amount of fine crystals produced. Bench-scale FBR used in this study was able to accomplish 90% P-removal with 18% P-recovery. P-removal efficiency was observed to be increasing with an increase in the initial supersaturation ratio up to a value of 6.5. On the other hand, an increase in the supersaturation ratio resulted in a lower P-recovery efficiency with an increase in fines production. The supersaturation ratio from 5.5 to 6.0 was found to be optimum for efficient operation of the reactor.

  19. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  20. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  1. Effect of irrigation and stainless steel drills on dental implant bed heat generation.

    Science.gov (United States)

    Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J

    2015-02-01

    The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (pirrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.

  2. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  3. Cost Efficient Optimization Based Supervisory Controller for Supermarket Subsystems with Heat Recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2015-01-01

    In this paper, we present a simple modelling approach for a thermal system, which consists of heating, ventilation, air conditioning system (HVAC) and a vapor compression cycle (VCC) system, with one loop heat recovery. In addition a simple model for water tank is presented, in which the reclaimed...

  4. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  5. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand ...

  6. Study on heat and mass transfer between a greenhouse considered as a solar air heater and a rock packed bed as ambient control system

    International Nuclear Information System (INIS)

    Ajona Maeztu, J.I.

    1990-01-01

    A general study on heat transfer in dry packed beds is made, with special emphasis in comparing different transient models and in identifying the required conditions by which the attained results are equivalent. The differences in thermal behaviour on packed beds, when simultaneous heat mass transfer occurs as wet air is used as heat transfer fluid and exchanges heat and water with the solid in the bed, is analyzed. We modelize wet packed beds considering them as one dimension adsorbents beds, with dispersive and non-dispersive models, where adsorption, condensation-evaporation and liquid water downward flow from condensate phenomena are present. Models were solved numerically and experiments with a rock bed with dry and wet air through it, were made to test assumptions and to further understand the behavior of the system, obtaining a pretty good agreement between expected and measured profiles of the temperature evolution within the packed bed. As a possible application of the wet rock bed for storage purposes, a forced ventilation greenhouse was characterized as a wet air solar heater and analyzed the energetic potential of storing the heat that has to be rejected during daytime to control the crop ambient conditions, in a rock bed for later use at night for heating. (author)

  7. MHD heat and seed recovery technology project. Fifth quarterly report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Tempelmeyer, K. E.; Johnson, T. R.

    1979-05-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information pertinent to the design and operation of the heat and seed recovery systems downstream of the channel-diffuser and to the seed regeneration processes. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The present project activities include: (1) assistance to and cooperation with other MHD programs including the Heat Recovery-Seed Recovery facility; (2) studies of the thermochemistry of seed-slag systems; (3) investigations of ceramic and metallic materials for service in the downstream gas systems; (4) small-scale engineering studies of seed-slag deposition; (5) operation of a 2-MW experimental facility for investigations pertaining to the downstream gas system; and (6) evaluation of seed regeneration processes.

  8. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  9. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  10. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept......A ventilated window in cold climates can be considered as a passive heat recovery system. This study carried out tests to determine the thermal transmittance of ventilated windows by using the Guarded Hot Box. By testing under defined boundary conditions, the investigation described the heat...

  11. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  12. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  13. Heat transfer in the inner and boundary region of pebble beds

    International Nuclear Information System (INIS)

    Robold, K.

    1982-07-01

    The effective thermal conductivity in the inner and boundary region of pebble beds have been measured. The experiments were carried out in evacuated pebble beds and beds with stagnant Helium (p = 700...850 mbar). The temperature range was 300 to 1900 K. The experimental results are described by new models. (orig.) [de

  14. Simulation of Reverse Flow Heat Recovery for Pharmaceutical Clean Rooms in Colombia

    OpenAIRE

    Olaya Pineda, Sandra Juliana; McGrory, John

    2011-01-01

    This dissertation examines, analyses, implements, and evaluates an innovative software heat transfer model for predicting air-to-air heat (energy) recovered in pharmaceutical drying clean rooms in Colombia. The approach provides a synergy between Reverse Flow Heat Recovery technology and activities for the consumption of this energy, not solely within the process, but throughout the whole pharmaceutical complex (e.g. warehouse, office and alternative processes). This novel integrated modellin...

  15. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  16. Effect of salt concentration in the recovery medium on heat-injured Streptococcus faecalis.

    Science.gov (United States)

    Beuchat, L R; Lechowich, R V

    1968-05-01

    Properties relating to the recovery of three heat-injured strains of Streptococcus faecalis were studied. All strains were cultured in all purpose plus Tween broth (APT) at 30 C for 24 hr before being subjected to heat in fresh APT broth. APT recovery medium containing various added amounts of NaCl, KCl, MgCl(2), or KCl and MgCl(2) was used to assess the effect of salts on the recovery of thermally injured S. faecalis. It was evident that, upon exposure to heat, S. faecalis cells became sensitive to increased salt concentrations. Analyses to determine the ribonucleic acid (RNA) content of heated cells showed a reduction of cellular RNA, but the per cent reduction was not directly proportional to the per cent reduction of the viable cells.

  17. Recovery of low temperature heat in oil mills

    Directory of Open Access Journals (Sweden)

    Carré Patrick

    2012-11-01

    Full Text Available Energy consumption in oil mills is a major item of costs and a sensitive point in the production of biofuels. To improve their performance, industrials can recover lowtemperature heat thanks to a new technology of heat exchangers suitable for treating granular solid materials. Information about the energy requirements of the rapeseed crushing being not readily available, the article gives a detailed assessment of consumption items (per ton of seed: 263 MJ for preparation operations and 284 MJ for solvent extraction. These exchangers used as pre-conditioners saves about 55 MJ.t−1 of heat by use of steam condensates. We could go further in use of these devices on the one hand to recover heat from press cake and meal, and secondly to use recovered energy to dry and warm up the seeds before pre-pressing. In this configuration, the energy savings could reach 38% of current needs.

  18. Recovery of heat from the refrigeration plant at the Bjoerkaeng stadium in Huddinge

    Energy Technology Data Exchange (ETDEWEB)

    Glas, L.O.

    1984-01-01

    The report describes an investigation of heat recovery from the refrigeration plant at the ice hockey rinks outdoors and in the stadium building at the Bjoerkaeng athletics centre. Heat emitted by the refrigeration plant is utilized for heating of the stadium building and for heating water. The heat recovery was measured and analysed over the period 1.12.78-30.11.79, a net energy saving of approximately 380,000 kWh being achieved. The heat recovery analysis comprises a complete heat balance for the ice hockey rinks, the ice stadium, the water heating and the refrigeration plant. On average, test results are very near the figures produced by calculations. The calculation method described should therfore reproduce with good accuracy the possible energy savings in refrigeration plants for ice rinks both indoors and outdoors, of widely differing sizes and geographical location. For instance, the calculation takes into account the effect of the ice stadium temperature selected on the net energy saving and the recoverable quantity of heat.

  19. Selection of optimal reheat temperature in heat recovery boiler at combined heat and power plant with GT-topping

    Directory of Open Access Journals (Sweden)

    Romashova Olga

    2017-01-01

    Full Text Available Calculations to determine optimum value of steam reheat temperature in relation to the cycle arrangement of steam turbine power plant with gas turbine topping are conducted in this paper. Operation of T-250-240 turbine unit in cogeneration mode has been considered during steam reheat displacement from steam boiler to heat recovery boiler.

  20. Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Finnis, P.J. [Procedair Industries Corp., Louisville, KY (United States); Heap, B.M. [Procedair Limited, Wombourne (United Kingdom)

    1997-12-01

    Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

  1. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  2. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    Science.gov (United States)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  3. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System

    Science.gov (United States)

    Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila

    2017-10-01

    Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal

  4. Kinetic investigation of AISI 304 Stainless Steel boronized in indirect heated fluidized bed furnace

    Directory of Open Access Journals (Sweden)

    Topuz P.

    2016-01-01

    Full Text Available In this study, kinetic examinations on boronized AISI 304 Stainless Steel samples were described. Samples were boronized in indirect heated fluidized bed furnace consists of Ekabor 1™ boronizing agent at 1123, 1223 and 1323 K for 1,2 and 4 hours. Morphologically and typically examinations of borides formed on the surface of steel samples were studied by optical microscope, scanning electron microscope (SEM and X-Ray diffraction (XRD. Boride layer thickness formed on the steel X5CrNi 18-10 ranges from 12 to 176 μm. The hardness of the boride layer formed on the steel X5CrNi 18-10 varied between 1709 and 2119 Hv0,1. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as a function of boronizing time and temperature. The kinetics of the reaction has been determined with K=Ko exp (-Q/RT equation. Activation energy (Q of boronized steel X5CrNi 18-10 was determined as 244 kj/mol.

  5. New calculation method to solve moisture balance in the room with regenerator heat recovery and infiltration

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Drivsholm, Christian

    2017-01-01

    in air handling units (AHUs). In the case of regenerator heat exchanger, the higher the heat recovery efficiency obtained the higher risk that condensation might occur. This condensation might form small droplets on the surface of the regenerator that might not be possible to drain in the short switching......This paper investigates moisture related performance of a regenerator heat exchanger located in a decentralized ventilation unit for residential building application. The decentralized ventilation solutions have recently become a more and more popular alternative to centralized ventilation systems....... Due to the small space available and in order to avoid maintenance of these types of units, they are equipped with regenerator heat exchanger in some cases. In the recent past and also presently, Building Regulations (BR) and European directives have increased demands for heat recovery efficiency...

  6. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  7. Heat transfer characteristics in a pulsated fluidized bed in relation to bubble characteristics; Parusu ryudoso no dennetsu tokusei to kiho tokusei tono sokan

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, A.; Hasatani, M. [Nagoya Univ., Nagoya (Japan). Dept. of Energy Engineering and Science; Deguchi, S. [Nagoya Univ., Nagoya (Japan). Center for Integrated Research inn Science and Engineering; Matsuda, H. [Nagoya Univ., Nagoya (Japan). Research Center for Advanced Waste and Emission Management; Mujumdar, A.S. [McGill Univ., Quebec (Canada). Dept. of Chemical Engineering

    2000-11-10

    A pulsated fluidized bed is operated with two sequential duration designated as the on-period with injecting fluidization air, and the off-period without injecting fluidization air. The heat transfer coefficient between a vertically immersed heater and bed in a pulsated fluidized bed is measured under various pulse cycles and fluidized particles. The obtained results are compared with those in a normal fluidized bed with continuous fluidization air injection. The relation between heat transfer coefficient and bubble characteristics, evaluated by using a digital video camera, was investigated. For certain fluidized particles and operated pulse cycles, fluidization of particles and increment of heat transfer coefficient can be obtained under lower mean air velocity based on a pulse cycle duration than minimum fluidization air velocity of the normal fluidized bed. Under the pulse cycles where a static ed is formed in off-period duration, the improved heat transfer rate in contrast with the normal fluidized bed can be measured. This because of the large bubbles formation. As the heat transfer in the pulsated fluidized bed is obstructed with increasing time to keep a static bed due to the excess of-period duration it is indicated that there is an optimum off-period duration based on the heat transfer rate. (author)

  8. Cover versus recovery: Contrasting responses of two indicators in seagrass beds

    NARCIS (Netherlands)

    Soissons, L.M.; Han, Q.; Li, B.; van Katwijk, M.M.; Ysebaert, T.; Herman, P.M.J.; Bouma, T.J.

    2014-01-01

    Despite being a highly valuable key-stone ecosystem, seagrass meadows are threatened and declining worldwide, creating urgent need for indicators of their health status. We compared two indicators for seagrass health: standing leaf area index versus relative recovery from local disturbance.

  9. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production.

    Science.gov (United States)

    Banaei, Mohammad; Jegers, Jeroen; van Sint Annaland, Martin; Kuipers, Johannes A M; Deen, Niels G

    2017-08-02

    The hydrodynamics and heat transfer of cylindrical gas-solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors.

  10. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    applied to highly load-fluctuating real WWTPs. To improve the overall efficiency of the heat recovery system, although the heat pump is the largest energy-consuming component, taking up 56.0–68.5% of the total energy, new efforts to develop a novel design are also needed to make the heat exchanger more energy-efficient.

  11. Bayesian Recovery of the Initial Condition for the Heat Equation

    NARCIS (Netherlands)

    Knapik, B.T.; van der Vaart, A.W.; van Zanten, J.H.

    2013-01-01

    We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying "smoothness" and show that the corresponding posterior distributions contract

  12. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation conce...

  13. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  14. Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Remedio Hernandez, M. del; Garcia, Angela N.; Marcilla, Antonio [Department of Chemical Engineering, University of Alicante, 03080, P.O. Box 99, Alicante (Spain)

    2007-03-15

    Products obtained in the flash pyrolysis of HDPE in a fluidized bed reactor, in thermal and catalytic conditions (HZSM-5 or HUSY 20% by weight) at four different temperatures (in the range 500-800 C) have been analyzed in this work focusing on the liquid fraction. The results obtained showed significant differences between condensable compounds generated in presence and absence of catalysts. The liquid fraction obtained without catalyst was composed principally by linear paraffins (C{sub 10}-C{sub 40}) and almost no generation of aromatic compounds was observed. The presence of low amounts of zeolite (HZSM-5 or HUSY) led to a significant reduction of the saturated and unsaturated condensable hydrocarbons, while it favored the formation of aromatics and branched paraffins. Compared with the results reached with HZSM-5 zeolite, HUSY produces higher amount of aromatics and branched alkanes and a narrower distribution of products, independently of the pyrolysis temperature. The reactor employed in this work was a fluidized bed reactor, very similar to that used in generation of gasoline-range hydrocarbons at large scale, which allows to illustrate a very useful method for the recovery of these hydrocarbons. (author)

  15. An Overview of Atmospheric Fluidized Bed Combustion Systems as Applied to Army Scale Central Heat Plants

    Science.gov (United States)

    1992-11-01

    or burned in a separate fluidizcd bed combustor called a carbon burnup cell. Fuel and Sorbent Feed. To achieve high combustion efficier.cy and maximum...AFBC tecnnology is relatively new, calculating the boiler efficiency of fluidized bed boilers is not as well defined as it is for conventional boilers...paragraphs will highlight some options to improve the combustion efficiency. A carbon burnup cell (CBC) uses a separate fluidized bed operated at a much

  16. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    than working fluids, the thesis presents other product types and applications of relevance, including solvent design. In this thesis, a holistic framework is presented for the design of novel chemical products as a means of process systems design. The framework ensures optimal design of the chemical...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  18. Opportunities for Waste Heat Recovery at Contingency Bases

    Science.gov (United States)

    2016-04-01

    engines, micro gas turbines, Rankine cycle engines, Stirling engines, and fuel cells. The level of development or “maturity” of these technologies varies...provide cooling or heating while simultaneously generating external electrical power for lights, computer equipment, and their internal motors ; they...IntelliChoice Energy 2013). Micro-CHP systems can use different technologies including internal com- bustion engines, Stirling engines, and

  19. Counter flow cooling drier with integrated heat recovery

    Science.gov (United States)

    Shivvers, Steve D [Prole, IA

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  20. Improving Engine Oil Warm Up through Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Davide Di Battista

    2017-12-01

    Full Text Available In the transportation sector, engine oil thermal management has not yet received the attention it deserves in the path towards carbon dioxide and pollutants reduction. During the homologation cycle (which represents a typical daily trip, oil temperature reaches its thermal steady value, which insures best performances in terms of viscosity, only in the final part of the trip, when most part of the harmful emissions have been already emitted; therefore, a warm up acceleration would surely represent a strong beneficial action. In this paper, a faster warming up of the lubricant oil was done using the heat owned by the exhaust gases, which was almost immediately ready after the engine ignition, in the early part of a driving cycle. An experimental activity has been developed in a turbocharged engine (F1C 3L IVECO, modifying the oil circuit in order to heat up the oil during the cold phase of a homologation cycle by the exhaust gases. A significant reduction of fuel consumption and pollutant emissions savings has been experimentally demonstrated. Also, the interaction between the modified oil circuit, engine, coolant circuit, and exhaust line has been investigated in order to have a system view of the new heating oil technology.

  1. Opportunities for low-grade heat recovery in the UK food processing industry

    International Nuclear Information System (INIS)

    Law, Richard; Harvey, Adam; Reay, David

    2013-01-01

    Energy efficiency in the process industry is becoming an increasingly important issue due to the rising costs of both electricity and fossil fuel resources, as well as the tough targets for the reduction in greenhouse gas emissions outlined in the Climate Change Act 2008. Utilisation of waste heat sources is key to improving industrial energy efficiency, with an estimated 11.4 TWh of recoverable heat being wasted each year, a quarter of which is from the food and drinks processing sector. This paper examines the low-grade waste heat sources common to the food and drinks processing sector and the various opportunities for the use of this heat. A review of the best available technologies for recovery of waste heat is provided, ranging from heat transfer between source and sink, to novel technologies for the generation of electricity and refrigeration. Generally, the most economic option for waste heat recovery is heat exchange between nearby/same process source and sink, with a number of well-developed heat exchangers widely available for purchase. More novel options, such as the use of organic Rankine cycles for electricity generation prove to be less economical due to high capital outlays. However, with additional funding provision for demonstration of such projects and development of modular units, such technologies would become more common

  2. Cooling and recovery of heat from underground railway tunnels for district heating

    OpenAIRE

    Davies, G; Maidment, GG; Dennis, W; Ajileye, A; Grice, J

    2017-01-01

    Temperatures in London’s underground railway tunnels are rising year on year and new energy efficient, cooling solutions are needed. The MICAH (Metropolitan Integrated Cooling and Heating) project involves investigating the feasibility of combining cooling and ventilation of London’s underground tunnels with recovering and reuse of the waste heat to supply a district heating network (DHN). A suitable site from the underground network has been identified, close to a DHN, to which the heat can ...

  3. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  4. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    Science.gov (United States)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  5. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  6. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    International Nuclear Information System (INIS)

    Repetto, G.; Ederli, St.

    2007-01-01

    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO 2 spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  7. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G

    2006-01-01

    homeostasis after subsequent heat stress. Several metabolites were identified as responsive to heat stress and could be related to known physiological and biochemical responses. The time course of the recovery of metabolite homeostasis mirrored general changes in gene expression, showing that recovery follows...... the same temporal pattern at these two biological levels. Finally, our data show that heat hardening permits a quicker return to homeostasis, rather than a reduction of the acute metabolic perturbation and that the reestablishment of homeostasis is important for obtaining maximal heat-hardening effect....... The results display the power of NMR metabolomic profiling for characterization of the instantaneous physiological condition, enabling direct visualization of the perturbation of and return to homeostasis....

  8. Efficiency of steam reheating in heat recovery steam generator at thermal power plant with gas turbine topping

    Directory of Open Access Journals (Sweden)

    Romashova Olga

    2017-01-01

    Full Text Available Possibility of using alternative option to the displacement of regenerative heating is analyzed in this paper: application of heat recovery steam generator’s (HRSG thermal power for reheating of working medium that has passed steam turbine.

  9. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    OpenAIRE

    Ravi Kumar Naradasu; Rama Krishna Konijeti; Sita Rama Raju Venkata Alluru

    2007-01-01

    Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is a...

  10. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  11. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  12. Energy efficiency improvement of dryer section heat recovery systems in paper machines - A case study

    International Nuclear Information System (INIS)

    Sivill, Leena; Ahtila, Pekka

    2009-01-01

    Modern paper machines are equipped with heat recovery systems that transfer heat from the humid exhaust air of the paper machine's dryer section to different process streams. As a result of process changes, the heat recovery systems may operate in conditions far from the original design point, creating a significant potential for energy efficiency improvement. In this paper we demonstrate this potential with a case study of three operating paper machines. Both operational and structural improvement opportunities are examined. Since the existing retrofit methodologies for heat exchanger networks can not be applied to cases with condensing air, we use thermodynamic simulation models presented earlier to assess the effects of possible changes on the existing heat recovery systems. In order to reduce the required processing time of the simulation models, only a limited number of pre-screened retrofit designs are considered. The pre-screening is carried out on the basis of guidelines presented earlier. The analysis in the case mill revealed savings of 110 GWh/a in process heat with profitable investments. According to the follow-up study, the investments carried out have resulted in 12% lower fuel use and 24% lower CO 2 emissions. The results imply that all operating paper machines should be similarly examined.

  13. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  14. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  15. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    Science.gov (United States)

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  17. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  18. Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln

    Directory of Open Access Journals (Sweden)

    Mojtaba Mirhosseini

    2018-03-01

    Full Text Available A numerical study on combined free convection, forced convection, and radiation heat transfers from an industrial isothermal rotating cylinder (cement kiln is carried out in this work. The investigation is done by the study of two-dimensional (2D incompressible turbulent flow around the kiln under steady- and unsteady-state solutions. The results of this study show that the average Reynolds and Rayleigh numbers around the cylindrical kiln are 647,812.1 and 1.75986 × 1011, respectively. A heat absorber is specifically designed around the kiln, according to the available space around the kiln, in a sample cement factory. The study investigates the effect of an added absorber on the heat transfer features, for both constant heat flux and constant temperature, on the kiln. The temperature distribution along the absorber circumference is obtained for designing an efficient thermoelectric waste heat recovery system as a future study. It is observed that the contribution of the radiative heat transfer is significant in the total heat transferred from the kiln to the absorber.

  19. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  20. Analysis of an optimal resorption cogeneration using mass and heat recovery processes

    International Nuclear Information System (INIS)

    Lu, Yiji; Wang, Yaodong; Bao, Huashan; Yuan, Ye; Wang, Liwei; Roskilly, Anthony Paul

    2015-01-01

    Highlights: • Resorption cogeneration for electricity and refrigeration generation. • Mass and heat recovery to further improve the performance. • The first and second law analysis. - Abstract: This paper presents an optimised resorption cogeneration using mass and heat recovery to improve the performance of a novel resorption cogeneration fist proposed by Wang et al. This system combines ammonia-resorption technology and expansion machine into one loop, which is able to generate refrigeration and electricity from low-grade heat sources such as solar energy and industrial waste heat. Two sets of resorption cycle are designed to overcome the intermittent performance of the chemisorption and produce continuous/simultaneous refrigeration and electricity. In this paper, twelve resorption working pairs of salt complex candidates are analysed by the first law analysis using Engineering Equation Solver (EES). The optimal resorption working pairs from the twelve candidates under the driven temperature from 100 °C to 300 °C are identified. By applying heat/mass recovery, the coefficient of performance (COP) improvement is increased by 38% when the high temperature salt (HTS) is NiCl 2 and by 35% when the HTS is MnCl 2 . On the other hand, the energy efficiency of electricity has also been improved from 8% to 12% with the help of heat/mass recovery. The second law analysis has also been applied to investigate the exergy utilisation and identify the key components/processes. The highest second law efficiency is achieved as high as 41% by the resorption working pair BaCl 2 –MnCl 2 under the heat source temperature at 110 °C.

  1. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; Jager, B. de; Willems, F.P.T.

    2016-01-01

    This paper presents an integrated energy and emission management strategy, called Integrated Power- train Control(IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO – NOx 2 trade-off by minimizing the operational costs associated with

  2. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  3. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  4. Performance of Counter Flow Heat Recovery Ventilation Systems in Dwellings Considering the Influence of Uncertainties

    NARCIS (Netherlands)

    Yang, Z.; Cauberg, J.J.M.; Tenpierik, M.J.

    2012-01-01

    Both critical and optimistic claims have been made regarding the performance of heat recovery ventilation systems (HRVS) in dwellings. Such arguments are raised partly because two key aspects are not fully clarified, i.e. the performance criteria and the influence of uncertainties. In the current

  5. Optimization of paper machine heat recovery system; Paperikoneen laemmoentalteenottosysteemin optimointi - PMSY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, H. [Valmet Oyj Pansio, Turku (Finland)

    1998-12-31

    Conventionally the energy content of paper and board machine dryer section exhaust air is recovered in the heat recovery tower. This has had a major contribution to the overall energy economy of a paper machine. Modern paper machines have already reached momentary record speeds above 1700 m/min, and speeds above 2000 m/min will be strived to. This is possible by developing new efficient drying technologies. These will require new solutions for the heat recovery systems. At the same time requirements for new heat recovery solutions come from the gradually closing of paper mill water circulation systems. In this project a discrete tool based on optimization is developed, a tool for analyzing, optimizing and dimensioning of paper machine heat recovery systems for different process conditions. Delivery of a paper machine process requires more and more transferring of process knowledge into calculation model parameters. The overall target of the tool is to decrease the energy consumption considering new drying technologies and the gradually closing of water circulation systems. (orig.)

  6. EM Heating-Stimulated Water Flooding for Medium–Heavy Oil Recovery

    NARCIS (Netherlands)

    Paz, Pavel Z.S.; Hollmann, Thomas H.; Kermen, Efe; Chapiro, G.; Slob, E.C.; Zitha, P.L.J.

    2017-01-01

    We report a study of heavy oil recovery by combined water flooding and electromagnetic (EM) heating at a frequency of 2.45 GHz used in domestic microwave ovens. A mathematical model describing this process was developed. Model equations were solved, and the solution is presented in an integral

  7. Consistent coke quality from Sun Coke Company s heat recovery cokemaking technology

    Energy Technology Data Exchange (ETDEWEB)

    Barkdoll, M. [Sun Coke Company, Knoxville, TN (USA)

    2001-07-01

    Presents the Sun Coke heat recovery coke making technology which has been developed over the last 41 years. Aspects covered include: development history; ongoing technological development; relationship between coal blend and coke quality; long-term production coke quality; environmental performance; plant economics; and labour requirements. 14 refs., 15 figs., 7 tabs.

  8. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...

  9. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    Science.gov (United States)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  10. Survey of literature on convective heat transfer coefficients and recovery factors for high atmosphere thermometry

    Science.gov (United States)

    Chung, S.

    1973-01-01

    Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.

  11. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  12. Heat- and mass-transfer effect in slurry-bed Fischer-Tropsch reactors

    Science.gov (United States)

    Heinemann, H.; Bell, A. T.; Stern, D. A.

    1982-02-01

    One of the advantages claimed for slurry bed reactors is the ability to operate at lower hydrogen to carbon monoxide ratios than either the fixed bed or fluid bed. Reasons for this difference were not previously fully established. Two factors may contribute to the ability of the slurry reactor to tolerate lower hydrogen/CO ratios. These are greater isothermicity, and mass transfer effects on the gas liquid interface in the slurry reactor. Work with small diameter fixed bed reactors has shown that there is a critical temperature at which plugging of the reactors using an iron catalyst will occur. The exact temperature is a function of both the hydrogen/CO ratio and the space velocity. A difference of 10 to 15 C separates operability from non-operability. It is therefore likely that in the critical temperature range around 300 C hot spots on the catalysts may be the cause of plugging and deactivation at low hydrogen/CO ratios.

  13. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  14. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  15. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    Science.gov (United States)

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  16. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2015-12-01

    Full Text Available A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  17. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  18. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser-evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers. © 2013 Desalination Publications.

  19. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms

    International Nuclear Information System (INIS)

    Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.

    2013-01-01

    This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem

  20. A fluidized bed furnace fired with biomass waste to supply heat for a spray dryer in a plant producing floortiles

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Andre, R.; Mendes, J.; Monteiro, A.; Cabrita, I. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal)

    1993-12-31

    This project has been implemented at a factory producing floortiles for domestic use. The project consists of a fluidized bed combustion system burning coal or wood or a mixture of both to produce hot combustion gases to provide heat for spray drying process. The system was designed by INETI for a maximum output of 8 MW thermal energy and all the engineering calculations were carried out to dimension the furnace to provide this amount of heat. Shallow bed concept was used for complete burning of the biomass particles which contained volatiles up to 75% by weight. The sand bed was used as a flame stabilizer for the combustion of volatiles. The combustion of volatiles in the freeboard was mainly controlled by mixing ashes and other impurities. The combustion temperature had to be maintained in the range 700--800{degrees}C to achieve combustion efficiencies of 85% or more. The combustion efficiency (1) did not increase substantially above 90% of excess air although levels of up to 120% were used during combustion and (2) was found to increase through air staging in the order of 20 to 25%, by simply adding 45 to 55% of the air required to the freeboard zone. No SO{sub 2} was observed in flue gases when burning only biomass but there was some NO{sub x} formed and the level of conversion of fuel-N to NO{sub x} was found to be about 25--30%.

  1. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    Science.gov (United States)

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  2. The effect of recovery conditions on the apparent heat resistance of Bacillus cereus spores.

    Science.gov (United States)

    Gonzalez, I; Lopez, M; Mazas, M; Gonzalez, J; Bernardo, A

    1995-05-01

    The effect of recovery media and incubation temperature on the apparent heat resistance of three ATCC strains (4342, 7004 and 9818) of Bacillus cereus spores were studied. Nutrient Agar (NA), Tryptic Soy Agar (TSA), Plate Count Agar (PCA) and Milk Agar (MA) as the media and temperatures in the range of 15-40 degrees C were used to recover heated spores. Higher counts of heat injured spores were obtained on PCA and NA. The optimum subculture temperature was about 5 degrees C below the optimum temperature for unheated spores. No significant differences in heat resistance were observed with the different recovery conditions except for strains 4342 and 9818 when MA was used as plating medium. Large differences in D-values were found among the strains (D100 = 0.28 min for 7004; D100 = 0.99 min for 4342; D100 = 4.57 min for 9818). The 7004 strain showed a sub-population with a greater heat resistance. The z values obtained for the three strains studied under the different recovery conditions were similar (7.64 degrees C +/- 0.25).

  3. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  4. The usage of waste heat recovery units with improved heat engineering rates: theory and experimental research

    Science.gov (United States)

    Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia

    2017-10-01

    Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.

  5. Control of Single-room Ventilation with Regenerative Heat Recovery for Indoor Climate and Energy Performance

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    constructions and will soon require 85%. The development of single-room ventilation units may aim for these requirements as a result. The exhaust temperatures in highly efficient heat exchangers may approach outdoor levels. The cold exhaust cannot contain ample moisture, so vapour will condense on the heat...... exchanger. Available literature suggests that uncoated rotary heat exchangers transfer this condensate to the supply air, so the drying capacity of the ventilation system may be severely limited. This could raise indoor relative humidities to unsafe levels, which could promote the growth of dust......-mites and mould. Controls may increase drying capacity by increasing ventilation airflow, but this may not be sufficient to limit moisture-related risks. This research investigated the added demand-control measure of reducing variable heat recovery to increase drying capacity when using an uncoated rotary heat...

  6. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  7. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    Science.gov (United States)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  8. Prior Heat Stress Effects Fatigue Recovery of the Elbow Flexor Muscles

    Science.gov (United States)

    Iguchi, Masaki; Shields, Richard K.

    2011-01-01

    Introduction Long-lasting alterations in hormones, neurotransmitters and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. Methods Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73 or 26 deg C to examine the effects of prior heat stress on fatigue mechanisms. Results The heat stress increased the tympanic and rectal temperatures by 2.3 and 0.82 deg C, respectively, but there was full recovery prior to the fatigue task. While prior heat stress had no effects on fatigue-related changes in volitional torque, EMG activity, torque relaxation rate, MEP size and SP duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (p fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue. PMID:21674526

  9. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m 2 ) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  10. An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO 2 -based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO 2 ’s specific heat capacity. The supercritical property of CO 2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  11. Numerical Simulation of Heat Transfer in Finned Tube of Heat Recovery Unit Using Fluid-Solid Coupled Method

    Directory of Open Access Journals (Sweden)

    Lin Wei

    2015-01-01

    Full Text Available Heat recovery unit (HRU is a heat exchange device in drying process. In HRU, room air is preheated by waste hot air and then transported to drying oven to remove moisture, which helps to save both energy and time. The main purpose of this paper is to build a heat transfer model of HRU and study its characteristics. A numerical method based on fluid-solid coupling was used to calculate the heat transfer between tube and fluids, and the actual structure was simplified to improve computation efficiency. The results were validated by theoretical calculation and experiments. Effects of Reynolds number (Re on outlet temperature, Nusselt number, and pressure drop were investigated. It was found that the thermal resistance of shell side is large, by reducing which the total heat transfer coefficient can be improved. The difference between finned tube and smooth tube is in the shell side. Larger Re of shell side leads to good heat transfer performance but also larger pressure drop which increases the flow resistance.

  12. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  13. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2009-01-01

    volumes. In each control volume, dynamic heat and mass balances were set up allowing the simulation of the contents of water vapour, water on core particles and deposited coating mass as well as fluidisation gas, particle and chamber wall temperature. The model was used to test different scale....../3). Results show good agreement between simulated and experimental outlet fluidisation air temperature and humidity as well as bed temperature. Simulations reveal that vertical temperature and humidity gradients increase significantly with increasing scale and that in fluid beds as the simulated 900kg (RICA......-TEC Anhydro) production-scale, the gradients become too large to use the simple combined drying force/relative droplet size scale-up approach without also increasing the inlet fluidisation air temperature significantly. Instead, scale-up in terms of combinations of the viscous Stokes theory with simulated...

  14. Models comparative study for heat storage in fixed beds; Estudo comparativo de modelos para armazenamento de calor em leitos fixos

    Energy Technology Data Exchange (ETDEWEB)

    Stuginski Junior, Rubens

    1991-07-01

    This work presents comparative results of a numerical investigation of four possible models for the prediction of thermal performance of fixed bed storage units and their thermal design. These models includes Schumann's model, the radial dispersion model, a model that include both axial heat conduction in the fluid phase and admits thermal gradient in the solids particles and finally a two dimensional single phase model. For each of these models a computer code was written and tested to evaluate the computing time of same data and analyze any other computational problems. The tests of thermal performance included particle size, porosity, particle material, flow rate, inlet temperature and heat losses form tank walls and extremities. Dynamics behaviour of the storage units due to transient variation in either flow rate or inlet temperature was also investigated. The results presented include temperature gradients, pressure drop and heat storage. The results obtained are very useful for analysis and design of fixed bed storage units. (author)

  15. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  16. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  17. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  18. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  19. Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2015-05-01

    Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  2. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-11-01

    Full Text Available In this paper, two cases of heat exchangers (HEXs which previously were used in exhaust of internal combustion engines (ICEs are modeled numerically to recover the exhaust waste heat. It is tried to find the best viscous model to obtain the results with more accordance by experimental results. One of the HEXs is used in a compression ignition (CI engine with water as cold fluid and other is used in a spark ignition (SI engine with a mixture of 50% water and 50% ethylene glycol as cold fluid. As a main outcome, SST k–ω and RNG k–ε are suitable viscous models for these kinds of problems. Also, effect sizes and numbers of fins on recovered heat amount are investigated in various engine loads and speeds.

  3. Radial heat transfer in beds of spheres, cylinders and Rashig rings. Verfication of model with a linear variation in the vicinity of the wall

    NARCIS (Netherlands)

    Smirnov, E.I.; Muzykantov, A.V.; Kuzmin, V.A.; Kronberg, Alexandre E.; Zolotarskii, I.A.

    2002-01-01

    Experimental data on the effective radial thermal conductivities and wall heat transfer coefficients of cylindrical beds formed of spheres, cylinders and Rashig rings are presented. The obtained heat transport parameters are compared with literature data. A model with a linear variation of λer in

  4. Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages

    International Nuclear Information System (INIS)

    Al-Weshahi, Mohammed A.; Anderson, Alexander; Tian, Guohong

    2013-01-01

    This detailed exergy analysis of a 3800 m 3 /h Multi-Stage Flash (MSF) desalination plant is based on the latest published thermodynamics properties of water and seawater. The parameters of the study were extracted from a validated model of MSF desalination using IPSEpro software. The results confirmed that the overall exergy efficiency of the unit is lower than would be desirable at only 5.8%. Exergy inputs were destroyed by 55%, 17%, 10%, 4.3%, and 14% respectively, in the heat recovery stages, brine heater, heat rejection stages, pumps and brine streams disposal. Moreover, the detail of the study showed that the lowest exergy destruction occurs in the first stage, increasing gradually in heat recovery stages and sharply in heat rejection stages. The study concludes that recovering the heat from the hot distillate water stages can improve unit exergy efficiency from its low 5.8% to a more economical 14%, with the hot water parameters suitable for powering other thermal systems such as absorption chiller and multi-effect desalination

  5. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  6. CFD Modeling of Waste Heat Recovery on the Rotary Kiln System in the Cement Industry

    OpenAIRE

    Novia, Novia; Faizal, Muhammad; Liana, Septa

    2013-01-01

    The cement production process is one of the most energy and cost intensive in the world. In order to produce clinker, a cement industry requires the substantial energy consumption. About 70% of energy consumption lies on the unit of rotary kiln system. The higher amount of energy consumption is due to the lack of work efficiency tools leading the waste heat. This reserach was focus on modeling of the waste heat recovery in the rotary kiln system using CFD. Analysis of mass and energy balance ...

  7. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...

  8. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  9. MHD Heat and Seed Recovery Technology Project. Sixth quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Tempelmeyer, K. E.; Johnson, T. R.

    1979-01-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the heat and seed recovery systems downstream of the MHD channel-diffuser and the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in cooperation with other DOE contractors working in this general area. The present project activities include: (1) studies of the thermochemistry of seed-slag systems, (2) investigations of ceramic and metallic materials for service in the downstream gas systems, (3) small-scale engineering studies of seed-slag deposition, (4) operation of a 2-MW experimental facility for investigations pertaining to the downstream gas system, and (5) evaluation of seed regeneration processes.

  10. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  11. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  12. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    OpenAIRE

    Galashov Nikolay; Tsibulskiy Svyatoslav; Mel’nikov Denis; Kiselev Alexandr; Gabdullina Al’bina

    2017-01-01

    As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  13. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  14. Energy aAnalysis and Kinetics of Mint Leaves Dehydration Using Vibro-Fluidized Bed Heat Pump Dryer

    Directory of Open Access Journals (Sweden)

    S. M Ataei Ardestani

    2015-03-01

    Full Text Available Fluidized bed dryers have not yet been used for drying products such as mint leaves. This could be due to high porosity and low mechanical resistance resulting in poor quality of fluidization. Applying vibration has been recommended to overcome problems such as channeling and defluidization, and hence improving the fluidization quality. In this research, a laboratory scale vibro-fluidized bed heat pump dryer was designed and constructed for drying mint leaves. The experiments were conducted at vibration frequency of 80 Hz and amplitude of 3 mm. The velocity and temperature of the inlet air was controlled by an automatic control system. Experiments were carried out at 40, 50 and 60 °C, and two methods: heat pump drying (HPD and non-heat pump drying (NHPD. The results revealed that drying process primarily occurred in the falling rate period. Effective moisture diffusivity of the samples increased with increase in drying air temperature and varied from 4.26656×10-11 to 2.95872×10-10 m2 s-1 for the HPD method, and 3.71918×10-11 to 1.29196×10-10 m2 s-1 for the NHPD method and was within the reported range of 10-9 to 10-11 m2 s-1 for drying of food materials. The activation energy was determined to be 84 kJ mol-1 for the HPD and 54.34 kJ mol-1 for the NHPD, both have very good agreement with the results of other investigators. The coefficient of performance and specific moisture evaporation rate showed the acceptable performance of the heat pump system. Moreover, the energy consumption of the dryer for the NHPD method was more than the HPD method.

  15. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Science.gov (United States)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  16. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  17. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  18. Modelling of waste heat recovery for combined heat and power applications

    International Nuclear Information System (INIS)

    Descombes, Georges; Boudigues, Serge

    2009-01-01

    The current environmental context dictates to reduce the pollutant emissions by improving thermal efficiency of the energy production units. The authors present some studies of cogeneration applications using gas turbines and thermal engines. The on-going research concerns a detailed study of thermodynamic modelling cycles with energy recovery. These combined cycles with gas turbine and ICE can generate a potential increase of about 10% of the energy efficiency. They will generate a technological complexity and the over-charge must be estimated. At last, the authors insist on the necessary synergy between gas turbines and thermal engines.

  19. Kinetics of recovery and recystallization of the large heat of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A N; Rowcliffe, A F; Eatherly, W S; Gibson, L T

    1996-04-01

    A series of slow cycle and rapid cycle anneals was carried out in the large heat of V-4Cr-4Ti alloy (heat 832665). Also, a differential scanning calorimetry (DSC) study was initiated on the samples of the same alloy. The recovery and recrystallization phenomena of V-4Cr-4Ti in slow cycle annealing were quite different from that observed in rapid cycle annealing. The large driving force for recrystallization due to rapid heating resulted in the first nuclei appearing after only 1 minute of 1000{degrees}C. There was a two-stage hardness reduction; the first stage involved recovery due to cell formation and annihilation of dislocation, and second stage was associated with the growth of recrystallization nuclei. This is consistent with results obtained from the DSC in which there was a broad exothermic peak from {approx}200 to 800{degrees}C due to recovery followed by a sharp exotherm associated with recrystallization. The activation energy for recrystallization for V-4Cr-4Ti, which was determined at 576 {+-} 75, kJ/mole is significantly higher than that for pure V, and is thought to be related to Ti and Cr in solid solution.

  20. A review on waste heat recovery from exhaust in the ceramics industry

    Science.gov (United States)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  1. Experimental study of a burner with high temperature heat recovery system for TPV applications

    International Nuclear Information System (INIS)

    Colangelo, G.; De Risi, A.; Laforgia, D.

    2006-01-01

    An experimental investigation to develop and test a burner and a heat recovery system for thermophotovoltaic (TPV) applications is presented. Experimental data have been compared with theoretical calculations and considerations in the pre-design and design phases of the project to find the weakest point of the concept and to validate the expected performance. The TPV generator has been designed as a compact module in order to be used as a range extender in an electric car. The heat recovery system is the key element to increase the efficiency of the system. The heat recovery system presented in this paper is a rotary type regenerator that is very compact and has higher effectiveness in comparison with other types of regenerators with the same number of transfer units (NTU). The experimental data have been used to verify the numerical models used in the calculations for design of the regenerator matrix. A new version of the numerical model has been developed to take into account the variation of the thermal properties of the system with the temperature. Dimensions, weight, efficiency, emissions and high working temperatures have been the most important competitive constraints to observe for design of the system

  2. MHD heat and seed recovery technology project. Eighth quarterly report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facilities, which will be 20-MW prototypes of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of the seed-slag particles; (5) character of the combustion gas effluents; and (6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system. Activities are reported.

  3. The separation and recovery of hydrogen from the recycling gas in ammonia production by means of lanthanum-rich mischmetal nickel hydride beds

    International Nuclear Information System (INIS)

    Qidong, W.; Jing, W.; Changpin, C.; Weifang, L.

    1985-01-01

    The separation and recovery of hydrogen by means of a MlNi/sub 5/ (Ml: La-rich mischmetal) beds were studied. The influence of the impurity gas components (O/sub 2/, H/sub 2/O, N/sub 2/, Ar, CH/sub 4/ and NH/sub 3/ etc) on the hydrogen absorption capacity, hydriding and dehydriding kinetics and cycling ageing stability of the beds was investigated for both stagnant gases and continuously flowing gas streams. In small reactors, at first artificially made gas mixtures and finally the actual recycling gas from ammonia production were tested. In the presence of trace ammonia (<100ppm) in recycling gas stream, the efficiency of recovery amounted to 85 - 93% and the purity of the product hydrogen was around 99.9%. When ammonia amounted to 2.5%, the efficiency of recovery decreased to 81 - 86%. The hydrogen absorption capacity of the alloy bed remained unchanged after cycling 50 times, indicating the stability of the alloy satisfactory

  4. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    International Nuclear Information System (INIS)

    Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang

    2016-01-01

    Highlights: • Flow and heat transfer in composite packed beds with low d t /d pe are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also

  5. Exercise thermoregulation after 14 days of bed rest

    Science.gov (United States)

    Greenleaf, J. E.; Reese, R. D.

    1980-01-01

    The effects of bed rest and exercise training during bed rest on body temperature and thermoregulatory responses at rest and during exercise are investigated. Seven male subjects underwent three two-week periods of bed rest during which isometric, isotonic, or no exercises were performed, separated by two ambulatory control periods and preceded by a two-week control period, during which they exercised regularly. Rectal and mean skin temperatures and sweating responses were determined during 70-min submaximal supine exercise during the bed rest and recovery periods. Measurements reveal a reduction in basal oral temperature during the control-recovery periods, with a relatively constant level during bed rest periods, and a significant increase in the rectal temperature elavation brought on by exercise following all three bed-rest regimes. It is concluded that the excessive increase in rectal temperature could be influenced by changes in skin heat conductance or the inhibition of sweating.

  6. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery.

    Science.gov (United States)

    Henckens, M J A G; Printz, Y; Shamgar, U; Dine, J; Lebow, M; Drori, Y; Kuehne, C; Kolarz, A; Eder, M; Deussing, J M; Justice, N J; Yizhar, O; Chen, A

    2017-12-01

    The bed nucleus of the stria terminalis (BNST) is critical in mediating states of anxiety, and its dysfunction has been linked to stress-related mental disease. Although the anxiety-related role of distinct subregions of the anterior BNST was recently reported, little is known about the contribution of the posterior BNST (pBNST) to the behavioral and neuroendocrine responses to stress. Previously, we observed abnormal expression of corticotropin-releasing factor receptor type 2 (CRFR2) to be associated with post-traumatic stress disorder (PTSD)-like symptoms. Here, we found that CRFR2-expressing neurons within the pBNST send dense inhibitory projections to other stress-related brain regions (for example, the locus coeruleus, medial amygdala and paraventricular nucleus), implicating a prominent role of these neurons in orchestrating the neuroendocrine, autonomic and behavioral response to stressful situations. Local CRFR2 activation by urocortin 3 depolarized the cells, increased the neuronal input resistance and increased firing of action potentials, indicating an enhanced excitability. Furthermore, we showed that CRFR2-expressing neurons within the pBNST are critically involved in the modulation of the behavioral and neuroendocrine response to stress. Optogenetic activation of CRFR2 neurons in the pBNST decreased anxiety, attenuated the neuroendocrine stress response, ameliorated stress-induced anxiety and impaired the fear memory for the stressful event. Moreover, activation following trauma exposure reduced the susceptibility for PTSD-like symptoms. Optogenetic inhibition of pBNST CRFR2 neurons yielded opposite effects. These data indicate the relevance of pBNST activity for adaptive stress recovery.

  7. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  8. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  9. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    of the machinery system. The wet sulphuric acid process has shown to be an effective way of removing sulphur oxides from flue gas of land-based coal fired power plants. Moreover, organic Rankine cycles are suitable for heat to power conversion for low temperature heat sources. This paper is aimed at designing...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two......-stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...

  10. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.

    Science.gov (United States)

    Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke

    2011-03-01

    This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  12. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration

    International Nuclear Information System (INIS)

    Ebrahimi, Khosrow; Jones, Gerard F.; Fleischer, Amy S.

    2015-01-01

    Highlights: • Absorption refrigeration is powered by data center waste heat. • Waste heat from 3 to 5 server racks produces cooling for an additional rack. • An economic analysis shows the payback period can be as short as 4–5 months. - Abstract: This paper addresses the technical and economic issues associated with waste heat recovery in data centers through the use of absorption cooling machines. The theoretical possibility of utilizing the heat dissipated by a server, or a number of servers, to power an absorption system, which in turn produces cooling for other servers in the data center, is investigated. For this purpose, a steady-state thermodynamic model is developed to perform energy balance and exergy analyses for a novel configuration of an on-chip two-phase cooling system and an absorption refrigeration system. This combination is created by replacing the condenser in the on-chip cooling circuit with the generator of an absorption refrigeration cycle. The performance of the developed model in simulating both LiBr–water and water–ammonia absorption cooling systems is examined through verification of the model results against the reference data available in the literature. The verification indicates the superiority of LiBr–water absorption system for data center/server operating conditions. Therefore, a LiBr–water absorption refrigeration system is modeled in the novel combined heat recovery system. For these systems it is shown that the traditional definition for the coefficient of performance (COP) is not appropriate to evaluate the performance and, in its place, introduce a new figure of merit. Through a sensitivity analysis, the effects of server waste heat quality, server coolant type, solution peak concentration, solution heat exchanger effectiveness, evaporator temperature, and operating pressures on the performance of the novel system are investigated. Finally, using the thermodynamic model and cost information provided by the

  13. Analysis of heat recovery of diesel engine using intermediate working fluid

    Science.gov (United States)

    Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming

    2017-07-01

    The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.

  14. Tritium recovery from helium purge stream of solid breeder blanket by cryogenic molecular sieve bed. 2. Regeneration operation of cryogenic molecular sieve bed

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori; Enoeda, Mikio; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Regeneration operation is a very important operation, because it is the most influential factor for deciding the net operation cycle time and the minimum dimension of Cryogenic Molecular Sieve Bed (CMSB). However, the experimental data of CMSB regeneration operation was not so sufficient that even the optimum regeneration procedure could not be decided yet. This work was focused on getting the primary information about various regeneration procedures. (author)

  15. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Science.gov (United States)

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-09-01

    The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid - organic working fluid - as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  16. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Kowalczyk Tomasz

    2015-09-01

    Full Text Available The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  17. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    Science.gov (United States)

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology.

  18. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a...

  19. Recovery of heat treated Bacillus cereus spores is affected by matrix composition and factors with putative functions in damage repair

    Directory of Open Access Journals (Sweden)

    Alicja Katarzyna Warda

    2016-07-01

    Full Text Available The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry (FCM. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions.We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

  20. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    Science.gov (United States)

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

  1. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... at different growth stages. The secondary aim was to investigate whether a pre-acclimation of plants to elevated temperature during the growth period induces a better tolerance to heat stress than for plants grown in ambient temperature or not. The plants were grown in two growth temperature conditions (15 °C...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...

  2. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Tahani Mojtaba

    2013-01-01

    Full Text Available There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.

  3. Waste-heat recovery potential in Turkish textile industry. Case study for city of Bursa

    Energy Technology Data Exchange (ETDEWEB)

    Pulat, E.; Etemoglu, A.B.; Can, M. [Uludag University, Faculty of Engineering and Architecture, Mechanical Engineering Department, Gorukle, TR-16059, Bursa (Turkey)

    2009-04-15

    Textile sector of Turkey has a large production capacity and it is one of the important sectors. Many industrial heating processes generate waste energy in textile industry. Therefore, there is a tremendous waste-heat potential to utilize in textile applications. This study assesses the potential of waste-heat obtained from particularly dyeing process at textile industry in Bursa where textile center of Turkey. Energy consumptions could be decreased by using of waste-heat recovery systems (WHRSs). A thermodynamic analysis is performed in this study. An exergy-based approach is performed for optimizing the effective working conditions for WHRSs with water-to-water shell and tube heat exchanger. The payback period is found to be less than 6 months. The variations of the parameters which affect the system performance such as waste-water inlet temperature, mass flow rate, cooling water inlet pressure and dead state conditions are examined respectively. The results of the analysis show that the exergy destruction rate and economical profit increase with increasing of mass flow rate of the waste water. Similarly, exergy destruction rate, effectiveness and economical profit increase while the second law efficiency decreases as the waste-water inlet temperature increases. (author)

  4. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine

    Science.gov (United States)

    Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro

    2017-05-01

    In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.

  5. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  6. Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm

    International Nuclear Information System (INIS)

    Ghazi, M.; Ahmadi, P.; Sotoodeh, A.F.; Taherkhani, A.

    2012-01-01

    Highlights: ► Comprehensive thermodynamic modeling of a dual pressure HRSG with duct burners. ► Thermoeconomic performance assessment of the system. ► To find the best design parameters of the HRSG using a genetic algorithm. - Abstract: In the present study a comprehensive thermodynamic modeling of a dual pressure combined cycle power plant is performed. Moreover, an optimization study to find the best design parameters is carried out. Total cost per unit of produced steam exergy is defined as the objective function. The objective function includes capital or investment cost, operational and maintenance cost, and the corresponding cost of the exergy destruction. This objective function is minimized while satisfying a group of constraints. For this study, design variables are high and low drum pressures, steam mass flow rates, pinch point temperature differences and the duct burner fuel consumption flow rate. The variations of design parameters with the inlet hot gas enthalpy and exergy unit price are also shown. Finally the sensitivity analysis of change in design parameters with change in fuel and investment cost is performed. The results show that with increasing the exergy unit cost, the optimum values of design parameters are selected such that to decrease the objective function. Furthermore it is found that at higher inlet gas enthalpy, the required heat transfer surface area (and its corresponding capital cost) increases

  7. Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor

    Science.gov (United States)

    Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo

    2017-11-01

    In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.

  8. Dynamic Study of Feed-Effluent Heat Exchanger Addition on Double Bed Configuration Ammonia Reactor System within Varied Quenching Ratio

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available Ammonia is one of the most important industrial commodity due to its wide function. Ammonia synthesis reaction is an exotermic reaction. Therefore, Feed-Effluent Heat Exchanger (FEHE is added to increase thermal efficiency. However, FEHE could lead the process to experience hysteresis phenomenon due to interaction between equipments as one steady state T feed could result several T outlet. Hysteresis phenomenon may result asset losses like explosion, leakage, and loosing material integrity. Double bed reactor configuration allows us to use several operating parameters as variation to overcome hysteresis. In this review, quenching ratio was chosen to be that varied parameter. This study aims to determine how quenching ratio affects hysteresis zone by utilizing Aspen Hysys® V8.8 as simulation tool. Simulation showed that quenching ratio would narrow hysteresis zone yet increased extinction temperature that lower the conversion. Conversion profile showed that 0.2 quenching ratio got the highest conversion for system with bed volume ratio 2:1 while total volume was 30 m3. However, the feed temperature was fallen at hysteresis zone. Dynamic simulation showed that highest conversion feed temperature (10%ΔTf above extinct temperature was still able to preserve stability with descending temperature approach. Hysteresis itself started to occur at 1.7%ΔTf above extinct temperature

  9. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    Science.gov (United States)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  10. Novel method for investigation and evaluation of heat transfer in fixed bed tubular reactors with gas flow

    Science.gov (United States)

    Bauer, M.; Adler, R.

    2002-08-01

    A novel concept for the investigation and evaluation of radial heat transfer in fixed bed tubular reactors in absence of a chemical reaction based on instationary measurements is presented in this work. Compared to known stationary investigational concepts one is able to get an increased informational yield from the experimental data especially for low tube-to-particle diameter ratios and small gas mass flow rates to be found typically in heterogeneous catalysis. The question discussed contrary in literature which boundary condition should be applied to the inner reactor wall is answered. A empirical correlation of the parameters for the two dimensional pseudohomogeneous model was found which allows a more accurate description of the experimental findings than known approaches from literature. The experiments were conducted for spherical particles and hollow cylinders made from steatite.

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  13. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  14. Heat recovery investigation from dryer–thermal oxidizer system in corn-ethanol plants

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2015-01-01

    In recent years, annual corn ethanol production in the U.S. has exceeded 13,298,000,000 gallons. However, net energy balance for this sector became a subject of controversy in many discussions. The aim of the presented research is an investigation of thermal improvement opportunities in a corn ethanol plant. For this purpose, a complex mathematical model was developed for a dryer–thermal oxidizer system. Three variants were subjected thermodynamic analyses: one state of the art system and two proposed system modifications. The properties of humid gas, a mixture of combustion products and moisture evaporated from distiller's grain, were updated based on the steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. All calculations were performed by uniquely-developed C++ code. The results indicate major potential for improvement in the following areas: (i) water recovery from humid gas; (ii) heat recovery from moisture condensation – max. 44% of total primary energy usage (TPEU); and (iii) fuel savings by reduction of humid gas flow through a thermal oxidizer – max. 1.4% of TPEU. Also the presented analysis can be a starting point for further modifications in real corn ethanol manufacturing applications, leading towards pilot system implementation. - Highlights: • Mathematical model for dryer–oxidizer system in a corn ethanol plant was proposed. • Three configurations were discussed: with intercooler, regenerator, and recuperator. • Recovery rate of water condensed at various conditions and locations was quantified. • Heat recovery possibilities at various temperatures and locations have been assessed. • Energy savings in thermal oxidizer due to preliminary condensation were calculated

  15. Hydrodynamics and external heat transfer in granular beds with rotating cylinders placed in them

    Science.gov (United States)

    Korolev, V. N.; Osintsev, I. A.; Syromyatnikov, N. I.

    1987-01-01

    The results are presented from an experimental investigation of the effect of rotation of a cylinder placed horizontally in fixed and fluidized granular media on the structure of the layer adjacent to the wall and on the intensity of external heat transfer.

  16. Wall heat flux influence on the thermodynamic optimisation of irreversibilities of a circulating fluidised bed combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2016-07-01

    Full Text Available In the study the comparison of irreversibilities was done when the wall condition of the combustor was changed from adiabatic to negative heat flux, for incoming air temperature of 400 K. The reactant mixture of solid pitch pine wood fuel and air...

  17. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  18. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Flue gas moisture capacity calculation at the outlet of the condensation heat recovery unit

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available As a result, study equation has been obtained which determine the flue gas moisture capacity at the outlet of the condensation heat recovery unit with an error of less than 1%. It possible to at the temperature of the flue gas below the dew point and the known air-fuel ratio efficient. The equation can be used to calculate plants operating on products of gas combustion without Use of tables and programs for calculating the water-vapor saturation pressure.

  20. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  1. Enhancement of Heat-Recovery Steam-Gas Plant Efficiency at Expense of Steam Reheating Application

    Directory of Open Access Journals (Sweden)

    A. S. Grinchuk

    2008-01-01

    Full Text Available The paper considers a thermodynamic efficiency and peculiar features pertaining to realization of heat-recovery steam-gas plant schemes with steam reheating. Possible reserves of higher efficiency concerning plant economy and methods for achieving these goals are given in the paper. The author has made calculations for steam-gas plants of one-, two- and three-loop cycle of steam pressure. An analysis of the obtained results in respect of technical and economic indices and expediency of the application of corresponding plants in power engineering of the Republic of Belarus are presented in the paper.

  2. A Model for Determining Modular Heat Recovery Incinerator Feasibility on Air Force Installations.

    Science.gov (United States)

    1992-09-01

    recognize that there are limits in the level of control that an Air Force installation can yield to the public (73:86). e Polluion •Issues. It is...AD-A261 336 11 lHINN 1 AFIT/GEE/ENV/92S-2 DTIC ELECTE MAR2 1993 C A MODEL FOR DETERMINING MODULAR HEAT RECOVERY INCINERATOR FEASIBILITY ON AIR FORCE...INCINERATOR FEASIBILITY ON AIR FORCE INSTALLATIONS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

  3. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  4. Investigation of the influence of heated catalyst feeding system on the intensity of temperature-dependent chemical reaction in the fluidized bed apparatus

    Science.gov (United States)

    Soloveva, O. V.; Solovyev, S. A.

    2016-11-01

    A mathematical model was developed and a numerical study of operation parameters of the fluidized bed apparatus for temperature-dependent processes was performed. Fields of catalyst concentration and temperature fields were obtained. The circulation flow analysis was carried out. The effect of the influence of heated catalyst feeder on the efficiency of apparatus heating was analyzed. The change of the circulating gas flows and catalyst structures due to changes in the heated catalyst feeder was shown. The influence of the catalyst fractional composition on the efficiency of apparatus heating was studied.

  5. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  6. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  7. Thermodynamic modelling of a recompression CO2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO 2 is developed. • Energetic and exergetic analysis compared with S-CO 2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO 2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO 2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO 2 ) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO 2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO 2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  8. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  9. Constructal design and optimization of a dual pressure heat recovery steam generator

    International Nuclear Information System (INIS)

    Mehrgoo, Morteza; Amidpour, Majid

    2017-01-01

    Optimum design of the Heat Recovery Steam Generator (HRSG) has noticeable effects on the thermal efficiency of the combined cycle power plants. In this paper, constructal design of a dual pressure HRSG is proposed. It is shown how to simultaneously optimize the operating and geometric design parameters of the HRSG by using the constructal theory. Considering the minimum total entropy generation as objective function, optimum parameters of the HRSG unit are derived by using the genetic algorithm method under the fixed total volume condition. The optimized total volume, aspect ratios of the units, the number of tubes through the length and width, the heat transfer area of the HRSG and thermodynamic properties are significant features of the flow configuration resulted from constructal design. Optimal aspect ratios of the units are correlated to the pressure and temperature and effects of these variables on the main geometric characteristics of HRSG are obtained. The results show that there is an optimum value for total volume of the HRSG and most of the overall heat transfer coefficient (UA) are allocated to the evaporators. Also, number of the tubes in the longitudinal direction are fewer than the number of tubes in the transverse direction. - Highlights: • Constructal design of a dual pressure heat recovery steam generator is introduced. • The main focus of design is on the physical configuration of the HRSG. • The Genetic Algorithm is used to optimize the exergy destruction of unit. • Optimal aspect ratios of the units are correlated to pressure and temperature. • Optimum value for the total volume of HRSG is derived.

  10. Modern State and Efficient Analysis of Heat Recovery in Fuel Furnaces Using High Temperature Recuperators. Part 1.

    Directory of Open Access Journals (Sweden)

    B. S. Soroka

    2013-01-01

    Full Text Available A modern method for determination of fuel efficiency which is used in high-temperature plants (industrial furnaces has been considered in the paper. The paper estimates a heat recovery role of flue gases at the furnace outlet with the purpose to save  natural gas and replace it with alternative gas fuel. Efficient heat-utilizing installations for high-temperature plants have been presented in the paper, examples of heat recovery unit application in various technological schemes including processes of biomass gasification.

  11. Radial heat transfer in fixed-bed packing with small tube/particle diameter ratios

    Science.gov (United States)

    Grah, A.; Nowak, U.; Schreier, M.; Adler, R.

    2009-02-01

    This paper presents an integrating approach to the description of radial heat transfer in catalyst packing with a flow without chemical reactions. The derived model combines the conventional αW model with the more recent λr( r) model. Particular attention is paid to small tube/particle diameter ratios. Experimental data including different tube diameters and particle shapes are used for adjustment. Spheres were used to represent a type of ordered single-size packing, and hollow cylinders to represent a type of chaotic random packing. A gradual quasi-steady experimental concept allows measurement of temperature gradients even at low flow velocities. Adjusted radial temperature profiles are compared with known approaches from literature, and correlation equations for heat transfer parameters are specified.

  12. Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A multigeneration energy system with one fuel intake (sawdust biomass fuel) and five useful outputs is proposed and energy and exergy analyses are carried out to assess its performance. Instead of using a simple heat exchanger to satisfy district heating needs, applying a deaerator is found to result in 10% more hot water mass flow rate for the same conditions. The energy and exergy efficiencies of the multigeneration system are found to be around 60% and 25%, respectively, while the corresponding energy and exergy efficiencies of a biomass system with only electricity generation are 11% and 13%, respectively. When investigating the effect of adding various product outputs to biomass power generation, steam generation and then domestic hot water production are found to have the greatest enhancing effects on the system efficiencies. Heat recovery from exhaust gases for district heating and wood drying is found to enhance the energy efficiency more than the exergy efficiency. Also, due to the size of the heat recovery system, which is smaller than the biomass CHP cycle, district heating and drying cannot increase the energy and exergy efficiencies of the primary system like steam generation. A parametric study shows that the biomass fuel input rate affects significantly the district heating heat load and the electricity generation rate, in a linear manner. However, increasing the biomass input rate has no effect on the CHP system energy and exergy efficiencies, while increasing the exergy efficiency of the entire system and decreasing its corresponding energy efficiency slightly. Of the several heat recovery options from exhaust gases, electricity generation and wood drying result in the highest exergy efficiency while district heating and drying lead to highest energy efficiency. - Highlights: • Novel heat recovery based energy system is proposed. • There is one energy input while system has 5 useful outputs. • Combustion excess air increases district heating

  13. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Meng, Jing-Hui; Wang, Xiao-Dong; Chen, Wei-Hsin

    2016-01-01

    Highlights: • A new model for automobile exhaust thermoelectric generator system is proposed. • Based on the system reliability, the counter flow cooling pattern is recommended. • There exists an optimal thermoelectric unit number to maximize system output power. • Better performance is predicted with less thermoelectric materials consumption. - Abstract: This work develops a multiphysics thermoelectric generator model for automobile exhaust waste heat recovery, in which the exhaust heat source and water-cooling heat sink are actually modeled. Special emphasis is put on the non-uniformity of temperature difference across thermoelectric units along the streamwise direction, which may affect the performance of exhaust thermoelectric generator systems significantly. The main findings are: (1) The counter flow cooling pattern is recommended, although it cannot elevate the overall output power as compared with the parallel flow counterpart, it reduces the temperature non-uniformity effectively, and hence ensures the system reliability. (2) The temperature non-uniformity strikingly deteriorates the output power of thermoelectric unit along the streamwise direction; meanwhile, an additional lateral heat conduction effect exists within the exhaust channel wall, the both mechanisms leads to that the maximum output power of the system is not enhanced but is actually reduced when too many thermoelectric units are adopted. (3) When the exhaust channel length is fixed, the maximum output power of the system can be elevated by increasing the thermoelectric unit number but keeping thermoelectric unit spacing unchanged. This means that the system performance can be improved under the condition of less thermoelectric materials consumption.

  14. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  15. Experimental and computational investigation of a MEMS-based boiler for waste heat recovery

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Borquist, Eric; Baniya, Ashok; Weiss, Leland

    2015-01-01

    Highlights: • A microboiler with capillary channels for low temperature energy harvesting. • Complete thermodynamic analysis is completed. • The boiler is designed for minimum thermal losses. • Capability of capillary channels to pump at various pressure is investigated. - Abstract: Thermodynamically limited processes make waste heat abundant in availability. An Organic Rankine Cycle (ORC) steam powered micro system designed to scavenge waste heat from various sources (transportation, industries or solar) is presented. The key boiler component is fabricated and characterized in this work. The system design has been inspired by the various efforts implemented in development of micro heat recovery devices and engines. The complete system consists of three individual micro components (1) boiler, (2) free piston expander and (3) superheater. Specifically, design, fabrication techniques, test setup and results of the miniaturized boiler are presented in this paper. A key design feature of the boiler is the inclusion of capillary channels for fluid flow from the surrounding reservoirs to the heated area. The pressurized steam is created by the boiler as a result of phase transformation of the working fluid. This pressurized steam can be utilized to drive another MEMS device (PZT membranes, turbines, thermoelectric, etc.) to generate power. In this upgraded boiler design, radial capillary channels and a thin film glass steamdome were considered to improve the operating efficiency. These inclusions enhanced capillary flow, energy absorption via phase change, mass flow rate and operating pressure. The power inputs of 1.8 W and 2.7 W were selected to simulate and characterize the boiler performance based on real-world waste heat source temperatures. For these power inputs, the maximum power absorption efficiency demonstrated by the boiler via phase change of the working fluid was approximately 88%. The peak operating pressure demonstrated by the boiler was 8.5 k

  16. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  17. Effects of heat exchanger tubes on hydrodynamics and CO 2 capture of a sorbent-based fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Canhai; Xu, Zhijie; Li, Tingwen; Lee, Andrew; Dietiker, Jean-François; Lane, William; Sun, Xin

    2017-12-01

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations and manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.

  18. Viability analysis of heat recovery solution for industrial process of roasting coffee

    Directory of Open Access Journals (Sweden)

    Kljajić Miroslav V.

    2016-01-01

    Full Text Available Every industrial heat recovery solution is specific engineering challenge but not because predicted energy rationalization or achieved energy savings but potential unavoidable technological deviations and consequences on related processes and for sure, high investment because of delicate design and construction. Often, the energy savings in a particular segment of the industrial process is a main goal. However, in the food industry, especially roasting coffee, additional criteria has to be strictly observed and fulfilled. Such criteria may include prescribed and uniform product quality, compliance with food safety standards, stability of the processes etc., and all in the presence of key process parameters variability, inconsistency of raw material composition and quality, complexity of measurement and analytical methods etc. The paper respects all circumstances and checks viability of proposed recovery solution. The paper analyzes the possibility of using waste heat from the roasting process to ensure shortening of roasting cycle, reduction of fuel consumption and increasing capacity of roasting lines on daily basis. Analysis concludes that effects are valuable and substantial, although the complete solution is on the threshold of economic sustainability with numerous opportunities to improve of both technical and economic indicators. The analysis combines measuring and analytical methods with standard cost-benefit analysis. Conclusions are derived from measurements and calculations of key parameters in the operating conditions and checked by experimental methods. Test results deviate from 10 to 15%, in relation with parameters in main production line.

  19. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  20. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  1. Heat and mass transfer through a thick bed of cocoa beans during drying

    Science.gov (United States)

    Nganhou, J.

    This article relates to the establishment of macroscopic equations of thick and fixed hygroscopical porous medium allowing an analysis of couply phenomena of heat and mass transfers in drying operation. The drying is done through forced convection by imposing a circulation of hot air across the layer. The authors then make their study particular to the case of thick layer of cocoa beans grown in the region of Yaounde in cameroon. A study realized on a prototype constructed and tested in the laboratory enables the validation of the proposed model.

  2. Non-uniform groundwater discharge across a stream bed: Heat as a tracer

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter Knudegaard

    2011-01-01

    throughout the period. On the other hand, discharge to the stream at the opposite bank near a steep hillslope decreased signifi cantly toward the end of the period (early June), which was a¿ ributed to a drop in the water table on this side of the stream. The results from the O me series analysis were......Time series analysis of conO nuous streambed temperature during a period of 47 d revealed that discharge to a stream is nonuniform, with strongly increasing verO cal fl uxes throughout the top 20 cm of the streambed–aquifer interface. An analyO cal soluO on to the transient heat transport equa...... compared with seepage meter measurements and the results from a steady-state analyO cal soluO on to the heat transport equaO on. The diff erent methods agreed on the pa¿ ern of discharge across the stream width, and the mean values during the studied period generally agreed well but with diff erent ranges....

  3. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle

    International Nuclear Information System (INIS)

    Eller, Tim; Heberle, Florian; Brüggemann, Dieter

    2017-01-01

    The organic Rankine cycle (ORC) and the Kalina cycle (KC) are potential thermodynamic concepts for decentralized power generation from industrial waste heat at a temperature level below 500 °C. The aim of this work is to investigate in detail novel zeotropic mixtures as working fluid for the KC and compare to sub- and supercritical ORC based on second law efficiency. Heat source temperature is varied between 200 °C and 400 °C. The results show that second law efficiency of KC can be increased by applying alcohol/alcohol mixtures as working fluid instead of ammonia/water mixtures; especially for heat source temperatures above 250 °C. Efficiency increase is in the range of 16% and 75%. Despite this efficiency improvements, ORC with zeotropic mixtures in sub- and supercritical operation mode proves to be superior to KC in the examined temperature range. Second law efficiency is up to 13% higher than for KC. A maximum second law efficiency of 59.2% is obtained for supercritical ORC with benzene/toluene 36/64 at 400 °C heat source temperature. The higher level of efficiency and the lower complexity of ORC in comparison to KC indicate that ORC with zeotropic mixtures offers the greater potential for waste heat recovery. - Highlights: • Kalina Cycle with novel alcohol mixtures as working fluid is investigated. • Results are compared to ammonia/water-Kalina Cycle and ORC. • Second law efficiency of Kalina Cycle can be increased by novel alcohol mixtures. • Efficiency increase is in the range of 16% and 75%. • ORC with zeotropic mixtures proves to be superior to Kalina Cycle.

  4. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, A.

    1995-01-01

    The report describes the results of combustion testing work, and analysis of heat recovery and use at the Monroe County Frank E. Van Lare wastwater treatment plant (WWTP). The three multiple-hearth furnaces at the plant process an average of 65 dry tons of dewatered sludge per day. The furnaces use about 12.5 million Btus of natural gas per dry ton of sludge incinerated, or about 300 billion Btus per year. Center shaft and rabble arm cooling air is recirculated to the furnaces as pre-heated combustion air. No other heat from the combustion process is recovered for use in the plant. The project had four objectives: to record and analyze sludge management operations data and sludge incinerator combustion data; to ascertain instrumentation and control needs; to calculate heat balances for the incineration system; and to determine the feasibility of full waste-heat recovery and utilization, at the Frank E. Van Lare wastewater treatment plant.

  5. Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates

    Directory of Open Access Journals (Sweden)

    Mohamad Ramadan

    2015-09-01

    Full Text Available In the last three decades, the world has experienced enormous increases in energy and fuel consumption as a consequence of the economic and population growth. This causes renewable energy and energy recovery to become a requirement in building designs rather than option. The present work concerns a coupling between energy recovery and Heating, Ventilating and Air Conditioning HVAC domains and aims to apply heat recovery concepts to HVAC applications working on refrigeration cycles. It particularly uses the waste energy of the condenser hot air to heat/preheat domestic water. The heat exchanger considered in the recovery system is concentric tube heat exchanger. A thermal modeling of the complete system as well as a corresponding iterative code are developed and presented. Calculations with the code are performed and give pertinent magnitude orders of energy saving and management in HVAC applications. A parametric analysis based on several water and air flow rates is carried out. It was shown that water can be heated from 25 to 70 °C depending on the mass flow rates and cooling loads of the HVAC system. The most efficient configurations are obtained by lowering the air flow rate of the condenser fan.

  6. RET: a computer code for solution of space-time dependent heat and mass transfer problem associated with metal hydrogen storage beds

    Energy Technology Data Exchange (ETDEWEB)

    El Osery, I.A.

    1981-01-01

    The computer code RET is developed for the solution of space-time dependent heat and mass transfer problem associated with a cylindrical metal hydride hydrogen storage bed where the heat transfer fluid is passing through a coaxial pipe. An approximate analytical solution is proposed on the assumption that an interface exists separating the completely reacted and unreacted zones and that heat is exhanged only at the interface. The bed is assumed initially at its equilibrium reaction temperature. The temperature distribution in the reacted zone is assumed of steady state type. The code gives as functions of time, the location of the reaction front, the cumulative reacted hydrogen, and the rate of hydrogen reaction. A listing of RET-code in FORTRAN is provided together with input data requirements and output facilities.

  7. Verification of Heat and Mass Transfer Closures in Industrial Scale Packed Bed Reactor Simulations

    Directory of Open Access Journals (Sweden)

    Arpit Singhal

    2018-03-01

    Full Text Available Particle-resolved direct numerical simulation (PR-DNS is known to provide an accurate detailed insight into the local flow phenomena in static particle arrays. Most PR-DNS studies in literature do not account for reactions taking place inside the porous particles. In this study, PR-DNS is performed for catalytic reactions inside the particles using the multifluid approach where all heat and mass transfer phenomena are directly resolved both inside and outside the particles. These simulation results are then used to verify existing 1D model closures from literature over a number of different reaction parameters including different reaction orders, multiple reactions and reactants, interacting reactions, and reactions involving gas volume generation/consumption inside the particle. Results clearly showed that several modifications to existing 1D model closures are required to reproduce PR-DNS results. The resulting enhanced 1D model was then used to accurately simulate steam methane reforming, which includes all of the aforementioned reaction complexities. The effect of multiple reactants was found to be the most influential in this case.

  8. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  9. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    Science.gov (United States)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  10. Analysis of circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko; Shimizu, Tadaaki; Yang, Guilin

    1987-05-20

    Fluidized bed combustors are commercialized as a technology to combust solid fuels with higher efficiency and lower emission and have functions of both combustion and simultaneous desulfurization and NOx reduction with dense phase fluidized beds but it is not so easy to realize these problems. The technology of circulating fluidized bed coal combustion is expected to offer potential break-through of various problems. But the details are not reported so far. Quantitative analysis of present situations was conducted and future problems were shown with officially available informations. This analysis includes the circulating rate and loading of solids, heat recovery and heat transfer rate as a function of loading of solids, the design of cyclones related to high solid concentration within the combustor, sulfur retention with reduced Ca/S ratio and problems related to NOx reduction to be developed in future. (51 refs, 23 figs, 8 tabs)

  11. Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: Correlation with experimentally heated quartz and feldspar

    Science.gov (United States)

    Mahaney, William C.; Krinsley, David; Kalm, Volli

    2010-11-01

    Fired sediment, considered equivalent to the 'Black Mat' impact of 12.9 ka, has been located and analyzed in the Andes of northwestern Venezuela. The 'Black Mat' refers to possible fallout from the Encke Comet airburst presumed to have occurred over the Laurentide Ice Sheet, the impact spreading ejecta over large portions of North America and Europe, making it an interhemispheric event of considerable magnitude. These possible equivalent beds in the northern Andes, first considered to result from a lightning-induced conflagration adjacent to the retreating Late Wisconsinan (Mérida Glaciation) ice, are now known to have undergone intense heating upon impact to a temperature much higher than what would occur in a wet, first-stage, successional tundra. Analyses carried out by SEM and FESEM, in SE and BSE modes, show massive micro-disruption on grain surfaces, fractures diminishing with depth toward grain interiors and C welded onto quartz and plagioclase minerals. Bubbles on some grains, possibly the result of exclusion of water-of-crystallization, are seen on some samples, principally quartz. The presence of copious monazite in the carbonaceous coatings is considered part of the incoming ejecta, as it is not a common indicator mineral in the local lithology. Analysis by SEM and FESEM of quartz and plagioclase subjected experimentally to temperatures ranging from 500 to 900 °C shows that intense heating affects resident mineralogies to differing extents, with grain disruption more prevalent along cleavage planes deep into grain interiors. The intergrowth of carbonaceous "black mat" material with thermally disrupted and fragmented quartz and feldspar, a "welded" patina of 100-400 nm thickness could only occur with temperatures in excess of 900 °C, the event interpreted here to be of cosmogenic origin.

  12. Exploitation problems and diagnostic of heat recovery steam boiler OU-192

    Directory of Open Access Journals (Sweden)

    Olewicz Grzegorz

    2017-01-01

    Full Text Available Combined Cycle Gas Turbine (CCGT use exhaust gases from gas turbine (GT, which in basic systems are ejected to environment as discharge loss, for steam generation in Heat Recovery Steam Generator (HRSG. Higher unit efficiency achieved inter alia by using in boiler low and high pressure circuit allow to greater use of turbine exhaust gases enthalpy. Modular design solutions with tight structure, preferred on construction site, may be a problematic for maintenance services during operation and overhauls. This paper presents general operational problems of HRSG as well as detailed solutions for boiler OU-192. We discuss scope and results of diagnostic tests required to assess technical condition of the pressure elements, after 100 000 hours operation, with the support of the software LM System PRO+

  13. Optimization of Design Pressure Ratio of Positive Displacement Expander for Vehicle Engine Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Young Min Kim

    2014-09-01

    Full Text Available This study investigated the effect of the built-in volume ratio of an expander on the performance of a dual-loop Rankine cycle system for the engine waste heat recovery of a vehicle. Varying vehicle operating conditions can cause a positive displacement expander to operate in both under- and over-expansion states. Therefore, analysis of the off-design performance of the expander is very important. Furthermore, the volume and weight of the expander must be considered in its optimization along with the efficiency. A simple modeling of the off-design operation of the expander showed that a built-in volume ratio that causes under-expansion rather than over-expansion at the target condition is more desirable.

  14. Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit

    KAUST Repository

    Thu, Kyaw

    2011-01-01

    This paper presents the results of an investigation on the efficacy of a silica gel-water based advanced adsorption desalination (AD) cycle with internal heat recovery between the condenser and the evaporator. A mathematical model of the AD cycle was developed and the performance data were compared with the experimental results. The advanced AD cycle is able to produce the specific daily water production (SDWP) of 9.24 m3/tonne of silica gel per day at 70 °C hot water inlet temperature while the corresponding performance ratio (PR) is comparatively high at 0.77. It is found that the cycle can be operational at 50 °C hot water temperature with SDWP 4.3. The SDWP of the advanced cycle is almost twice that of the conventional AD cycle. © 2010 Elsevier Ltd. All rights reserved.

  15. Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants

    International Nuclear Information System (INIS)

    Casarosa, C.; Donatini, F.; Franco, A.

    2004-01-01

    The optimization of the heat recovery steam generator (HRSG) is particularly interesting for the combined plants design in order to maximise the work obtained in the vapour cycle. A detailed optimization of the HRSG is a very difficult problem, depending on several variables. The first step is represented by the optimization of the operating parameters. These are the number of pressure levels, the pressures, the mass flow ratio, and the inlet temperatures to the HRSG sections. The operating parameters can be determined by means both of a thermodynamic and of a thermoeconomic analysis, minimising a suitable objective function by analytical or numerical mathematical methods. In the paper, thermodynamic optimization is based on the minimization of exergy losses, while the thermoeconomic optimization is based on the minimization of the total HRSG cost, after the reduction to a common monetary base of the costs of exergy losses and of installation

  16. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  17. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus...... model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working...... in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine...

  18. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  19. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce

  20. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    International Nuclear Information System (INIS)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven, harmless to the environment as well as being less hazardous in comparison. - Highlights: • We compare steam, ORC (organic Rankine cycle) and Kalina cycles for waste heat recovery in marine engines. • We evaluate the efficiency and important qualitative differences. • The Kalina cycle presents no apparent advantages. • The steam cycle is well known, harmless and has a high efficiency. • The ORC has the highest efficiency but also important drawbacks

  1. Heat recovery properties from fuel cell system for telecommunications use; Tsushin`yo nenryo denchi system ni okeru hainetsu kaishu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, M.; Iida, S.; Abe, I.; Yamamoto, M. [NTT Integrated Information and Energy Systems Laboratories, Tokyo (Japan)

    1997-08-20

    NTT is developing a phosphoric-acid fuel-cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerators to cool the telecommunication rooms throughout the year. We field-tested this fuel-cell energy system in a telephone office. Two heat recovery methods were applied in the test: one uses direct steam heat recovery from fuel-cell stack coolant to keep the heat recovery temperature high and to avoid requiring a heat exchanger for the recovery; the other uses heat recovery from the reformer exhaust gas that is directly in contact with the heat recovery water to recover heat more economically. Our field tests confirmed that the average efficiency of heat recovery from fuel-cell stack coolant is 16%, and from the reformer exhaust gas is 9% under 80-kW continuous operation. Maximum total efficiency including electrical power efficiency was confirmed to be about 73% under the condition of 100-kW and an S/C ratio of 2.5 in the winter period: heat recovery from the fuel-cell stack coolant was 23%, from the reformer exhaust gas was 10%, and from electrical conversion was about 40%. 9 refs., 12 figs., 1 tab.

  2. How Fast Is Recovery of Impaired Glucose Tolerance after 21-Day Bed Rest (NUC Study in Healthy Adults?

    Directory of Open Access Journals (Sweden)

    Martina Heer

    2014-01-01

    Full Text Available Aim. We hypothesized that 4 days of normal daily activity after 21 days of experimental bed rest (BR will not reverse BR induced impaired glucose tolerance. Design. Glucose tolerance of seven male, healthy, untrained test subjects (age: 27.6 (3.3 years (mean (SD; body mass: 78.6 (6.4 kg; height: 1.81 (0.04 m; VO2 max: 39.5 (5.4 ml/kg body mass/min was studied. They stayed twice in the metabolic ward (crossover design, 21 days in bed and 7 days before and after BR each. Oral glucose tolerance tests were applied before, on day 21 of BR, and 5 and 14 days after BR. Results. On day 21 of BR, AUC120 min of glucose concentration was increased by 28.8 (5.2% and AUC120 min of insulin by 35.9 (10.2% (glucose: P<0.001; insulin: P=0.02. Fourteen days after BR, AUC120 min of serum insulin concentrations returned to pre-bed-rest concentrations (P=0.352 and AUC120 min of glucose was still higher (P=0.038. Insulin resistance did not change, but sensitivity index was reduced during BR (P=0.005. Conclusion. Four days of light physical workload does not compensate inactivity induced impaired glucose tolerance. An individually tailored and intensified training regime is mandatory in patients being in bed rest to get back to normal glucose metabolism in a reasonable time frame.

  3. Phosphorus recovery from anaerobic digester supernatant by struvite crystallization: model-based evaluation of a fluidized bed reactor.

    Science.gov (United States)

    Rahaman, M S; Mavinic, D S; Ellis, N

    2008-01-01

    This paper is an attempt to model the UBC (University of British Columbia) MAP (Magnesium Ammonium Phosphate) fluidized bed crystallizer. A mathematical model is developed based on the assumption of perfect size classification of struvitre crystals in the reactor and considering the movement of liquid phase as a plug flow pattern. The model predicts variation of species concentration of struvite along the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) are then used to evaluate the reactor performance. The model predictions provide a reasonable good fit with the experimental results for both PO4-P and NH4-N removals. Another important aspect of this model is its capability of predicting the crystals size and the bed voidage at different height of the reactor. Those predictions also match fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation of the reactor and can also be extended to optimize the struvite crystallization process in the UBC MAP reactor. IWA Publishing 2008.

  4. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I. [Kure National College of Technology, Hiroshima (Japan); Taga, M. [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  5. QTL for the thermotolerance effect of heat hardening, knowckdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster

    DEFF Research Database (Denmark)

    Norry, Fabian M.; Scannapieco, Alejandra C.; Sambucetti, Pablo

    2008-01-01

    The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster......-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade......-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects...

  6. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  7. A feasibility analysis of waste heat recovery systems for marine applications

    International Nuclear Information System (INIS)

    Baldi, Francesco; Gabrielii, Cecilia

    2015-01-01

    The shipping sector is today facing challenges which require a larger focus on energy efficiency and fuel consumption. In this article, a methodology for performing a feasibility analysis of the installation of a WHR (waste heat recovery) system on a vessel is described and applied to a case study vessel. The method proposes to calculate the amount of energy and exergy available for the WHR systems and to compare it with the propulsion and auxiliary power needs based on available data for ship operational profile. The expected exergy efficiency of the WHR system is used as an independent variable, thus allowing estimating the expected fuel savings when a detailed design of the WHR system is not yet available. The use of the proposed method can guide in the choice of the installation depending on the requirements of the owner in terms of payback time and capital investment. The results of the application of this method to the case study ship suggest that fuel savings of 5%–15% can realistically be expected, depending on the sources of waste heat used and on the expected efficiency of the WHR system. - Highlights: • Method for simple estimation of benefits from WHR on ships. • High detail account of ship operational profile is included in the analysis. • Detailed knowledge of the WHR system is not required; its exergy efficiency is used as independent variable

  8. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  9. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.

    Science.gov (United States)

    Reddy, N R; Tetzloff, R C; Skinner, G E

    2010-08-01

    The effect of additives and post-treatment incubation conditions on the recovery of high pressure and heat-injured (i.e., processed at 620 MPa and 95 and 100 degrees C for 5 min) spores of Clostridium botulinum strains, 62-A (proteolytic type A) and 17-B (nonproteolytic type B) was studied. High pressure and heat-injured spores were inoculated into TPGY (Trypticase-Peptone-Glucose-Yeast extract) anaerobic broth media containing additives (lysozyme, L-alanine, L-aspartic acid, dipicolonic acid, sodium bicarbonate, and sodium lactate) at various concentrations (0-10 microg/ml) individually or in combination. The spore counts of high pressure and heat-injured 62-A and 17-B recovered from TPGY broth containing lysozyme (10 microg/ml) incubated for 4 months versus that recovered from peptone-yeast extract-glucose-starch (PYGS) plating agar containing lysozyme (10 microg/ml) incubated under anaerobic conditions for 5 days were also compared. None of the additives either individually or in combination in TPGY broth improved recovery of injured spore enumeration compared to processed controls without additives. Addition of lysozyme at concentrations of 5 and 10 microg/ml in TPGY broth improved initial recovery of injured spores of 17-B during the first 4 days of incubation but did not result in additional recovery at the end of the 4 month incubation compared to the processed control without lysozyme. Adding lysozyme at a concentration of 10 microg/ml to PYGS plating agar resulted in no effect on the recovery of high pressure and heat-injured 62-A and 17-B spores. The recovery counts of high pressure and heat-injured spores of 62-A and 17-B were lower (i.e., <1.0 log units) with PYGS plating agar compared to the MPN method using TPGY broth as the growth medium. Published by Elsevier Ltd.

  10. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  11. Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterton, Mike [McKinstry, Meridian, ID (United States)

    2014-02-12

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

  12. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications

    International Nuclear Information System (INIS)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Lee, Dong Hyun; Usman, Muhammad; Heo, Manki

    2014-01-01

    Highlights: • Thermo-economic optimization of regenerative ORC is performed. • Optimization is performed using multi objective genetic algorithm. • Objective function is maximum cycle efficiency and minimum specific investment. • Evaporation pressure, pinch point and superheat are decision variables. • Sensitivity analysis is performed to investigate effect of decision variables. - Abstract: Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal

  13. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2 0 C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8 0 C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature

  14. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  15. A comparison study on energy savings and fungus growth control using heat recovery devices in a modern tropical operating theatre

    International Nuclear Information System (INIS)

    Yau, Y.H.; Ng, W.K.

    2011-01-01

    Research highlights: → The paper can be used as a comprehensive guide for building services engineers. → Energy is wasted in overcooling and reheating processes in the reheat system. → The recovery wheel integrated system is a good choice for heat recovery purpose. → The heat pipe heat exchanger system is the best choice for energy saving purpose. -- Abstract: Fungus growth has always been a problem in hot and humid areas. This particular problem is crucial for operating theatre as it could affect the success rate of operations. Many postoperative fungus infection cases had occurred in the past, and it is generally agreed that air-conditioning system play a very important role in resolving the fungus growth problem. Besides air quality, the energy consumption level of air-conditioning system is also very important. In this study, the operating theatre 3 in Putrajaya Hospital, Malaysia was chosen as the research subject. The air-conditioning system for OT3 was redesigned with the energy recovery wheel, desiccant dehumidifier and heat pipe heat exchanger to achieve the objectives of this study. A computer program called Transient system simulation program (TRNSYS) was utilized for analysis in this research. From the outcome of simulations, it was found that the heat pipe heat exchanger could reduce the most energy consumed by the air-conditioning system. It managed to reduce the energy consumption by 57.85%. Moreover, the payback period of the device is only 0.95 years, which is the shortest among all the systems studied. Therefore, applying heat pipe heat exchanger is a good choice to save energy and resolve fungus growth problem in hot and humid areas.

  16. Biosecurity on Poultry Farms from On-Farm Fluidized Bed Combustion and Energy Recovery from Poultry Litter

    Directory of Open Access Journals (Sweden)

    Kevin McDonnell

    2010-07-01

    Full Text Available The spreading of poultry litter in recent years has led to a serious increase in levels of eutrophication, nitrate leaching, high Biological Oxygen Demand (BOD, ammonia toxicity, high chlorine concentrations and pathogen contamination. The review presented here details the optimum standards that should be met when storing litter for On-Farm Fluidized Bed Combustion. Storage conditions are paramount to a fuel combusting to its highest possible potential. Safety measures such as the prevention of leaching and spontaneous combustion must be adhered to, so too should the prevention and containment of possible diseases and pathogens to minimize the effects of contamination.

  17. Influence of geometrical non-uniformities of LaNi5 metal hydride bed on its structure and heat and mass transfer at hydrogen absorption

    Science.gov (United States)

    Blinov, D. V.; Dunikov, D. O.; Kazakov, A. N.; Romanov, I. A.

    2017-11-01

    We perform cycling of a 500 g bed of La0.9Ce0.1Ni5 intermetallic compound in vertical and horizontal orientations with measurements of PCT isotherms, and further XRD and SEM investigation of bed structure. Significant decrease in equilibrium absorption pressure is observed in vertical orientation of the bed from 1.58 to 1.36 MPa at 333K, and from 2.68 to 2.51 MPa at 353K, accompanied by evident particle segregation by the bed height and densification at a bottom with formation of a robust agglomerate of small particles (reactor RSP-8 with 1 kg of La0.9Ce0.1Ni5 also show considerable non-uniformity of pressure inside the bed. If the reactor is charged from the top the hydrogen pressure at the bottom is lower on 0.2-0.3 MPa, which results in earlier occurrence of heat and mass transfer crisis.

  18. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  19. Effect of pH of the recovery medium on the apparent heat resistance of three strains of Bacillus cereus.

    Science.gov (United States)

    González, I; López, M; Mazas, M; Bernardo, A; Martín, R

    1996-08-01

    The influence of pH of the recovery medium, in the range 7.6-5.4, on the apparent heat resistance of three strains of Bacillus cereus (ATCC 4342, 7004 and 9818) has been investigated. The highest counts of heat-injured spores were obtained at pH near neutral, decreasing markedly as pH was reduced, especially with longer heating times. When the media were acidified, the apparent D-values tended to decrease, although some exceptions related to the strain and the nature of the medium were observed. z-Values determined were not affected by the pH of the medium.

  20. External muscle heating during warm-up does not provide added performance benefit above external heating in the recovery period alone.

    Science.gov (United States)

    Faulkner, Steve H; Ferguson, Richard A; Hodder, Simon G; Havenith, George

    2013-11-01

    Having previously shown the use of passive external heating between warm-up completion and sprint cycling to have had a positive effect on muscle temperature (T m) and maximal sprint performance, we sought to determine whether adding passive heating during active warm up was of further benefit. Ten trained male cyclists completed a standardised 15 min sprint based warm-up on a cycle ergometer, followed by 30 min passive recovery before completing a 30 s maximal sprint test. Warm up was completed either with or without additional external passive heating. During recovery, external passive leg heating was used in both standard warm-up (CONHOT) and heated warm-up (HOTHOT) conditions, for control, a standard tracksuit was worn (CON). T m declined exponentially during CON, CONHOT and HOTHOT reduced the exponential decline during recovery. Peak (11.1 %, 1561 ± 258 W and 1542 ± 223 W), relative (10.6 % 21.0 ± 2.2 W kg(-1) and 20.9 ± 1.8 W kg(-1)) and mean (4.1 %, 734 ± 126 W and 729 ± 125 W) power were all improved with CONHOT and HOTHOT, respectively compared to CON (1,397 ± 239 W; 18.9 ± 3.0 W kg(-1) and 701 ± 109 W). There was no additional benefit of HOTHOT on T m or sprint performance compared to CONHOT. External heating during an active warm up does not provide additional physiological or performance benefit. As noted previously, external heating is capable of reducing the rate of decline in T m after an active warm-up, improving subsequent sprint cycling performance.

  1. Environment Humidity Effect on the Weight of Carbonized Na-Al-Si Glass Fabrics Recovery after Heating

    International Nuclear Information System (INIS)

    Pentjuss, E; Lusis, A; Gabrusenoks, J; Bajars, G

    2015-01-01

    Na-Al-Si glass fabrics fibres contain Na + ions that diffuse to its surface and along with CO 2 and H 2 O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% – 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C – 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h – 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight increase are restricted by its value, but at an elevated humidity has a maximum and followed weight increase. The reasons of observed differences are discussed

  2. Performance of fixed-bed charged with chelating resin of capillary fiber form for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Uezu, Kazuya; Saito, Kyoichi; Hori, Takahiro; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1988-01-01

    A chelating resin adsorbent containing an amidoxime group of capillary fiber form (AO-C fiber) was prepared by a radiation-induced grafting method. The reaction condition in amidoximation, for an optimized conversion of cyano group into an amidoxime group, was examined to obtain an adsorbent having an amount of amidoxime group, i.e. 5.6 mol/kg of base polymer. The seawater was continuously pumped upwards through a novel fixed-bed, 30 cm in length and charged with a bundle of AO-C fibers. The adsorption rate and pressure drop were determined as a function of superficial velocity of seawater u. For a superficial velocity of 36 m/h, the adsorption column was found to adsorb U from natural seawater at a high rate, i.e. 0.27 g-U/Kg of adsorbent of HCl type in 25 days. The cross-sectional area of the adsorption bed S required to produce 10 kg of U/yr using our AO-C fiber adsorbent was calculated to be S(m 2 ) = 404 u -0.50 . (author)

  3. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw

    2016-06-13

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes or renewable energy with temperatures ranging from 55 °C to 85 °C. The cycle is capable of producing two useful effects, namely cooling power and high-grade potable water, simultaneously. This article discusses a low temperature, waste heat-powered adsorption (AD) cycle that produces cooling power at two temperature-levels for both dehumidification and sensible cooling while providing high-grade potable water. The cycle exploits faster kinetics for desorption process with one adsorber bed under regeneration mode while full utilization of the uptake capacity by adsorbent material is achieved employing two-stage adsorption via low-pressure and high-pressure evaporators. Type A++ silica gel with surface area of 863.6 m2/g and pore volume of 0.446 cm3/g is employed as adsorbent material. A comprehensive numerical model for such AD cycle is developed and the performance results are presented using assorted hot water and cooling water inlet temperatures for various cycle time arrangements. The cycle is analyzed in terms of key performance indicators i.e.; the specific cooling power (SCP), the coefficient of performance (COP) for both evaporators and the overall system, the specific daily water production (SDWP) and the performance ratio (PR). Further insights into the cycle performance are scrutinized using a Dühring diagram to depict the thermodynamic states of the processes as well as the vapor uptake behavior of adsorbent. In the proposed cycle, the adsorbent materials undergo near saturation conditions due to the pressurization effect from the high pressure evaporator while faster kinetics for desorption process is exploited, subsequently providing higher system COP, notably up to 0.82 at longer cycle time while the

  4. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  5. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...... sensitivity between the fluid and cycle design variables was overcome by using the simultaneousapproach. Correlation between net power output and the product of the overall heat transfer coefficientand the heat transfer area could further be addressed by employing a new solution strategy includingmaximum...

  6. Modern State and Efficiency Analysis of Heat Recovery in Fuel Furnaces Using High Temperature Recuperators. Part 2

    Directory of Open Access Journals (Sweden)

    B. S. Soroka

    2013-01-01

    Full Text Available The paper analyzes various factors that affect upon heat transfer in high temperature recuperators, namely: heat transfer enhancement, heat exchange surface increase and rise of temperature head between primary and secondary heat transfer fluids. Comparison of experimental data with the results of mathematical and computational fluid dynamics (CFD modeling has been performed in the paper. The paper considers some new designs of high temperature heat recovery plants: tube recuperator equipped with internal inserts – secondary emitters inside tubes for metallurgical furnaces and high-efficient two-way radiative recuperators for machinery engineering furnaces.  Advantages of new recuperators in comparison with existing analogues have been estimated in the paper. These advantages are:  provision of additional fuel saving due to increase of preheating temperature of the combustion air and improvement of design stability by decrease of tube wall temperature.

  7. Combustion of uraniferous lignites in fluidized bed

    International Nuclear Information System (INIS)

    Morales, G.; Gasos, P.

    1985-01-01

    In this paper a description of the continuous fluid bed combustion pilot plant unit, installed in the Junta de Energia Nuclear facilities, is presented. Besides, this paper deals with some of the studies carried out in the pilot plant aimed at the recovery of uranium from lignites, high in sulfur and ashes, coming from Calaf basin (Barcelona). These studies include the recovery of the heating value of these lignites and the reduction of environmental effect of SO 2 . Based on these studies an application exercise is presented. 9 references, 5 figures, 5 tables

  8. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  9. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  10. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation.

    Science.gov (United States)

    McGorm, Hamish; Roberts, Llion A; Coombes, Jeff S; Peake, Jonathan M

    2018-02-22

    Historically, heat has been used in various clinical and sports rehabilitation settings to treat soft tissue injuries. More recently, interest has emerged in using heat to pre-condition muscle against injury. The aim of this narrative review was to collate information on different types of heat therapy, explain the physiological rationale for heat therapy, and to summarise and evaluate the effects of heat therapy before, during and after muscle injury, immobilisation and strength training. Studies on skeletal muscle cells demonstrate that heat attenuates cellular damage and protein degradation (following in vitro challenges/insults to the cells). Heat also increases the expression of heat shock proteins (HSPs) and upregulates the expression of genes involved in muscle growth and differentiation. In rats, applying heat before and after muscle injury or immobilisation typically reduces cellular damage and muscle atrophy, and promotes more rapid muscle growth/regeneration. In humans, some research has demonstrated benefits of microwave diathermy (and, to a lesser extent, hot water immersion) before exercise for restricting muscle soreness and restoring muscle function after exercise. By contrast, the benefits of applying heat to muscle after exercise are more variable. Animal studies reveal that applying heat during limb immobilisation attenuates muscle atrophy and oxidative stress. Heating muscle may also enhance the benefits of strength training for improving muscle mass in humans. Further research is needed to identify the most effective forms of heat therapy and to investigate the benefits of heat therapy for restricting muscle wasting in the elderly and those individuals recovering from serious injury or illness.

  11. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  12. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery

    International Nuclear Information System (INIS)

    Yang, Yongping; Xu, Cheng; Xu, Gang; Han, Yu; Fang, Yaxiong; Zhang, Dongke

    2015-01-01

    Highlights: • A new cold-end design of boilers for CFPPs with waste heat recovery is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Higher energy efficiency improvement and greater economic benefits are achieved. • Lower exergy destruction and better matched energy level are obtained. - Abstract: After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000 MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000 MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3 MW e additional net power output with a heat rate reduction of approximately 112.0 kJ/kW h and could yield a net benefit of up to $85.8 M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9 MW th in the conventional boiler cold-end design to 39.6 MW th in the proposed design

  13. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  14. The development of continuous fluidized-bed ion exchange in South Africa, and its use in the recovery of uranium

    International Nuclear Information System (INIS)

    Haines, A.K.

    1978-01-01

    The status of the South African research and development programme on continouos ion exchange, which was aimed at the technical and economic assesment of that process for the recovery of uranium, is reviewed. The first phase of this programme, which has now been completed, involved devolopment investigations on various pilot plants and culminated in the successfull operation of a large-scale demonstration plant and the incorporation of the system in a number of new South African uranium plants. This account highlights the engineering aspects and the design for the system, its adaptation to process flowsheets, and plans for future development [af

  15. Integrated Energy and Emission Management for Diesel Engines with Waste Heat Recovery Using Dynamic Models

    Directory of Open Access Journals (Sweden)

    Willems Frank

    2015-01-01

    Full Text Available Rankine-cycle Waste Heat Recovery (WHR systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel engine with WHR system. This Integrated Powertrain Control (IPC strategy optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption. Contrary to other control studies, the proposed control strategy optimizes overall engine-aftertreatment-WHR system performance and deals with emission constraints. From simulations, the potential of this IPC strategy is demonstrated over a World Harmonized Transient Cycle (WHTC using a high-fidelity simulation model. These results are compared with a state-of-the-art baseline engine control strategy. By applying the IPC strategy, an additional 2.6% CO2 reduction is achieved compare to the baseline strategy, while meeting the tailpipe NOx emission limit. In addition, the proposed low-level WHR controller is shown to deal with the cold start challenges.

  16. Cold start-up condition model for heat recovery steam generators

    International Nuclear Information System (INIS)

    Sindareh-Esfahani, Peyman; Habibi-Siyahposh, Ehsan; Saffar-Avval, Majid; Ghaffari, Ali; Bakhtiari-Nejad, Firooz

    2014-01-01

    A dynamic modeling of Heat Recovery Steam Generator (HRSG) during cold start-up operation in Combined Cycle Power Plant (CCPP) is introduced. In order to characterize the essential dynamic behavior of the HRSG during cold start-up; Dynamic equations of all HRSG's components are developed based on energy and mass balances. To describe precisely the operation of HRSG; a method based on nonlinear estimated functions for thermodynamic properties is applied to estimate the model parameters. Model parameters are evaluated by a designed algorithm based on Genetic Algorithm (GA). A wide set of experimental data is used to validate HRSG model during cold start-up operation. The simulation results show the reliability and validity of the developed model for cold start-up operation. - Highlights: •Presenting a mathematical model for HRSGs cold start-up based on energy and mass balances. •A designed parameter identification algorithm based on GA is presented. •Application of experimental data in order to model and validate simulation results

  17. Combined heating and chemical treatment for oil recovery from aging crude oil.

    Science.gov (United States)

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil. © The Author(s) 2016.

  18. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Science.gov (United States)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  19. Waste heat recovery from clinker cooler for seawater desalination; Abwaermerueckgewinnung aus Klinkerkuehlern zur Meerwasserentsalzung

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, V.M.; Swaminathan, R.; Lagu, S.R.; Kulkarni, R.V.

    2002-10-01

    The utilization of waste heat has been practised in cement works for many years. However, the clinker cooler exhaust air is being used for the first time in India to generate steam for a seawater desalination plant. The plant installed at the Gujarat cement works of Larsen and Toubro contributes to the production of 2040 m{sup 3}/day of demineralized water from seawater. Hot exhaust air from the clinker cooler at about 270 C is cooled to about 170 C in a waste heat recovery steam generator (WHRSG). The plant has now been in operation for more than three years and contributes to the production of water in an area in which water is a precious commodity. The plant was installed in an existing cement works, so a number of factors, such as operation of the clinker cooler, configuration and installation of the equipment, machinery and gas ducts, had to be taken into account during the design of the waste heat boiler. State-of-the-art techniques, such as pinch point analysis, finite element analysis and computational fluid dynamics, were used in the design. (orig.) [German] Die Abwaermenutzung in Zementwerken ist seit vielen Jahren gaengige Praxis. Zum ersten Mal wurde jetzt in Indien die Klinkerkuehlerabluft zur Dampferzeugung fuer eine Meerwasserentsalzungsanlage eingesetzt. Die im Zementwerk Gujarat von Larsen and Toubro installierte Anlage traegt zur Gewinnung von 2040 m{sup 3}/Tag destilliertem Wasser aus Meerwasser bei. Etwa 270 C heisse Abluft aus dem Klinkerkuehler wird in einem Abhitzekessel (WHRSG) auf ca. 170 C abgekuehlt. Die Anlage ist inzwischen seit mehr als drei Jahren in Betrieb und traegt zur Wassergewinnung in einem Gebiet bei, in dem Wasser ein kostbarer Rohstoff ist. Da die Anlage in einem vorhandenen Zementwerk errichtet wurde, gab es eine Reihe von Faktoren, wie z.B. Betrieb des Klinkerkuehlers, Anordnung und Montage der Ausruestungen, Maschinen und Gasleitungen, die bei der Konstruktion des Abhitzekessels zu beruecksichtigen waren. Fuer die

  20. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation

    KAUST Repository

    Myat, Aung

    2012-06-01

    We present the experimental investigation on the performance of multi-bed desiccant dehumidification system (MBDD) using a thermodynamic framework with an entropy generation analysis. The cyclic steady state performance of adsorption-desorption processes at the assorted heat source temperatures, and typical ambient humidity conditions was carried out. MBDD unit uses type-RD silica gel pore surface area with of 720 m 2/g. It has a nominal diameter range of 0.4 to 0. 7 mm. The key advantages of MBDD are: (i) it has no moving parts rendering less maintenance, (ii) energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods, (iii) although it is a pecked bed desiccant, a laminar chamber is employed by arranging the V-shaped configuration of heat exchangers and (iv) it is environmental friendly with the low-carbon footprint. Entropy generation analysis was performed at the assorted heat source temperatures to investigate the performance of MBDD. By conducting the entropy minimization, it is now able to locate the optimal operating conditions of the system while the specific entropy generation is found to be minimal. This analysis shows that the minimization of entropy generation in the dehumidification cycle leads to the maximization of COP in the MBDD and thus, higher delivery of useful effects at the same input resources. © 2011 Elsevier Ltd. All rights reserved.

  1. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  2. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  3. Influence of different heating regimes on the shape-recovery behavior of poly(L-lactide) in simulated thermomechanical tests.

    Science.gov (United States)

    Ghobadi, Ehsan; Heuchel, Matthias; Kratz, Karl; Lendlein, Andreas

    2012-01-01

    Multifunctional polymer-based biomaterials, which combine degradability with a shape-memory capability and in this way enable the design of actively moving implants such as self-anchoring implants or controlled release systems, have been recently introduced. Of particular interest are approved degradable polymers such as poly(L-lactide) (PLLA), which can be easily functionalized with a shape-memory effect. In the case of semicrystalline PLLA, the glass transition can be utilized as shape-memory switching domain. In this work we applied a fully atomistic molecular dynamics simulation to study the shape-memory behavior of PLLA. A heating-deformation-cooling programming procedure was applied to atomistic PLLA packing models followed by a recovery module under stress-free conditions allowing the shape recovery. The recovery was simulated by heating the samples from Tlow = 250 K to Thigh = 500 K with different heating rates β of 125, 40 and 4 K·ns(-1). We could demonstrate that the obtained strain recovery rate (Rr) was strongly influenced by the applied simulation time and heating rate, whereby Rr values in the range from 46% to 63% were achieved. On its own the application of a heating rate of 4 K·ns(-1) enabled us to determine a characteristic switching temperature of Tsw = 473 K for the modeled samples. We anticipate that the atomistic modeling approach presented should be capable of enabling further study of Tsw with respect to the molecular structure of the investigated SMP and therefore could be applied in the context of design and development of new shape-memory (bio)materials.

  4. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  5. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunctional ventilation concept...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  6. Demonstration of the Performance of an Air-Type Photovoltaic Thermal (PVT System Coupled with a Heat-Recovery Ventilator

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2016-09-01

    Full Text Available A heat-recovery ventilator (HRV effectively conducts ventilation by recovering waste heat from indoors to outdoors during heating periods. However, dew condensation associated with the HRV system may arise due to the difference between the indoor temperature and the very low outdoor temperature in winter, and this can decrease the heat exchange efficiency. These problems can be solved by the pre-heating of the incoming air, but additional energy is required when pursuing such a strategy. On the other hand, an air-type photovoltaic thermal (PVT system produces electricity and thermal energy simultaneously using air as the heat transfer medium. Moreover, the heated air from the air-type PVT system can be connected to the HRV to pre-heat the supply air instead of taking in the cold outdoor air. Thus, the ventilation efficiency can be improved and the problems arising during the heating period can be resolved. Consequentially, the heating energy required in a building can be reduced, with additional electricity acquired as well. In this paper, the performance of an air-type PVT system coupled with an HRV is assessed. To do this, air-type PVT collectors operating at 1 kWp were installed in an experimental house and coupled to an HRV system. Thermal performance and heating energy required during the winter season were analyzed experimentally. Furthermore, the electrical performances of the air-type PVT system with and without ventilation at the back side of the PV during the summer season were analyzed.

  7. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  8. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  9. Case study of an organic Rankine cycle applied for excess heat recovery: Technical, economic and policy matters

    International Nuclear Information System (INIS)

    Lemmens, Sanne; Lecompte, Steven

    2017-01-01

    Highlights: • Case study of an organic Rankine cycle for heat recovery from an industrial kiln. • The costs and financial feasibility of the system are discussed in detail. • The cost structure is most defined by the capital costs, annual costs are limited. • The system is financially feasible, but subsidies remain important. • The results are most sensitive to changes in load hours and electricity price. - Abstract: Many industrial processes inevitably produce excess heat as by-product. Recovering this heat is a matter of waste management and provides opportunities to improve the energy use efficiency. The excess heat can be used for heating purposes (e.g., in processes, or delivered to district heating systems or buildings) or to generate electricity. An increasingly applied technology for industrial excess heat recovery is the organic Rankine cycle (ORC), suitable to recover low-grade heat from 90 °C onwards. Although ORCs are studied intensively, few studies have examined the economics of commissioned ORC systems. This paper investigates a 375 kW gross ORC system employed for flue gas heat recovery from an industrial kiln in Flanders, Belgium. The purpose of the study is twofold: providing insight into a practical ORC case; and evaluating the financial feasibility while taking the specific policy circumstances into account. The financial appraisal takes account of the specific technical setup, the diverse costs of the system, the external economic parameters, and the policy circumstances in Europe, Belgium and Flanders. A sensitivity analysis illustrates the influence of each parameter on the results. The analysis demonstrates the dominance of the investment costs (4217 € 2013 /kW gross ) in the expenses. Under the valid conditions the investment has a positive financial return, but the financial support from the government is indispensable. Finally, the sensitivity analysis reveals the importance of attaining sufficient load hours and the

  10. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  11. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse

    International Nuclear Information System (INIS)

    Fuess, Lucas Tadeu; Kiyuna, Luma Sayuri Mazine; Ferraz, Antônio Djalma Nunes; Persinoti, Gabriela Felix

    2017-01-01

    Highlights: • An innovative fixed-film anaerobic reactor was applied to sugarcane vinasse. • Stable operation was observed for OLRs as high as 30 kg COD m −3 day −1 . • Propionate buildup did not impact the stability of the structured-bed reactor. • Enhanced bioenergy recovery was estimated from biodigestion with phase separation. • Energy extraction was over 20% higher compared to single-phase systems. - Abstract: This study considered the application of anaerobic digestion (AD) with phase separation combined with the use of an anaerobic structured-bed reactor (ASTBR) as the methanogenic phase for the treatment of sugarcane vinasse, a high-strength wastewater resulting from ethanol production. Two combined thermophilic acidogenic-methanogenic systems formed by one single acidogenic reactor followed by two methanogenic reactors operated in parallel were compared, namely, a conventional UASB reactor and an upflow ASTBR reactor. Increasing organic loading rate (OLR) conditions (15–30 kg COD m −3 d −1 ) were applied to the methanogenic reactors. The results highlighted the feasibility of applying the ASTBR to vinasse, indicating a global COD removal higher than 80%. The ASTBR exhibited a stable long-term operation (240 days), even for OLR values as high as 30 kg COD m −3 d −1 . The application of similar conditions to the UASB reactor indicated severe performance losses, leading to the accumulation of acids for every increase in the OLR. An energetic potential of 181.5 MJ for each cubic meter of vinasse was estimated from both hydrogen and methane. The provision of bicarbonate alkalinity proved to be a key factor in obtaining stable performance, offsetting the limitations of relatively low hydraulic retention times (<24 h).

  12. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  13. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different....... For the three-pressure level configuration, the optimum pressure levels are found to be 33.5/10.5/4.7 bara. The amount of waste heat recovery from the pressurized boiler is significantly higher than from the main boiler for both cycles. It is, therefore, concluded that the three-pressure level steam cycle...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  14. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system

    DEFF Research Database (Denmark)

    Rudra, Souman; Lee, Jinwook; Rosendahl, Lasse

    2010-01-01

    efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges...... describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam...... turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough...

  15. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  16. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  17. Light and the recovery from heat shock induce the synthesis of 38 kDa mitochondrial proteins in Neurospora crassa.

    Science.gov (United States)

    Kohler, W; Rensing, L

    1992-01-01

    The effect of light on the protein synthesis pattern in the mitochondria of Neurospora crassa was examined by in vivo labelling with [35S]-methionine and two-dimensional gel electrophoresis. A brief 5-min illumination induced the rapid and transient synthesis of a 38-kDa protein. White collar-mutants were not stimulated to synthesize this protein by light. A protein of a similar molecular weight and isoelectrical point was synthesized during recovery from heat shock.

  18. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  19. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  20. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  1. Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

    Directory of Open Access Journals (Sweden)

    Anson Elian

    2017-03-01

    Full Text Available Seiring dengan meningkatnya perkembangan ekonomi suatu negara, maka akan meningkat juga kebutuhan terhadap energi terkhusus pada energi listrik. Salah satu upaya yang dapat dilakukan guna meningkatkan produksi tenaga listrik dengan penggunaan energi bahan bakar fosil seefisien mungkin adalah menggunakan siklus kombinasi PLTGU (Pembangkit Listrik Tenaga Gas dan Uap. Pada sistem PLTGU tersebut terdapat komponen Heat Recovery Steam Generator (HRSG yang bekerja dengan cara menggunakan sisa panas dari gas buang (exhaust gas turbin yang kemudian digunakan untuk memproduksi uap (steam. Studi perancangan termal ini dilakukan dengan menganalisa data input berupa laju alir massa keluaran gas turbin, temperatur keluaran gas turbin, kandungan keluaran gas turbin, temperatur uap keluar HRSG, dan tekanan uap keluar HRSG. Langkah awal adalah menentukan beban kalor pada setiap modul agar dapat menentukan distribusi temperatur pada HRSG. Kemudian masing-masing dari modul HRSG ditentukan luas permukaan perpindahan panas. Lalu, pressure drop dan efisiensi pada sistem HRSG diukur. Terdapat 4 variasi beban turbin gas yaitu saat 100 %, 90%, 80%, dan 70%. Dari variasi tersebut, dapat ditinjau perbedaan laju alir massa uap/air yang dibutuhkan dari masing-masing beban gas turbin. Hasil yang diperoleh dari perancangan ini adalah untuk mengubah air dari 70oC menjadi uap 401oC menggunakan gas buang turbin bertemperatur 437oC, dibutuhkan luas perpindahan panas total sebesar 25.966 m2. Dari analisa variasi beban gas turbin, didapat bahwa semakin tinggi beban gas turbin maka akan semakin tinggi laju alir massa air/uap yang dapat dihasilkan, yaitu pada beban gas turbin 70% didapat 15 kg/s, pada beban gas turbin 80% didapat 15,3 kg/s, pada beban gas turbin 90% didapat 17,37 kg/s, dan pada beban gas turbin 100% didapat 18,59 kg/s.

  2. Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food and drink industry

    International Nuclear Information System (INIS)

    Seck, Gondia Sokhna; Guerassimoff, Gilles; Maïzi, Nadia

    2013-01-01

    Highlights: • First bottom-up energy model for NEI at 4-digit level of NACE for energy analysis. • Energy end-use modelling due to the unsuitability of end-product/process approach. • Analysis of heat recovery with HP on industrial processes up to 2020 in French F and D. • Energy consumption and emissions drop respectively by 10% compared to 2001 and 9% to 1990. • Results only achieved at heat temperature below 100 °C, concentrated in 1/3 of F and D sectors. - Abstract: Rising energy prices and environmental impacts inevitably encourage industrials to get involved in promoting energy efficiency and emissions reductions. To achieve this goal, we have developed the first detailed bottom-up energy model for Non-Energy Intensive industry (NEI) to study its global energy efficiency and the potential for CO 2 emissions reduction at a 4-digit level of NACE classification. The latter, which is generally neglected in energy analyses, is expected to play an important role in reducing industry energy intensity in the long term due to its economic and energy significance and relatively high growth rate. In this paper, the modelling of NEI is done by energy end-use owing to the unsuitability of the end-product/process approach used in the Energy Intensive industry modelling. As an example, we analysed the impact of heat recovery with heat pumps (HP) on industrial processes up to 2020 on energy savings and CO 2 emissions reductions in the French food and drink industry (F and D), the biggest NEI sector. The results showed HP could be an excellent and very promising energy recovery technology. For further detailed analysis, the depiction of HP investment cost payments is given per temperature range for each F and D subsector. This model constitutes a useful decision-making tool for assessing potential energy savings from investing in efficient technologies at the highest level of disaggregation, as well as a better subsectoral screening

  3. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    Science.gov (United States)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  4. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  5. Application of the porous medium heat transfer model of ICARE/CATHARE code against debris bed and 'bundle' experiments

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, G. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, DPAM, 13 - Saint-Paul-lez-Durance (France); Ederli, St. [Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA) (Italy)

    2007-07-01

    ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO{sub 2} spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)

  6. Convective heat transfer performance of CuO–water nanofluids in U-shaped minitube: Potential for improved energy recovery

    International Nuclear Information System (INIS)

    Leela Vinodhan, V.; Suganthi, K.S.; Rajan, K.S.

    2016-01-01

    Highlights: • Low concentration stable CuO–water nanofluid prepared without surfactant. • 10% increase in thermal conductivity at 0.05 wt% nanoparticle concentration. • Heat absorption from constant source temperature in U-shaped minitube tested. • Maximum enhancement in ‘h’ at optimum nanoparticle concentration. • 34% enhancement in ‘h’ at low flow rates. - Abstract: Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO–water nanofluid flowing through a U-shaped minitube (0.9 mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025–0.1 wt%) and volumetric flow rate (0.18–1.25 mL/s) as the independent variables. The thermal conductivity and viscosity of CuO–water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO–water nanofluids were higher than that of water. The improved heat transfer performance of CuO–water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO–water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05 wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration.

  7. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...

  8. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Aladayleh, Wail; Alahmer, Ali

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  9. Time Course of Recovery and Heat Acclimation Ability of Prior Heatstroke Patients

    Science.gov (United States)

    1989-05-26

    DeRoshia, and D.C. Holley. Circadian rhythms and athletic performance. Med. Sci. Sports Exerc. 17:498-516, 1985. 53. Wyndham, C.H. The problem of heat...Perspective,/ presented at the annual meeting of the American College of Sports Medicine. The purposes of this manuscript are to review the...acclimation adaptations do not occur in heat intolerant P. Nearly complete heat acclimation adaptations, to a given level of exercise-heat stress , are

  10. From consumption to prosumption - Operational cost optimization for refrigeration system with heat waste recovery

    NARCIS (Netherlands)

    Minko, Tomasz; Lago Garcia, J.; Bendtsen, Jan Dimon; Wisniewski, Rafael; Izadi-Zamanabadi, Roozbeh; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Implementation of a liquid cooling transforms a refrigeration system into a combined cooling and heating system. Reclaimed heat can be used for building heating purposes or can be sold. Carbon dioxide based refrigeration systems are considered to have a particularly high potential for becoming

  11. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  12. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles

    International Nuclear Information System (INIS)

    Aneke, Mathew; Wang, Meihong

    2015-01-01

    In this paper, the potential of improving the energy efficiency of a conventional cryogenic air separation unit (ASU) was investigated through modelling and simulation using Aspen Plus ® v 8.1. It is achieved through converting the heat from the compressor effluent to electricity using organic Ranking cycle (ORC). Two different arrangements of combining compressor and waste heat recovery ORC system were compared with the conventional cryogenic ASU which was used as the benchmark. The benchmark is a conventional cryogenic ASU with 3 stages of compression which uses water for intercooling. In the first arrangement the water used as the cooling fluid of the intercooler/after cooler heat exchanger of a conventional cryogenic ASU process was replaced by R134a which also acts as the working fluid for the ORC system (C3WHR) while in the second arrangement, the 3 stages compressor of the conventional process was replaced with a single stage compressor with the same overall pressure ratio as the conventional process and the hot compressor effluent cooled with R134a which also acts as the working fluid of the ORC system (C1WHR). The simulation results based on a cryogenic ASU capable of processing 100 kg/s of atmospheric air at 30  ° C as feedstock show that the specific power consumption for the pure products which was 0.32 kWh/kg, 0.37 kWh/kg and 17.35 kWh/kg for oxygen, nitrogen and argon respectively for the conventional cryogenic ASU process was reduced by the addition of the waste heat recovery ORC system. The C1WHR reduced the specific power consumption by an average of 0.2% across the aforementioned pure products while the C3WHR reduced it by an average of 11%. The net power consumption of the conventional cryogenic ASU which was 21826.19 kW was also found to be reduced by the same percentage. - Highlights: • We model two cryogenic air separation unit with compressor waste heat recovery. • We compare the specific energy consumption of the models. • We

  13. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle

    DEFF Research Database (Denmark)

    Cheng, Arthur J; Willis, Sarah J; Zinner, Christoph

    2017-01-01

    muscle fibres where we found that recovery of submaximal force and restoration of fatigue resistance was worsened by cooling (16-26°C) and improved by heating (36°C). Isolated whole mouse muscle experiments confirmed that cooling impaired muscle glycogen resynthesis. We conclude that skeletal muscle...... recovery from fatigue-induced by endurance exercise is impaired by cooling and improved by heating, due to changes in glycogen resynthesis rate. ABSTRACT: Manipulation of muscle temperature is believed to improve post-exercise recovery, with cooling being especially popular among athletes. However...... the all-out exercise was better maintained when muscles were heated during recovery, whereas cooling had the opposite effect. Mechanisms underlying the temperature-dependent effect on recovery were tested in mouse intact single muscle fibres, which were exposed to ∼12 min of glycogen-depleting fatiguing...

  14. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  15. Influence of solute, pH, and incubation temperature on recovery of heat-stressed Wallemia sebi conidia.

    Science.gov (United States)

    Beuchat, L R; Pitt, J I

    1990-08-01

    The influences of glucose, sorbitol, and NaCl in a basal enumeration medium at water activities (aw) from 0.82 to 0.97 on colony formation by sublethally heat-stressed Wallemia sebi conidia were determined. Over this aw range, glucose and sorbitol had similar effects on recovery, whereas at an aw of 0.82 to 0.92, NaCl had a detrimental effect. Colony diameters were generally largest on media containing sorbitol and smallest on media containing NaCl. Maximum colony size and viable population of heat-stressed conidia were observed on media at an aw of ca. 0.92. When the recovery incubation temperature was 20 degrees C, the number of uninjured conidia detected at an aw of 0.82 was reduced compared with the number detected at 25 degrees C, while at 30 degrees C, the number recovered at an aw of 0.97 was reduced. The effect on heat-stressed conidia was magnified. This suggests that W. sebi conidia may be more tolerant of aw values higher than the optimum 0.92 when the incubation temperature is decreased from the near optimum of 25 degrees C and less tolerant of aw values greater than 0.92 when the incubation temperature is higher than 25 degrees C. The sensitivity of heat-stressed conidia increased as the pH of the recovery medium was decreased from 6.55 to 3.71. W. sebi conidia dispersed in wheat flour at aw values of 0.43 and 0.71 and stored for up to 65 days at both 1 and 25 degrees C neither lost viability nor underwent sublethal desiccation or temperature injury.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2006-05-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

  17. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    International Nuclear Information System (INIS)

    Andrew Seltzer

    2006-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H 2 O and CO 2 concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O 2 . Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar

  18. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...

  19. Effect of heat source shape on the thermal field in the pebble bed core of High Temperature Gas-cooled Reactor (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2015-10-15

    In this study, in order to minimize the error brought by non-uniform heat flux, the spherical heaters are employed as heat source; subsequently, thermal field and heat transfer characteristics of the pebbles are investigated. The thermal field of the pebble surface in PBR is measured with heat source in different shapes. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. However, the possible appearance of hot spots in the pebble bed cores of HTGR may affect the integrity of the pebbles, which has drawn the attention of many scientists to investigate the thermal field and to predict the maximum temperature locations in the pebbles using CFD method, Lee et.al has also done some experimental work on measuring the surface temperature of the pebbles as well as visualizing flow patterns of the coolant gas, and it was found that the temperature near the contacting points between pebbles was not higher than the flow stagnation points due to the higher thermal conductivity of the pebble. Certain error of temperature measurement might occur because of not very uniform heat flux in the pebbles since heater in cylindrical shape was utilized as heat source in previous experiment. More uniform heat flux and more complicated thermal profile are found in the result obtained using spherical heaters. The result shows that the temperature in contact point is higher than that in the top point, which is different from the previous results. The complex thermal phenomena observed in the lower-half side-sphere can be explained by the flow pattern near the surface.

  20. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    Science.gov (United States)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.