WorldWideScience

Sample records for bed expansion behavior

  1. The Composition and Expansion Behavior of a Binary-Solid Fluidized Bed

    Science.gov (United States)

    Howley, Maureen A.; Glasser, Benjamin J.

    2000-11-01

    When a binary mixture of particles with different densities and sizes is fluidized, the particles will often segregate, forming monocomponent layers. However, this is only one possible outcome, and well-mixed states have been observed experimentally. This paper examines the hydrodynamics of such a mixture by generalizing equations of continuity and motion for a single component bed. Solutions are sought for a uniformly fluidized bed consisting of glass beads and carbon in water. Our results show that, under equilibrium conditions, the fluid-particle interactive force determines solution structure. We introduce a closure using an excluded volume approach. Computed solutions are shown to characterize the composition and expansion behavior of all possible mixing states, and provide an explanation of the layer inversion phenomenon. Comparison with experimental data suggests that the mechanism of bed expansion is not fully captured with an excluded volume assumption. Thus, we show how experimental data can be used to derive functional forms for the fluid-particle interactive force.

  2. Bed expansion crucible tests

    International Nuclear Information System (INIS)

    The Am/Cm program will vitrify the americium and curium currently stored in F-canyon. A batch flowsheet has been developed (with non-radioactive surrogate feed in place of the F-canyon solution) and tested full-scale in the 5-inch Cylindrical Induction Melter (CIM) facility at TNX. During a normal process run, a small bed expansion occurs when oxygen released from reduction of cerium (IV) oxide to cerium (III) oxide is trapped in highly viscous glass. The bed expansion is characterized by a foamy layer of glass that slowly expands as the oxygen is trapped and then dissipates when the viscosity of the foam becomes low enough to allow the oxygen to escape. Severe bed expansions were noted in the 5-inch CIM when re-heating after an interlock during the calcination phase of the heat cycle, escaping the confines of the melter vessel. In order to better understand the cause of the larger than normal bed expansion and to develop mitigating techniques, a series of three crucible tests were conducted

  3. Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidized beds

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Link, J.M.; Mellema, S.; Kuipers, J.A.M.

    2003-01-01

    One of the most crucial steps in the development of fundamental hydrodynamic models is the validation of these models with accurate, detailed experimental data. Therefore a whole-field, non-intrusive digital image analysis technique has been developed which enables measurement of bed expansion and s

  4. Nail bed expansion: A new technique for correction of multiple isolated congenital micronychia

    Directory of Open Access Journals (Sweden)

    Gholamhossein Ghaffarpour

    2014-01-01

    Full Text Available Congenital micronychia may involve big toes or may involve other nails. The etiology of micronychia is not clear but amniotic bands, teratogens (drugs, alcohol, Nail Patella Syndrome etc. A 44-year-old woman with multiple isolated congenital micronychia over her hands and feet was selected. The major affected nails were thumbs and Index fingers. Surgical method were done step by step: Anesthesia of the area, extraction of short nail, elevation of nail bed, longitudinal nail bed incisions, suturing the lateral nail bed to the nail wall, covering the nail bed by a splint of plastic suction tube, bandage with gauze Vaseline. Finally, we hypnotized that in congenital micronychia, the main pathology is in nail bed; through this theory by nail bed expansion better outcomes are coming.

  5. Influence of MgO-type Expansive Agent Hydration Behaviors on Expansive Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    LU Xiaolin; GENG Fei; ZHANG Hongbo; CHEN Xiong

    2011-01-01

    The hydration behaviors and expansive properties of MgO-type expansive agent curing at different temperatures and environment were investigated. When the curing temperatures changed from 25℃ to 50 ℃, the conductivities of MgO samples increased from 40 to 80 μ s/cm,and the hydrations of MgO were quickened up obviously. Through SEM observation, the hydration product of MgO cured at 50 ℃ for 28 day was about 2-3 μ m in length. The expansion of pastes with 5% of the MgO-type expansive agent was from 0.36% to 1.01% when the curing temperature changed from 25℃ to 50 ℃. When 8% of the MgO-type expansive agent was added, the early shrinkage of concrete was reduced. The expansion ratio increased with the curing temperature, and the expansive cracking of concrete with MgO-type expansive agent might be decreased by blending fly ash.

  6. Experimental study of self-leveling behavior in debris bed

    International Nuclear Information System (INIS)

    After a core disruptive accident in a sodium-cooled fast reactor, core debris may settle on locations such as within the core-support structure or in the lower inlet plenum of the reactor vessel as debris beds, as a consequence of rapid quenching and fragmentation of core materials in subcooled sodium. The particle beds that are initially of varying depth have been observed to undergo a process of self-leveling when sodium boiling occurs within the beds. The boiling is believed to provide the driven force with debris needed to overcome resisting forces. Self-leveling ability has much effect on heat-removal capability of debris beds. In the present study, characteristics of self-leveling behaviors were investigated experimentally with simulant materials. Although the decay heat from fuel debris drives the coolant boiling in reactor accident conditions, the present experiments employed depressurization boiling of water to simulate axially increasing void distribution in a debris bed, which consists of solid particles of alumina or lead with different density. The particle size (from 0.5 mm to 6 mm in diameter) and shape (spherical or non-spherical particles) were also taken as experimental parameters. A rough criteria for self-leveling occurrence is proposed and compared with the experimental results. Characteristics of the self-leveling behaviors observed are analyzed and extrapolate to reactor accident conditions. (author)

  7. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    Science.gov (United States)

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. PMID:23420706

  8. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  9. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  10. Experiments on the dryout behavior of stratified debris beds

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Simon; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    In case of a severe accident with loss of coolant and core meltdown a particle bed (debris) can be formed. The removal of decay heat from the debris bed is of prime importance for the bed's long-term coolability to guarantee the integrity of the RPV. In contrast to previous experiments, the focus is on stratified beds. The experiments have pointed out that the bed's coolability is significantly affected.

  11. Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle-fluid interaction force

    Science.gov (United States)

    Third, J. R.; Chen, Y.; Müller, C. R.

    2016-07-01

    Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.

  12. Kinetic behavior of solid particles in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Kono, H.O.

    1990-06-01

    The overall objectives of this project are to develop experimental techniques for measuring the forces of fluidized particles, and to predict the solid-gas performance in fluidized beds by using data analysis system, and by elucidating the intrinsic mechanism of erosion and attrition phenomena in fluidized beds. The reduction of erosion and attrition rates is one of the critical engineering problems for the design and operation of fluidized bed combustors. Specifically, the objectives are to: (1) develop the experimental techniques to measure the forces of solid particles prevailing in fluidized beds: (2) measure and characterize the forces of solid particles in various types of fluidized beds with various configurations (conventional and spouted fluidized beds) and with different scales (10, 20, and 30cm) under various fluidization conditions (particle size, bed aspect ratio and gas velocity); (3) find and verify the mechanism of erosion rates of in-bed tubes and attrition rates of fluidized particles by forces of solid particles in fluidized beds. We developed three different kinds of measurement methods, i.e., fracture sensitive sensor, piezoelectric sensor and gas pressure fluctuation method. By using these methods the exact forces of solid particles, including the transient corporate in fluidized beds, were systematically measured. Simultaneously, the erosion rates of in-bed tubes and attrition rates of fluidized particles were measured. 69 figs., 9 tabs.

  13. Nail bed expansion: A new technique for correction of multiple isolated congenital micronychia

    OpenAIRE

    Gholamhossein Ghaffarpour; Alireza Faghihi; Mohammadreza Ghasemi; Gelareh Ghaffarpour

    2014-01-01

    Congenital micronychia may involve big toes or may involve other nails. The etiology of micronychia is not clear but amniotic bands, teratogens (drugs, alcohol), Nail Patella Syndrome etc. A 44-year-old woman with multiple isolated congenital micronychia over her hands and feet was selected. The major affected nails were thumbs and Index fingers. Surgical method were done step by step: Anesthesia of the area, extraction of short nail, elevation of nail bed, longitudinal nail bed incisions, su...

  14. Dynamic behavior of a fluidized bed with solid recirculation

    International Nuclear Information System (INIS)

    An experimental system was developed in order to get data on the dynamics of a gas-solids flow in a fast fluidized bed. Measuring the mass flow rate of gas and solids and static pressure alongside the bed it was possible to calculate the longitudinal porosity profile of the system. (Author)

  15. Numerical simulation of ceramic breeder pebble bed thermal creep behavior

    International Nuclear Information System (INIS)

    The evolution of ceramic breeder pebble bed thermal creep deformation subjected to an external load and a differential thermal stress was studied using a modified discrete numerical code previously developed for the pebble bed thermomechanical evaluation. The rate change of creep deformation was modeled at the particle contact based on a diffusion creep mechanism. Numerical results of strain histories have compared reasonably well with those of experimentally observed data at 740 C using activation energy of 180 KJ/mole. Calculations also show that, at this activation energy level, a particle bed at an elevated temperature of 800 C may cause undesired local sintering at a later time when it is subjected to an external load of 6.3 MPa. Thus, by tracking the stress histories inside a breeder pebble bed the numerical simulation provides an indication of whether the bed may encounter an undesired condition under a typical operating condition. (orig.)

  16. The research of optimization design and numerical simulation for circulating fluidized bed furnace mouth expansion

    International Nuclear Information System (INIS)

    In this paper, the structure of 130 t/h CFB boiler furnace is optimized as a reference. The parameters were selected in the way of 0.618 methods, The research of structure optimization Numerical Simulation was carried out by the use of large-scale numerical flow calculation software FLUENT simulation. The results showed that adjusting the design of the furnace mouth expansion can improve the flow characteristics. It obtained a good flow characteristics in the expansion of an argument between 67 degree - 68 degree. (authors)

  17. The Behavior of a Counter-Current Packed Bed Column Undergoing Flooding. The Behavior of a Counter-Current Packed Bed Column Undergoing Flooding. The Behavior of a Counter-Current Packed Bed Column Undergoing Flooding

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Petr; Staněk, Vladimír; Jiřičný, Vladimír

    Vol. 2. Prague : Process Engineering Publisher, 2002, s. 72. ISBN 80-86059-33-2. [International Congress of Chemical and Process Engineering CHISA 2002 /15./. Prague (CZ), 25.08.2002-29.08.2002] R&D Projects: GA AV ČR IAA4072004 Keywords : countercurrent packet bed * flooding * transient behavior Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. Magnetically assisted gas-solid fluidization in a tapered vessel: Part Ⅱ Dimensionless bed expansion scaling

    Institute of Scientific and Technical Information of China (English)

    Jordan Hristov

    2009-01-01

    The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created con-cerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△DbL)1/3(√RgMQ) combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data cor-relations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.

  19. Numerical simulation of ceramic breeder pebble bed thermal creep behavior

    International Nuclear Information System (INIS)

    The evolution of ceramic breeder pebble bed thermal creep deformation subjected to an external load and a differential thermal stress was studied using a modified discrete numerical code previously developed for the pebble bed thermomechanical evaluation. The rate change of creep deformation was modeled at the particle contact based on a diffusion creep mechanism. Numerical results of strain histories have shown lower values as compared to those of experimentally observed data at 740 deg. C using an activation energy of 180 kJ/mol. Calculations also show that, at this activation energy level, a particle bed at an elevated temperature of 800 deg. C may cause too much particle overlapping with a contact radius growth beyond 0.65 radius at a later time, when it is subjected to an external load of 6.3 MPa. Thus, by tracking the stress histories inside a breeder pebble bed the numerical simulation provides an indication of whether the bed may encounter an undesired condition under a typical operating condition

  20. NUMERICAL SIMULATIONS OF HYDRODYNAMIC BEHAVIORS IN CONICAL SPOUTED BEDS

    Institute of Scientific and Technical Information of China (English)

    Z. G. Wang; H. T. Bi; C. J. Lim

    2006-01-01

    The axial and radial distributions of static pressures and vertical particle velocities of conical spouted beds have been simulated and compared with experimental data. Simulation results show that, among all factors investigated, the Actual Pressure Gradient (the APG term) in conical spouted beds, introduced as the default gravity term plus an empirical axial solid phase source term, has the most significant influence on static pressure profiles, followed by the restitution coefficient and frictional viscosity, while other factors almost have no effect. Apart from the solid bulk viscosity, almost all other factors affect the radial distribution of the axial particle velocity, although the influence of the APG term is less significant. For complex systems such as conical spouted beds where a fluidized spout region and a defluidized annulus region co-exist, the new term introduced in this work can improve the CFD simulation. Furthermore, for other systems with the Actual Pressure Gradient different from either fluidized beds or packed beds, the new approach can also be applied.

  1. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion

    Directory of Open Access Journals (Sweden)

    Anne Neumann

    2014-11-01

    Full Text Available Recruitment of mesenchymal stromal cells (MSC into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  2. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    Science.gov (United States)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  3. Thermal expansion behavior of a β-LiA1SiO4/Cu composite

    Institute of Scientific and Technical Information of China (English)

    WANG Lidong; XUE Zongwei; LIU Zhe; FEI Weidong

    2009-01-01

    A copper matrix composite reinforced by β-LiAlSiO4 with negative thermal expansion coefficient was fabricated using vacuum hot-pressed sintering technique. The thermal expansion behavior of the composite was investigated, and the average residual stress in the matrix was analyzed by a simple model. The results indicate that the residual stress in the matrix affects the thermal expansion properties. After heat treatment, the coefficient of thermal expansion (CTE) of the composite decreases greatly. The CTE of the composite after thermal cycling between 50-350℃ is the lowest.

  4. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  5. Visualization of Bubble Behavior in a Packed Bed of Spheres Using Neutron Radiography

    Science.gov (United States)

    Ito, Daisuke; Saito, Yasushi

    The present paper describes gas-liquid two-phase flow measurements in a packed bed of spheres using neutron radiography. Porous debris formed during a severe accident of a nuclear reactor should be cooled by a coolant and the cooling characteristics are dominated by two-phase flow behavior in the debris bed at the initial stage of the accident. Therefore, experimental database of the two-phase flow in the porous media has been required for safety analysis of the reactor. However, it is difficult to observe the flow structure, for example, void fraction distribution in such complex flow channel. In this study, the local void fraction in a packed bed which simulates the debris bed was measured by high frame-rate neutron radiography. Experiments were performed in air-water two-phase flow in a vertical pipe. Alumina spheres with 5 mm in diameter were packed randomly in the pipe. The bubble behavior between the spheres was investigated by using the void fraction distributions estimated from the neutron radiographs. Although it was difficult to track the small bubbles in the packed bed, the move of the large bubble could be found roughly from the distribution. In addition, the fluctuation of the void fraction was compared with that of the pressure drop in the test section. From these results, the possibility of the gas velocity estimation was shown.

  6. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Kyoung, S.; Yoo, H.; Ju, H. [Department of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and delivery system in ITER. (authors)

  7. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    International Nuclear Information System (INIS)

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and delivery system in ITER. (authors)

  8. Dual-Fuel Fluidized Bed Combustor Prototype for Residential Heating: Steady-State and Dynamic Behavior

    Science.gov (United States)

    Cammarota, Antonio; Chirone, Riccardo; Miccio, Michele; Sollmene, Roberto; Urcluohr, Massimo

    Fluidized bed combustion of biogenic fuels can be recognized as an attractive option for an ecologically sustainable use of biofuels in residential applications. Nevertheless, biomass combustion in fluidized bed reactors presents some drawbacks that are mainly related to mixing/segregation of fuel particles/volatile matter during devolatilization inside the bed and in the freeboard or to bed agglomeration. A prototype of a 30-50 kWth fluidized bed boiler for residential heating has been designed to burn either a gaseous combustible or a solid biomass fuel or both fuels at the same time. The prototype has been equipped with a gas burner located in the wind-box to optimize the start-up stage of the boiler and with a fluidized bed characterized by a conical geometry ("Gulf Stream" circulation) to improve the mixing of the fuel particles during both devolatilization and char burn-out. The operation of the combustor adopting wood pellets as fuel has been investigated to evaluate their use in residential combustion applications. Steady-state thermally stable regimes of operation have been recognized analyzing both boiler temperatures and gaseous emissions. The optimization of the steady-state operation of the boiler in terms of gaseous emissions has been achieved by varying the nominal thermal power and air excess. An ad-hoc experimental campaign has been carried out to analyze the dynamic performance of the prototype as a response to changes of the demanded thermal power. On the basis of the experimental data, an interpretation of the dynamic behavior of the fluidized bed boiler has been proposed.

  9. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  10. Numerical analysis of dynamic behavior of HTR pebble-bed core and comparison with test results

    International Nuclear Information System (INIS)

    The behavior under seismic loading of the pebble bed core of a high temperature reactor is the objective of the investigation reported here. The paper describes the constitutive modelling of the assembly of spheres comprising the core and the finite element simulation of shaking table tests conducted on a one-sixth physical model of the core of a proposed new medium-sized HTR power plant. The analytical studies and the shaking table tests have been performed with the aim of gaining a fundamental understanding of the dynamic behavior of such core material and validating numerical models

  11. Moving Behavior of an Object in Gas-Solid Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    WEI Lu-bin; WANG Geng-yu; HAO Liang; ZHAO Yue-min

    2005-01-01

    The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium separation.However, this problem has not been completely solved up to now. In this work, the terminal velocity of an object moving in a gas-solid fluidized bed was experimentally measured and theoretically calculated. The experimental results in dicated that the plastic viscosity and yield stress of the bed increase as the size of fluidized particles increases, but it varies little when some coarser particles are mixed with the fluidized particles. The resistance to a rising object was an order magnitude greater than that to a settling object. The efficient buoyancy on a flaky object, which lies flatly on the gas distributor, was much less than that calculated by the Archimedes' principle. The object does not always rise or set tle with minimal projective area owing to radial motion of the fluidized particles. But in the lower part of the bed, the bar-shaped objects were likely with minimal projective area rising or settling.

  12. The analytic function expansion nodal (AFEN) method with half-interface averaged fluxes in mixed geometry nodes for analysis of pebble bed modular reactor (PBMR) cores

    International Nuclear Information System (INIS)

    The analytic function expansion nodal (AFEN) method has been successfully applied to the rectangular and hexagonal geometries in the cartesian coordinates system. In this paper, we extended the AFEN method to the cylindrical geometry in the R-Z coordinates for the analysis of pebble bed modular reactors (PBMRs). To treat the mixed geometry of rectangular and triangular nodes appearing in the lower periphery of the reactors, we used half-interface averaged fluxes as nodal unknowns. Numerical results obtained attest to their accuracy and applicability to practical problems. (author)

  13. Competition and network expansion in the electricity market: an analysis of producers' strategic behavior

    International Nuclear Information System (INIS)

    Expansion of the transmission capacity is ODe of the most efficient means of enhancing competition in electricity markets. The issue is extremely relevant far the Italian electricity market, where competition in generation has not Jet been achieved. In order to study the effects on competition of a network expansion project, a description of the influence of transmission constraints on the strategic behavior of generators is necessary. The problem was addressed in the literature far a limited number only of simplified models. This work presents an original methodology (MIXEL), based on non-cooperative game theory, far the study of a rather broad set of electricity market models. The case study illustrated in this article, shows that the effects on competition of an expansion of the network is not always positive (or as positive) as expected, given the cases illustrated in the literature. The effects on competition vary with the market structure, the ratio between demand and supply and, above all, the size of the transmission capacity expansion. For these reasons, policy provisions mandating or encouraging expansion of the transmission system with the objective of promoting competition, should take into careful consideration the underlying market structure; in a similar way, provision encouraging divestiture of generation capacity should take into account the effects of the network

  14. The characterization of fluidization behavior using a novel multichamber microscale fluid bed

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka; Yliruusi, Jouko

    2004-01-01

    fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified......In the preformulation stage, there is a special need to determine the process behavior of materials with smaller amounts of samples. The purpose of this study was to assemble a novel automated multichamber microscale fluid bed module with a process air control unit for the characterization of...... charge carriers increased and the fine glass beads fluidized on the limited range of velocity. The silicification was demonstrated to improve the fluidization behavior with two different particle sizes of cellulose powders. Due to the interparticle (e.g., electrostatic) forces of the fine solids, the...

  15. Study on mixing and segregation behaviors in particulate fluidized bed system for mineral processing

    Institute of Scientific and Technical Information of China (English)

    Sahu S.N.; Sahu A.K.; Biswal S.K

    2015-01-01

    In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column with tapings at different height of the bed to collect the sample. The binary particles considered in this study are hematite (4800 kg/m3) and quartz (2600 kg/m3) at different size fractions in the range of average size 87 ? 10?6 m to 400 ? 10?6 m. It is observed that for various binary mixtures, both quartz and hematite particles share the equal composition by mass (50%) at a particular height of fluidized bed, referred as ‘locus point’ of mixing. Study indicates that the mixing zone volume will increase for a continuous fluidized bed plant operation. It is observed that the number of locus points varies from 1 to 3 signifying their dependency on the size ratios of binary mixture. Whenever, the difference in terminal velocity between quartz and hematite particles approaches to zero, mixing is enhanced. Further, the present study is extended to find the segregation index for the different size ratios of quartz and hematite particles. It is evident that depending on the size ratios, various regions such as complete segregation, partial mixing and complete mixing can be observed.

  16. Investigation of sintering behavior for vibro-packed particle bed. 2

    International Nuclear Information System (INIS)

    A purpose of this study is to support the development of vibro-packed fuel technology at Japan Nuclear Cycle Development Institute. Four kinds of particle beds have been prepared. The first one consists of the spherical ZrO2 (3Y: 3mol% Y2O3 doped ZrO2) large particles. The second one consists of the mixture of spherical ZrO2 large and small particles. The third one consists of the mixture of spherical ZrO2 large and Zr-metal small particles. And the last one consists of the mixture of spherical ZrO2 large, ZrO2 small, and Zr small particles. These compact beds have been sintered under several conditions and the sintering behavior between particles in each bed have been investigated in terms of the sintering temperatures, times and pressures. In additions, an electrical conductivity of sintered bodies of ZrO2 was measured and a method of thermal conductivity of sintered ZrO2 was investigated. (author)

  17. Validation of new empirical model for self-leveling behavior of cylindrical particle beds based on experimental database

    International Nuclear Information System (INIS)

    During a material relocation phase of core disruptive accidents (CDAs) in sodium cooled fast reactors (SFRs), debris beds can be formed in the lower plenum region due to rapid quenching and fragmentation of molten core materials. Heat removal from debris beds is crucial to achieve so called in-vessel retention (IVR) of degraded core materials. Coolant boiling in the beds may lead to leveling of their mound shape, and then changes coolability of the beds with decay heat as well as neutronic characteristics. To clarify the mechanisms underlying this self-leveling behavior, several series of experiments using simulant materials has been performed in collaboration between Japan Atomic Energy Agency (JAEA) and Kyushu University in Japan. In the present study, experiments in a cylindrical system were employed to develop experimental data on self-leveling process of particle beds. In the experiments, to simulate the coolant boiling due to the decay heat in fuel, nitrogen gas was percolated uniformly through the bottom of the particle bed with a conical shape mound using a gas injection method. Time variations in bed height during the self-leveling process were measured for key experimental parameters on particle size, density and sphericity, and gas flow rate. Using a dimensional analysis approach, a new model was proposed to correlate the experimental data on transient bed height with an empirical equation using a characteristic time of self-leveling development and a terminal equilibrium height of the bed. It was demonstrated that the proposed model predicts self-leveling development of particle beds with reasonable accuracy in the present ranges of experimental conditions. (author)

  18. Segregation/Mixing Behavior ofBinary Particles and Formation of Doubl e-Density-Fl uidized Bed

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The current separator with air-dense-medium fluidized bed can only turn out two products at the sametime with a single separating density. The double-density-fluidized bed means that two separating areas with differ-ent densities are formed in a fluidized cascade. In each separating area, the bed density is uniform and meets thetechnical requirement of coal preparation respectively. Therefore, the processed materials can be separated intcthree products according to density. In this paper, the fluidized behaviors of binary dense media were experimental-ly studied and the distribution characteristics of particle concentration and bed density in different bed structurewere discussed. The segregation and mixing mechanisms of binary dense media were analyzed. It was testified thatthe pyramidal part designed in the bed structure played a key role in the formation of double-density-fluidized bed.The pyramidal part intensified the segregation of binary particles between two separating areas and strengthened themixing in the low density area, which made for the density uniform of the area.

  19. Triaxial quasi-static compression and creep behavior of bedded salt from southeastern New Mexico

    International Nuclear Information System (INIS)

    This report summarizes the results obtained from a series of triaxial quasi-static compression and creep tests on specimens of bedded salt recovered at depth intervals of 1953 to 1954 and 2711 to 2722 feet in AEC Hole No. 7 in southeastern New Mexico. The primary objective was the determination of the deformational characteristics of the salt for prescribed stress and temperature states under quasi-static and time-dependent conditions. The test conditions encompassed confining pressures of 500 and 2000 psi, differential axial stresses of 1500, 3000 and 4500 psi, temperatures of 23 and 1000C, and time durations of several hours to ten days. The data analysis was confined primarily to power law fits to the creep strain-time measurements and to an evaluation of the principal strain ratio behavior for the various test conditions and axial strain magnitudes

  20. Analysis of the fluidized bed combustion behavior of Quercus ilex char

    International Nuclear Information System (INIS)

    Because of the high content of alkaline metals, biomass has very reactive ashes and these have a strong impact upon pyrolysis and combustion phenomena. From the study of the evolution with the combustion temperature, of the kinetic and diffusive data of several wood chars, it was found that the Quercus ilex (holm oak) char had an unexpected evolution of the heterogeneous phase reaction rate constant. Scanning electronic microscopy analysis of the ashes and thermogravimetric analysis of the char where performed, and the results shown that close to 750 °C there is a loss of mass associated with the release of inorganic matter, especially potassium and phosphorus, which have a known influence on the combustion process and the subsequent kinetic data collection. - Highlights: • Fluidized bed combustion of biomass. • Combustion behavior of holm oak char. • Influence of alkaline components on char combustion kinetic data

  1. Neutronic behavior of Thorium based fuel cycles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. This paper shows the main advantages of the use of a Pebble Bed critical nuclear reactor using a variety of fuel cycles with Thorium (Th+U233, Th+Pu239 and Th+U). the parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles. also a thermo mechanical study of the irradiated TRISO fuel particle is presented. (Author)

  2. EFFECTS OF HEAT TREATMENT ON THE THERMAL EXPANSION BEHAVIOR OF SiC WHISKER REINFORCED ALUMINUM COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    M. Hu; W.D. Fei; W.L. Li; C.K. Yao

    2001-01-01

    The thermal expansion behaviors of SiC whisker reinforced commercially pure aluminum composites subjected to different heat treatments were studied. The results indicated that the thermal expansion behaviors were greatly affected by heat treatment.To explain the results, the microstructures and thermal mismatch stresses in the matrix of the composite were examined by the transmission electron microscope and Xray diffraction, respectively. The dislocation density and thermal mismatch stresses in the matrix of the composites water quenched from 600°C are much higher than that of the composite slowly cooled from 600°C. The analysis suggested that the coefficients of thermal expansion (CTE) are closely related to the change of thermal mismatch stresses and yield strength of the matrix of the composite. The comparison of the coefficients of thermal expansion between experiments and calculations suggested that the temperature behaviors of CTE of SiCw/Al composite agree better with those of Kerner's model within lower temperature range.

  3. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    Science.gov (United States)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-01

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound \\text{FeSi} over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

  4. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements.

    Science.gov (United States)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-28

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound [Formula: see text] over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials. PMID:27438881

  5. Characterization of the pneumatic behavior of a novel spouted bed apparatus

    OpenAIRE

    Gryczka, O.; Heinrich, S; Deen, N.G.; Kuipers, J.A.M.; Mörl, L.; Werther, Joachim; Nowak, Wojciech; Wirth, Karl-Ernst; Hartge, Ernst-Ulrich

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Particulate systems concerning very fine or non spherical particles that are difficult to fluidize, often cannot be treated in conventional fluidized beds. In contrast to those fluidized beds, the spouted bed technology with its specific flow structure offers the opportunity of stable fluidization under controlled conditio...

  6. Modeling of Sediment Bed Behavior for Critical Velocity in Horizontal Piping

    International Nuclear Information System (INIS)

    This paper compares results from a predictive tool for modeling transport of a multiphase mixture (solids in a liquid) in a pipeline, (up to and including plugging) with experiments performed to support the Hanford site's Waste Treatment and Immobilization Plant (WTP). The treatment of high-level waste at the DOE Office of River Protection's WTP will involve the transfer of high solid content suspensions through pipelines. Pipeline plugging was identified as a significant potential issue by a panel of external experts. In response to their concerns an experimental effort was initiated at PNNL to determine the critical velocities for a variety of operating conditions. A computational method has been developed to predict the dynamic behavior of a sediment bed in response to the surrounding suspension flow. The flow field is modeled using a lattice kinetics method, similar to the lattice Boltzmann method, which scales very well on highly parallel computers. Turbulent quantities are calculated using a k-epsilon RANS model. This work is part of a larger effort to develop a process simulation capability for a wide range of applications. Solids are represented using two different continuum fields. The suspended solids are treated as passive scalars in the flow field, including terms for hindered settling and Brownian diffusion. Normal stresses created by the irreversible collisions of particles during shearing are added to the pressure tensor. The sediment bed interface is represented using a continuum phase field with a diffuse interface. The bed may change with time due to settling, erosion and deposition through convection. The erosion rates are calculated using the local shear stress obtained from the turbulence model. The method is compared with data from the PNNL pipeline experiments conducted at PNNL (Poloski et al. 2008). The experimental flow loop consists of 3-inch schedule 40 piping with instrumentation for determining flow rate and pressure gradient. The

  7. Computational investigation on thermal expansivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    Science.gov (United States)

    Mohan Krishna, S. A.; Shridhar, T. N.; Krishnamurthy, L.

    2015-08-01

    Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide (SiC) and Graphite (Gr) hybrid MMCs from room temperature to 300°C. Aluminum (Al)-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.

  8. Thermal Expansion Behavior of La1-xSrxMn1-yCoyO3-δ Perovskites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The thermal expansion behavior of La1-xSrxMn1-yCoyO3-δ (x=0.2~0.4, y=0.1~0.3) perovskites in air has been investigated. The average linear thermal expansion coefficients increased with increasing Sr content up to 40 mole fraction or Co content up to 30 mole fraction. The expansion is generally attributed to an increase in the average cation radius as some of the cations in the perovskite are reduced in valence when oxygen ions are removed from the structure.

  9. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    Institute of Scientific and Technical Information of China (English)

    Tingwen Li; Pradeep Gopalakrishnana; Rahul Garg; Mehrdad Shahnam

    2012-01-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD-DEM simulations of small-scale systems.Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing,bed expansion,bubble behavior,solids velocities,and particle kinetic energy.Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters.However,a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters,indicating the transition from 2D flow to 3D flow within the range of 20-40 particle diameters.Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds.Hence,for quantitative comparison with experiments in pseudo-2D columns,the effect of wails has to be accounted for in numerical simulations.

  10. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul; Shahnam, Mehrdad

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.

  11. Experimental and computational studies on flow behavior of gas-solid fluidized bed with disparately sized binary particles

    Institute of Scientific and Technical Information of China (English)

    Jinsen Gao; Jian Chang; Chunxi Lu; Chunming Xu

    2008-01-01

    This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally.Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695--0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.

  12. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post - Bed Rest and Spaceflight

    Science.gov (United States)

    Mulavara, A. P.; DeDios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Seidler, R. D.; Oddsson, L.; Zanello, S.; Clarke, T.; Peters, B.; Cohen, H. S.; Reschke, M.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genotypic markers of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a

  13. Mechanical properties and corrosion behavior of materials exposed to an experimental, atmospheric fluidized-bed combustor

    International Nuclear Information System (INIS)

    A joint materials test program developed by the Institute for Mining and Minerals Research (IMMR) and the Tennessee Valley Authority (TVA) involved the postexposure mechanical properties and corrosion behavior of candidate structural materials in an experimental, atmospheric fluidized-bed combustor (AFBC). This combustor was operated by Accurex Corporation at Research Triangle Park, North Carolina, under the direction of TVA. The materials studied were Type 304, Type 310, and INCOLOY alloy 800 in the form of disc coupons with and without crevice configurations. Type 304 was also used for mechanical property measurements. The alloys were exposed to the combustor environment at about8400C for approximately 330 hours. The ranking in terms of decreasing weight loss was: (1) Type 304, (2) Type 310, and (3) INCOLOY alloy 800. The presence of tight crevices did not enhance the corrosion rate. In addition, the corrosion rates, based on the weight loss (typically 1 to 6 mpy), indicated that the alloys performed reasonably well when considering materials wastage. However, optical microscopy observations showed intergranular corrosion penetration in INCOLOY alloy 800 and Type 304. The mechanical properties of Type 304 were inferior to the unexposed alloy. A comparison of the data obtained from the combustor-exposed 304ss tensile samples with data from control samples exposed in vacuum to a similar thermal history indicated that the chemistry of the AFBC environment did not play a major role in the observed degradation of the mechanical properties

  14. Behavioral Responses of the Bed Bug to Permethrin-Impregnated ActiveGuard™ Fabric

    Directory of Open Access Journals (Sweden)

    Scott A. Harrison

    2013-06-01

    Full Text Available ActiveGuard™ Mattress Liners have been used to control house dust mites, and they also are commercially available as an integrated pest management tool for use against bed bugs (Cimex lectularius. The aim of our study was to evaluate responses of numerous populations of the bed bug to the permethrin-impregnated fabric, with particular regard to contact toxicity, repellency, and feeding inhibition. Continuous exposure to ActiveGuard fabric resulted in rapid intoxication for three of four populations, with 87 to 100% of moderately pyrethroid-resistant and susceptible bed bugs succumbing by 1 d. In comparison, a highly resistant population reached 22% mortality at 10 d. Video data revealed that bed bugs readily traversed ActiveGuard fabric and spent a considerable amount of time moving about and resting on it during a 12-h period. ActiveGuard fabric was non-repellent to bed bugs from five tested populations. Furthermore, significantly fewer bed bugs successfully fed to repletion through ActiveGuard fabric than through blank fabric for the five populations. With just 30 min of feeding exposure, mortality ranged from 4% to 83%, depending upon the bed bug strain. These laboratory studies indicate that ActiveGuard liners adversely affected bed bugs from diverse populations.

  15. Characterization of the pneumatic behavior of a novel spouted bed apparatus with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, O.; Heinrich, S.; Miteva, V.; Deen, N.G.; Kuipers, J.A.M.; Jacob, M.; Mörl, L.

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Within this work the fluid dynamics of a novel spouted bed plant with two adjustable gas inlets is investigated. By analysis of

  16. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  17. Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template

    International Nuclear Information System (INIS)

    The thermal expansion behavior of semiconductor single-crystal nanowire arrays is of importance for their applications in electronic and optoelectronic nanodevices. We prepare hexagonal ZnS single-crystal nanowire arrays growing along the [110] direction via electrodeposition. The thermal expansion properties of the as-prepared ZnS nanowires have been studied by in situ x-ray diffraction method. The thermal expansion coefficient (TEC) of the ZnS nanowires decreases consistently from room temperature to 225° C where it reaches a minimum value, and then increases rapidly. The average TEC in the studied temperature range is 4.74 × 10−6/°C, which is smaller than that of the conventional bulk counterpart

  18. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    International Nuclear Information System (INIS)

    The SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided

  19. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  20. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    Energy Technology Data Exchange (ETDEWEB)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  1. Characterization of the pneumatic behavior of a novel spouted bed apparatus

    NARCIS (Netherlands)

    Gryczka, O.; Heinrich, S.; Deen, N.G.; Kuipers, J.A.M.; Mörl, L.; Werther, Joachim; Nowak, Wojciech; Wirth, Karl-Ernst; Hartge, Ernst-Ulrich

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Particulate systems concerning very fine or non spherical particles that are difficult to fluidize, often cannot be treated in

  2. Setting events in applied behavior analysis: Toward a conceptual and methodological expansion

    OpenAIRE

    Wahler, Robert G.; Fox, James J.

    1981-01-01

    The contributions of applied behavior analysis as a natural science approach to the study of human behavior are acknowledged. However, it is also argued that applied behavior analysis has provided limited access to the full range of environmental events that influence socially significant behavior. Recent changes in applied behavior analysis to include analysis of side effects and social validation represent ways in which the traditional applied behavior analysis conceptual and methodological...

  3. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  4. Effect of wall structure on pebble stagnation behavior in pebble bed reactor

    International Nuclear Information System (INIS)

    Highlights: • DEM study of wall structure role in preventing near wall crystallization is carried out. • Suggestions on pebble’s kinematic parameters and wall structure design are provided. • Triangle is better than arc and sawtooth shapes for wall structure design. • Wall structure size should be close to the scale of pebble diameter. • Suitable intervals can prevent crystallization without significantly increasing the flow resistance. - Abstract: Crystallization of pebbles in pebble bed is a crucial problem in high temperature gas-cooled pebble-bed reactors. This phenomenon usually happens along the internal surface and leads to a large number of stagnated pebbles, which poses a threat to reactor safety. In real reactor engineering, wall structures have been utilized to avoid this problem. This article verifies the crystallization phenomenon through DEM (discrete element method) simulation, and explains how wall structures work in preventing crystallization. Moreover, several kinematic parameters have been adopted to evaluate wall structures with different shapes, sizes and intervals. Detailed information shows the impact of wall structure on flow field in pebble bed. Lastly, the preferred characteristics of an effective wall structure are suggested for reactor engineering

  5. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.

    Science.gov (United States)

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420

  6. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam

    NARCIS (Netherlands)

    Mckeegan, D.E.F.; Reimert, H.G.M.; Hindle, V.A.; Boulcott, P.; Sparrey, J.M.; Wathes, C.M.; Demmers, T.G.M.; Gerritzen, M.A.

    2013-01-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emerg

  7. Studies on ash behavior during co-combustion of paper sludge in fluidized bed boilers

    OpenAIRE

    Coda, Beatrice

    2004-01-01

    The present work analysis the ash behaviour and the environmental impact with respect to the toxic trace metals (e.g. Cu, Pb, Zn, Cd, Mn, Cr, Ni) upon co-combustion of paper sludge, a waste deriving from the treatment of recovered paper, with coal and coal/biomass blends in fluidised bed combustors designed for energy production or steam generation. The study, conducted in the framework of a European research project aiming at widening the spectrum of fuels utilised by coal-fired and coal...

  8. Experimental evidence of statistical ensemble behavior in bed load sediment transport

    Science.gov (United States)

    Fathel, Siobhan L.; Furbish, David Jon; Schmeeckle, Mark W.

    2015-11-01

    A high-resolution data set obtained from high-speed imaging of coarse sand particles transported as bed load allows us to confidently describe the forms and qualities of the ensemble distributions of particle velocities, accelerations, hop distances, and traveltimes. Autocorrelation functions of frame-averaged values (and the decay of these functions) support the idea that the forms of these distributions become time invariant within the 5 s imaging interval. Distributions of streamwise and cross-stream particle velocities are exponential, consistent with previous experiments and theory. Importantly, streamwise particle velocities possess a "light" tail, where the largest velocities are limited by near-bed fluid velocities. Distributions of streamwise and cross-stream particle accelerations are Laplace in form and are centered on zero, consistent with equilibrium transport conditions. The majority of particle hops, measured start to stop, involve short displacements, and streamwise hop distances possess a Weibull distribution. In contrast to previous work, the distribution of traveltimes is exponential, consistent with a fixed temporal disentrainment rate. The Weibull distribution of hop distances is consistent with a decreasing spatial disentrainment rate and is related to the exponential distribution of traveltimes. By taking into account the effects of experimental censorship associated with a finite sampling window, the relationship between streamwise hop distances and traveltimes, Lx˜Tpα, likely involves an exponent of α ˜ 2. These experimental results—an exponential distribution of traveltimes Tp and a Weibull distribution of hop distances Lx with shape parameter k 1.

  9. Determinants of Bed Net Use in Southeast Nigeria following Mass Distribution of LLINs: Implications for Social Behavior Change Interventions.

    Directory of Open Access Journals (Sweden)

    Cheryl L Russell

    Full Text Available Millions of long-lasting insecticide treated nets (LLINs have been distributed as part of the global malaria control strategy. LLIN ownership, however, does not necessarily guarantee use. Thus, even in the ideal setting in which universal coverage with LLINs has been achieved, maximal malaria protection will only be achieved if LLINs are used both correctly and consistently. This study investigated the factors associated with net use, independent of net ownership. Data were collected during a household survey conducted in Ebonyi State in southeastern Nigeria in November 2011 following a statewide mass LLIN distribution campaign and, in select locations, a community-based social behavior change (SBC intervention. Logistic regression analyses, controlling for household bed net ownership, were conducted to examine the association between individual net use and various demographic, environmental, behavioral and social factors. The odds of net use increased among individuals who were exposed to tailored SBC in the context of a home visit (OR = 17.11; 95% CI 4.45-65.79 or who received greater degrees of social support from friends and family (ptrend < 0.001. Factors associated with decreased odds of net use included: increasing education level (ptrend = 0.020, increasing malaria knowledge level (ptrend = 0.022, and reporting any disadvantage of bed nets (OR = 0.39; 95% CI 0.23-0.78. The findings suggest that LLIN use is significantly influenced by social support and exposure to a malaria-related SBC home visit. The malaria community should thus further consider the importance of community outreach, interpersonal communication and social support on adoption of net use behaviors when designing future research and interventions.

  10. Influence of phosphorus on oxidation behavior of low thermal expansion superalloy IN909 at 650 ℃

    Institute of Scientific and Technical Information of China (English)

    SUN Ya-ru; SUN Wen-ru; HOU Gui-chen; GUO Shou-ren; LIU Zheng; HU Zhuang-qi; N. K. PARK

    2006-01-01

    The effect of phosphorus on the oxidation resistance of low thermal expansion alloy IN909 was studied. The composition and structure of the oxidation layer were analyzed. It is found that the oxidation initiates at the grain boundaries. During the oxidation, Fe atoms diffuse toward the surface and form the outside oxidation layer as the oxide of iron. The transition oxidation layer lies between the oxidation layer and the matrix which is enriched with Nb, Ti and Si, forming FeTiO5, Nb2O5, Fe2SiO4 and TiO2. Phosphorus hardly influences the thermal expansion coefficient of IN909 alloy. However, it increases the formation of ε phase at the boundary of the transition oxidation layer and matrix. As a result, the oxidation rate is decreased efficiently because the ε phase inhibits the diffusion of the element such as iron from the matrix to the oxidation layer.

  11. Exploring the Conceptual Expansion within the Field of Organizational Behavior: Organizational Climate and Organizational Culture

    OpenAIRE

    Verbeke, Willem; Volgering, Marco; Hessels, Marco

    1996-01-01

    Developments within social and exact sciences take place because scientists engage in scientificpractices that allow them to further expand and refine the scientific concepts within theirscientific disciplines. There is disagreement among scientists as to what the essential practicesare that allow scientific concepts within a scientific discipline to expand and evolve. One grouplooks at conceptual expansion as something that is being constrained by rational practices. Anothergroup however sug...

  12. Dynamic behavior of a direct expansion evaporator under frosting condition. Part II. Field investigation on a shipping container

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P. [Multimedia University, Melaka (Malaysia). Faculty of Engineering and Technology; Cheng, Y.C.; Lai, A.C.K. [Nanyang Technological University, Singapore 634798 (Singapore). School of Mechanical and Aerospace Engineering

    2006-06-15

    A field investigation is performed on the frost formation at an evaporator of a commercial full-scale refrigerated container that uses R-12 as the working refrigerant. Results when compared with those from a numerical model presented earlier show that the model is capable of predicting the dynamic behavior of a direct expansion evaporator under both non-frosting and frosting conditions. The air outlet and energy transferred compare well between experiment and model, and within 20% for the air pressure drop. The frost occurrence and propagation agree well generally, with the frost formation first occurring at the first row where the refrigerant enters the evaporator. (author)

  13. Application of Mythen Detector In-situ XRD Study on The Thermal Expansion Behavior of Metal Indium

    OpenAIRE

    DU, RONG; Chen, Zhongjun; Cai, Quan; Fu, Jianlong; Gong, Yu; Wu, Zhonghua

    2015-01-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility, which can be used for in-situ real-time measurement of X-ray diffraction (XRD) full profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium film was heated from 30 to 160 {\\deg}C with a heating rate of 2 {\\deg}C/min. The in-situ XRD full-profiles were collected with a rate of one profile per...

  14. Activation product behavior on borated mixed-bed ion exchange resin

    International Nuclear Information System (INIS)

    The Loss-of-Fluid Test (LOFT) Facility uses two separate mixed-bed ion exchange systems to decontaminate solutions. The radioactive solutions to be decontaminated are demineralized water containing boric acid (500 to 3500 ppM B) and lithium hydroxide (approx. 1 ppM Li). Many activation products are formed during nuclear operation. This paper describes the capability of the mixed cation-anion (Li-OH) type resin to remove these activation products from solution. Problems in measuring decontamination factors (DF) are discussed. The tendency of certain isotopes to give early indication of resin exhaustion is shown. Typical DF (ratio of before-ion-exchange concentration to after-ion-exchange concentration) have been determined for 22 different isotopes in the LOFT purification systems

  15. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    Science.gov (United States)

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases). PMID:12868523

  16. Liquid fluidization of particles in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Glasserman, P. (Dept. de Industrias, Universidad de Buenos Aires (Argentina)); Videla, D. (Dept. de Industrias, Universidad de Buenos Aires (Argentina)); Boehm, U. (Dept. de Industrias, Universidad de Buenos Aires (Argentina))

    1994-06-01

    The expansion behavior of solid particles fluidized by liquid within fixed packings was studied by the conductimetric method. The electrodes conforming the conductivity cell were embedded in the container walls with their center at half the height of the fluidized bed. The axial solids distribution was also measured by this technique by placing ten conductivity cells along the column. The study is limited to intermediate and turbulent flow regimes, due to the density and size of the particles used. Depending on the geometry of the packed bed, the operating range in terms of superficial velocity and the homogeneity of the fluidized bed differ from those obtained for fluidization in an empty column. Taking into account geometric aspects of the systems, a method of estimating the fluidization parameters is derived. (orig.)

  17. Expansions of τ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    Science.gov (United States)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-08-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling αs and other QCD parameters from the hadronic decays of the τ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called “reference model,” including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

  18. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    Science.gov (United States)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  19. Cold flow behavior study in novel cyclonic fluidized bed combustor (ψ-FBC)

    International Nuclear Information System (INIS)

    Remarkable cyclonic and fluidized combustion regimes have prompted the integration of these two distinct combustion processes into a unique combustor. The possibility of combining these two air-solid phase flow hydrodynamics was investigated by performing experiments with a non-reactive combustor model, named a cyclonic fluidized bed combustor (ψ-FBC). Air-rice husk flow visualization within a ψ-FBC clearly indicated vortex flow when air and rice husk descended along the model wall, while the air-rice husk movement within the entire space underneath the upper vortex ring was characterized by fluidization. The vortex rings and an intensive air curtain generated by the swirling flow of primary air with a high swirl number were the key parameters to promote fluidization, form a solid suspension layer and prevent solids from escaping from the cold ψ-FBC model. The visual observations of swirling and recirculation solid flows agreed well with the results of parallel experiments with non-reacting air flow patterns

  20. Reactivation of spent limestone for sulphur capture in fluidized bed combustion : hydration and sulphation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Wu, Y.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    From an economic and environmental perspective, there is a need to reuse partially sulphated limestone sorbent to control sulphur dioxide (SO{sub 2}) emissions. Currently, limestone is not used efficiently for in-situ capture in fluidized bed combustors (FBC) because of incomplete sulphation of CaO. Spent limestone can be reactivated by hydrating the FBC ash. This allows the ash to take up SO{sub 2} as SO{sub 2} sorbent. In this study, ashes from a large FBC were hydrated. Sulphation tests were then conducted on the hydrated ashes with particular attention to their kinetic behaviour. Temperature, particle size and hydration time were the factors that affected the rate and efficiency of the reactivation process. A comparative evaluation between the behaviour of hydration with liquid water and steam was conducted along with a comparison of the behaviour of sulphation following hydration. The effect of hydration on the sulphation rate was analyzed in terms of changes to the solid particle's microstructure. The results of this study were compared with those reported in literature and with other studies on enhanced hydration through grinding and sonication.

  1. Creep behavior of bedded salt from southeastern New Mexico at elevated temperature

    International Nuclear Information System (INIS)

    Results of a series of triaxial creep experiments conducted on bedded salt specimens from ERDA Hole 9 in southeastern New Mexico are presented. The purpose of the experiments was to measure creep response of salt at temperatures of 24, 70, and 1000C under confinement pressures of 0, 1500, 2000, 2500, and 3000 psi and differential axial stress levles of 1500, 3000, 4500, and 6000 psi. Test durations ranged from 15 minutes to over 500 hours. The specimens, obtained by recording 4-in.-dia cores in the axial direction, were nominally two inches in diameter and four inches in length. The crystal size ranged from very small to one-half inch diameter; the specimens contained various amounts of clay impurities. A total of 19 specimens were prepared of which 14 were tested. The collected data included axial and lateral strain, axial and confinement stresses, time and temperature. Periodically, axial stress was adjusted to account for specimen strain in order to maintain a constant differential stress. Frequency of the stress correction was dependent on the rate of deformation; two or more corrections in a 24-hour period were typical. Data were automatically recorded with a printer, manually recoded from the print-out to punched cards and reduced by means of a computer. A preponderance of the data was collected in the transient creep regime. In some tests specimen rupture occurred, while in others an accelerating creep rate brought the specimen in contact with the pressure vessel wall. Aslo, a considerable amount of data was collected during stress application to creep stress level

  2. COSTEAM expansion and improvements: design of a coal-fired atmospheric fluidized bed submodel, an oil-fired submodel and input/output improvements

    Energy Technology Data Exchange (ETDEWEB)

    Reierson, James D.; Rosenberg, Joseph I.; Murphy, Mary B.; Lethi, Minh- Triet

    1980-10-01

    COSTEAM is an interactive computer model designed to estimate the cost of industrial steam produced by various steam plant technologies. At the end of Phase I development, the COSTEAM model included only one submodel to calculate the capital and operating costs of a conventional coal-fired boiler plant with environmental control systems. This report describes the results of Phase II development. Two new submodels are added which calculate costs for steam produced by coal-fired atmospheric fluidized bed boilers and by oil-fired boilers. COSTEAM input/output capabilities are also improved.

  3. Solid Fuel Blend Pyrolysis-Combustion Behavior and Fluidized Bed Hydrodynamics

    OpenAIRE

    Agarwal, Gaurav

    2013-01-01

    As a carbon neutral and renewable source of energy, biomass carries a high potential to help sustain the future energy demand. The co-firing of coal and biomass mixtures is an alternative fuel route for the existing coal based reactors. The main challenges associated with co-firing involves proper understanding of the co-firing behavior of blended coal-biomass fuels, and proper understanding of advanced gasification systems used for converting such blended fuels to energy. The pyrolysis a...

  4. Sulfur behavior in the Sasol-Lurgi fixed-bed dry-bottom gasification process

    Energy Technology Data Exchange (ETDEWEB)

    M. Pat Skhonde; R. Henry Matjie; J. Reginald Bunt; A. Christien Strydom; H. Schobert [Sasol Technology R& amp; D, Sasolburg (South Africa)

    2009-01-15

    This article reports on the findings of a study regarding the sulfur behavior across a Sasol-Lurgi gasifier. This was undertaken to understand the behavior of the various sulfur-bearing components in the coal, as they are exposed to the conditions in the gasifier. In this study, conventional characterization techniques were employed to monitor the behavior of sulfur-bearing mineral matter across the gasifier. It was observed from the study that the sulfur-bearing mineral (pyrite) in the coal structure undergoes various changes with pyrite being transformed to pyrrhotite and then to various oxides of iron with the subsequent loss of sulfur to form H{sub 2}S. A low proportion of the sulfur species including the organically associated sulfur was encapsulated by a melt that was formed by the interaction between kaolinite and fluxing minerals (pyrite, calcite, and dolomite/ankerite) present in the coal at elevated temperatures and pressure, thereby ending up in the ash. The remaining small proportions of sulfur-bearing mineral matter including pyrite and organically bound sulfur in the unburned carbon in the carbonaceous shales also report to the ash. 18 refs., 8 figs., 2 tabs.

  5. Influence of nano-material on the expansive and shrinkage soil behavior

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd Raihan, E-mail: drmrt@eng.ukm.my; Taha, Omer Muhie Eldeen, E-mail: omar82@eng.ukm.my [Universiti Kebangsaan Malaysia, Department of Civil and Structural Engineering (Malaysia)

    2012-10-15

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content (w{sub opt}) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  6. Thermal Expansion Behavior of Precursor-Derived Amorphous Si-C-N and Si-B-C-N Ceramics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thermal expansion behaviors of some precursor-derived amorphous Si-C-N and Si-B-C-N ceramics, which were shaped by plastic forming after crosslink, were studied. To complete the shrinkage and densification, after thermolysis specimens were heat treated at a temperature of 1400℃ for 10 h in nitrogen atmosphere. The thermal expansion coefficient of VT50-derived amorphous Si-C-N ceramic increases from 1.98×10-6/K at 400℃ to 3.09×10-6/K at 1000℃, of NCP200-derived amorphous Si-C-N ceramic increases from 2.35× 10-6/K at 400℃ to 3.45×10-6/K at1000℃, and of T2-1-derived amorphous Si-B-C-N ceramic increases from 2.08×10-6/K at 400℃ to 3.18×10-6/K at 1000℃. No glass transition for these amorphous ceramic materials was detected, indicating that as-thermolyzed precursor-derived Si-(B-)C-N ceramic materials are amorphous solids, but not glasses.

  7. Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M =Cu , Ag, Au): Neutron inelastic scattering and first-principles calculations

    Science.gov (United States)

    Gupta, M. K.; Singh, Baltej; Mittal, R.; Rols, S.; Chaplot, S. L.

    2016-04-01

    We report measurement of temperature dependence of phonon spectra in quasi-one-dimensional metal cyanides M CN (M =Cu , Ag, Au). Ab initio lattice dynamics calculations have been performed to interpret the phonon spectra as well as to understand the anomalous anisotropic thermal expansion behavior in these compounds. We bring out the differences in the phonon mode behavior to explain the differences in the thermal expansion behavior among the three compounds. The chain-sliding modes are found to contribute maximum to the negative thermal expansion along the "c " axis in the Cu and Ag compounds, while the same modes contribute to positive thermal expansion in the Au compound. Several low-energy transverse modes lead to positive thermal expansion in the a -b plane in all the compounds. The calculated Born-effective charges show that AuCN has a covalent nature of bonding, which results in least distortion as well as the least number of unstable modes among the three cyanides. This result is well correlated with the fact that the coefficient of negative thermal expansion along the c axis in AuCN is the smallest.

  8. Dynamic behavior of a direct expansion evaporator under frosting condition. Part I. Distributed model

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.P. [Multimedia University, Melaka (Malaysia). Faculty of Engineering and Technology; Cheng, Y.C.; Lai, A.C.K. [Nanyang Technological University, Singapore 634798 (Singapore). School of Mechanical and Aerospace Engineering

    2006-06-15

    A general distributed model with two-phase flow for refrigerant coupled with a frost model is developed for studying the dynamic behavior of an evaporator. The equations are derived in non-steady-state manner for the refrigerant and a quasi-steady state model with permeation for the frost. The complex flow and geometry of the finned tube evaporator lead to uneven wall and air temperature distributions, which in turn affect the rate of frost growth and densification along the coil depth. Results include frost accumulation and its effect on energy transfer, air off-coil temperature, refrigerant liquid dry-out position and propagation of frost formation along the coil. (author)

  9. Stress-induced Alterations in Anxiety-like Behavior and Adaptations in Plasticity in the Bed Nucleus of the Stria Terminalis

    OpenAIRE

    Conrad, Kelly L.; Louderback, Katherine M; Gessner, Caitlin P; Winder, Danny G.

    2011-01-01

    In vulnerable individuals, exposure to stressors can result in chronic disorders such as generalized anxiety disorder (GAD), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). The extended amygdala is critically implicated in mediating acute and chronic stress responsivity and anxiety-like behaviors. The bed nucleus of the stria terminalis (BNST), a subregion of the extended amygdala, serves as a relay of corticolimbic information to the paraventricular nucleus of the...

  10. Thermal vacancy behavior analysis through thermal expansion, lattice parameter and elastic modulus measurements of B2-type FeAl

    International Nuclear Information System (INIS)

    Thermal vacancy behavior in B2-type FeAl was analyzed through thermal expansion, lattice parameter, and elastic modulus measurements. High-temperature X-ray diffractometry (HT-XRD) was conducted to determine the lattice parameter at elevated temperatures, and the electromagnetic acoustic resonance method was applied to investigate the temperature dependence of the elastic moduli in B2-type FeAl. Using a series of in situ high-temperature techniques such as HT-XRD and dilatometry, the thermal vacancy concentration at elevated temperatures was estimated from the divergence between the changes in the sample length and the lattice parameter with temperature, giving a vacancy formation enthalpy of ∼0.7 and 0.6 eV for Fe–40Al and Fe–43Al (at.%), respectively. The long-range order parameter was found to increase with temperature in a high-temperature range, indicating that the Fe-atom recovery process occurs in this temperature range. The in situ high-temperature measurements suggest that at elevated temperatures, thermal vacancies have no significant influence on the lattice parameter and elastic moduli of B2-type FeAl

  11. Analysis of the fluidization behavior and application of a novel spouted bed apparatus for spray granulation and coating

    OpenAIRE

    Gryczka, O.; Heinrich, S; Jacob, M; Deen, N.G.; Kuipers, J.A.M.

    2009-01-01

    Spouted beds are well known for their good mixing of the solid phase and for their intensive heat and mass transfers between the fluid phase and the solid phase. Nearly isothermal conditions are enabled which is of advantage for the treatment of granular solid materials in granulation, agglomeration or coating processes. In this work the hydrodynamic behaviour of a novel spouted bed apparatus with two horizontal and slit-shaped gas inlets is investigated by high-frequency recordings of the ga...

  12. Field and concentration dependent scaling behavior of the thermal expansion near the quantum critical point of CeCu6-xAux

    International Nuclear Information System (INIS)

    The heavy-fermion system CeCu6-xAux exhibits long-range antiferromagnetic order at x>0.1. The order can be suppressed by hydrostatic or chemical pressure, through the variation of the Au content, as well as by the application of a magnetic field. The quantum critical point at the onset of antiferromagnetism leads to non-Fermi liquid behavior visible in thermodynamic and transport properties. Among these, the thermal expansion offers a particularly sensitive probe to study the quantum critical scaling behavior due to the strong pressure dependence of the Kondo effect in heavy-fermion materials. To shed light on the difference between the two control parameters, pressure and magnetic field, we studied the scaling behavior of the thermal expansion on CeCu6-xAux single crystals with varying Au content as a function of the magnetic field in the temperature range between 40 mK and 10 K.

  13. 喷动床内气固两相流体动力行为的数值模拟%NUMERICAL SIMULATION OF HYDRODYNAMIC BEHAVIOR IN SPOUTED BEDS

    Institute of Scientific and Technical Information of China (English)

    何玉荣; 陆慧林; 刘文铁; 赵云华; 王强

    2004-01-01

    The gas-solids flow behavior was predicted by means of a hydrodynamic model of dense gas-solid flow in spouted beds. Constitutive equations describing the particle interactions and friction of particles and viscosity were incorporated into a hydrodynamic simulation computer program. The effect of operating conditions(inverted cone inclination and gas spouting velocity) on particle velocity and concentration in the three zones of spouted beds: spout, annulus and fountain were numerically studied. Both vertical and horizontal particle velocities increased with increasing spouting gas velocity in the spouted region. The diameter of the spout increases with decreasing inclination. As inclination is greater than 60°, there is a neck near the jet.

  14. Hydrodynamic Behavior of Counter-Current Packed Beds in the Proximity of the Flooding Point Oscillating Inlet Velocites

    Czech Academy of Sciences Publication Activity Database

    Stavárek, Petr; Ondráček, Jakub; Jiřičný, Vladimír; Staněk, Vladimír

    Bratislava : Slovak Society of Chemical Engineering, 2005 - (Markoš, J.; Štefuca, V.), s. 133 ISBN 80-227-2224-3. [International Conference of Slovak Society of Chemical Engineering /32./. Tatranské Matliare (SK), 23.05.2005-27.05.2005] R&D Projects: GA ČR(CZ) GA104/03/1558 Institutional research plan: CEZ:AV0Z40720504 Keywords : packed bed * counter -current * flooding point Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Emissions of Nitrogen Oxides and Behavior of Heavy Metals in Atmospheric Fluidized Bed Incineration of Dried Sewage Sludge

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Svoboda, Karel; Hartman, Miloslav; Vošta, J.

    Praha : Process Engineering Publisher, 2004, s. 1924. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha (CZ), 22.08.2004-26.08.2004] R&D Projects: GA AV ČR IAA4072201 Institutional research plan: CEZ:AV0Z4072921 Keywords : sewage sludge * fluidized bed * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite

    International Nuclear Information System (INIS)

    This study describes the partitioning of 20 trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and eight major and minor elements (Al, Ca, Fe, K, Mg, Na, Si, Ti) during the combustion of high ash content lignite. The experiments were carried out in the 0.3 MWt Middle East Technical University (METU) atmospheric bubbling fluidized bed combustor (ABFBC) test rig with and without limestone addition. Inert bed material utilized in the experiments was bed ash obtained previously from the combustion of the same lignite without limestone addition in the same test rig. Concentrations of trace elements in coal, limestone, bottom ash, cyclone ash and filter ash were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Partitioning of major and minor elements are influenced by the ash split between the bottom ash and fly ash and that the major proportion of most of the trace elements (As, Ba, Cr, Hg, Li, Mo, Ni, Sn, V, Zn) are recovered in fly ash. Limestone addition shifts the partitioning of Ba, Cr, Mo, Ni, Sn, V, Zn from bottom ash to fly ash

  17. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite

    Science.gov (United States)

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-06-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1‑xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.

  18. Study on thermal expansion behavior of Dy2O3- Al2O3- SiO2 glass

    Institute of Scientific and Technical Information of China (English)

    LIU Yuzhu; GENG Zhiting; ZHUANG Weidong; HE Huaqiang

    2008-01-01

    Employing Dy2O3, Al2O3, and SiO2 as starting materials, several series of Dy2O3-Al2O3-SiO2 sealing glass were prepared. The relationship between their coefficients of thermal expansion and the contents of Dy2O3, Al2O3, and SiO2 were studied respectively. Experimental results showed that Dy2O3 and Al2O3 had a positive effect on the coefficient of thermal expansion of glass, whereas, SiO2 had a negative effect. The coefficient of thermal expansion of glass showed an apparent linear relation to the contents of these three raw materials, from which an estimation model was built, to calculate the coefficient of thermal expansion of sealing glass. Relative errors of the calculating resalts to testing results were no more than 2%, which suggested that the estimation model was reasonable. This study provides a good theory reference for the practical utilizing of this sealing material, through which a proper glass composition for good sealing could be easily found.

  19. Study on the influences of interaction behaviors between multiple combustion-gas jets on expansion characteristics of Taylor cavities

    Science.gov (United States)

    Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

    2015-10-01

    The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun (BLPG). Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion, and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results. From this, numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets (four, six, and eight jets) in liquid medium are carried out, and the distribution characteristic of pressure, velocity, temperature, and evolutionary processes of Taylor cavities and streamlines of jet flow field are obtained in detail. The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium, there are two different types of vortices in the jet flow field, including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities. Because of these two types of vortices, the radial expansion characteristic of the jets is increased, while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes, which can at last realize the goal of controlling the interior ballistic stability of a BLPG. The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.

  20. Effect of expansion/shrinkage of crystal lattice on hydrogen isotopes behavior in body-centered cubic metals

    International Nuclear Information System (INIS)

    Effects of shrinkage/expansion of crystal lattice on the diffusivity and the solubility of hydrogen isotopes in bcc-metals were investigated. In order to obtain systematic and detailed information, an energy was decomposed into two parts: potential-energy-of-hydrogen and elastic-energy. Both of the migration barrier and the solution energy of hydrogen were increased by lattice shrinkage and were decreased by lattice expansion, basically. Change of migration barrier was mainly subject to that of elastic-energy. However, when the crystal lattice was strongly shrunk, e.g. 5% shrinkage, the migration barrier was decreased due to an abrupt decrease of potential-energy-of-hydrogen, which resulted from increasing interaction between the hydrogen atom and the second-nearest neighbor metal atoms. (author)

  1. Phonons and Colossal Thermal Expansion Behavior of Ag3Co(CN)6 and Ag3Fe(CN)6

    OpenAIRE

    Mittal, R.; Zbiri, M.; Schober, H.; Achary, S. N.; Tyagi, A. K.; Chaplot, S. L.

    2012-01-01

    Recently colossal positive volume thermal expansion has been found in the framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. Phonon spectra have been measured using the inelastic neutron scattering technique as a function of temperature and pressure. The data has been analyzed using ab-initio calculations. We find that the bonding is very similar in both compounds. At ambient pressure modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted to slightly hi...

  2. Cortical circuits, learning, and behavior : Local reorganization of synaptic partners and the expansion of the motor repertoire

    OpenAIRE

    Biane, Jeremy Stanford

    2013-01-01

    Appropriate patterning of synaptic circuitry is vital for proper central nervous system function, and neurons retain a significant capacity for synaptic reorganization throughout life. To better understand how synaptic alterations mediate the development and refinement of complex behavior, this dissertation investigates the neurophysiological and circuit-level changes accompanying 1) the emergence of fine motor behavior during development, and 2) motor skill learning in adulthood. We develope...

  3. Characteristic behavior of pebble-bed modular high-temperature gas-cooled reactor during loss of forced cooling accidents

    International Nuclear Information System (INIS)

    Based on the preliminary design of the Pebble-bed Modular High-Temperature Gas-cooled Reactor(HTR-PM), two cases of loss of forced cooling accident (DLOFC and PLOFC) were studied by the help of the software THERMIX. The key parameters including reactor power, temperature distributions of the core and pressure vessel, and the decay power removal by the passive residual heat remove system(RHRS) were compared in detail. Some parameter uncertainties were analyzed in order to evaluate the safety margin of the maximal fuel temperature during LOFC. The calculated results show that, the decay heat in the LOFC accidents can be removed from the reactor core solely by means of physical processes in a passive way, so that the temperature limits of fuel and components are still obeyed, which can effectively keep the integrality of the fuel particles to avoid massive fission products release. It also illustrates that the HTR-PM can reach 250 MW reactor power per unit and still can keep the inherent safety, which will be helpful to the further detail design of the HTR-PM demonstrating power plant project. (authors)

  4. Investigation of hydrodynamic behavior of a pilot-scale trickle bed reactor packed with hydrophobic catalyst using radiotracer technique

    International Nuclear Information System (INIS)

    Exchange of isotopes of hydrogen between aqueous phase and hydrogen gas is one of the most efficient methods for separation of hydrogen isotopes and is commonly used for production of heavy water or removal of tritium from tritiated water effluents. The isotope exchange reaction can be effectively executed in a counter-current trickle bed reactor (TBR) packed with a novel metal (Pt, Pd, Ni) based hydrophobic catalyst as the conventional novel metal based hydrophilic catalysts become ineffective after they come in contact with liquid effluents. The overall exchange reaction in the TBR mainly consists of a gas-liquid mass transfer process that transfers reactants from liquid to gaseous phase followed by an isotopic exchange reaction between the reactants in gaseous phase in presence of a solid hydrophobic catalyst. However, due to water repellent nature of the catalyst, poor liquid distribution in the reactor is normally observed that deteriorates the gas-liquid mass transfer. Therefore, it was thought that if a mixture of hydrophobic catalyst and a suitable hydrophilic mass transfer packing is used to fill the TBR column then, it can improve the distribution or mixing of the liquid and gas phase and thus improve the gas-liquid mass transfer and overall performance of the reactor and needs to be confirmed

  5. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  6. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory.

    Science.gov (United States)

    Elias, Gabriel A; Bieszczad, Kasia M; Weinberger, Norman M

    2015-12-01

    Primary sensory cortical fields develop highly specific associative representational plasticity, notably enlarged area of representation of reinforced signal stimuli within their topographic maps. However, overtraining subjects after they have solved an instrumental task can reduce or eliminate the expansion while the successful behavior remains. As the development of this plasticity depends on the learning strategy used to solve a task, we asked whether the loss of expansion is due to the strategy used during overtraining. Adult male rats were trained in a three-tone auditory discrimination task to bar-press to the CS+ for water reward and refrain from doing so during the CS- tones and silent intertrial intervals; errors were punished by a flashing light and time-out penalty. Groups acquired this task to a criterion within seven training sessions by relying on a strategy that was "bar-press from tone-onset-to-error signal" ("TOTE"). Three groups then received different levels of overtraining: Group ST, none; Group RT, one week; Group OT, three weeks. Post-training mapping of their primary auditory fields (A1) showed that Groups ST and RT had developed significantly expanded representational areas, specifically restricted to the frequency band of the CS+ tone. In contrast, the A1 of Group OT was no different from naïve controls. Analysis of learning strategy revealed this group had shifted strategy to a refinement of TOTE in which they self-terminated bar-presses before making an error ("iTOTE"). Across all animals, the greater the use of iTOTE, the smaller was the representation of the CS+ in A1. Thus, the loss of cortical expansion is attributable to a shift or refinement in strategy. This reversal of expansion was considered in light of a novel theoretical framework (CONCERTO) highlighting four basic principles of brain function that resolve anomalous findings and explaining why even a minor change in strategy would involve concomitant shifts of involved brain

  7. Dense Pellicular Agarose-Glass Beads for Expanded Bed Application: Flow Hydrodynamics and Solid Phase Classifications

    Institute of Scientific and Technical Information of China (English)

    周鑫; 史清洪; 白姝; 孙彦

    2004-01-01

    Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.

  8. Thermal expansion

    International Nuclear Information System (INIS)

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  9. The larger mammal fossil assemblage from JK2, Bed III, Olduvai Gorge, Tanzania: implications for the feeding behavior of Homo erectus.

    Science.gov (United States)

    Pante, Michael C

    2013-01-01

    Little is known about the type and amount of animal proteins consumed by Homo erectus, a species distinguished from its predecessors by more human-like brain and body proportions and its association with more advanced stone tool technology. Here I present an interpretation of the feeding behavior of African H. erectus based upon the first taphonomic analysis of the larger mammal fossil assemblage from the JK2 site, Bed III, Olduvai Gorge. Results indicate that both hominins and carnivores consumed some flesh and bone marrow at the site. A low incidence of percussion marking suggests hominins did not break all long bones in the assemblage. Relatively high carnivore tooth mark frequencies and low cut mark frequencies independently suggest that both hominins and carnivores had access to flesh, while specimens that are both tooth- and butchery-marked demonstrate occasional hominin and carnivore feeding from the same carcass. Together, the bone surface modification data suggest a mixed and possibly time-averaged taphonomic history for the assemblage with at least some carcasses accessed by hominins early in the consumption sequence and others only by carnivores. The results for the JK2 assemblage contribute to a growing literature concerning the feeding behavior of African H. erectus, a species that appears to have relied on carcass foods to meet some of the nutritional demands of its larger brain and body size. PMID:23273772

  10. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    OpenAIRE

    Trevor James Morgan; Scott Q Turn; Anthe George

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when work...

  11. Expansions of $\\tau$ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    OpenAIRE

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-01-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mapp...

  12. Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Arvelakis, S.; Koukios, E.G. [National Technical Univ., Athens (Greece). Dept. of Chemical Engineering; Gehrmann, H. [Clausthaler Umwelttechnik Institut GmbH, Claushal Zellerfeld (Germany); Beckmann, M. [Bauhaus Universitat Dept. of Process Engineering and Environment, Weimar (Germany)

    2005-03-01

    Peach stones comprise a valuable agroindustrial by-product that is available in many countries of the World and especially in the Mediterranean region. A number of important advantages such as its high energy value, the low ash content in combination with the absence of transportation costs due to the fact that is produced in agro-industries, make peach stones an ideal fuel for energy production via gasification. Gasification tests were performed in a lab-scale fluidized bed gasifier in order to study the behavior of peach stones and especially its ash during the gasification process. Apart from the tests with the initial peach stone samples, gasification tests were performed using peach stones that had been pre-treated using two different methods fractionation and leaching. Pre-treatments used in order to study their effect on the beneficiation of the materials ash and on the avoidance of ash-related problems such as deposition, agglomeration and corrosion during the gasification process. A water-cooled steel tube placed vertical to the flow of the gasification gases was used in order to collect samples of ash deposits that were analyzed using SEM-EDX analysis techniques in order to assess the effect of the pre-treatment techniques on the peach stones ash behavior. The produced results showed that peach stones can be used as gasification feedstock without significant ash problems. Fractionation resulted in a deterioration of the ash behavior of the material, increasing the amounts of alkali metals and chlorine included in its ash, while leaching showed a positive effect but to a moderate extent. (author)

  13. Low-temperature negative thermal expansion behavior of LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaopeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Huang, Rongjin, E-mail: huangrongjin@mail.ipc.ac.cn [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Li, Wen [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Wei [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Zhao, Yuqiang [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2015-10-15

    The cubic NaZn{sub 13}-type LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x}(x = 0.2, 0.3, 0.4 and 0.5) compounds with different Si content were fabricated by conventional arc-melting method, the structures of which were confirmed by powder X-ray diffraction (XRD) measurement at ambient temperature. Besides, the thermal expansion and magnetic properties of these samples were also researched by means of a strain gage and a physical property measurement system (PPMS). Significantly, it was found that the negative thermal expansion (NTE) behavior have been remarkably enhanced with substituting Al with Si atoms. Furthermore, the NTE operation-temperature window concurrently shifts toward a higher temperature region. The variable temperature XRD results indicate that LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x} retain cubic NaZn{sub 13}-type structure when temperature varies from 20 K to 270 K, including the temperature region where NTE occurs. The further theoretical analysis combined with magnetic characterization reveal that the improvement of NTE behavior is attributed to the enhancement of Fe–Fe magnetic exchange interactions with doping Si atoms. It is noteworthy that this study displays a new pathway to improve the NTE property of La(Fe,Al){sub 13}-based compounds at low temperature region, which highlights the potential applications of NTE materials in cryogenic engineering. - Highlights: • Negative thermal expansion of LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x} was improved by introducing Si. • The structure of LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x} was studied by X-ray diffraction measurement. • We analyze the mechanism of NTE in LaFe{sub 11.2}Al{sub 1.8−x}Si{sub x} by magnetic measurement.

  14. Chiral Perturbation Theory, the 1/N_c expansion and Regge behavior determine the structure of the lightest scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, J. R. [Univ. Complutense Madrid (Spain); Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); de Elvira, J. Ruiz [Univ. Complutense Madrid (Spain); Wilson, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-11-01

    The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.

  15. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water. The amounts of char (organic fraction and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis and high

  16. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  17. Altered Anxiety-like Behavior and Long-term Potentiation in the Bed Nucleus of the Stria Terminalis in Adult Mice Exposed to Chronic Social Isolation, Unpredictable Stress and Ethanol Beginning in Adolescence

    OpenAIRE

    Conrad, Kelly L; Winder, Danny G.

    2010-01-01

    Alcohol and chronic stress exposure, especially during adolescence, can lead to an increased risk in adulthood of developing alcohol use disorders (AUDs). To date, however, no study has assessed the potential long-term effects of chronic intermittent and unpredictable ethanol (EtOH) exposure in mice chronically stressed beginning in adolescence on brain function and anxiety-like behaviors in adulthood. In particular, alterations in function of the bed nucleus of the stria terminalis (BNST), a...

  18. Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress

    OpenAIRE

    Hammack, Sayamwong E.; Roman, Carolyn W.; Lezak, Kimberly R.; Kocho-Shellenberg, Margaret; Grimmig, Bethany; Falls, William A; Braas, Karen; May, Victor

    2010-01-01

    Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucle...

  19. Behavior, performance and physiological parameters of pigs reared in deep bedding Comportamento, desempenho e parâmetros fisiológicos de suínos criados em cama sobreposta

    Directory of Open Access Journals (Sweden)

    Fabiana R. Caldara

    2012-02-01

    Full Text Available An experiment was conducted to evaluate the behavior, performance and physiological parameters of pigs in different production systems. Twenty four animals in the growth phase were distributed in a randomized block design in three treatments: T1 - concrete floor, T2 - deep bedding with wood shaving, and T3 - deep bedding with coffee husks. The behavioral study was carried out by observing the animal behavior for an uninterrupted period of eight hours throughout seven weeks. The proportions of time spent in each behavior were characterized using the frequency histogram composition. Environmental (IBGTH, physiological (rectal and skin temperature and respiratory rate and performance (weight gain, feed intake and feed conversion parameters were measured in animals during the period. The production systems of deep bedding showed higher values of IBGTH. There was no effect of production systems evaluated on the performance parameters. Rectal temperature was higher in animals reared on deep bedding with coffee husks in relation to the concrete floor. The use of deep bedding benefited the behavior of piglets in the growth phase and it reduced the agonistic behavior among individuals.Foi conduzido um experimento para avaliar o comportamento, desempenho e parâmetros fisiológicos de suínos, em diferentes sistemas de produção. Foram utilizados 24 suínos em crescimento, distribuídos em delineamento casualizado, nos tratamentos: T1 - piso de concreto; T2 - cama sobreposta com maravalha; T3 - cama sobreposta com casca de café. Realizou-se observação do comportamento animal, por oito horas ininterruptas, ao longo de sete semanas. Foram caracterizadas as proporções de tempo dedicadas a cada comportamento, utilizando a composição de histograma de frequência. Foram mensurados parâmetros ambientais (ITGU, fisiológicos (temperatura retal e de superfície e frequência respiratória e de desempenho dos animais (ganho de peso, consumo de ração e

  20. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds. Topical report, January 1991--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kono, H.

    1992-10-01

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds (METC/DOE) by measuring and utilizing the signals of transient gas phase pressure fluctuation, and also by taking the video pictures of transient motions of the bubbles and emulsion phase in fluidized beds. The two signals were measured simultaneously in a three dimensional fluidized bed. Correlation study on the voidage signal and pressure fluctuation was carried out. A domain concept was introduced and new bubble classification was suggested. A video recording approach was also developed to record the transient bubble motion in a two dimensional fluidized bed with a special consideration. This new approach enhances the understanding of bubble image and the physical meaning of transient particle forces. The fundamental mechanism of bubble flow was experimentally investigated and interesting new findings of the transient bubble flow were obtained.

  1. Model Behavior and Sensitivity in an Application of the Cohesive Bed Component of the Community Sediment Transport Modeling System for the York River Estuary, VA, USA

    Directory of Open Access Journals (Sweden)

    Kelsey A. Fall

    2014-05-01

    Full Text Available The Community Sediment Transport Modeling System (CSTMS cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1 describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2 compare calculations to observations, and (3 investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  2. Expansion Nets and Expansion Processes of Elementary Net Systems

    Institute of Scientific and Technical Information of China (English)

    曹存根

    1995-01-01

    Occurrence nets are insufficient to precisely describe executions of elementary net systems with contacts.Traditionally,S-complementation is used for removal of contacts from the systems.Although the main behavior and properties of the original elementary net systems are preserved during S-complementation,their topologies may be changed greatly.This paper introduces a new kind of nets-expansion nets-for representing behavior of elementary net systems.As shown in the paper,expansion nets are natural as well as sufficient for describing the precise behavior of elementary net systems with or without contactks.

  3. Spouted bed electrowinning of zinc: Part II. Investigations of the dynamics of particles in large thin spouted beds

    Science.gov (United States)

    Verma, A.; Evans, J. W.; Salas-Morales, Juan Carlos

    1997-02-01

    The behavior of particles in thin spouted beds, mostly equipped with draft tubes, has been investigated. Three apparatuses have been used: a laboratory-scale cylindrical bed, a 2-m-tall “flat” (rectangular cross section) bed and a 2-m-wide flat bed, the last equipped with multiple draft tubes. Most of the results were obtained on the tall bed. Minimum spouting flow rate, pressure distribution, particle velocities, and solid circulation rates were determined as a function of bed geometry (including draft tube dimensions and position). Observations were made of the direction of liquid flow in the bed outside the draft tube and of the occurrence of zones in the bed where the particles appeared stationary. The wide bed was used to determine that there is a maximum separation between draft tubes beyond which particles cannot be kept in motion across the whole width of the bed.

  4. Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: Observation of strong explosion self-similar behavior

    International Nuclear Information System (INIS)

    We present measurements of the temporal evolution of temperature and electron density in laser-induced plasmas generated in air and on a glass sample at atmospheric pressure. The measurements are made over a wide range of time, from 35 ns to 6 μs, in order to study the evolution of the plasma. The procedure for selecting the lines suitable for characterization at each stage, based on the evolution of the densities of the ionization states, is discussed. At the initial stage of fast plasma expansion, the temperature and electron density evolve as t−6/5, a result compatible with the self-similar theory for strong explosions in homogeneous atmosphere, according to which the plasma is bounded by a Sedov–Taylor shock wave propagating in the atmosphere. From the experimental results, it is deduced that a change of trend of the cooling mechanism of the plasma from expansion to radiation takes place when the plasma ends its expansion as a shock wave (∼ 0.5 μs). The parameters of the plasmas generated in air and on the solid sample are compared. - Highlights: • Temperature and electron density of laser plasmas measured from 35 ns to 6 μs • Initial evolution explained by strong explosion self-similar shock wave expansion • A change of trend in the cooling mechanism from expansion to radiation is shown

  5. Critical Behavior of Thermal Expansion and Magnetostriction in the Vicinity of the First order transition at the Curie Point of Gd5(SixGe1-x)4

    Energy Technology Data Exchange (ETDEWEB)

    Mangui Han

    2004-12-19

    Thermal expansion (TE) and magnetostriction (MS) measurements have been conducted for Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} with a series of x values to study its critical behavior in the vicinity of transition temperatures. It was found that the Curie temperature of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} for x 0 {approx} 0.5 is dependent on magnetic field, direction of change of temperature (Tc on cooling was lower than Tc on heating), purity of Gd starting material, compositions, material preparation methods, and also can be triggered by the external magnetic field with a different dT/dB rate for different x values. For Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}), Gd{sub 5}(Si{sub 2}Ge{sub 2}), Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}), it was also found that the transition is a first order magneto-structural transition, which means the magnetic transition and crystalline structure transition occur simultaneously, and completely reversible. Temperature hysteresis and phase coexistence have been found to confirm that it is a first order transformation. While for Gd{sub 5}(Si{sub 0.15}Ge{sub 3.85}), it is partially reversible at some temperature range between the antiferromagnetic and the ferromagnetic state. For Gd{sub 5}(Si{sub 2.3}Ge{sub 1.7}) and Gd{sub 5}(Si{sub 3}Ge{sub 1}), it was a second order transformation between the paramagnetic and ferromagnetic state, because no {Delta}T have been found. Giant magnetostriction was only found on Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}), Gd{sub 5}(Si{sub 2}Ge{sub 2}), Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}) in their vicinity of first order transformation. MFM images have also been taken on polycrystal sample Gd{sub 5}(Si{sub 2.09}Ge{sub 1.91}) to investigate the transformation process. The results also indicates that the Curie temperature was lower and the thermally-induced strain higher in the sample made from lower purity level Gd starting materials compared with the sample made from high purity Gd metal. TE, MS, MFM and VSM measurements

  6. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  7. Statistical behaviors of different-sized grains lifting off in stochastic collisions between mixed sand grains and the bed in aeolian saltation

    Science.gov (United States)

    Li, Wan-Qing; Zhou, You-He

    2007-11-01

    Multiple-size splash models are derived from the simulation results of mixed grain-bed impact process of windblown sand flow based on the Particles Dynamics Method (PDM) and parallel algorithm. Unlike previous studies, a probability density distribution of sand diameter is considered in the present study, in which a two-dimensional mixed sand bed is generated by a random method. After the diameter distribution of incident grains is divided into n subregions of representative diameters, first, the collisions are simulated out for each representative diameter of incident grains with an incident velocity impacting the mixed sand bed, to which the information of grains experiencing saltation liftoff may be gained at the end of collisions. After that, a statistical approach is proposed to obtain the average values of velocity and number of the ejecting and rebounding grains as well as the probability density function (PDF) of ejection particle sizes. The results confirm earlier findings that the ratio between outgoing and incoming speed remains about 60% and the ejection angles are typically between 60-80°. However, other properties of grains experiencing saltation liftoff depend not only upon incident velocity as previously argued, but also much upon grain size of incident grains. We found that rebound angle decreases and death rate of incident particles increases with incident grain size exponentially, and ejection speed and number increase logarithmically with both speed and diameter of incident grains. In addition, the PDF of initial diameter is also presented for the first time. These results well agree with the multiple-size measurement data.

  8. Surviving Bed Rest

    Science.gov (United States)

    ... doctor will give you specific information about the duration of your bed rest. continue How Does Bed ... reading about high-risk pregnancy issues, learn about breastfeeding or how to encourage your child's development instead. ...

  9. 品牌拓展新市场过程中消费者选择行为研究%Study on Consumer Choice Behavior in Brand Expansion of New Markets

    Institute of Scientific and Technical Information of China (English)

    姚慧丽; 袁颖慧; 刘善智; 张耀东

    2013-01-01

    研究消费者品牌选择行为是进行品牌拓展新市场的前提。本文基于消费者决策理论,利用元胞自动机分析了品牌文化、广告宣传、邻居关系及数量、竞争者、市场的经济环境等对消费者进行品牌选择时的影响,研究结果表明该模型能较好地模拟出品牌进行拓展新市场过程中的消费者选择行为。通过对品牌拓展新市场过程中的消费者选择行为的分析,找出更适合进行品牌扩张的区域。%Study on consumers′brand choice is the premise of brand expansion of new markets .Based on con-sumer decision theory ,we use cellular automata to analyze some factors affecting the consumers′behavior like brand culture ,advertisement ,number of neighbors and relationship with them ,competitors and economic en-vironment .T he result of simulation and analysis show s that the model can simulate the consumer choice be-havior in brand expansion of new markets .Study on consumer choice behavior in brand expansion of new markets can help companies to find better places to expand the brand .

  10. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  11. Examining time trends in the Oldowan technology at Beds I and II, Olduvai Gorge.

    Science.gov (United States)

    Kimura, Yuki

    2002-09-01

    The lithic analysis of the Bed I and II assemblages from Olduvai Gorge reveals both static and dynamic time trends in early hominids' technology from 1.8 to 1.2 m.y.a. The Bed I Oldowan (1.87-1.75 m.y.a.) is characterized by the least effort strategy in terms of raw material exploitation and tool production. The inclusion of new raw material, chert, for toolmaking in the following Developed Oldowan A (DOA, 1.65-1.53 m.y.a.) facilitated more distinctive and variable flaking strategies depending on the kind of raw materials. The unique characters of DOA are explainable by this raw material factor, rather than technological development of hominids. The disappearance of chert in the subsequent Developed Oldowan B and Acheulian (1.53-1.2 m.y.a.) necessitated a shift in tool production strategy more similar to that of Bed I Oldowan than DOA. However, the evidence suggests that Bed II hominids might have been more skillful toolmakers, intensive tool-users, and engaged in more active transport of stone tools than the Bed I predecessors. Koobi Fora hominids maintained a more static tool-using behavior than their Olduvai counterparts due mainly to a stable supply of raw materials. They differed from Olduvai hominids in terms of less battering of cores, consistent transport behavior, and few productions of side-struck flakes, indicating a regional variation of toolmaking and using practice. However, they shared with Olduvai hominids a temporal trend toward the production of larger flakes from larger cores after 1.6 m.y.a. Increased intake of animal resources and the expansion of ranging area of Homo ergaster would have led to the development of technological organization. Technological changes in the Oldowan industry are attested at Olduvai Gorge, Koobi Fora, and Sterkfontein, suggesting that it was a pan-African synchronous phenomenon, beginning at 1.5 m.y.a. PMID:12234546

  12. Thermal expansion behavior in the solid solution series BaMg{sub 2−x}Co{sub x}Si{sub 2}O{sub 7} (0 ≤ x ≤ 2), studied by dilatometry and in situ high-temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Christian, E-mail: christian.thieme@uni-jena.de; Rüssel, Christian, E-mail: ccr@uni-jena.de

    2015-07-20

    Highlights: • Characterization of thermal expansion with high-temperature X-ray diffraction. • Coefficients of thermal expansion of up to 24.0 × 10{sup −6} K{sup −1} were obtained. • Phase transition temperatures were measured as a function of the composition. • The most isotropic thermal expansion behavior was found for high CoO concentrations. - Abstract: In the compound BaMg{sub 2}Si{sub 2}O{sub 7}, the Mg{sup 2+}-ions can completely be replaced by Co{sup 2+}-ions. The resulting solid solutions show a phase transition from a low to a high temperature phase. Both, the thermal expansion behavior as well as the phase transition temperature change significantly with the Mg/Co-ratio. The phase transition runs parallel to an increase in volume, which can be detected using dilatometry. The introduction of small CoO concentrations leads to an increase in the phase transition temperature. In order to determine the thermal expansion behavior, dilatometry, as well as high temperature X-ray diffraction was used. The substitution of MgO by up to 50 mol% CoO does not lead to a significant change in the thermal expansion behavior. The measured coefficients of thermal expansion lie in a range between 7.0 and 24.0 × 10{sup −6} K{sup −1}.

  13. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  14. Top Ten Bed Bug Tips

    Science.gov (United States)

    ... have bed bugs, not fleas, ticks or other insects. You can compare your insect to the pictures on our Identifying bed bugs ... bedbugs Bed Bugs Home Learn about Bed Bugs — Characteristics of Bed Bugs — Finding Bed Bugs Protecting Your ...

  15. Moisture-heat coupling behavior and evaporation effect of expansive soil in simulated solar%模拟日照条件下膨胀土的湿-热耦合性状及蒸发效应

    Institute of Scientific and Technical Information of China (English)

    李雄威; 王爱军; 王勇; 王继果

    2013-01-01

    利用长弧氙灯模拟太阳辐射,通过调节灯罩与土样间的高度产生不同的辐射强度,通过控制光照时间模仿自然环境中的日照状态,通过设定恒温、恒湿环境获得单因素的控制条件,对阳光辐射下原状膨胀土的湿-热耦合性状及降雨蒸发效应进行分析。研究结果表明:当太阳辐射、降雨等气象现象发生后,膨胀土水分迁移和温度变化呈现不同的状态,随着土体水分的往复迁移,浅层土体趋于破碎,疏松,在太阳辐射作用下,土体含水率变化幅度增加,从而进一步加剧土体裂隙的拓展。对于膨胀土,裂隙性和膨胀性是它内在的秉性,而大气作用是诱因,在大气与土壤之间的水分和能量交换过程中,膨胀土的工程性质逐渐发生改变。采用自制的太阳辐射模拟装置,针对大气作用下原状膨胀土的湿热耦合性状以及降雨蒸发效应展开分析,相关经验也可应用到其他土类的研究。针对膨胀土工程性质,可进一步开展太阳辐射对膨胀土水分迁移机制影响的量化分析。%Xenon long-arc lamp is used to simulate solar radiation. Deferent radiation intensities are acquired by adjusting lampshade height. Sunshine state is acquired by controlling the illumination time. Single factor controlling condition is achieved by constant temperature and humidity environment. Then, moisture-heat coupling behavior and rainfall-evaporation effect of undisturbed expansive soil sample in solar radiation are studied. When solar radiation and rainfall occur, the moisture migration and temperature variation present different states. With the to-and-fro moisture migration, the shallow soil tends to the fractured and loosened. In the solar radiation, the amplitude of moisture content variation increases, which aggravates the fissure development. To expansive soil, the characteristics of swelling and fissure are inner being, and atmospheric

  16. The hydrodynamics of single- and multi-particle fluidized beds: Steady and time-dependent flow regimes

    Science.gov (United States)

    Howley, Maureen Ann

    A mathematical framework for modeling the steady state and dynamic behavior of multi-particle fluidized beds was developed using a continuum approach. Constitutive relations were adopted for closing the multi-phase equations using an excluded volume approach. The hydrodynamics of various fluidized beds of binary particles (having different diameters and densities) was examined, and steady state solutions were found for a system of (small & heavy) glass beads and (large & light) carbon char in water. Solutions characterize the composition and expansion behavior of mixing states, and provide a description of the observed phenomenon of "layer inversion". Comparison with experimental data suggested that the hydrodynamic mechanism of fluid-particle interaction is not fully captured with an excluded volume assumption. Thus, we showed how experimental data can be used to derive functional forms for expressing complex hydrodynamic behavior within the framework of the model. Steady state results suggest that fluidized particles might exhibit different patterns of behavior if the direction of fluid flow was reversed. We thus examined the stability of single-component systems, operating in inverse and normal mode, and computed one-dimensional traveling wave solutions. Beds having reciprocal fluid to solid density ratios delta were compared to investigate how delta and the dimensionless Froude (Fr) number affect stability behavior and bifurcation structure. The Fr number appeared to be a good indicator of the strength of primary instabilities, and delta appeared to control the onset of the instability. High amplitude, one-dimensional traveling wave solutions exhibited reversed asymmetry of wave structure, and vertically traveling waves always propagated in the direction of fluid flow. The hydrodynamic stability of binary mixtures was examined to determine if mixtures are inherently more stable than their segregated counterparts. In a linear stability analysis, mixed beds of

  17. DEM simulation of the behavior of particles in a spout-fluid bed with immersed tubes%基于DEM的埋管鼓泡流化床内颗粒运动特性模拟

    Institute of Scientific and Technical Information of China (English)

    虞育松; 张衍国; 李清海; 蒙爱红

    2012-01-01

    The discrete element method(DEM) was used to study the behavior of particles in a spout-fluid bed with horizontal immersed tubes.In the DEM simulations,the particles were individually traced by solving Newton's equations of motion,while the fluid phase was treated as a continuum.Therefore,the DEM simulation provides particle level information.The effect of tube arrangement on the particle and bubble behavior in the packed bed region was investigated by varying the tube arrangement.The simulations show that the tube arrangement greatly influences the kinetic behavior of the particles.The effective flow area and interaction forces between the immersed tubes and particles varied with different tube arrangements.More immersed tubes gave lower averaged particle velocities and temperatures.The particle mixing rate also differed for different immersed tube arrangements.The particle mixing was reduced by more immersed tubes.%该文采用离散单元法(DEM)对水平埋管的鼓泡流化床内颗粒流化过程进行了数值模拟研究。DEM方法通过求解Newton方程来模拟颗粒的运动过程,气相仍采用连续流方法模拟。因此,DEM方法能够获得颗粒尺度量级的详细结果。通过模拟不同埋管布置方式下流化床内密相区颗粒流化过程,研究了埋管布置方式对于鼓泡流化床内的颗粒运动的影响。结果表明:埋管布置方式会改变床层有效流通面积和埋管对颗粒的阻碍作用等,从而影响流化床内的颗粒群和气泡形态。埋管数量越多,颗粒与埋管由于相互作用而消耗的能量越大,平均颗粒速度和颗粒温度值越低。不同的埋管布置方式会导致颗粒混合速率的差异,增加埋管数量会降低颗粒混合程度。

  18. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  19. Bed In Summer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In winter I get up at night And dress by yellow candle-light. In summer, quite the other way, I have to go to bed by day. I have to go to bed and see The birds still hopping on the tree, Or hear the grown-up people' s feet Still going past me in the stree

  20. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  1. DEM Simulation of Flow Behaviors in 3D Spouted Beds%喷动床气固流动特性的三维CFD.DEM数值模拟

    Institute of Scientific and Technical Information of China (English)

    任冰; 钟文琪; 金保昇; 袁竹林; 陆勇

    2012-01-01

    开展了柱锥形气固流动特性的CFD—DEM耦合三维数值模拟研究。气相场采用基于欧拉坐标体系的k—E双方程湍流模型,固相场采用基于拉格朗日坐标体系的DEM直接数值模拟方法,跟踪离散颗粒场的每一个颗粒,考虑颗粒与颗粒(壁面)之间的碰撞力、曳力、重力、Magnus升力、Saffman升力。颗粒之间的碰撞采用Hertz.Mindlin无滑移模型计算。模拟对象为柱锥形喷动床,其直径为0.152m,喷口直径为0.019m,模拟颗粒数22万,探讨了喷动床中射流随时间的发展,不同气速下床内气固流动结构,以及颗粒速度与颗粒浓度的分布,并与实验数据进行了对比。%Three dimensional coupled CFD-DEM simulation was carried out on the cylindrical spouted bed with an inside diameter of 152 mm and a conical base of 60°. The particle motion was modeled by the DEM, and the gas motion was modeled by the k - s turbulent model. Drag force, contact force, Saffman lift force, Magnus lift force and gravitational force were considered in the models. On the basis of the simulation, the development of spout with time, different flow patterns at various gas velocity and the distributions of particle velocity and concentration were studied. The present simulated results were in well agreement with the experiments.

  2. Salvadoran gangs and their criminal behavior: Foresight on their organizational structures and territorial expansion for the next decade, 2015-2025

    Directory of Open Access Journals (Sweden)

    Herard Von Santos

    2014-12-01

    Full Text Available This analysis will address gangs as its focal point, including who their members are, their level of organization or their structure, the illegal activities they carry out, and their territorial control. Therefore, a Foresight with three estimated scenarios for the next decade shall be developed, as this situation currently represents the biggest challenge to the country´s public safety.But, how is the impact of gangs in a society measured? Some parameters might be: Measuring their extent and territorial expansion, their criminal activities in total, their willingness to break the established social order, their ability to displace and substitute state control, and their capability of ending the life of human beings.Likewise, this analysis shall shed light on the impact that external or internal organized crime groups have in order to influence these trends, as well as the policies and resources that the State has used to prevent or lessen the realization of such trends among the gangs. Furthermore, it will include a study of possible measures to be implemented to counter these criminal trends.DOI: http://dx.doi.org/10.5377/rpsp.v4i2.1762

  3. THERMAL EXPANSION BEHAVIOR OF THE Ba0.2Sr0.8Co0.8Fe0.2O3−δ (BSCF WITH Sm0.2Ce0.8O1.9

    Directory of Open Access Journals (Sweden)

    M. AHMADREZAEI

    2014-03-01

    Full Text Available Nanostructured perovskite oxides of Ba0.2Sr0.8Co0.8Fe0.2O3−δ (BSCF were synthesized through the co-precipitation method. The thermal decomposition, phase formation and thermal expansion behavior of BSCF were characterized by thermogravimetric analysis, X-ray diffraction (XRD, and dilatometry, respectively. XRD peaks were indexed to a cubic perovskite structure with a Pm3m (221 space group. All the combined oxides produced the desired perovskite-phase BSCF. The microstructures were characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The TEM analysis showed that BSCF powders had uniform nanoparticle sizes and high homogeneity. The cross-sectional SEM micrograph of BSCF exhibited a continuous and no delaminated layer from the electrolyte-supported cell. The thermal expansion coefficient (TEC of BSCF was 16.2×10-6 K-1 at a temperature range of 600°C to 800°C. Additional experiments showed that the TEC of BSCF is comparable to that of Sm0.2Ce0.8O1.9 (SDC within the same temperature range. The results demonstrate that BSFC is a promising cathode material for intermediate-temperature solid-oxide fuel cells.

  4. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  5. Putting Children’s Sleep Problems to Bed: Using Behavior Change Theory to Increase the Success of Children’s Sleep Education Programs and Contribute to Healthy Development

    Directory of Open Access Journals (Sweden)

    Sarah Blunden

    2016-07-01

    Full Text Available Sleep is critical for the healthy development of children, yet most children simply don’t get enough. Whilst school based sleep education programs have been developed for parents and their children, they have had mixed success. We consider how existing school-based sleep education programs can be improved by applying a broader model to behaviour change theory. We find that the mixed success of school-based sleep education programs may be due to a plausible but misleading assumption that simply increasing information about the importance of sleep and the risks of insufficient and/or inefficient sleep, will necessarily result in improved sleep behaviours. We identify the potential benefits of using a more inclusive behavior change theory in the development of sleep education programs with a particular need for theories that incorporate the multiple biological, environmental and social impacts on children’s sleep. Bronfenbrenner’s Bioecological model is presented to illustrate how one such inclusive behavior change theory could significantly improve the success of sleep education programs and ultimately support the healthy development of children.

  6. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    OpenAIRE

    Benoit, Joshua B.

    2011-01-01

    Recent emergence of bed bugs (Cimex spp.) has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor all...

  7. Sintering behavior of flying slag particles in entrained-bed coal gasifiers. 3rd Report. Effect of soot on sintering behavior of flying slag particles; Kiryuso sekitan gas ka ro ni okeru hisan slag fun no shoketsu tokusei. 3. Char chu tansobun no slag shoketsu yokusei sayo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, A.; Kida, E. [Babcock Hitachi K.K., Tokyo (Japan)

    1997-05-25

    The effect of char addition on sintering behavior of flying slag particles in an entrained-bed coal gasifier was examined using four kinds of amorphous water-quenched slag obtained at the pilot plant of HYCOL. This plant was designed to gasify 50 tons of coal per day. The sintering temperatures of the four slags without char were all approximately 800{degree}C. However, Taiheiyo coal slag did not sinter at 900{degree}C when the char added. It was considered that the char collected by the cyclon was a mixture of soot and unburned coal particles and the soot prevented the slag from sintering. Therefore, the effect of soot on sintering behavior was clarified using carbon black as soot. SEM and EDX analyses showed that very small soot particles acted as a dispersant in the slag. 12 refs., 13 figs., 2 tabs.

  8. Magnetically stabilized bed dust filters-Analysis through variable length scale approach

    Institute of Scientific and Technical Information of China (English)

    Jordan; Hristov

    2007-01-01

    Magnetically stabilized beds are packed beds subjected to fluid-driven deformation and controlled by magnetically induced interparticle forces.This paper deals with magnetically stabilized beds as deformable porous media and describes their application in dust filtration. The Richardson-Zaki scaling law, U/Ut = εn describes the field controlled bed expansion via the exponent n, that yields a porosity-dependent flow length scale dc =dpεn.The paper addresses two issues: (i) deformation characteristics by assuming homogeneous bed expansion and a definition of bed variable flow length scale; (ii) dust filtration characteristics such as filter coefficient, specific deposit and filtration efficiency expressed in terms of the variable flow length scale and illustrated by experimental data.

  9. The characteristics of bed agglomeration/defluidization in fluidized bed firing palm fruit bunch and rice straw

    International Nuclear Information System (INIS)

    The behaviors of bed particle agglomeration and defluidization were investigated during the combustion of oil palm bunch and rice straw in a laboratory scale bubbling fluidized bed reactor. The study focused on (1) the effects of fuel inorganic properties and operating variables on the bed agglomeration tendency and (2) the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was experimentally found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease of measured bed pressure. The accumulation and growth of the agglomerates provided the partial to complete defluidization. The fuel inorganic composition was the significant influence on the bed agglomeration. The combustion of palm bunch showed higher in the bed agglomeration tendency than the straw combustion in every experimental condition. The defluidization was accelerated in response to the increase in bed temperature and bed particle size, and the decrease of air velocity and static bed height. In the SEM/EDS analysis, the agglomeration was attributed to the formation of the molten substance rich in silicon and fuel derived potassium, likely the potassium silicate compounds, which presented as the adhesive coating and bonding layer. The filling of irregularity on the bed particle surface by the liquid material to form the adhesive layer was dominated by the collision with burning fuel particles. The propagation/reaction inward the bed particles by some reactive constituents was found. The thermodynamic analysis on the ternary phase diagram corroborated that the formation of the liquid material derived from the fuel inorganic elements controlled the agglomeration; the large melt fraction in the adhesive materials at the observed bed temperature range (62–99%) was estimated. - Highlights: • The bed agglomeration was investigated during the FBC of palm bunch and rice straw. • Bed temperature, sand size, air

  10. Testing the isotropy of the Hubble expansion

    CERN Document Server

    Migkas, K

    2016-01-01

    We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in the two Galactic hemispheres. We identified only one sky region, containing 82 SNIa (~15% of total sample with $z>0.02$), that indeed appears to share a significantly different Hubble expansion than the rest of the sample. However, this behavior appears to be attributed to the joint "erratic" behavior of only three SNIa and not to an anisotropic expansion. We also find that the northern and southern galactic hemispheres have different cosmological parameter solutions but still not significant enough to assert the detection of a Hubble expansion anisotropy. We conclude that even a few outliers can have such an effect as to induce artificial indications of anisotropies, when the number of analysed SNIa is relatively small.

  11. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... get out of bed to go to the bathroom. When do most children achieve bladder control? Children ... ask questions about your child's daytime and nighttime bathroom habits. Then your doctor will do a physical ...

  12. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H2 for 12 hours with no visible reaction or weight loss

  13. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  14. Bed rest and immunity

    Science.gov (United States)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  15. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  16. Cross-linked κ-carrageenan polymer/zinc nanoporous composite matrix for expanded bed application: Fabrication and hydrodynamic characterization.

    Science.gov (United States)

    Mohsenkhani, Sadaf; Jahanshahi, Mohsen; Rahimpour, Ahmad

    2015-08-21

    Expanded bed adsorption (EBA) is a reliable separation technique for the purification of bioproducts from complex feedstocks. The specifically designed adsorbent is necessary to form a stable expanded bed. In the present work, a novel custom-designed composite matrix has been prepared through the method of water-in-oil emulsification. In order to develop an adsorbent with desirable qualities and reduce the costs, κ-carrageenan and zinc powder were used as the polymeric skeleton and the densifier, respectively. The prepared composite matrix was named as KC-Zn. Optical microscope (OM) and scanning electron microscope (SEM) were applied to characterize the morphology and structure of prepared composite matrix. These analyses approved good spherical shape and porous structure with nano-scale pores in the range of about 60-180nm. The results from the particle size analyzer (PSA) revealed that all the KC-Zn beads followed logarithmic normal size distribution with the range of 50-350μm and average diameter of 160-230μm, respectively. Main physical properties of KC-Zn matrices were measured as a function of zinc powder ratio to κ-carrageenan slurry, which showed an appropriate wet density in the range of 1.39-2.27g/ml, water content of 72.67-36.41% and porosity of 98.07-80.24%, respectively. The effects of matrix density and liquid phase viscosity on hydrodynamic behavior of prepared matrix have been investigated by residence time distribution (RTD) experiments in an expanded bed. The results indicated that in a constant liquid velocity as the matrix density was increased, the expansion factor of bed decreased and the axial mixing coefficient increased. Moreover, an enhancement in the fluid viscosity led to an increase in the bed expansion and a decrease in the stability of expanded bed. Therefore using a matrix with higher density seems necessary to face viscous feedstocks. All the results demonstrated that proper physical properties and hydrodynamic characteristics

  17. Calculation of local bed to wall heat transfer in a fluidized-bed

    International Nuclear Information System (INIS)

    Surface to bed heat transfer in a fluidized-bed largely depends upon its local and global hydrodynamical behavior including particle velocity, particle trajectory, gas velocity, and void fraction. In this study, a computer program was developed in order to calculate the local bed to wall heat transfer, by accounting for the local and global instantaneous hydrodynamics of the bed. This is accomplished by utilizing the CHEMFLUB computer program. This information at a given location is interpreted so that the most appropriate heat transfer model is utilized for each time increment. These instantaneous heat transfer coefficient for the given location. Repeating the procedure for different locations, a space average heat transfer coefficient is also calculated. This report briefly summarizes the various heat transfer models employed and gives sample computer results reporting the case study for Mickley - Trilling's experimental set-up. Comparisons with available experimental data and correlations are also provided in order to compare and evaluate the computer results

  18. Oxidation behavior of low thermal expansion superalloy IN909 at 650 ℃%低膨胀IN909合金650℃的氧化行为

    Institute of Scientific and Technical Information of China (English)

    孙雅茹; 张爱玲; 徐炳辉

    2011-01-01

    The low thermal expansion superalloy IN909 has high comprehensive mechanical properties and lower thermal expansion coefficient. Because no Cr is added, the alloy exhibits worse oxidation resistance. Thus, the coating needs to be applied if the alloy services at high temperature. In order to improve further the oxidation resistance, the oxidation behavior of low thermal expansion alloy IN909 at 650 ℃ was studied using scanning electron microscope (SME) equipped with energy dispersive spectrometry (EDX). The results indicate that the oxidation kinetics obeys the different parabolic law in different duration. The oxidation initiates from grain boundaries, forming the oxides of Nb, Ti and Si. Then, Fe replaces Nb, Ti and Si in the oxides, forming the oxides of Fe at the outside layer. In the oxidation process, Fe diffuses from the matrix to the surface, while Nb and Ti diffuse from the transition layer towards the matrix. The concentration of Nb and Ti at the front of matrix causes the considerable precipitation of ε phase, which can efficiently resist the diffusion of Fe and hence decrease the oxidation rate.%IN909低膨胀高温合金具有较低的热膨胀系数和高的综合力学性能,但由于合金不含Cr,其抗氧化性能较差,因此,在高温使用时需采用氧化涂层.为进一步提高合金的抗氧化性能,采用扫描电镜(SEM)和能谱分析(EDX)方法,研究了低膨胀IN909合金在650℃的氧化行为,结果显示IN909合金的氧化质量增加分段遵循抛物线规律,氧化由晶界开始,形成Nb、Ti、Si等元素的晶界氧化物;Fe置换氧化物中的Nb、Ti、Si,形成外层Fe的氧化物.氧化过程中,Fe由基体向合金表面扩散,Nb和Ti由氧化过渡层向基体扩散.Nb和Ti在基体前沿的富集形成ε相大量析出的薄层,可有效地阻碍Fe元素的进一步扩散,降低氧化速率.

  19. Expanded bed adsorption of an alkaline lipase from Pseudomona cepacia.

    Science.gov (United States)

    da Silva Padilha, Giovana; Curvelo-Santana, José Carlos; Alegre, Ranulfo Monte; Tambourgi, Elias Basile

    2009-02-15

    An extracellular lipase was isolated from Pseudomona cepacia by expanded bed adsorption on an Amberlite 410 ion-exchange resin. Enzyme characterization and hydrodynamic study of a chromatography column were done. Enzyme purification was done at three condition of expanded bed height (H): at one and half (6cm), at two (8cm) and at three (12cm) times the fixed bed height (H(0)=4cm). The results showed that the experimental data was fitted to the Richardson and Zaki equation, and the comparison between the experimental and calculated terminal velocities showed low relative error. In enzyme purification for better condition, a purification factor of about 80 times was found at 6cm of expanded bed height, or 1.5 times of expansion degree. Purified lipase had an optimal pH and a temperature of 8 and 37 degrees C, respectively. PMID:19162572

  20. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  1. Ash management in circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    K. Redemann; E.-U. Hartge; J. Werther [Hamburg University of Technology, Hamburg (Germany). Institute of Solids Process Engineering and Particle Technology

    2008-12-15

    Ash management in fluidized bed combustion systems means keeping the particle size distribution of the bed inventory in a given range. A dynamic particle population balancing model was developed for this purpose. It was successfully applied to a refuse-derived fuel fired combustor and a coal-fired circulating fluidized bed combustor. Both were large-scale commercial units. The model uses the concept of the attrited ash particle size distribution which represents the particle size distribution of the attrited ash including the generated fines and replaces the consideration of the particle attrition in the model calculations. The model offers the possibility to gain additional information about the particle size distributions and the solids mass flows at any location of the fluidized bed system. In addition, the model provides information about the dynamic behavior of the plant and about mean residence times of particle size classes in the plant. Uncertainties about the ash formation characteristics of fuels make the management of the bed inventory a very important issue. In this context the population balancing model is used to predict the plant behavior under various operating conditions. The results of the calculations carried out give useful information about the possibilities to manage the ash inventory of such a plant. It could be shown that the recirculation of a fine fraction of the bottom drain solids is a very effective method to manage the particle size distribution of the bed inventory. The calculation results further reveal that the mean residence time of particles is strongly dependent on their size. 21 refs., 19 figs., 4 tabs.

  2. Study on Reactivity of Circulating Fluidized Bed Combustion Fly Ashes in the Presence of Water

    Directory of Open Access Journals (Sweden)

    Salain I.M.A.K.

    2010-01-01

    Full Text Available A study on reactivity of four different Circulating Fluidized Bed Combustion (CFBC fly ashes has been realized in the presence of water. Paste of each ash was prepared and analyzed for its setting time, expansion and strength. The products of hydration, and their evolutions over a period of time were identified by X-ray diffraction and differential thermal analysis. The results of this study show that the reactivity of the CFBC fly ashes is strongly related to their chemical composition, essentially to their quantity of silica, alumina, lime and sulfate, which promote principally the formation of ettringite, gypsum and C-S-H. It is further noted that the intensity and the proportion of these phases determine the hydration behavior of the CFBC fly ashes.

  3. in Spouted Bed

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2013-01-01

    Full Text Available Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases.

  4. Anisotropic expansion of a thermal dipolar Bose gas

    CERN Document Server

    Tang, Yijun; Burdick, Nathaniel Q; DiSciacca, Jack M; Petrov, Dmitry S; Lev, Benjamin L

    2016-01-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  5. Climbing Ability of the Common Bed Bug (Hemiptera: Cimicidae).

    Science.gov (United States)

    Hottel, B A; Pereira, R M; Gezan, S A; Qing, R; Sigmund, W M; Koehler, P G

    2015-05-01

    Little is known about what factors influence the climbing ability of bed bugs, Cimex lectularius L. (Hemiptera: Cimicidae), in relation to the various surfaces they encounter. We examined how sex, time since last fed, and what surfaces the bed bugs were in contact with affected their climbing performance. The effects of sex and time since fed were tested by counting the number of bed bugs able to climb a 45° slope. The pulling force was recorded using an analytical balance technique that captured the sequential vertical pulling force output of bed bugs attached to various surfaces. Recently fed female bed bugs were found to have the most difficulty in climbing smooth surfaces in comparison with males. This difference can be explained by the larger weight gained from bloodmeals by female bed bugs. A variety of vertical pulling forces were observed on surfaces ranging from sandpaper to talc powder-covered glass. For surfaces not treated with talc powder, bed bugs generated the least amount of vertical pulling force from synthetically created 0.6-µm plastron surfaces. This vast range in the ability of bed bugs to grip onto various surfaces may have implications on limiting bed bugs dispersal and hitchhiking behaviors. PMID:26334801

  6. Expansion for Universal Quantifiers

    CERN Document Server

    Lenglet, Sergueï

    2012-01-01

    Expansion is an operation on typings (i.e., pairs of typing environments and result types) defined originally in type systems for the lambda-calculus with intersection types in order to obtain principal (i.e., most informative, strongest) typings. In a type inference scenario, expansion allows postponing choices for whether and how to use non-syntax-driven typing rules (e.g., intersection introduction) until enough information has been gathered to make the right decision. Furthermore, these choices can be equivalent to inserting uses of such typing rules at deeply nested positions in a typing derivation, without needing to actually inspect or modify (or even have) the typing derivation. Expansion has in recent years become simpler due to the use of expansion variables (e.g., in System E). This paper extends expansion and expansion variables to systems with forall-quantifiers. We present System Fs, an extension of System F with expansion, and prove its main properties. This system turns type inference into a c...

  7. Metabolic Resistance in Bed Bugs

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    2011-03-01

    Full Text Available Blood-feeding insects have evolved resistance to various insecticides (organochlorines, pyrethroids, carbamates, etc. through gene mutations and increased metabolism. Bed bugs (Cimex lectularius are hematophagous ectoparasites that are poised to become one of the major pests in households throughout the United States. Currently, C. lectularius has attained a high global impact status due to its sudden and rampant resurgence. Resistance to pesticides is one factor implicated in this phenomenon. Although much emphasis has been placed on target sensitivity, little to no knowledge is available on the role of key metabolic players (e.g., cytochrome P450s and glutathione S-transferases towards pesticide resistance in C. lectularius. In this review, we discuss different modes of resistance (target sensitivity, penetration resistance, behavioral resistance, and metabolic resistance with more emphasis on metabolic resistance.

  8. Preliminary thermal expansion screening data for tuffs

    International Nuclear Information System (INIS)

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 2000C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss

  9. Maximum spoutable bed height of spout-fluid bed

    Energy Technology Data Exchange (ETDEWEB)

    Wenqi Zhong; Mingyao Zhang; Baosheng Jin [Southeast University, Nanjing (China). Key Laboratory on Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2006-11-15

    Experimental study on the maximum spoutable bed height of a spout-fluid bed (cross-section of 0.3 m x 0.03 m and height of 2 m) packed with Geldart group D particles has been carried out. The effects of particle size, spout nozzle size and fluidizing gas flow rate on the maximum spoutable bed height were studied. Experimental data were compared to some published experiments and predictions. The results show that the maximum spoutable bed height of spout-fluid bed decreases with increasing particle size and spout nozzle size, which appears the same trend to that of spouted beds. The increasing of fluidizing gas flow rate leads to a sharply decrease in the maximum spoutable bed height. The existent correlations of the maximum spoutable bed height in the literature were observed to involve large discrepancies. Additionally, the flow characteristics when bed materials deeper than the maximum spoutable height were summarized. Under this condition, the spout-fluid bed operated without a stable and coherent spout or fountain assembles the characteristics of jetting fluidized bed. Besides, the mechanisms of spout termination were investigated. It was found that slugging in the spout and growth of instabilities would cause the spout termination in spout-fluid bed.

  10. Multipole expansions in magnetostatics

    International Nuclear Information System (INIS)

    Multipole expansions of the magnetic field of a spatially restricted system of stationary currents and those for the potential function of such currents in an external magnetic field are studied using angular momentum algebraic techniques. It is found that the expansion for the magnetic induction vector is made identical to that for the electric field strength of a neutral system of charges by substituting electric for magnetic multipole moments. The toroidal part of the multipole expansion for the magnetic field vector potential can, due to its potential nature, be omitted in the static case. Also, the potential function of a system of currents in an external magnetic field and the potential energy of a neutral system of charges in an external electric field have identical multipole expansions. For axisymmetric systems, the expressions for the field and those for the potential energy of electric and magnetic multipoles are reduced to simple forms, with symmetry axis orientation dependence separated out. (methodological notes)

  11. Multipole expansions in magnetostatics

    Energy Technology Data Exchange (ETDEWEB)

    Agre, Mark Ya [National University of ' Kyiv-Mohyla Academy' , Kyiv (Ukraine)

    2011-02-28

    Multipole expansions of the magnetic field of a spatially restricted system of stationary currents and those for the potential function of such currents in an external magnetic field are studied using angular momentum algebraic techniques. It is found that the expansion for the magnetic induction vector is made identical to that for the electric field strength of a neutral system of charges by substituting electric for magnetic multipole moments. The toroidal part of the multipole expansion for the magnetic field vector potential can, due to its potential nature, be omitted in the static case. Also, the potential function of a system of currents in an external magnetic field and the potential energy of a neutral system of charges in an external electric field have identical multipole expansions. For axisymmetric systems, the expressions for the field and those for the potential energy of electric and magnetic multipoles are reduced to simple forms, with symmetry axis orientation dependence separated out. (methodological notes)

  12. Weakly relativistic plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Fermous, Rachid, E-mail: rfermous@usthb.dz; Djebli, Mourad, E-mail: mdjebli@usthb.dz [Theoretical Physics Laboratory, Faculty of Physics, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  13. Getting Rid of Bed Bugs

    Science.gov (United States)

    ... how you select a company. Related Information Collaborative Strategy on Bed Bugs - highlights ways that all levels of government, community, academia and private industry can work together to reduce bed bugs across ...

  14. Lagrangian-Eulerian simulation of slugging fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Guorong Wu; Jie Ouyang; Binxin Yang; Qiang Li; Fang Wang

    2012-01-01

    This work studies gas-solid slugging fluidized beds with Type-D particles,using two-dimensional simulations based on discrete element model (DEM).DEM performance is quantitatively validated by two commonly accepted correlations for determining slugging behavior.The voidage profiles simulated with bed height corresponding to Baeyens and Geldart (1974) correlation for onset of slugging demonstrate a transitional flow pattern from free bubbling to slugging.The present calculated values for the maximum slugging bed height are in good agreement with the correlation from Matsen et al.(1969).Simulations show that fluidized beds with Type-D particles can operate in the round-nosed slugging regime and also shows that wall slugs and square-nosed slugs tend to be formed with increase in superficial gas velocity and in bed height,respectively.

  15. Multipole expansion approach to Ostwald ripening

    International Nuclear Information System (INIS)

    A multipole expansion theory is used to derive a kinetic equation for a collection of droplets undergoing the Ostwald ripening or coarsening in two dimensions. The theory allows the morphological change of coarsening droplets as well as the migration behavior. Numerical computations are performed to give a good estimate to the solution of Laplace equation even in a few mode truncation

  16. Resonant state expansions

    International Nuclear Information System (INIS)

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  17. Test bed concentrator mirrors

    Science.gov (United States)

    Argoud, M. J.

    1980-05-01

    The test bed concentrator (TBC) was des point focusing distributed receiver (PFDR) systems. The reflective surface of the concentrator was fabricated using mirror facet designs and techniques. The facets are made by bonding mirrored glass to spherically-conducted substrates. Several aspects of earlier work were reevaluated for application to the TBC: optimum glass block size, material selection, environmental test, optical characteristics, and reliability. A detailed explanation of tooling, substrate preparation, testing techniques, and mirror assembly is presented.

  18. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 104; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  19. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

    1998-05-01

    The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

  20. Novel expansion techniques for skin grafts

    Science.gov (United States)

    Kadam, Dinesh

    2016-01-01

    The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117

  1. Modeling and field observations of char bed processes in black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Engblom, M.

    2010-07-01

    The char bed plays an important role in kraft black liquor combustion. Stable operation of the char bed promotes efficient and safe operation of the black liquor recovery boiler. It also plays a crucial role in the recovery of the pulping chemicals. Char bed operation involves controlling the char bed size and shape. Mathematical modeling based on computational fluid dynamics (CFD) haas been applied to recovery boilers for increased insights into the recovery furnace processes and to aid in the design of new boilers. So far, all CED-based char bed models reported in literature have used a fixed bed shape. This imposes restrictions on simulation of char bed burning by not considering inherently occurring changes in bed shape. In this thesis, a CED -based recovery furnace model is further developed to predict changes in bed shape. The new model is used in simulation of existing recovery boilers. The predictions of bed shape are compared with observations from real boilers. The furnace model is capable of correctly simulating the overall response of the char bed size to operational changes. This confirms the current quantitative overall understanding of char bed burning. In addition to modeling, visual observations of the char bed processes were made in this work. The observations provide validation data concerning the physical behavior of the char bed, and the findings from the observations can be used in further development of char bed models. Modeling and simulations of fundamental laboratory scale char bed experiments reported in literature are also carried out. The simulations complement the experimental data by providing detailed insights into gas phase reactions that can occur inside the gas boundary layer above a char bed. (orig.)

  2. Hydrodynamic modeling of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor; Nurdil Eskin [Istanbul Technical University, Istanbul (Turkey). Mechanical Engineering Faculty

    2007-03-15

    Hydrodynamics plays a crucial role in defining the performance of circulating fluidized beds (CFB). The numerical simulation of CFBs is very important in the prediction of its flow behavior. From this point of view, in the present study a dynamic two dimensional model is developed considering the hydrodynamic behavior of CFB. In the modeling, the CFB riser is analyzed in two regions: The bottom zone in turbulent fluidization regime is modeled in detail as two-phase flow which is subdivided into a solid-free bubble phase and a solid-laden emulsion phase. In the upper zone core-annulus solids flow structure is established. Simulation model takes into account the axial and radial distribution of voidage, velocity and pressure drop for gas and solid phase, and solids volume fraction and particle size distribution for solid phase. The model results are compared with and validated against atmospheric cold bed CFB units' experimental data given in the literature for axial and radial distribution of void fraction, solids volume fraction and particle velocity, total pressure drop along the bed height and radial solids flux.

  3. The Decision-Maker and Export Entry and Expansion

    OpenAIRE

    Stan D Reid

    1981-01-01

    This paper examines the varied empirical findings of the relationship between firm, individual characteristics, and foreign entry expansion behavior. The results support the view that activity is neither exclusively determined by structural or managerial factors and is really the result of interaction between both types of variables. The paper proposes that foreign entry and expansion can best be understood as an adoption of innovation-type behavior.© 1981 JIBS. Journal of International Busin...

  4. Expansion of Pannes

    Science.gov (United States)

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  5. THESAURUS AND QUERY EXPANSION

    Directory of Open Access Journals (Sweden)

    Hazra Imran

    2009-11-01

    Full Text Available The explosive growth of the World Wide Web is making it difficult for a user to locate information that isrelevant to his/her interest. Though existing search engines work well to a certain extent but they still faceproblems like word mismatch which arises because the majority of information retrieval systemscompare query and document terms on lexical level rather than on semantic level and short query: theaverage length of queries by the user is less than two words. Short queries and the incompatibilitybetween the terms in user queries and documents strongly affect the retrieval of relevant document.Query expansion has long been suggested as a technique to increase the effectiveness of the informationretrieval. Query expansion is the process of supplementing additional terms or phrases to the originalquery to improve the retrieval performance. The central problem of query expansion is the selection ofthe expansion terms based on which user’s original query is expanded. Thesaurus helps to solve thisproblem. Thesaurus have frequently been incorporated in information retrieval system for identifying thesynonymous expressions and linguistic entities that are semantically similar. Thesaurus has been widelyused in many applications, including information retrieval and natural language processing.

  6. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  7. Dependence of saltation parameters on bed roughness and bed porosity

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    Prague : ITAM AS CR, v. v. i., 2012 - (Náprstek, J.; Fischer, C.), s. 625-629 ISBN 978-80-86246-40-6. [Engineering Mechanics 2012 /18./. Svratka (CZ), 14.05.2012-17.05.2012] R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation parameters * saltation length * saltation height * bed structure * normal distribution of bed particles * bed roughness Subject RIV: BK - Fluid Dynamics

  8. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  9. Contribution of hydrodynamic characteristics on the performance of an aerobic biofilm conical fluidized bed.

    Science.gov (United States)

    Zhou, D; Bi, X T; Dong, S

    2011-01-01

    The performance of a conical fluidized bed (TFB) bioreactor, including the biofilm thickness, microbial space density, microbial cell matrix and its efficiency for COD degradation at a bed expansion ratio of 14 to 90%, was studied and compared with a cylindrical fluidized bed (CFB) bioreactor. The hydrodynamic characteristics of the TFB, especially the internal-circulation of bioparticles associated with its unique tapered geometry of the bed, created a much more uniform axial distribution of the bioparticles, leading to the formation of thinner and more compacted biofilms in the TFB compared to that in the CFB. The thinner biofilm in the TFB tended to be stable and possessed more than 6 times of microbial population density compared to the CFB. As a result, thinner biofilms in the TFB contributed to a higher COD removal efficiency, which remained at over 95% at operated expansion ratios, about 15 to 25% higher than that in the CFB. PMID:21436551

  10. Fluidised bed cereal cooking

    International Nuclear Information System (INIS)

    Man has been cooking food for thousands of years for a number of reasons: to improve flavour and palatability, sterilise, increase digestibility, improve texture and colour. Increasingly more advanced techniques are employed today in food production plants to engineer foods with many different properties. With this in mind manufacturers are constantly seeking to improve processing techniques and apply new or different technologies (such as microwaves, RF and extrusion) to develop foods with new properties (like puffed texture starches) and to increase process efficiencies (energy efficiency, water reduction). This thesis reports on work undertaken to demonstrate the potential to achieve high temperature starch conversion of whole wheat grains in a fluidised bed, thereby reducing the amount of water required and processing time. Specifically, wheat from the farm at 14% water content is cooked in a fluidised bed. The fluidised bed heats the wheat quickly by convective heating. In addition, energy can be delivered directly to the grain by microwave heating during fluidisation. Degree of starch conversion is determined by measuring the reduction in size of endotherm of reaction as observed by Differential Scanning Calorimetry. The fluidising gas, processing temperature and starting moisture content were varied in order to investigate their effect on the cooking process. A mathematical model based on energy and species concentration equations was developed to help understand the internal grain processes. The model coupled the thermal energy equation with water diffusion. The effect of water evaporation was represented as a thermal sink in the energy equation. Popular kinetic models from literature were adapted to predict the degree of starch conversion. The model gives solutions consistent with experimental data and physical intuition. A commercial computational fluid dynamics package was used to study simple airflow and particle tracks in the fluidisation column. A

  11. Capacitively-Heated Fluidized Bed

    Science.gov (United States)

    Mchale, E. J.

    1982-01-01

    Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

  12. Financing electricity expansion

    International Nuclear Information System (INIS)

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  13. Operator product expansion algebra

    International Nuclear Information System (INIS)

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  14. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  15. Expansion of Hanford concrete

    International Nuclear Information System (INIS)

    This report presents results of measurements of thermal expansion of concrete cores from Hanford, Washington facilities, and concrete cast at the Construction Technology Laboratories of Portland Cement Association (CTL/PCA). Thermal expansion was measured from room temperature to 16000F on 0.5 x 3.0-in. specimens heated at a rate of 100F/min. Specimens were cored from concrete cylinders cast at CTL/PCA in 1975 and 1977, and from cylindrical cores taken from the Purex Building and Waste Tank Farms at the Hanford, Washington complex. A total of 14 specimens were tested: eight tests on CTL/PCA cast concrete, two tests on material from the Purex Building, and four tests on Waste Tank Farms concrete. All tests were conducted using a commercially built dilatometer of high strain resolution

  16. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  17. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  18. China petrochemical expansion progressing

    International Nuclear Information System (INIS)

    This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported

  19. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  20. Ultraprecise thermal expansion measurements of seven low expansion materials

    Science.gov (United States)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  1. Fluidization and coating of very dense powders by fluidized bed chemical vapour deposition

    OpenAIRE

    Rodriguez, Philippe; Caussat, Brigitte; Ablitzer, Carine; Iltis, Xavière; Brothier, Méryl

    2013-01-01

    The hydrodynamic behaviour of a very dense tungsten powder, 75 µm in median diameter and 19,300 kg/m3 in grain density, has been studied in a fluidized bed at room temperature using nitrogen and argon as carrier gas. Even if fluidization was achieved, the small bed expansion indicated that it was imperfect. Then, the fluidization was studied at 400 °C in order to investigate the feasibility of coating this powder by Fluidized Bed Chemical Vapour Deposition (FBCVD). In particular, the influenc...

  2. Bed Scouring During the Release of an Ice Jam

    Directory of Open Access Journals (Sweden)

    Michail Manolidis

    2014-04-01

    Full Text Available A model is developed for simulating changes in river bed morphology as a result of bed scouring during the release of an ice jam. The model couples a non-hydrostatic hydrodynamic model with the processes of erosion and deposition through a grid expansion technique. The actual movement of bed load is implemented by reconstructing the river bed in piecewise linear elements in order to bypass the limitations of the step-like approximation that the hydrodynamic model uses to capture the bed bathymetry. Initially, an ice jam is modeled as a rigid body of water near the free surface that constricts the flow. The ice jam does not exchange mass or momentum with the stream, but the ice body can have a realistic shape and offer resistance to the flow of water through the constriction. An ice jam release is modeled by suddenly enabling the ice to flow and exchange mass and momentum with the water. The resulting release resembles a dam break wave accelerating and causing flow velocities to rise rapidly. The model is used to simulate the 1984 ice jam in the St. Clair River, which is part of the Huron-Erie Corridor. The jam had a duration of 24 days, and its release was accompanied by high flow velocities. It is speculated that high flow velocities during the release of the jam caused scouring of the river bed. This led to an increase in the river’s conveyance that is partly responsible for the persistence of low water levels in the upper Great Lakes. The simulations confirm that an event similar to the 1984 ice jam will indeed cause scouring of the St. Clair River bed.

  3. Measurement of the thermal conductivity and heat transfer coefficient of a binary bed of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.

    1998-01-01

    The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)

  4. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    Science.gov (United States)

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs. PMID:18767752

  5. LSP Composite Test Bed Design

    Science.gov (United States)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  6. Exponential Decay of Expansive Constants

    OpenAIRE

    Sun, Peng

    2011-01-01

    A map $f$ on a compact metric space is expansive if and only if $f^n$ is expansive. We study the exponential rate of decay of the expansive constant of $f^n$. A major result is that this rate times box dimension bounds topological entropy.

  7. Numerical modeling of fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Sha, W T; Soo, S L

    1977-11-01

    Optimum design of fluidized-bed combustor requires high carbon burn-up, good sulfur retention, minimized sorbent (Ca) utilization, efficient feed distribution and mechanical layout. These parameters are strongly affected by the dynamics of the fluidized bed. The dynamic behavior of fluidized combustor is formulated in terms of multidomain - multiphase mechanics. Fluidization, bubble mechanics, coal combustion, sorbent sulfation, oxidation, solids movement and elutriation, and heat transfer are explicitly taken into account in the proposed numerical model. The model solves conservation equations of mass, momentum and energy coupled with chemical reactions as boundary value problem in space and initial value problem in time. Multi-fluid model and modified implicit multi-field numerical scheme are employed. The objective of this numerical model is for use in engineering design and scaling. Progress to date shows that all necessary relations can be incorporated within the framework of an overall multidomain - multiphase model for deterministic computation. Provisions are made for subsequent refinements of submodels of individual mechanism and improvements of the existing numerical model. These refinements and improvements can be achieved as better understanding of physical phenomena and more experimental data become available. The numerical model outlined in this report is specifically designed for the fluidized-bed combustor; however, it can readily be extended to various coal gasification systems.

  8. Parametric Study of NOx Emissions in Circulating Fluidized Bed Combustor

    International Nuclear Information System (INIS)

    Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experimental techniques. . Use of biomass in coal-fired power plants results in high efficiencies and fuel diversity. Co-combustion experiments were carried out in a pilot scale test facility of circulating fluidized bed combustor (70KW). Effect of operating parameters on the NOx emissions is studied while burning coal with wheat straw. Relation between NOx emissions and operating parameters like bed temperature, excess air ratio, air staging, Ca/S molar ratio and fluidizing air velocity have been studied and discussed. (author)

  9. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning in their...

  10. Do-it-yourself Bed Bug Control

    Science.gov (United States)

    ... Bed Bug Control Do-it-yourself Bed Bug Control Can you treat and eliminate the bed bugs ... all of the residents to participate. Achieving complete control can take weeks to months, depending on the ...

  11. Engineering Properties of Expansive Soil

    Institute of Scientific and Technical Information of China (English)

    DAI Shaobin; SONG Minghai; HUANG Jun

    2005-01-01

    The components of expansive soil were analyzed with EDAX, and it is shown that the main contents of expansive soil in the northern Hubei have some significant effects on engineering properties of expansive soil. Furthermore, the soil modified by lime has an obvious increase of Ca2+ and an improvement of connections between granules so as to reduce the expansibility and contractility of soil. And it also has a better effect on the modified expansive soil than the one modified by pulverized fuel ash.

  12. Numerical study of turbulence model effect on gas-particle flow behavior in spouted bed%湍流模型对喷动床内气、固相流动特性的影响

    Institute of Scientific and Technical Information of China (English)

    吴峰; 张洁洁; 牛芳婷; 马晓迅; 杨剑

    2015-01-01

    A eulerian-Eulerian two-fluid model in conjunction with the kinetic theory of granular flows was used for simulation of the spouted bed .The interaction between gas and particles was modeled using the Gidaspow drag model and the predicted hydro-dynamic characteristics are compared with published experimental data .the effects of turbulence model and the coefficient of resti-tution of particles on hydrodynamic characteristics of spouted bed was investigated .Simulated results indicate that the hydrody-namic characteristics of axial direction in spouted bed is more sensitive to the different turbulence models compared to the Radial direction of spouted bed .Bed particle turbulent kinetic energy under standard turbulence model is the highest in fountain area ,the contours of volume fraction performed the spouted structure better .The simulations results of hydrodynamic characteristics in spouted bed are sensitive to the value of coefficient of restitution of particles w hich should be appropriately given in simulation work .%为了掌握湍流模型对喷动床内气、固2相流动特性的影响规律,采用双流体模型对喷动床内气、固2相流动行为进行了数值模拟研究。运用颗粒动理学理论描述颗粒相应力封闭流体控制方程,使用Gidaspow曳力模型描述气、固相间作用,将数值模拟结果与相关文献的实验结果进行了对比、验证,分析了3种湍流模型及颗粒碰撞恢复系数对喷动床内喷动形式、颗粒速度、颗粒体积分数及颗粒湍动能的影响规律。研究结果表明:湍流模型对喷动床的径向颗粒速度及孔隙率等参数的模拟结果影响不明显,但对喷动床内轴向流动的模拟结果,特别是喷射区及喷泉区内颗粒的体积分数和颗粒湍动能具有显著的影响,标准湍流模型下的床内颗粒湍动能在喷泉区最高,其体积分数云图也能较好地表现喷动的结构。颗粒碰撞恢复系数对喷动床

  13. Mangroves and seagrass beds as diurnal feeding habitats for juvenile Haemulon flavolineatum

    NARCIS (Netherlands)

    Verweij, M.C.; Nagelkerken, I.; Wartenbergh, S.L.J.; Pen, I.R.; Velde, G. van der

    2007-01-01

    Caribbean seagrass beds supposedly are important feeding habitats for so-called nocturnally active zoobenthivorous fish, but the extent to which these fishes use mangroves and seagrass beds as feeding habitats during daytime remains unclear. Therefore, we studied daytime behavior of large juvenile (

  14. Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash

    International Nuclear Information System (INIS)

    Rice husk lean-combustion in a bubbling and atmospheric fluidized bed reactor (FBR) of 0.3 m diameter with expansion to 0.4 m in the freeboard zone and 3 m height was investigated. Experiment design - response surface methodology (RSM) - is used to evaluate both excess air and normal fluidizing velocity influence (independent and controllable variables), in the combustion efficiency (carbon transformation), bed and freeboard temperature and silica content in the ashes. Hot gases emissions (CO2, CO and NOx), crystallographic structure and morphology of the ash are also shown. A cold fluidization study is also presented. The values implemented in the equipment operation, excess air in the range of 40-125% and normal fluidization velocities (0.13-0.15 Nm/s) show that the values near the lower limit, encourage bed temperatures around 750 oC with higher carbon transformation efficiencies around 98%. However, this condition deteriorated the amorphous potential of silica present in the ash. An opposite behavior was evidenced at the upper limit of the excess air. This thermochemical process in this type of reactor shows the technical feasibility to valorize RH producing hot gases and an amorphous siliceous raw material.

  15. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  16. Modeling particle population balances in fluidized-bed wood gasifiers

    International Nuclear Information System (INIS)

    An unsteady model is developed for the particle size distribution in fluidized-bed reactors including fragmentation, abrasion, elutriation and the chemical reactions of wood gasification. Based on the assumption of constant conditions (gas composition, temperature, velocity) of the surrounding atmosphere, an analytical solution is developed for the distribution of sizes belonging to the classes of mother and fine particles. It is found that for the typical feed sizes (minimum above 3 × 10−2 mm) and the usual maximum size of fine particles (2.4 × 10−3 mm), the behavior of fine particles is quasi-steady with respect to mother particles. The numerical solution of the quasi-steady formulation of particle population balances is also coupled with a two-phase (bubble and emulsion), three-zone (bed, splash zone and freeboard) model for a bubbling fluidized-bed reactor, giving predictions of the producer gas composition in agreement with measurements for air gasification of wood. - Highlights: • Particle size distribution in fluidized-bed gasifiers is modeled. • Fragmentation, abrasion, elutriation and the chemical reactions of wood gasification are described. • A quasi-steady behavior of the fine particles with respect to mother particles is found. • The particle size distribution model is coupled with a transport model for a bubbling fluidized bed. • Good agreement is obtained between measurements and predictions for highly variable operating conditions

  17. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  18. NUMERICAL METHOD AND RANDOM ANALYSIS OF CEMENT CONCRETE EXPANSION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The numerical method and random analysis of cement concrete expansion are given. A mathematical procedure is presented which includes the nonlinear characteristics of the concrete. An expression is presented to predict the linear restrained expansion of expansive concrete bar restrained by a steel rod. The results indicate a rapid change in strains and stresses within initial days, after which the change gradually decreases. A reliable and accurate method of predicting the behavior of the concrete bulkheads in drifts is presented here. Extensive sensitivity and parametric studies have been performed. The random density distributions of expansive concrete are given based on the restricted or unrestricted condition. These studies show that the bulkhead stress fields are largely influenced by the early modulus of the concrete and the randomness of the ultimate unrestrained expansion of the concrete.

  19. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  20. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can be...... carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed...

  1. Prediction of final settlements of buildings constructed on expansive soils

    OpenAIRE

    María-de-la-Luz Pérez-Rea; Tania Ayala; Victor Castano

    2015-01-01

    Because the action of the swelling pressure, the settlements caused by the transmitted load from the structure on expansive soils, and the settlements calculated by classic theories of soils mechanics are different. This swelling pressure acts in opposite direction to the weight of the building. In this paper, the authors propose the use of a volumetric strain coefficient by settlements exp, in a soil-structure interaction algorithm taking into account the expansive soil behavior in the reduc...

  2. Kinetics of the collisionless expansion of spherical nanoplasmas

    CERN Document Server

    Peano, F; Mulas, R; Coppa, G; Silva, L O

    2006-01-01

    The collisionless expansion of spherical plasmas composed of cold ions and hot electrons is analyzed using a novel kinetic model, with special emphasis on the influence of the electron dynamics. Simple, general laws are found, relating the relevant expansion features to the initial conditions of the plasma, determined from a single dimensionless parameter. A transition is identified in the behavior of the ion energy spectrum, which is monotonic only for high electron temperatures, otherwise exhibiting a local peak far from the cutoff energy.

  3. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  4. Government’s Role in Urban Construction Land Expansion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Focusing on urban construction land expansion,governmental influence on expansion of urban construction land in China is analyzed from fiscal decentralization,government game and land system.Due to fiscal decentralization and coupled with GDP-based performance evaluation system,local government seeks to maximizing economic profits.Whereas,land systems such as land property,land expropriation and land transfer system,let the local governments’ profit seeking behavior achieved.The conclusion is that the government’s role in urban construction land expansion is mainly from local governments.

  5. Hole expansion in a variety of sheet steels

    Science.gov (United States)

    Comstock, R. J.; Scherrer, D. K.; Adamczyk, R. D.

    2006-12-01

    Expanding pierced holes is a common forming practice and problems during these operations are not unusual. A damczyk and Michal have previously developed an equation for maximum hole expansion of HSLA steels, for holes in the sheared then deburred condition. This paper expands the work of the above authors. Nineteen ferritic, ferritic stainless, and austenitic stainless steels were evaluated for hole expansion using various hole-edge conditions. It was found that the behavior of steels having finished holes is very different than those tested in the as-sheared condition. Relationships between hole expansion and tensile-mechanical properties were developed for both conditions.

  6. Packed bed heat storage: Continuum mechanics model and validation

    Science.gov (United States)

    Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan

    2016-05-01

    Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.

  7. Mathematical simulation of radial heat transfer in packed beds by pseudohomogeneous modeling

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Béttega; Marcos Flávio Pinto Moreira; Ronaldo Guimar(a)es Corrêa; José Teixeira Freire

    2011-01-01

    Uniform flow regime and constant effective thermal conductivity inside packed beds are commonly accepted in the evaluation of the fluid dynamics and heat transfer in such systems. However, several authors have confirmed the presence of an oscillatory velocity profile caused by the effective contribution of porosity profile in the fluid dynamic behavior of packed beds, which directly influences the heat transfer inside the beds. This paper describes the application of a pseudo-homogeneous mathematical model for describing heat transfer in packed beds with oscillatory profiles of velocity and porosity, using a radius-dependent model for effective thermal conductivity kr. Several temperature profiles were obtained in a packed bed system with thermal source located on the wall. The simulated temperature and effective thermal conductivity obtained from simulations were compared with experimental data and calculation from a model based on uniform kr fitting. The results indicate that the proposed mathematical modeling was capable of better representing the heat transfer in the packed bed.

  8. Elucidating Negative Thermal Expansion in MOF-5

    International Nuclear Information System (INIS)

    Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal-organic framework MOF-5, Zn4O(1,4-benzenedicarboxylate)3. The near-linear lattice contraction is quantified in the temperature range 80-500 K using synchrotron powder X-ray diffraction. Vibrational motions causing the abnormal expansion behavior are evidenced by shortening of certain interatomic distances with increasing temperature according to single-crystal X-ray diffraction on a guest-free crystal over a broad temperature range. Detailed analysis of the atomic positional and displacement parameters suggests two contributions to cause the effect: (1) local twisting and vibrational motion of the carboxylate groups and (2) concerted transverse vibration of the linear linkers. The vibrational mechanism is confirmed by calculations of the dynamics in a molecular fragment of the framework.

  9. Effect and surfactants on three-phase fluidized bed hydrodynamics

    International Nuclear Information System (INIS)

    Experiments were conducted to discern the relationship between three-phase fluidized bed hydrodynamics and surfactant solution characteristics. The standard characteristic, equilibrium surface tension, is inadequate. A novel method for surface tension evaluation, a dynamic maximum bubble pressure technique, was found to differentiate the 12 different solutions studied. The surfactant solutions were categorized based upon a combination of the terminal bubble rise velocity reduction, the equilibrium surface tension, and the new bubble tension values. These surfactant solution categories were correlated with experimentally observed three-phase fluidized bed and bubble column hydrodynamic behavior. Specifically, empirical correlations for gas holdup are presented

  10. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  11. Experimental studies of gas-particle mixtures under sudden expansion

    Science.gov (United States)

    Zunino, Heather; Adrian, Ronald; Clarke, Amanda; Arizona State University Collaboration; University of Florida Collaboration

    2015-11-01

    High-speed video cameras and pressure sensors were used to capture the movement of a particle bed due to a passing expansion fan created by a diaphragm burst in a shock tube. The particle bed is placed on the high-pressure side (p4) of the shock tube. Once the diaphragm bursts, it expands upward into the low-pressure region (p1). Several interesting structures are captured and examined, including instabilities located at the top surface of the particle bed and particle vacant regions within the bed. These features are discussed along with their relevance to the spikes of material seen radially ejected outward during a cylindrical explosion. The characteristics of this flow are compared for several different pressure regimes. Two-dimensional and three-dimensional Fourier analyses are used to further explore and measure the frequency of the features imaged. Supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  12. Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O)

    International Nuclear Information System (INIS)

    Al2−2x(ZrMg)xW3O12 for 0≤x≤1.0 are synthesized to reduce the phase transition temperature of Al2W3O12. It is found that the incorporation of (ZrMg)6+ into the lattice of Al2W3O12 not only reduces its orthorhombic-to-monoclinic phase transition temperature but also elevates its softening temperature, broadening its applicable temperature range considerably. Al2−2x(ZrMg)xW3O12 with x<0.5 exhibit low coefficients of thermal expansion (CTEs) and non-hygroscopicity, while those for x≥0.7 are obviously hygroscopic and the CETs decrease with increasing the content of (ZrMg)6+ so that Al0.2(ZrMg)0.9W3O12 and ZrMgW3O12 exhibit negative thermal expansion. Temperature-dependent Raman spectroscopic study shows the hardening of W–O bonds above 373 K which is attributed to the release of crystal water. The effect of crystal water on the thermal expansion property is discussed based on the hydrogen bond between H in crystal water and electronegative O in Al(ZrMg)–O–W linkages. - Graphical abstract: (a and b) Temperature dependent Raman spectra of Al2−x(ZrMg)xW3O12 (x=0.1, 0.2), (c and d) Building block of a unit cell of Al2−x(ZrMg)xW3O12·n(H2O) and schematic showing the effect of crystal water on Al(Zr, Mg)–O–W linkages. - Highlights: • (ZrMg)6+ reduces orthorhombic-to-monoclinic phase transition of Al2W3O12. • The incorporation of (ZrMg)6+ elevates the softening temperature of Al2W3O12. • Al2−2x(ZrMg)xW3O12 (x<0.5) exhibit low CTEs and non-hygroscopicity. • Al0.2(ZrMg)0.9W3O12·0.8H2O and ZrMgW3O12·2H2O present NTE. • Hydrogen bond between H in H2O and O in Al(ZrMg)–O–W affects thermal expansion

  13. Orthogonal Query Expansion

    CERN Document Server

    Ackerman, Margareta; Lopez-Ortiz, Alejandro

    2011-01-01

    Over the last fifteen years, web searching has seen tremendous improvements. Starting from a nearly random collection of matching pages in 1995, today, search engines tend to satisfy the user's informational need on well-formulated queries. One of the main remaining challenges is to satisfy the users' needs when they provide a poorly formulated query. When the pages matching the user's original keywords are judged to be unsatisfactory, query expansion techniques are used to alter the result set. These techniques find keywords that are similar to the keywords given by the user, which are then appended to the original query leading to a perturbation of the result set. However, when the original query is sufficiently ill-posed, the user's informational need is best met using entirely different keywords, and a small perturbation of the original result set is bound to fail. We propose a novel approach that is not based on the keywords of the original query. We intentionally seek out orthogonal queries, which are r...

  14. Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm

    International Nuclear Information System (INIS)

    Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)

  15. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and...

  16. Warp Drive With Zero Expansion

    OpenAIRE

    Natario, Jose

    2001-01-01

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding space behind it. We show that this expansion/contraction is but a marginal consequence of the choice made by Alcubierre, and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp drive spacetimes are also discussed.

  17. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  18. Asymptotic expansions of Jacobi functions

    International Nuclear Information System (INIS)

    The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)

  19. Particle motion in fluidised beds

    International Nuclear Information System (INIS)

    Gas fluidised beds are important components in many process industries, e.g. coal combustors and granulators, but not much is known about the movement of the solids. Positron Emission Particle Tracking (PEPT) enables the movement of a single, radioactive tracer particle to be followed rapidly and faithfully. Experiments were carried out in columns sized between 70 and 240mm. diameter, operating in the bubbling regime at ambient process conditions using particles of group B and D (Geldart Classification). Particle motion was tracked and the data applied to models for particle movement at the gas distributor as well as close to other surfaces and to models for particle circulation in beds of cohesive particles. In the light of these data, models for particle and bubble interaction, particle circulation, segregation, attrition, erosion, heat transfer and fluidised bed scale-up rules were reassessed. Particle motion is directly caused by bubble motion, and their velocities were found to be equal for particles travelling in a bubble. PEPT enables particle circulation to be measured, giving a more accurate correlation for future predictions. Particle motion follows the scale-up rules based on similarities of the bubble motion in the bed. A new group of parameters was identified controlling the amount of attrition in fluidised beds and a new model to predict attrition is proposed. (author)

  20. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  1. Modular hydride beds for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  2. On genus expansion of superpolynomials

    CERN Document Server

    Mironov, A; Sleptsov, A; Smirnov, A

    2013-01-01

    Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis:the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is rather straightforward only for the thin knots. Beyond this family additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpol...

  3. Flexible Transport Network Expansion via Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Skjoldstrup, Bjarke

    2013-01-01

    This paper presents a successful test-bed implementation of a multi-vendor transport network interconnection via open WDM interfaces. The concept of applying Alien Wavelengths (AWs) for network expansion was successfully illustrated via deployment of multi-domain/multi-vendor end-to-end OTN...... services. We evaluate the impact of AW service establishment on both native and other alien services. Our experience confirms the technical feasibility of the concept in the context of transparent network-to-network interconnection at the optical layer. Furthermore, main operational challenges are...

  4. Chaos Transfer in Fluidized Beds Accompanied with Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    唐松涛; 李定凯; 吕子安; 沈幼庭

    2003-01-01

    Experiments of biomass pyrolysis were carried out in a fiuidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.

  5. Dimensional similitude and the hydrodynamics of three- phase fluidized beds

    Science.gov (United States)

    Safoniuk, Michael

    It is proposed that scaling of three-phase fluidized bed hydrodynamics can be carried out based on geometric similarity and matching of a set of five dimensionless groups: (i)the M-group, M = g.Δρ.μ L4/(ρL2.σ 3); (ii)an Eötvös number, Eo = g.Δρ.d p2/σ (iii)the liquid Reynolds number, Re L = ρL.dp.UL/μ L; (iv)a density ratio, βd = ρp/ρ L; and (v)a superficial velocity ratio, βu = U g/UL. These were varied in an experimental study where four dimensionless hydrodynamic parameters were measured: (i)gas hold-up, ɛ g; (ii)bed expansion ratio, βbe (iii)the ratio of mean bubble diameter to particle diameter, db/dp ; and (iv)the ratio of mean bubble rise velocity to gas superficial velocity, Ub/Ug. This approach was validated experimentally by matching the dimensionless operating conditions from a kerosene-nitrogen-ceramic three-phase system with those in an aqueous magnesium sulphate solution-air-aluminum particle fluidized bed. There was good agreement between the gas hold-ups and bed expansion ratios in the two systems. A pilot-plant scale cold-flow co-current upwards-flowing three-phase fluidized bed column of inside diameter 292 mm was built and operated using three different liquids (tap water, an aqueous 44 mass % glycerol solution, and an aqueous 60 mass % glycerol solution), air, and cylindrical aluminum particles of diameter 4 mm and length 10 mm. The fluids and solids were carefully selected to result in dimensionless group values in the range of those of an industrial hydroprocessor. Specially built conductivity probes and pressure transducers were used to measure the hydrodynamic properties for different gas and liquid superficial velocities. Special attention was required to provide for drift and calibration when recording and analyzing data from the conductivity probes. Gas hold-ups were in the range of 5 to 20% by volume and were correlated as a function of liquid-phase Reynolds number and superficial velocity ratio. The gas hold-ups were a

  6. Studies on thermal expansion and neutron irradiation effect of polycrystalline graphites

    International Nuclear Information System (INIS)

    For thermal expansion and neutron irradiation effect, thermal expansion coefficients and physical properties were measured of polycrystalline graphites, neutron irradiated, unirradiated, and compressively pre-stressed at room temperature, respectively. Factors involved in the thermal expansion were thus clarified. Relationship between thermal expansion coefficient and dimensional changes of graphites irradiated at high temperatures was studied. Thermal expansion and physical properties were measured of the irradiated graphites and subsequently after their thermal annealing at elevated temperatures. Behavior of the irradiation-induced defects is discussed. (author)

  7. Frequency dependent thermal expansion in binary viscoelasticcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  8. On the thermodynmamics of diamagnetic plasma expansions

    International Nuclear Information System (INIS)

    The expansion of a hot plasma into a weak uniform magnetic field in vacuum is perhaps the simplest possible plasma-physical system, yet its thermodynamic behavior is complex. Observational evidence for non-adiabatic expansion has recently come from a study of hot diamagnetic cavities detected near the earth's bow shock. These are localized regions of plasma characterized by high temperature, low density, and low magnetic field strength. Although the formation mechanism has not been established, it appears that some process may be necessary to maintain or increase the plasma temperature as the density decreases. Particle-in-cell simulations of diamagnetic plasma expansions are used to illustrate the interplay of energy among the ions, electrons, background magnetic field, and generated electrostatic and electromagnetic waves. Initially, the field is everywhere uniform and straight, and ions moving parallel to the field do no work and escape unhindered. Ions moving perpendicular to the field do work against the field and lose energy to it. Thus the perpendicular ion energy decreases faster than the parallel energy, and a large temperature anisotropy favoring Tparallel develops. The electrons, which are initially at the same temperature as the ions, follow along with the expanding ions without decreasing much in temperature

  9. The ionic conductivity, thermal expansion behavior, and chemical compatibility of La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ as SOFC cathode material

    Science.gov (United States)

    Fan, Baoan; Yan, Jiabao; Yan, Xiaochao

    2011-10-01

    In this paper, the ionic conductivities of La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ were measured by electron-blocked alternating current impedance analysis technique. The results show that the oxygen ion conductivity of La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ is nearly five times higher than that of La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ, which makes La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ cathode more conductive than YSZ electrolyte. Consequently, the electrochemical reaction region is extended from the interface between the cathode and the electrolyte to the whole surface of the cathode grains, with a result of the cathode polarization overpotential being decreased and the cell electrical performance being improved. Besides, the XRD results show that both La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ begin to react with 8YSZ([Y 2O 3] 0.08·[ZrO 2] 0.92) at 850 °C, but La 0.54Sr 0.44Co 0.2Fe 0.8O 3-δ with a faster reaction rate. The thermal expansion experiments manifest that the two LSCFs have approximate thermal expansion coefficients, being about 14 × 10 -6-15 × 10 -6 K -1 from 500 °C to 700 °C, which is moderately higher than that of 8YSZ.

  10. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    Science.gov (United States)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  11. Modelling of thermal and mechanical behaviour of pebble beds

    International Nuclear Information System (INIS)

    FZK (Forshungzentrum Karlsruhe) is developing a Helium Cooled Pebble Bed (HCPB) Blanket Concept for fusion power reactors based on the use of ceramic breeder materials and beryllium multiplier in the form of pebble beds. The design of such a blanket requires models and computer codes describing the thermal-mechanical behavior of pebble beds to evaluate the temperatures, stresses, deformations and mechanical interactions between pebble beds and the structure with required accuracy and reliability. The objective to describe the beginning of life condition for the HCPB blanket seems near to be reached. Mechanical models that describe the thermo-mechanical behavior of granular materials used in form of pebble beds are implemented in a commercial structure code. These models have been calibrated using the results of a large series of dedicated experiments. The modeling work is practically concluded for ceramic breeder; it will be carried on in the next year for beryllium to obtain the required correlations for creep and the thermal conductivity. The difficulties for application in large components (such as the HCPB blanket) are the limitations of the present commercial codes to manage such a set of constitutive equations under complex load conditions and large mesh number. The further objective is to model the thermal cycles during operation; the present correlations have to be adapted for the release phase. A complete description of the blanket behavior during irradiation is at the present out of our capability; this objective requires an extensive R and D program that at the present is only at the beginning. (Y.Tanaka)

  12. Instrumental aspects of Simulated Moving Bed chromatography.

    Science.gov (United States)

    Faria, Rui P V; Rodrigues, Alírio E

    2015-11-20

    The Simulated Moving Bed (SMB) is one of the greatest illustrations of the potential of continuous multicolumn counter-current chromatographic processes. Although it was initially developed for the purification of petrochemicals, the advances that this technology has experienced during more than 50 years of existence were at the basis of its successful expansion into the food and pharmaceuticals industries. In this context, the present work provides an overview of the evolution of SMB focused on the most relevant instrumental aspects related with this technology. For that purpose, the details of the design and construction of this equipment will be reviewed, with special attention to the valves design. Due to its increasing interest, the technical requirements imposed by unconventional operating modes will be addressed together with the design adaptations that allow the operation of SMB units with compressible fluids and the implementation of Hybrid-SMB processes. Finally, as SMB technology has been unable to meet all the process specifications within the growing biopharmaceuticals industry, the development of alternative multicolumn counter-current units has intensified over the last few years. Hence, examples of the design and application of these new units will be provided. PMID:26341597

  13. Plaquette expansion proof and interpretation

    International Nuclear Information System (INIS)

    The plaquette expansion, a general non-perturbative method for calculating the properties of lattice Hamiltonian systems, is established up to the first two orders for an arbitrary system. This method employs an expansion of the Lanczos coefficients, the tridiagonal Hamiltonian matrix elements or equivalently the continued fraction coefficients of the resolvent, in a descending series in the size of the system. The coefficients of this series are formed from the low order cumulants or connected Hamiltonian moments. The lowest order approximation in the plaquette expansion corresponds to a Gaussian model which is a consequence of the control limit theorem. 7 refs

  14. The COOLOCE experiments investigating the dryout power in debris beds of heap-like and cylindrical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Takasuo, Eveliina, E-mail: eveliina.takasuo@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo (Finland); Holmstroem, Stefan; Kinnunen, Tuomo; Pankakoski, Pekka H. [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo (Finland)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We investigate the effect of geometry on the coolability of porous core debris beds. Black-Right-Pointing-Pointer Dryout power is measured for a heap-like (conical) and a cylindrical debris bed. Black-Right-Pointing-Pointer The coolability of the cylindrical bed is better due to the lower height of the configuration. - Abstract: The COOLOCE test facility has been used for experimental investigations of the coolability of porous core debris beds with different geometries. The main objective of the experiments was to compare the dryout behavior of conical (heap-like) and top-flooded cylindrical (evenly distributed) debris bed configurations in order to investigate the effect of geometry on the coolability of the debris bed. The experimental debris beds simulate the possible outcomes of melt discharge from the reactor pressure vessel and the formation of a core debris bed in a deep water pool during a severe accident. The results suggest that if the two debris bed configurations have equal height, the coolability of the conical bed is improved compared to the cylindrical bed due to the multi-dimensional infiltration of water through the surface of the cone. However, in case the conical and cylindrical debris beds have equal diameter and volume, the dryout power density of the conical configuration is lower than that of the cylindrical configuration by approximately 50%. This is due to the greater height of the conical configuration which leads to increased heat flux in the upper parts of the conical debris bed. According to the present results, the effect of the increased debris bed height is greater than the effect of multi-dimensional flooding. Simulations show the differences between the two-phase flow behavior of the two geometries, and the resulting difference in dryout development.

  15. The COOLOCE experiments investigating the dryout power in debris beds of heap-like and cylindrical geometries

    International Nuclear Information System (INIS)

    Highlights: ► We investigate the effect of geometry on the coolability of porous core debris beds. ► Dryout power is measured for a heap-like (conical) and a cylindrical debris bed. ► The coolability of the cylindrical bed is better due to the lower height of the configuration. - Abstract: The COOLOCE test facility has been used for experimental investigations of the coolability of porous core debris beds with different geometries. The main objective of the experiments was to compare the dryout behavior of conical (heap-like) and top-flooded cylindrical (evenly distributed) debris bed configurations in order to investigate the effect of geometry on the coolability of the debris bed. The experimental debris beds simulate the possible outcomes of melt discharge from the reactor pressure vessel and the formation of a core debris bed in a deep water pool during a severe accident. The results suggest that if the two debris bed configurations have equal height, the coolability of the conical bed is improved compared to the cylindrical bed due to the multi-dimensional infiltration of water through the surface of the cone. However, in case the conical and cylindrical debris beds have equal diameter and volume, the dryout power density of the conical configuration is lower than that of the cylindrical configuration by approximately 50%. This is due to the greater height of the conical configuration which leads to increased heat flux in the upper parts of the conical debris bed. According to the present results, the effect of the increased debris bed height is greater than the effect of multi-dimensional flooding. Simulations show the differences between the two-phase flow behavior of the two geometries, and the resulting difference in dryout development.

  16. Ash behaviour in fluidized bed gasification and combustion: release of harmful trace elements and the behavior of alkalis; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa: Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.; Valmari, T. [VTT Chemical Technology, Espoo (Finland)

    1997-10-01

    During 1996 the behaviour of alkaline metals (K and Na) during circulating fluidized bed combustion of forest residue was studied in a real-scale plant using aerosol measurement instruments (filters, impactor, DMA). Prior to heat exchangers (850 deg C) the ash mass-concentration was 1.0 - 1.3 g/Nm{sup 3} with 1 % of ash forming constituents as vapours. At least 98 % of sulphur, over 90 % of sodium and over 80 % of potassium were found in particulate phase prior to heat exchangers. On the other hand, at least 80 % of the chlorine was in vapour phase. 98 % of the ash was in coarse (> 0.3 {mu}m) particles. Coarse ash particles had an irregular surface structure often consisting of fine primary particles. The remaining 2 % was observed in fine particles of about 0.1 {mu}m. Both rounded and cornered (suggesting crystal structure) fine particles were found. The fine particles were composed of alkali chlorides and sulphates, mainly of KCl. About 80 % of the ash on mass basis was deposited onto heat exchanger surfaces when soot-blowing was not carried out. Practically all of the particles larger than 10 {mu}m were deposited. The deposition was less significant for smaller particles. The fine particle concentration before and after the heat exchangers was the same within the experimental inaccuracy. The deposited fraction of potassium, sodium and sulphur was about the same than that of the total ash: However, the deposition of chlorine was much lower since the chlorine content was low in the coarse particles that were deposited most effectively. (orig.)

  17. Experimental investigations on the coolability of stratified debris beds consisting of prototypical particles

    International Nuclear Information System (INIS)

    In case of a severe accident, the reactor core can melt due to an insufficient removal of the emerging decay heat. If melt gets in contact with residual water, a particle debris bed can be formed in the lower plenum of the reactor pressure vessel (RPV). It is of great importance to remove the decay heat from the debris bed to avoid any damage to the RPV. The DEBRIS test facility at IKE was established to investigate the coolability limits of such debris beds. The cylindrical bed (150 mm inner diameter, 640 mm height) is heated by an inductive heating system, which acts as a volumetric heat source. The heat input is increased in small increments until dryout is reached. To investigate the thermal debris bed behavior the test section is equipped with roughly 60 thermocouples and 8 differential pressure transducers. In this paper, the results of systematic boiling and dryout experiments are presented. In contrast to previous IKE experiments, the focus is on debris beds consisting of more complex particles with well-defined geometries such as cylinders and screws to investigate the influence of the particle shape on the bed's coolability. The experiments were carried out under variation of pressure (0.1 - 0.5 MPa), inflow conditions (top-flooding and combined top- and bottom-flooding), bed inventory and azimuthal stratification. By a stratification of the bed inventory an inhomogeneous permeability in the bed can be achieved, which can lead to multidimensional flow conditions and cooling effects. The experiments show that higher permeability of the bed and higher system pressure significantly increase the bed's coolability. Additionally, the measured pressure gradients are compared with several friction models in order to validate their applicability. The validation of these friction models plays a key role in the development of IKE's simulation code MEWA, which is implemented in the German system code ATHLET-CD. (author)

  18. Physiology Of Prolonged Bed Rest

    Science.gov (United States)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  19. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  20. Breast Reconstruction with Tissue Expansion

    Medline Plus

    Full Text Available ... come to my practice a few months ago seeking a left breast reconstruction after mastectomy. She had ... Veritas Collagen Matrix sling in order to help support the expansion because there is possible radiation damage ...

  1. Binomial expansions modulo prime powers

    Directory of Open Access Journals (Sweden)

    Paul W. Haggard

    1980-01-01

    Full Text Available In this note a result is given and proved concerning binomial expansions modulo prime powers. In the proof congruence modulo prime powers is generalized to the rational numbers via valuations.

  2. On genus expansion of superpolynomials

    OpenAIRE

    Mironov, Andrei; Morozov, Alexei; Sleptsov, Alexei; Smirnov, Andrey(ITEP, Moscow, 117218, Russia)

    2013-01-01

    Recently it was shown that the (Ooguri-Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present letter we claim that the superpolynomials are not functions of such a type: symmetric group characters do ...

  3. Warp drive with zero expansion

    CERN Document Server

    Natario, J

    2002-01-01

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  4. Warp drive with zero expansion

    International Nuclear Information System (INIS)

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed

  5. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  6. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina;

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  7. Decorated carbon nanotubes by silicon deposition in fluidized bed for Li-ion battery anodes

    OpenAIRE

    Coppey, Nicolas; Noé, Laure; Monthioux, Marc; Caussat, Brigitte

    2013-01-01

    Multi-walled carbon nanotubes Graphistrength® were decorated with silicon by Fluidized Bed Chemical Vapor Deposition. The ability to fluidize of these nanotubes forming ball-shaped jumbles of several hundreds of microns in diameter and that of the final CNT-Si balls was first studied. These balls reveal to fluidize with characteristics of Geldart’s group A particles, i.e. without bubbles and with high bed expansion. Coating experiments from silane SiH4 were performed at 500°C in the 30 60 wt....

  8. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least two people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  9. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  10. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  11. Fluidization Characteristics of a Prototype Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    F. ABERUAGBA

    2005-01-01

    Full Text Available The fluidization characteristics of a prototype-fluidized bed laboratory reactor were understudied in order to investigate the suitable conditions at which the dehydrogenation reaction of butane could be carried out. To achieve this, a reactor with an effective volume of 1100ml was fabricated and coupled with temperature and pressure accessories.Zeolites were obtained from the market and clay obtained from different sources and pre-treated was used as catalyst. Airflow at high velocity between 3000-7000ml/hr was used as the fluidising medium to obtain the bed characteristics while butane gas was used to obtain the dehydrogenation kinetics.The temperature of the reactor system was varied between 353K and 413K while maintaining constant pressure of 1.5 105 N/m2 through a manifold gauge and a constant catalyst weight. Various methods such as pressure fluctuations, visual observations, and bed expansion were used to determine the transition velocity at which fluidization begins. It was observed that this depends on factors such as mean particle size, particle size distribution, and column diameter.The minimum fluidizing velocity obtained for zeolite was 0.0133m/s and 0.0102m/s for treated clay materials both for a particle size of 250μm. The conversion of butane over the catalysts showed an increase in both cases with a maximum at 0.9813 at 413K. This decreases as the reaction progresses.

  12. Improving Convergence of Binomial Schemes and the Edgeworth Expansion

    Directory of Open Access Journals (Sweden)

    Alona Bock

    2016-05-01

    Full Text Available Binomial trees are very popular in both theory and applications of option pricing. As they often suffer from an irregular convergence behavior, improving this is an important task. We build upon a new version of the Edgeworth expansion for lattice models to construct new and quickly converging binomial schemes with a particular application to barrier options.

  13. Cosmic accelerated expansion and the entropy corrected holographic dark energy

    OpenAIRE

    Sadjadi, H. Mohseni; Jamil, Mubasher

    2010-01-01

    By considering the logarithmic correction to the energy density, we study the behavior of Hubble parameter in the holographic dark energy model. We assume that the universe is dominated by interacting dark energy and matter and the accelerated expansion of the universe, which may be occurred in the early universe or late time, is studied.

  14. Experiments and Modelling of Coal Pyrolysis under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; XuXiangdong; 等

    1999-01-01

    The pyrolysis behavior of two Chinese coals has been investigated in a laboratory-scale bubbling fluidized bed system in Siegen University,Germany,Experimental equipment and procedure are introduced.The amounts of pyrolysis species of each coal were measured,calcuated and compared.A new method was presented to determine the needed parameters in FG-DVC model with the experimental results instead of other much more complicated experiments.

  15. Propylene polymerization in a circulating slugging fluidized bed reactor

    OpenAIRE

    Putten, van, J.P.M.

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Properties of the polymerization reaction and of the hydrodynamics were studied and their behavior with respect to conditions in the reactor were described. A reactor model was constructed that accurately...

  16. Asymptotic behavior of atomic momentals

    Science.gov (United States)

    Thakkar, Ajit J.

    1987-05-01

    Knowledge of the large and small momentum transfer behavior of the electron momentum distribution is an important ingredient in the analysis of experimental isotropic Compton profiles. This behavior ultimately rests upon the asymptotic behavior of atomic momentals (momentum space orbitals). The small momentum Maclaurin expansion and the large momentum asymptotic expansion of atomic momentals with arbitrary angular momentum quantum number are derived in this paper. Their implications for momentum densities and Compton profiles are derived and discussed.

  17. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S

    2012-01-01

    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  18. Better backs by better beds?

    DEFF Research Database (Denmark)

    Bergholdt, Kim; Fabricius, Rasmus N; Bendix, Tom

    2008-01-01

    STUDY DESIGN: A "randomized"/stratified, single-blinded, parallel-group study. OBJECTIVE.: To evaluate 3 structurally different mattresses relative influence on patients with chronic low back pain (CLBP). SUMMARY OF BACKGROUND DATA: In several advertisements, it is proclaimed that certain......-conforming foam mattress (Tempur), and (3) a hard mattress (Innovation Futon). At baseline and after 4 weeks, a blinded observer interviewed the patients on LBP levels (0-10), daily function (activities of daily living, 0-30), and on the amount of sleeping hours/night. RESULTS: Because of dropout of 19 patients...... using the probably most relevant "worst case" data. There were no relevant difference between the effects of the water bed and the foam bed. CONCLUSION: The Waterbed and foam mattress' did influence back symptoms, function and sleep more positively as apposed to the hard mattress, but the differences...

  19. Reactor vessel for pebble beds

    International Nuclear Information System (INIS)

    The wall and the bottom of the vessel for the gas-cooled pebble-bed reactor consist of numerous blocks of graphite or carbon rock piled up. They are held together by an exterior cylindrical or polygonal ring and supported by a foundation. The blocks form coherent sectors resp. annular sectors with well-defined separating lines. At high temperatures or load change operation these sectors behave like monolithic blocks expanding heely and contracting again, the center of the vessel remaining fixed. The forces causing the compression result from the own weight of the sectors and the weight of the pebble bed. This motion is supported by the convex arrangement of the opposite surfaces of the sectors and the supporting walls and by roller bearings. The bottom of the vessel may be designed funnel-shaped, in this way facilitating the removal of spheres. (DG)

  20. The Influence of Roughness and Pyrethroid Formulations on Bed Bug (Cimex lectularius L. Resting Preferences

    Directory of Open Access Journals (Sweden)

    Benjamin A. Hottel

    2015-05-01

    Full Text Available Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin. The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient.

  1. FLUIDIZATION OF FINE POWDERS IN FLUIDIZED BEDS WITH AN UPWARD OR A DOWNWARD AIR JET

    Institute of Scientific and Technical Information of China (English)

    Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2005-01-01

    The hydrodynamic behavior of fine powders in jet-fluidized beds was studied numerically and experimentally. The starting point of numerical simulation was the generalized Navier-Stokes (N-S) equations for the gas and solids phases. The κ-εturbulence model was used for high-speed gas jets in fluidized beds. Computation shows that a suitable turbulence model is necessary to obtain agreement between the simulation and literature experimental data for a high-speed gas jet. The model was applied to simulating the fluidization of fine powders in fluidized beds with an upward or a downward air jet. An empirical cohesion model was obtained by correlating the cohesive force between fine particles using a cohetester. The cohesion model was embedded into the two-fluid model to simulate the fluidization of fine powders in two-dimensional (2-D) beds. To study the fluidization behavior of fine and cohesive powders with a downward jet,experiments were performed in a 2-D bed. Agreement between the computed time-averaged porosity and measured data was obtained. With an upward jet in the bed center, the measured and computed porosities show a dilute central core, especially at very high jet velocities. Based on our experiments and computations, a downward jet located inside the bed is recommended to achieve better mixing and contacting of gas and solids.

  2. Reed's Conjecture on hole expansions

    CERN Document Server

    Fouquet, Jean-Luc

    2012-01-01

    In 1998, Reed conjectured that for any graph $G$, $\\chi(G) \\leq \\lceil \\frac{\\omega(G) + \\Delta(G)+1}{2}\\rceil$, where $\\chi(G)$, $\\omega(G)$, and $\\Delta(G)$ respectively denote the chromatic number, the clique number and the maximum degree of $G$. In this paper, we study this conjecture for some {\\em expansions} of graphs, that is graphs obtained with the well known operation {\\em composition} of graphs. We prove that Reed's Conjecture holds for expansions of bipartite graphs, for expansions of odd holes where the minimum chromatic number of the components is even, when some component of the expansion has chromatic number 1 or when a component induces a bipartite graph. Moreover, Reed's Conjecture holds if all components have the same chromatic number, if the components have chromatic number at most 4 and when the odd hole has length 5. Finally, when $G$ is an odd hole expansion, we prove $\\chi(G)\\leq\\lceil\\frac{\\omega(G)+\\Delta(G)+1}{2}\\rceil+1$.

  3. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  4. On genus expansion of superpolynomials

    International Nuclear Information System (INIS)

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots

  5. Bed bathing patients in hospital

    OpenAIRE

    L Downey; Lloyd, Hilary

    2008-01-01

    There are a number of circumstances that may affect an individual's ability to maintain personal hygiene. Hospitalised patients, and in particular those who are bedridden, may become dependent on nursing staff to carry out their hygiene needs. Assisting patients to maintain personal hygiene is a fundamental aspect of nursing care. However, it is a task often delegated to junior or newly qualified staff. This article focuses on the principles of bed bathing patients in hospital, correct proced...

  6. THE BAUXITES AND JELAR - BEDS

    Directory of Open Access Journals (Sweden)

    Krešimir Sakač

    1993-12-01

    Full Text Available Minor bauxite deposits and occurrences were formed in technically disturbed environments in the middle part of the Adriatic geotectonic unit in Dinarides, contemporary with the clastic Jelar-beds in the Late Lutetian time. Uneven chemical composition of these Eocene bauxites, their sporadic occurrences in developed paleorelief as well as characteristic petrographic composition of the immediate overlying rocks point out at different genetical conditions (the paper is published in Croatian.

  7. Solids mixing in spouted beds

    OpenAIRE

    Cook, H. H.; Bridgwater, J.; Professor J. Bridgwater

    1981-01-01

    Many industrial processes require contact between particles and a fluid or spray in order to effect drying, coating or granulation. One device capable of contacting fluid and particles efficiently is a spouted bed in which a jet of fluid is injected into solid particles. This forms an open channel or spout and induces material circulation in a downward moving annulus. For the continuous throughput of solids, knowledge is required of the mixing and particle motions within th...

  8. Thermal-hydraulic transient analysis of a packed particle bed reactor fuel element

    OpenAIRE

    Casey, William Emerson

    1990-01-01

    Title as it appears in the M.I.T. Graduate List, Jun. 4, 1990: Transient thermal-hydraulic analysis of a packed particle bed reactor fuel element A model which describes the thermal-hydraulic behavior of a packed particle bed reactor fuel element is developed and compared to a reference standard. The model represents a step toward a thermal-hydraulic module for a real-time, autonomous reactor powder controller. The general configuration of the fuel element is a bed of small (diameter about...

  9. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; Bloomberg, J.; Mulavara, A; Seidler, R.

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  10. Experiment and numerical simulation of water surface response to rise and depression of the sea bed

    International Nuclear Information System (INIS)

    Water surface response to rise and depression of the sea bed was investigated by a hydraulic experiment and a numerical model development based on a fully nonlinear boundary element method. First, it was found that initial water surface behavior is fairly coincident between the experimental and numerical results under the initial conditions of up-surge and down-surge. Secondly, by the experimental and the numerical results it was made clear that larger deformation speed of the sea bed, smaller sea bed deformation and smaller water depth of the sea movement cause larger response efficiency of water surface. (author)

  11. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Science.gov (United States)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  12. The fluidized bed reactor with a prepolymerization system and its influence on polymer physicochemical characteristics

    OpenAIRE

    F. A. N. Fernandes; L. M. F. Lona

    2003-01-01

    This work addresses the influence of a prepolymerization system on the behavior of the fluidized bed reactor used for polyethylene production. Its influence on the polymer's physicochemical characteristics and production was also studied. The results indicate that the use of prepolymerized catalyst particles results in milder temperatures in the fluidized bed reactor, thus avoiding the formation of hot spots, melting of the polymer particle and reactor shutdown. Productivity can be enhanced d...

  13. Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets

    International Nuclear Information System (INIS)

    Modelling of thermal and mechanical behaviour of pebble beds for fusion blankets is an important issue to understand the interaction of solid breeder and beryllium pebble beds with the surrounding structural material. Especially the differing coefficients of thermal expansion of these materials cause high stresses and strains during irradiation induced volumetric heating. To describe this process, the coupled thermomechanical behaviour of both pebble bed materials has to be modelled. Additionally, creep has to be considered contributing to bed deformations and stress relaxation. Motivated by experiments, we use a continuum mechanical approach called Drucker-Prager/Cap theory to model the macroscopic pebble bed behaviour. The model accounts for pressure dependent shear failure, inelastic hardening, and volumetric creep. The elastic part is described by a nonlinear elasticity law. The model has been implemented by user-defined routines in the commercial finite-element code ABAQUS. To check the numerics, the implementation is compared to an analytical solution. Furthermore, the Drucker-Prager/Cap tool is applied to a single ceramic breeder bed subject to creep under volumetric heating

  14. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  15. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  16. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  17. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  18. Multipole Expansion in Generalized Electrodynamics

    CERN Document Server

    Bonin, C A; Ortega, P H

    2016-01-01

    In this article we study some classical aspects of Podolsky Electrodynamics in the static regime. We develop the multipole expansion for the theory in both the electrostatic and the magnetostatic cases. We also address the problem of consistently truncating the infinite series associated with the several kinds of multipoles, yielding approximations for the static Podolskian electromagnetic field to any degree of precision required. Moreover, we apply the general theory of multipole expansion to some specific physical problems. In those problems we identify the first terms of the series with the monopole, dipole and quadrupole terms in the generalized theory. We also propose a situation in which Podolsky theory can be experimentally tested.

  19. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  20. Generalized approach to the non-backtracking lace expansion

    OpenAIRE

    Fitzner, Robert; van der Hofstad, Remco

    2015-01-01

    The lace expansion is a powerful perturbative technique to analyze the critical behavior of random spatial processes such as the self-avoiding walk, percolation and lattice trees and animals. The non-backtracking lace expansion (NoBLE) is a modification that allows us to improve its applicability in the nearest-neighbor setting on the $\\Zd$-lattice for percolation, lattice trees and lattice animals. The NoBLE gives rise to a recursive formula that we study in this paper at a general level. We...

  1. Bed to wall heat transfer in supercritical water fluidized bed: Comparison with the gas–solid fluidized bed

    International Nuclear Information System (INIS)

    Supercritical water (SCW) fluidized bed is a new reactor concept for gasification of wet biomass. In this paper, the Eulerian two-fluid model based on Kinetic Theory of Granular Flow in fluidized bed was established, and the physical model of movement of single bubble up the wall was adopted. The comparison studies of particle distribution, temperature distribution and transient heat transfer characteristics between the SCW and gas–solid fluidized bed were carried out. The results show that the bubble diameter and rise velocity in SCW fluidized bed are smaller than those in gas–solid fluidized bed. With the increasing solid volume fraction near the wall, the bed-to-wall heat transfer coefficient decreases in SCW fluidized bed, while it increases in gas–solid fluidized bed. What is more, the bed-to-wall heat transfer coefficient is sensitive to superficial velocity where the solid volume fraction is low, which is different from that in gas–solid fluidized bed

  2. Properties of Ettringite Type Expansive Agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By employing different forms and amounts of materials,many kinds of ettringite type expansive agents had been prepared.The relationship between the compositions and properties of expansive agents was analyzed.The design methods of expansive agent have been put forward according to the property requirement of expansive concrete.

  3. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  4. Thermal expansion of glasses at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K.G.

    1979-01-01

    The linear thermal expansion coefficient (..cap alpha.. = (par. deltalnL/par. deltaT)/sub p/) was measured at temperatures to 1.2K for two amorphous solids, fused silica and PMMA (polymethylmethacrylate, plexiglas), using a parallel plate capacitor differential dilatometer. The low temperature expansion coefficients for these solids have the same temperature dependences as the specific heats, and show a contribution which is linear in the temperature and which can be associated with the postulate of a broad distribution of two level states. The Grueneisen parameters which are associated with this contribution are comparable for the two solids (Y approx. = -16), and suggest a further indication of common behavior for amorphous solids at low temperature. Large magnitudes for Grueneisen parameters (/..gamma../ > 5) generally are associated with tunneling models. A symmetric double harmonic oscillator tunneling model can be used to understand the sign and magnitude of ..gamma.. for these solids. This model is inconsistent with other thermal and thermodynamic data for fused silica. The existence of similar negative and large magnitude Grueneisen parameters for these two amorphous solids places an additional constraint on theories for the low temperature properties of glasses.

  5. Homomorphic expansions for knotted trivalent graphs

    CERN Document Server

    Bar-Natan, Dror

    2011-01-01

    It had been known since old times [MO, Da] that there exists a universal finite type invariant ("an expansion") Z^{old} for Knotted Trivalent Graphs (KTGs), and that it can be chosen to intertwine between some of the standard operations on KTGs and their chord-diagrammatic counterparts (so that relative to those operations, it is "homomorphic"). Yet perhaps the most important operation on KTGs is the "edge unzip" operation, and while the behavior of Z^{old} under edge unzip is well understood, it is not plainly homomorphic as some "correction factors" appear. In this paper we present two (equivalent) ways of modifying Z^{old} into a new expansion Z, defined on "dotted Knotted Trivalent Graphs" (dKTGs), which is homomorphic with respect to a large set of operations. The first is to replace "edge unzips" by "tree connect sums", and the second involves somewhat restricting the circumstances under which edge unzips are allowed. As we shall explain, the newly defined class dKTG of knotted trivalent graphs retains ...

  6. Completeness relations and resonant state expansions

    International Nuclear Information System (INIS)

    The completeness properties of the discrete set of bound states, virtual states, and resonant states characterizing the system of a single nonrelativistic particle moving in a central cutoff potential are investigated. We do not limit ourselves to the restricted form of completeness that can be obtained from Mittag-Leffler theory in this case. Instead we will make use of the information contained in the asymptotic behavior of the discrete states to get a new approach to the question of eventual overcompleteness. Using the theory of analytic functions we derive a number of completeness relations in terms of discrete states and complex continuum states and give some criteria for how to use them to form resonant state expansions of functions, matrix elements, and Green's functions. In cases where the integral contribution vanishes, the discrete part of the expansions is of the same form as that given by Mittag-Leffler theory but with regularized inner products. We also consider the possibility of using the discrete states as basis in a matrix representation

  7. Comportamento de expansão de argilas bentoníticas organofílicas do estado da Paraíba Expansion behavior of organophilic bentonite clays from the State of Paraíba

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2008-06-01

    used for the organophilization, and that this behavior varied according to the salt and clay used, the interlayer spacing increasing behavior is linear when the Dodigen salt was used and varied according to the bentonite clay when the Cetremide salt was used.

  8. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  9. Penrose limits versus string expansions

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; Weiss, Sebastian [Institut de Physique, Universite de Neuchatel, Rue Breguet 1, CH-2000 Neuchatel (Switzerland)

    2008-06-21

    We analyze the relation between two a priori quite different expansions of the string equations of motion and constraints in a general curved background, namely one based on the covariant Penrose-Fermi expansion of the metric G{sub {mu}}{sub {nu}} around a Penrose limit plane wave associated with a null geodesic {gamma} and the other on the Riemann coordinate expansion in the exact metric G{sub {mu}}{sub {nu}} of the string embedding variables around the null geodesic {gamma}. Starting with the observation that there is a formal analogy between the exact string equations in a plane wave and the first-order string equations in a general background, we show that this analogy becomes exact provided that one chooses the background string configuration to be the null geodesic {gamma} itself. We then explore the higher-order correspondence between these two expansions and find that for a general curved background they agree to all orders provided that one works in Fermi coordinates and in the lightcone gauge. Requiring moreover the conformal gauge restricts one to the usual class of (Brinkmann) backgrounds admitting simultaneously the lightcone and the conformal gauge, without further restrictions.

  10. Series expansions and sudden singularities

    CERN Document Server

    Barrow, John D; Tsokaros, A

    2013-01-01

    We construct solutions of the Friedmann equations near a sudden singularity using generalized series expansions for the scale factor, the density, and the pressure of the fluid content. In this way, we are able to arrive at a solution with a sudden singularity containing two free constants, as required for a general solution of the cosmological equations.

  11. On persistently positively expansive maps

    Directory of Open Access Journals (Sweden)

    Alexander Arbieto

    2010-06-01

    Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.

  12. Pebble bed modular reactor (PBMR)

    International Nuclear Information System (INIS)

    In 1993, the pebble bed modular reactor (PBMR) was identified by ESKOM, the electric utility of South Africa, as a leading option for the installation of new generating capacity to their electric grid. This innovative nuclear power plant incorporates a closed cycle primary coolant system utilizing helium to transport heat energy directly from the modular pebble bed reactor to a recuperative power conversion unit with a single-shaft turbine/compressor/generator. This replacement of the steam cycle that is common in present nuclear power plants (NPP) with a direct gas cycle provides the benefits of simplification and a substantial increase in overall system efficiency with the attendant lowering of capital and operational costs. Although the historical development of this plant is interrelated to other types of high temperature gas cooled reactors (HTGRs), the principle focus herein is on the pebble bed (spherical) fuel element type reactor. The long-term development of this reactor type began in Germany by the KFA Nuclear Research Center (now FZJ). Two pebble bed plants were constructed in Germany, the 46 MW(th)/15 MW(e) Arbeitsgemeinshaft Versuchsreaktor (AVR) and the 750 MW(th)/296 MW(e) thorium high temperature reactor (THTR-300). Basically, these steam/electric plants validated the temperature and fission product retention capabilities of the ceramic (TRISO) coated fuel particle and the safety characteristics of the HTGR. Most notable of the operational achievements was with the AVR in sustaining longterm operation at an average core outlet temperature of 950 deg. C, and in demonstration of safety such as extended loss of forced cooling on the core. More details on the AVR and THTR-300 plants are provided The next evolution of the pebble bed plant began in the early 1980s with development of the modular reactor. This small reactor added the unique characteristic of being able to cool the core entirely by passive heat transfer mechanisms following postulated

  13. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    Science.gov (United States)

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  14. Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material

    OpenAIRE

    Mac an Bhaird, Seán T.; Walsh, Eilín; Hemmingway, Phil; McDonnell, Kevin; et al.

    2014-01-01

    The quantity and composition of the ash content of straw poses technical challenges to its thermal conversion and have been widely reported to cause severe ash sintering and bed agglomeration during fluidised bed gasification. Literature indicates that a combination of reactor design and bed material measures is required to avoid defluidisation at temperatures above 800 °C. Using scanning electron microscopy and energy dispersive X-ray spectroscopy this study investigated the initial agglomer...

  15. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    Science.gov (United States)

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  16. MICROTURBULENCE IN GRAVEL BED STREAMS

    Science.gov (United States)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  17. Fixed bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Full text: The fixed bed nuclear reactor (FBNR) is essentially a pressurized light water reactor (PWR) having spherical fuel elements constituting a suspended reactor core at its lowest bed porosity. The core is movable thus under any adverse condition, the fuel elements can leave the reactor core naturally through the force of gravity and fall into the passively cooled fuel chamber or leave the reactor all together entering the spent fuel pool. It is a small and modular reactor being simple in design. Its spent fuel is in such a convenient form and size that may be utilized directly as the source for irradiation and applications in agriculture and industry. This feature results in a positive impact on waste management and environmental protection. The principle features of the proposed reactor are that the concept is polyvalent, simple in design, may operate either as fixed or fluidized bed, have the core suspended contributing to inherent safety, passive cooling features of the reactor. The reactor is modular and has integrated primary system utilizing either water, supercritical steam or helium gas as its coolant. Some of the advantages of the proposed reactor are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. The characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept may be analyzed under the light of the requirements set for the IV generation nuclear reactors. It is shown that FBNR meet the goals of (1) Providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production, (2) Minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment, (3) Excel in safety and reliability

  18. Accelerated expansion of the universe à la the Stueckelberg mechanism

    International Nuclear Information System (INIS)

    We investigate a cosmological model in which the Stueckelberg fields are non-minimally coupled to the scalar curvature in a gauge invariant manner. We present not only a solution that can be considered in the context of the late time acceleration of the universe but also a solution compatible with the inflationary cosmology. Distinct behaviors of the scalar and vector fields together with the real valued mass gained by the Stueckelberg mechanism lead the universe to go through the two different accelerated expansion phases with a decelerated expansion phase between them. On the other hand, in the solutions we present, if the mass is null then the universe is either static or exhibits a simple power law expansion due to the vector field potential

  19. Prediction of final settlements of buildings constructed on expansive soils

    Directory of Open Access Journals (Sweden)

    María-de-la-Luz Pérez-Rea

    2015-06-01

    Full Text Available Because the action of the swelling pressure, the settlements caused by the transmitted load from the structure on expansive soils, and the settlements calculated by classic theories of soils mechanics are different. This swelling pressure acts in opposite direction to the weight of the building. In this paper, the authors propose the use of a volumetric strain coefficient by settlements exp, in a soil-structure interaction algorithm taking into account the expansive soil behavior in the reduction of the settlement magnitude when a building is placed above soil. It’s necessary to know the initial properties of the expansive unsaturated soil and the load building conditions. A laboratory process is described for determining the aexpcoefficient.

  20. Thermal expansion of epoxy-fiberglass composite specimens

    International Nuclear Information System (INIS)

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 1200C (70 to 2500F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (α) values within +-2% of expected values from 20 to 2000C

  1. Accelerated expansion of the universe à la the Stueckelberg mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Akarsu, Özgür [Department of Physics, Koç University, Sarıyer, İstanbul, 34450 Turkey (Turkey); Arık, Metin; Katırcı, Nihan; Kavuk, Mehmet, E-mail: oakarsu@ku.edu.tr, E-mail: metin.arik@boun.edu.tr, E-mail: nihan.katirci@boun.edu.tr, E-mail: mehmet.kavuk@boun.edu.tr [Department of Physics, Boğaziçi University, Bebek, İstanbul, 34342 Turkey (Turkey)

    2014-07-01

    We investigate a cosmological model in which the Stueckelberg fields are non-minimally coupled to the scalar curvature in a gauge invariant manner. We present not only a solution that can be considered in the context of the late time acceleration of the universe but also a solution compatible with the inflationary cosmology. Distinct behaviors of the scalar and vector fields together with the real valued mass gained by the Stueckelberg mechanism lead the universe to go through the two different accelerated expansion phases with a decelerated expansion phase between them. On the other hand, in the solutions we present, if the mass is null then the universe is either static or exhibits a simple power law expansion due to the vector field potential.

  2. Regularized Chapman-Enskog expansion for scalar conservation laws

    Science.gov (United States)

    Schochet, Steven; Tadmor, Eitan

    1990-01-01

    Rosenau has recently proposed a regularized version of the Chapman-Enskog expansion of hydrodynamics. This regularized expansion resembles the usual Navier-Stokes viscosity terms at law wave-numbers, but unlike the latter, it has the advantage of being a bounded macroscopic approximation to the linearized collision operator. The behavior of Rosenau regularization of the Chapman-Enskog expansion (RCE) is studied in the context of scalar conservation laws. It is shown that thie RCE model retains the essential properties of the usual viscosity approximation, e.g., existence of traveling waves, monotonicity, upper-Lipschitz continuity..., and at the same time, it sharpens the standard viscous shock layers. It is proved that the regularized RCE approximation converges to the underlying inviscid entropy solution as its mean-free-path epsilon approaches 0, and the convergence rate is estimated.

  3. In-core fuel management for pebble-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Milian Perez, Daniel; Rodriguez Garcia, Lorena; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    In this paper a calculation procedure to reduce the power peak in the core of a Very High Temperature pebble bed Reactor is presented. This procedure combines the fuel depletion and the neutronic behavior of the fuel in the reactor core, modeling once-through-then-out cycles as well as cycles in which pebbles are recirculated through the core an arbitrary number of times, obtaining the asymptotic fuel-loading pattern. The procedure consists in several coupled computational codes, which are used iteratively until convergence is reached. The utilization of the MCNPX 2.6e, as one of these computational codes, is validated through the calculation of benchmarks announced by IAEA (IAEA-TECDOC-1249, 2001). To complete the verification of the calculation procedure a base case described in (Annals of Nuclear Energy 29 (2002) 1345-1364), was performed. The procedure has been applied to a model of Pebble Bed Modular Reactor (200 MW) design. (author)

  4. Particle-scale simulation of fluidized bed with immersed tubes

    Institute of Scientific and Technical Information of China (English)

    Yongzhi ZHAO; Maoqiang JIANG; Yi CHENG

    2008-01-01

    In order to simulate gas-solids flows with complex geometry,the boundary element method was incorporated into the implementation of a combined model of computational fluid dynamics and discrete element method.The resulting method was employed to simulate hydrodynamics in a fluidized bed with immersed tubes.The transient simulation results showed particle and bubble dynamics.The bubble coalescence and break-up behavior when passing the immersed tubes was successfully predicted.The gas-solid flow pattern in the fluidized bed is changed greatly because of the immersed tubes.As particles and gas are come in contact with the immersed tubes,the gas bubbles will be deformed.The collisions between particles arid tubes will make the tubes sur-rounded by air pockets most of the time and this is unfavorable for the heat transfer between particles and tubes.

  5. Measurement of wall and interfacial friction factors for counter-current flow in porous bed

    International Nuclear Information System (INIS)

    In the course of a severe accident, a debris bed is formed from once molten and fragmented fuel elements as observed in the Three-Mile Island unit-2 accident. The debris bed must be cooled to avoid further degradation of the core, since the degraded core releases decay heat. Even if the degraded core is in water, it cannot be judged that the degraded core would be coolable, since the degraded core may be melted again if dryout occurs. It is thus necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. Dryout phenomena in the debris bed is dominated by two-phase flow behavior in the debris bed. Especially, it is strongly affected by counter-current flow limitation (CCFL) in the debris bed. Therefore, it is important to know the flow characteristics of CCFL in the debris bed. If one hopes to analyze counter-current flow in the debris bed by using the same method as usual two-fluid model, it is necessary to know the interfacial and the wall friction factors. However, it is not clear that the correlations for interfacial and wall friction factor for a pipe can be used for counter-current flow in the debris beds. In order to determine the interfacial and wall friction factors, it is necessary to obtain wall and interfacial shear stresses. The wall and the interfacial shear stresses depend on the void fraction and differential pressure. However, at present, there is no available data for local void fraction and local pressure distribution in the debris bed at CCFL, since it is very difficult to measure the flow characteristics in the complex geometry such as the debris bed. In the present study, air-water CCFL experiment was conducted with a debris bed simulated with glass particles to measure the local void fraction and the local pressure distributions simultaneously as well as the flow rates for gas and liquid. The present experimental research succeed to measure the local void fraction under CCFL in

  6. 应用健康行为改变整合理论改善出院后居家老年卧床患者的康复效果%Application the health behavior change integration theory to improve rehabilitation effect after discharge in elderly patients with bed occupy

    Institute of Scientific and Technical Information of China (English)

    徐永能; 肖风霞; 李远红; 卢少萍; 林建华; 黄巧; 李绣球; 任晓晓; 何金莲; 赵雪琴; 吴博

    2015-01-01

    Objective: To evaluate health behavior change theory to the rehabilitation effect of patients with elderly bedridden at home after discharge from hospital. Method: 120 cases of elderly patients in bed were randomly divided into control group and experimental group by in hospital time order. Respectively, the outreach team evaluate patients family rehabilitation nursing plan. The control group was given conventional propaganda and telephone follow-up after discharge. Experimental group was developed family rehabilitation nursing plans according to the health behavior change integration theory. Compared the two groups of patients discharged from hospital, 6 and 12 months after discharge in daily living, quality of life and other aspects of rehabilitation by using Activity of Daily Living Scale (ADL) and Quality of Life Questionnaire. Results: The patients discharged from hospital for 6 months, 12 months physiological and psychological ifeld, the individual subjective feeling of the overall quality of survival ,the overall subjective health, daily life ability scores were higher than in the control group, the difference was statistically signiifcant (P0.05). Conclusion: The application of the theory of health behavior change for elderly patients in bed home rehabilitation, can signiifcantly improve the patients' quality of life and daily life ability.%目的:评价应用健康行为改变理论对出院后居家老年卧床患者康复效果的影响.方法:将120例老年卧床患者按出院时间顺序分为对照组和实验组,分别由外展小组评估患者并制订家庭康复护理计划,对照组给予常规出院宣教及出院后的电话随访,实验组按照健康行为改变整合理论方法,实施出院后延续护理管理,采用日常生活能力量表和生存质量量表比较两组患者出院时、出院后6个月、出院后12个月的日常生活能力、生活质量.结果:实验组出院后6个月、12个月日常生活能力以及生活

  7. Fluid-bed process for SYNROC production

    International Nuclear Information System (INIS)

    SYNROC is a titanate-based ceramic waste developed for the immobilization of high-level nuclear reactor waste. Lawrence Livermore National Laboratory (LLNL) has investigated a fluid-bed technique for the large-scale production of SYNROC precursor powders. Making SYNROC in a fluid bed permits slurry drying, calcination and reduction-oxidation reactions to be carried out in a single unit. We present the results of SYNROC fluid-bed studies from two fluid-bed units 10 cm in diameter: an internally heated fluid-bed unit developed by Exxon Idaho and an externally heated unit constructed at LLNL. Bed operation over a range of temperatures, feed rates, fluidizing rates, and redox conditions indicate that SYNROC powders of a high density and a uniform particle size can be produced. These powders facilitate the densification step and yield dense ceramics (greater than 95% theoretical density) with well-developed phases and low leaching rates

  8. Generation expansion planning in a competitive electric power industry

    Science.gov (United States)

    Chuang, Angela Shu-Woan

    This work investigates the application of non-cooperative game theory to generation expansion planning (GEP) in a competitive electricity industry. We identify fundamental ways competition changes the nature of GEP, review different models of oligopoly behavior, and argue that assumptions of the Cournot model are compatible with GEP. Applying Cournot theory of oligopoly behavior, we formulate a GEP model that may characterize expansion in the new competitive regime, particularly in pool-dominated generation supply industries. Our formulation incorporates multiple markets and is patterned after the basic design of the California ISO/PX system. Applying the model, we conduct numerical experiments on a test system, and analyze generation investment and market participation decisions of different candidate expansion units that vary in costs and forced outage rates. Simulations are performed under different scenarios of competition. In particular, we observe higher probabilistic measures of reliability from Cournot expansion compared to the expansion plan of a monopoly with an equivalent minimum reserve margin requirement. We prove several results for a subclass of problems encompassed by our formulation. In particular, we prove that under certain conditions Cournot competition leads to greater total capacity expansion than a situation in which generators collude in a cartel. We also show that industry output after introduction of new technology is no less than monopoly output. So a monopoly may lack sufficient incentive to introduce new technologies. Finally, we discuss the association between capacity payments and the issue of pricing reliability. And we derive a formula for computing ideal capacity payment rates by extending the Value of Service Reliability technique.

  9. Spring packed particle bed fuel element

    International Nuclear Information System (INIS)

    This patent describes a gas cooled particle bed nuclear fuel element. It comprises: a porous inner frit; a porous outer frit attached to the inner frit by an end cap t a first end and radially guided by a shoulder at a second end, forming an annulus between the frits; a fuel particle bed in the annulus; a first compressive device at each end of the annulus; and a second compressive device positioned in the annulus within the fuel particle bed

  10. Fluidized bed combustion in praxis

    International Nuclear Information System (INIS)

    Operation at deregulated energy markets emphasize utilities competitiveness in power generation. This means power plant investment cost as well as operation and maintenance costs must be competitive to ensure economical performance. Improvements in competitiveness can also be achieved investing to modem combustion technology and this way improve power generation efficiency (lower fuel consumption). Other means to improve cost effectiveness are optimisation of daily operation and process control system but also improving fuel flexibility if feasible (fuel price). The other need for utilities in the future is of course environmental issues like reduction of CO2 emissions in particular. As known fluidized bed combustion offers many advantages that might be needed at future energy markets. These are superior fuel and operation flexibility, multi-fuel capability, environmental performance with inherently low NOx emissions due favourable combustion conditions and cost effective sulphur reduction applying in-furnace SO2 capture. These advantages makes fluidized bed combustion attractive alternative power generation in the future. The current trends for development of the technology are discussed in this paper. (authors)

  11. Gruppebaseret behandling af BED - et faseopdelt behandlingstilbud

    DEFF Research Database (Denmark)

    Laust, Jakob; Lau, Marianne Engelbrecht; Waaddegaard, Mette

    2015-01-01

    konsekvenser. BED blev i 2013 optaget i DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) som en selvstændig diagnose og BED forventes medtaget i den forestående revision af det internationale diagnose system, ICD-11. Sundhedsstyrelsen gav på denne baggrund satspuljemidler til erfaringsopsamling......Titel: Afrapportering vedr. SATS-puljemidler til behandling og erfaringsopsamling vedr. BED for perioden 1. marts 2013 – 1. maj 2015. Baggrund: Binge Eating Disorder (BED), på dansk tvangsoverspisning, er en udbredt, men overset spiseforstyrrelse med alvorlige psykiske, fysiske og sociale...

  12. Expansions of non-symmetric toroidal magnetohydrodynamic equilibria

    Science.gov (United States)

    Weitzner, Harold

    2016-06-01

    Expansions of non-symmetric toroidal ideal magnetohydrodynamic equilibria with nested flux surfaces are carried out for two cases. The first expansion is in a topological torus in three dimensions, in which physical quantities are periodic of period 2 π in y and z. Data is given on the flux surface x = 0. Despite the possibility of magnetic resonances the power series expansion can be carried to all orders in a parameter which measures the flux between x = 0 and the surface in question. Resonances are resolved by appropriate addition resonant fields, as by Weitzner, [Phys. Plasmas 21, 022515 (2014)]. The second expansion is about a circular magnetic axis in a true torus. It is also assumed that the cross section of a flux surface at constant toroidal angle is approximately circular. The expansion is in an analogous flux coordinate, and despite potential resonance singularities, may be carried to all orders. Non-analytic behavior occurs near the magnetic axis. Physical quantities have a finite number of derivatives there. The results, even though no convergence proofs are given, support the possibility of smooth, well-behaved non-symmetric toroidal equilibria.

  13. Summary of current knowledge in the field of debris bed cooling

    International Nuclear Information System (INIS)

    In this report the actual knowledge in the area of debris cooling is presented. Beside a summary of the physical basis of flow through porous media, the heat transfer phenomena within the porous layer are treated. Following the description of the test devices, the experimental results of different authors were presented. Thereby the important parameters referring to the coolability of debris beds, e.g. particle size and shape, porosity of the bed, liquid and solid properties, capillary forces, pressure as well as boundary conditions, will be visible. Subsequently a survey of theoretical models is given. The models for simulation of the physical processes within the particle bed are founded on partly considerable simplifications. With respect to a better understanding of the particle bed behavior under real accident scenarios further work in following areas are necessary: bed behavior during and after dryout, location of dry sections, coolant inlet flow from below, coolability at high system pressures, quenching of a hot particle bed and channeling. (orig.)

  14. Comments on the transition between cohesive and cohesionless sediment bed exchange

    Science.gov (United States)

    Mehta, Ashish J.; Letter, Joseph V.

    2013-10-01

    The presence of both cohesive and cohesionless particles in estuarine and lacustrine sediments makes it essential to model bed exchange of both types of particles. The usual practice is to select a purely empirical estimate of particle diameter marking the transition between the two behaviors. Based on available data on particle erosion and deposition in non-oscillating flows and viscoplastic properties of bed sediment, we have attempted to examine the likelihood of identifying the transition diameter within a less empirical framework. From the relationship between diameter and bed shear stress for a variety of cohesive and cohesionless sediments, it appears that two transition diameters can be defined. One is the largest diameter of clay mineral particles at which cohesion is considered to vanish. The other is the smallest diameter at which cohesionless behavior is assumed to end at the limit of the well-known Shields' relationship extended to very fine particles. These two diameters appear to be reasonably close for mainly inorganic mineral sediments. Assuming they are equal, six zones of bed exchange are identified in terms of diameter and bed shear stress. Depending on these two variables, zones of only erosion, no erosion or deposition, and only deposition can be designated. Realistic modeling of bed exchange of multi-size sediments requires that the full range of diameters be considered. Extension of this analysis to organic-rich sediments is pending better understanding of their rheological properties.

  15. Multiscale expansions in discrete world

    Indian Academy of Sciences (India)

    Ömer Ünsal; Filiz Taşcan; Mehmet Naci Özer

    2014-07-01

    In this paper, we show the attainability of KdV equation from some types of nonlinear Schrödinger equation by using multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.

  16. Polygons and the Lace Expansion

    Science.gov (United States)

    Clisby, Nathan; Slade, Gordon

    The lace expansion was introduced by Brydges and Spencer in 1985 [7] to analyse weakly self-avoiding walks in dimensions d > 4. Subsequently it has been generalised and greatly extended, so that it now applies to a variety of problems of interest in probability theory, statistical physics, and combinatorics, including the strictly self-avoiding walk, lattice trees, lattice animals, percolation, oriented percolation, the contact process, random graphs, and the Ising model. A recent survey is [42].

  17. RELIABILITY OF LENTICULAR EXPANSION COMPENSATORS

    Directory of Open Access Journals (Sweden)

    Gabriel BURLACU,

    2011-11-01

    Full Text Available Axial lenticular compensators are made to take over the longitudinal heat expansion, shock , vibration and noise, made elastic connections for piping systems. In order to have a long life for installations it is necessary that all elements, including lenticular compensators, have a good reliability. This desire can be did by technology of manufactoring and assembly of compensators, the material for lenses and by maintenance.of compensator

  18. Clinical grade expansion of MSCs.

    Science.gov (United States)

    Capelli, C; Pedrini, O; Valgardsdottir, R; Da Roit, F; Golay, J; Introna, M

    2015-12-01

    Producing advanced therapy medicinal products (ATMP) according to Good Manufacturing Practice (GMP) guidelines represents a global challenge for the expansion of cells intended for human use. Mesenchymal stromal cells (MSCs) from different sources are one of the most actively developed cell type for a variety of clinical applications in cellular therapy. Complying with GMP means defining accurately both the production process and the release criteria required for a final safe product. We have here reported our manufacturing experience on 103 consecutive clinical-grade in vitro expansions of both bone marrow-derived and umbilical cord-derived mesenchymal stromal cells together with description of methods and reagents utilized in our Cell Factory. The same animal- and serum-free medium, additioned with human platelet lysate, has been used for all the expansions performed. This is the largest experience published so far with this alternative and clinical-grade reagent (compared to the traditional fetal bovine serum) and shows the feasibility and the reproducibility of the method. Indeed, we have been able to produce a sufficient number of MSCs to treat 57 patients so far, enrolled in 7 different experimental phase I/II protocols. PMID:26092523

  19. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    Directory of Open Access Journals (Sweden)

    Joshua B. Benoit

    2011-04-01

    Full Text Available Recent emergence of bed bugs (Cimex spp. has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h to temperatures below −16 to −18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40–45 °C for the common (Cimex lectularius and tropical (C. hemipterus bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps. Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ

  20. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Gong, X.W.; Hu, G.X.; Li, Y.H. [Shanghai Jiao Tong University, Shanghai (China). School for Mechanical & Power Engineering

    2006-06-21

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle mode and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.

  1. Preparation and Expansion Properties Analysis of C60 Expansive Self-compacting Concrete

    Directory of Open Access Journals (Sweden)

    Jia Li-li

    2016-01-01

    Full Text Available Concrete Design of concrete filled steel tube should not only meet the requirements of self-compacting, but also need suitable expansion properties. On the basis of working performance requirement, study impact of expansive agent on concrete working performance, strength and expansion properties, preparation of C60 concrete filled steel to meet the self-compacting and expansion properties. Expander should not be too much, otherwise working performance and strength will be affected. Meanwhile study the correlation between restrained expansion and free expansion of expansive concrete, and analyze the mechanism of expansive concrete.

  2. 78 FR 36165 - Reorganization/Expansion of Foreign-Trade Zone 104; (Expansion of Service Area and Expansion of...

    Science.gov (United States)

    2013-06-17

    ... Federal Register (77 FR 43047, 07/23/12) and the application has been processed pursuant to the FTZ Act... Foreign-Trade Zones Board Reorganization/Expansion of Foreign-Trade Zone 104; (Expansion of Service Area and Expansion of Zone); Under Alternative Site Framework, Savannah, Georgia Pursuant to its...

  3. [Wound treatment with autogenous epidermal cell expansion culture].

    Science.gov (United States)

    Bonnekoh, B; Müller, R P; Mahrle, G; Steigleder, G K

    1988-11-11

    Sheets of autologous epidermal cells grown by expansion culture were used to cover small skin defects in seven patients with postoperative necroses, necroses due to temporal arteritis, varicose ulcers or after tangential excision of tattoos. Several transplantation techniques were used: backing of the cultured epithelia with vaseline gauze, Surfasoft, Adaptic, Silastic foil, culturing directly from Petriperm-foil. Meshed Silastic-foil proved to give the best support. Optimal take of the in-vitro epithelia (more than 80% of their surface area) was achieved only for fresh dermal wound-beds. The take was only moderate on chronic granulation tissue, but the transplants reduced the formation of fibrinous-necrotic material and favoured the formation of fresh granulation tissue. PMID:3181024

  4. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  5. Expansions and contractions of isotropic stochastic flows of homeomorphisms

    OpenAIRE

    Piterbarg, Vladimir V.

    1998-01-01

    A sequence of piecewise constant approximations to rescaled isotropic homeomorphic stochastic flows is shown to converge weakly in Skorohod metric to the coalescing Brownian flow. Intermittent behavior of isotropic flows is exposed, and the clustering properties of isotropic flows are studied by the means of this convergence. We obtain qualitative and quantitative description of expansions and contractions of an arbitrary isotropic homeomorphic flow on large time-and space-s...

  6. Sorted bed forms as self-organized patterns: 2. Complex forcing scenarios

    Science.gov (United States)

    Coco, Giovanni; Murray, A. Brad; Green, Malcolm O.; Thieler, E. Robert; Hume, T. M.

    2007-09-01

    We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.

  7. Sorted bed forms as self-organized patterns: 2. complex forcing scenarios

    Science.gov (United States)

    Coco, Giovanni; Murray, A. Brad; Green, Malcom O.; Thieler, E. Robert; Hume, T.M.

    2007-01-01

    We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.

  8. Designing a CR Test bed

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Buthler, Jakob Lindbjerg; Tonelli, Oscar;

    2014-01-01

    available, the software is most of the times open source and ready to use for third party users. Even though the software solution developers claim complete easiness in the development of custom applications, in reality there are a number of practical hardware and software issues that research groups need...... solutions. Finally, an overview on common research-oriented software products for SDR development, namely GNU Radio, Iris, and ASGARD, will be provided, including how to practically start the software development of simple applications. Finally, best practices and examples of all the software platforms will...... with their own set up, since the potential costs and efforts could not pay back in term of expected research results. Software Defined Radio solutions offer an easy way to communication researchers for the development of customized research test beds. While several hardware products are commercially...

  9. Gas expansion new style; Gasexpansie nieuwe stijl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-13

    A brief overview is given of the performance of a natural gas expansion project in Kanaaldijk-Noord, Netherlands. Two gas expansion turbines and two gas engines will supply circa 9 GWh per year to the electric power network.

  10. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  11. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    International Nuclear Information System (INIS)

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator

  12. Computer Aided Series Expansions for Critical Phenomena

    CERN Document Server

    Meyer-Ortmanns, H; Meyer-Ortmanns, Hildegard; Reisz, Thomas

    1996-01-01

    Under quite general conditions critical phenomena can be described with high order linked cluster expansions. The coefficients of the series admit a graphical expansion that is generated with the aid of computers. Our generalization of linked cluster expansions from an infinite to a finite volume allows to perform a finite size scaling analysis. We also indicate a generalization to Dynamical Linked Cluster Expansions with possible applications to spin glasses and neural networks with coupled spin and interaction dynamics.

  13. Determination of true bed thickness using folded bed model and borehole data

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.S.; Velasquillo-Martinez, L.G.; Grajales-Nishimura, J.M.; Murillo-Muneton, G. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Garcia-Hernandez, J. [Petroleos Mexicanos Exploracion y Produccion, Tamaulipas (Mexico); Nieto-Samaniego, A.F. [Nacional Autonoma de Mexico Univ., Veracruz (Mexico). Centro de Geociencias

    2007-11-15

    The actual thickness of a given formation perpendicular to the bedding plane is known as the true bed thickness. Petroleum engineers rely on information regarding true bed thickness, particularly in dipping beds and in deviated holes because reservoir volume and isochore maps depend on these properties and not on the measured thickness. True bed thickness can be estimated from information gathered from well logs such as the dipmeter and borehole images. However, when deviations and dips exceed 10 degrees, corrections are needed. In this paper, a folded bed model was proposed to calculate the true bed thickness in the subsurface utilizing well log data. The value of true bed thickness (t) was shown to depend on the angle and the direction of the dip of the measured formation, as well as the drift angle and azimuth of the borehole. A case study from the Cantarell oil field in the southern Gulf of Mexico, offshore Campeche, was used to test the folded bed method. The model was shown to yield more uniform spatial change of the values of t, compared to the monoclinal bed model that often overestimates the average value of t. The maximum relative deviation of t from the monoclinal bed model reached 22.3 per cent and the maximum absolute deviation of t reached 34.5 m. The key factors that influence the values of t were found to be the bed dip, the dip difference between the top and base of the bed and the deviated angle of the well. The folded bed model yielded fewer changed values of the true bed thickness. 10 refs., 2 tabs., 9 figs.

  14. Nail bed injuries and deformities of nail

    Directory of Open Access Journals (Sweden)

    R Ravindra Bharathi

    2011-01-01

    Full Text Available Nail bed injuries are common and management of these requires good knowledge of the nail bed anatomy. Proper management of these injuries will ensure good healing and prevent late deformities. When loss occurs it is challenging to reconstruct which can be done by grafts or microsurgical reconstruction to restore aesthetic appearance of fingers.

  15. Particle pressures in fluidized beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  16. Particle Pressures in Fluidized Beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  17. Container and Raised-Bed Gardening

    OpenAIRE

    Niemiera, Alexander Xavier, 1951-

    2009-01-01

    Raised beds, while requiring a high initial labor input, offer improved growing conditions and advantages compared to the existing soil. Improved plant growth, increased yields, and better accessibility are reasons to construct raised beds. This publication reviews the proper containers and plants, planting instructions, watering and potting soils, overwintering plants and more.

  18. Multiplier theorems for special Hermite expansions on

    Institute of Scientific and Technical Information of China (English)

    张震球; 郑维行

    2000-01-01

    The weak type (1,1) estimate for special Hermite expansions on Cn is proved by using the Calderon-Zygmund decomposition. Then the multiplier theorem in Lp(1 < p < ω ) is obtained. The special Hermite expansions in twisted Hardy space are also considered. As an application, the multipli-ers for a certain kind of Laguerre expansions are given in Lp space.

  19. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    Science.gov (United States)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  20. Bubbling fluidised bed gasification of wheat straw-gasifier performance using mullite as bed material

    OpenAIRE

    Mac an Bhaird, Seán T.; Hemmingway, Phil; Walsh, Eilín; McDonnell, Kevin; et al.

    2015-01-01

    The adoption of wheat straw as a fuel for gasification processes has been hindered due to a lack of experience and its propensity to cause bed agglomeration in fluidised bed gasifiers. In this study wheat straw was gasified in a small scale, air blown bubbling fluidised bed using mullite as bed material. The gasifier was successfully operated and isothermal bed conditions maintained at temperatures up to 750 ◦C. Below this temperature, the gasifier was operated at equivalence ratios from 0.1 ...

  1. Does Bedding Affect the Airway and Allergy?

    Directory of Open Access Journals (Sweden)

    J Crane

    2011-03-01

    Full Text Available Various cross-sectional and longitudinal studies have suggested that synthetic bedding is associated with asthma, allergic rhinitis and eczema while feather bedding seems to be protective. Synthetic bedding items have higher house dust mite allergen levels than feather bedding items. This is possibly the mechanism involved although fungal and bacterial proinflammatory compounds and volatile organic compounds may play a role. In this review we present and discuss the epidemiological evidence and suggest possible mechanisms. Primary intervention studies are required to show whether feather bedding is protective for the development of childhood asthma and allergic diseases while secondary intervention studies are required to potentially reduce symptoms and medication use in subjects with established disease.

  2. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  3. Fluidized bed heating process and apparatus

    Science.gov (United States)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  4. Sand attrition in conical spouted beds

    Institute of Scientific and Technical Information of China (English)

    Aranzazu R. Fernández-Akarregui; Jon Makibar; Isabel Alava; Luis Diaz; Fernando Cueva; Roberto Aguado; Gartzen Lopez; Martin Olazar

    2012-01-01

    A study was carried out on the attrition in conical spouted beds using two sands with different properties for several bed heights and gas flow rates.Furthermore,the influence of a draft tube was studied at ambient and high temperatures.The main objective was to acquire knowledge on the attrition of sand beds for biomass pyrolysis in a pilot plant provided with a conical spouted bed reactor.A first-order kinetic equation is proposed for sand attrition in a conical spouted bed at room temperature.The predicted attrition rate constant depends exponentially on excess air velocity over that for minimum spouting.Both the draft tube and temperature increase contribute to reduction of attrition.

  5. Cover stones on liquefiable soil bed under waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen

    2010-01-01

    The paper describes the results of an experimental study on the behavior of cover stones on a liquefiable soil bed exposed to a progressive wave. The soil was silt with d50=0.098mm. Stones, the size of 4cm, were used as cover material. The effect of packing density of stones, and that of number of...... stone layers (including the effect of an intermediate filter layer) were investigated. Pore pressure was measured across the soil depth. The experiments show that the soil liquefaction depended mainly on two parameters: the packing density of stones, and the number of stone layers. When the liquefaction...

  6. Dynamic stability of a fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Recent advances in the study of a fluidized-bed nuclear reactor's stability, due to short and long time transients, are discussed. The point-kinetic model, which considers flux variation in the axial direction, is applied to study short time transients, and the theory of bifurcation is used for long time transients. Numerical results are presented for both transients. The preliminary results indicate that this concept of a nuclear reactor has a behavior similar to that of a conventional reactor regarding its dynamic stability

  7. Numerical simulation of particle bed scour by vortices

    Science.gov (United States)

    Hagan, Dan; Dubief, Yves; Dewoolkar, Mandar

    2014-11-01

    The repeated impacts of a vortex dipole on a particle bed are simulated using a Direct Numerical Simulation (DNS) code. The resulting scour characteristics and flow dynamics are investigated as a function of the Shields number. The fluid phase is treated as a continuum and the discretized Navier-Stokes equations are solved down to the smallest scales of the flow, on an Eulerian grid. The particles comprising the bed are represented by the Discrete Particle Model (DPM), whereby each individual particle is tracked in a Lagrangian framework. Particle-particle and particle-wall collisions are modeled using a soft-sphere model. The fluid phase and the solid phase are coupled through a forcing term in the fluid conservation of momentum equation, and a drag force in the particle equation of motion, governed by Newton's Second Law. Above the critical Shields number, the scour hole topography is not fundamentally altered with subsequent impacts until the scale of the scour hole reaches a critical value. At which point, the shape and scale of the scour hole significantly alters the behavior of the vortex dipole and results in strongly asymmetric scour topographies. The two-way coupling between the bed scour and the vortex dipole dynamics are analyzed. Support from UVM Transportation Research Center and NSF CBET-0967224.

  8. Attrition of sorbents during fluidized bed calcination and sulphation

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Salatino, P. [Naples Univ. (Italy). Dipartimento di Ingegneria Chimica; Boerefijn, R.; Ghadiri, M. [Surrey Univ., Guildford (United Kingdom). Dept. of Chemical and Process Engineering

    2000-01-24

    The attrition behavior of two different limestones during calcination and sulphation in fluidized beds as been investigated by a combination of experimental techniques. The aim of the study is to shed light on the interactions between sorbent attrition and the change of particle mechanical and morphological properties associated with the progress of chemical reactions. A number of different experimental techniques have been used to characterize breakage mechanisms relevant to particle attrition in different sections of industrial fluidized bed reactors operated at atmospheric pressure. Primary fragmentation and abrasive attrition were characterized in situ by means of experiments carried out in a bench-scale fluidized bed reactor operated batchwise. Fragmentation under high velocity impact conditions was studied ex situ by means of single particle impact tests on pre-conditioned samples at room temperature. Scanning electron and optical microscopy analyses of the particles and EDX mapping of polished particle cross-sections were used to relate topography and internal composition of sorbent particles to the attrition mechanism. (orig.)

  9. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  10. Performances of continuous dryer with inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2008-01-01

    Full Text Available A fluid bed dryer with inert particles represents a very attractive alternative to other drying technologies according to the main efficiency criteria, i.e. specific water evaporation rate, specific heat consumption and speci­fic air consumption. A high drying efficiency results from the large con­tact area and from the large temperature difference between the inlet and outlet air. A rapid mixing of the particles leads to nearly isothermal conditions throughout the bed. A fluid bed dryer with inert particles was used for drying of slurries. Experiments were performed in a cylindrical column 215 mm in diameter with glass spheres as inert particles. In this paper, results of drying experi­ments with slurries of Zineb fungicide, copper hydroxide, calcium carbo­nate and pure water used as the feed material are presented. In our fluidized bed we successfully dried a number of other materials such as: fungicides and pesticides (Ziram, Propineb, Mangozeb, copper oxy-chloride, copper oxy-sulphate, Bordeaux mixture, other inorganic compounds (calcium sulphate, cobalt carbonate, electrolytic copper, sodium chloride, and a complex compound (organo-bentonite. The effects of operating conditions on dryer throughput and product quality were investigated. Main performance criteria, i.e. specific water evaporation rate, specific heat consumption and specific air consumption, were quantified. Temperature profile along the bed was mapped, and nearly isothermal conditions were found due to thorough mixing of the particles. Analysis of drying and energy efficiencies as a function of inlet and outlet air temperature difference was performed for deeper insight in dryer behavior and for optimizing dryer design and operation from an energy point of view. A simple mathematical model based on an overall heat balance predicts the dryer performance quite well. The industrial prototype with fluid bed of 0.8 m in diameter and capacity 650 kg of evaporated moisture per

  11. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  12. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  13. Development of the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.

    2012-01-01

    Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.

  14. Mitigating the Expansive Behavior of Chemically Treated Soils

    OpenAIRE

    Jung, Sochan; Santagata, Maria Caterina

    2009-01-01

    Sulfate-induced heave, resulting from the chemical treatment of sulfate rich soils, has been known to cause significant damage to pavements and other structures particularly in the south-western United States. This research addressed the problem of sulfate-induced heave in coal mine spoils, formed as a result of shallow strip coal mining, after treatment with calcium-based stabilizers. These spoils occur in areas of Indiana in which substantial infrastructure development is taking place and w...

  15. Imagination as expansion of experience.

    Science.gov (United States)

    Zittoun, Tania; Cerchia, Frédéric

    2013-09-01

    This paper proposes a developmental view on imagination: from this perspective, imagination can be seen as triggered by some disrupting event, which generates a disjunction from the person's unfolding experience of the "real" world, and as unfolding as a loop, which eventually comes back to the actual experience. Examining recent and classical theorization of imagination in psychology, the paper opposes a deficitary view of imagination to an expansive notion of imagination. The paper explores Piaget, Vygotsky, Harris and Pelaprat & Cole consider: 1) What does provoke a "rupture" or disjunction? 2) What are the psychological processes involved in the imaginary loop? 3) What nourishes such processes? 4) What are the consequences of such imaginary loop, or what does it enable doing? The paper proposes to adopt an expansive view of imagination, as Vygotsky proposed-a perspective that has been under-explored empirically since his seminal work. To stimulate such sociocultural psychology of imagination, two empirical examples are provided, one showing how children make sense of metaphor in an experimental setting, the other showing a young person using a novel met at school as symbolic resource. PMID:23625542

  16. Primordial vorticity and gradient expansion

    Science.gov (United States)

    Giovannini, Massimo; Rezaei, Zahra

    2012-02-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the ΛCDM paradigm, the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the order of 10-37 G over the typical comoving scales ranging between 1 and 10 Mpc. While the obtained results seem to be irrelevant for seeding a reasonable galactic dynamo action, they demonstrate how the proposed fully inhomogeneous treatment can be used for the systematic scrutiny of pre-decoupling plasmas beyond the conventional perturbative expansions.

  17. Gyrification from constrained cortical expansion

    CERN Document Server

    Tallinen, Tuomas; Biggins, John S; Mahadevan, L

    2015-01-01

    The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highl...

  18. Heat and Mass Transfer Enforcement of Vibrating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    ChuZhide; YangJunhong; 等

    1994-01-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad,elaborates the vibration properties of vibrating fluidized bed.the fluidizing velocity and pressure drop of the bed layer,it also deduces the non-steady state drying dynamic equations of vibrating fluidized bed,analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  19. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  20. Mix bed type desalting device

    International Nuclear Information System (INIS)

    The present invention provides a condensate desalting device of a BWR type reactor capable of preventing degradation of ion exchange resins by water containing oxidative materials such as hydrogen peroxide thereby keeping reactor water at high purity. Namely, a mixed bed type desalting device comprises a desalting tower for removing impurities in water by ion exchange resins and a regeneration device for cleaning/regenerating the ion exchange resins. Means for loading iron cruds into water is disposed in the desalting tower. With such a constitution, oxidative materials such as hydrogen peroxide react with the iron cruds thereby enabling to suppress oxidative reaction during ion exchange. Since passage or cleaning/regeneration of water is conducted while loading the iron cruds between ion exchange resin particles and on the surface layer of an ion exchange resin layer by using the above-mentioned reaction, degradation of ion exchange performance of the ion exchange resins by hydrogen peroxide can be prevented upon condensate cleaning operation or resin cleaning/regeneration. As a result, degradation of quality of reactor water can be suppressed. (I.S.)

  1. Theoretical and experimental investigation on adaptability of charcoal beds to containment filter venting in Italian nuclear power plant

    International Nuclear Information System (INIS)

    The work has been divided into three parts. The first one gives a description of the facilities under investigation during some selected accidental conditions, also described. The second part, which consists of an experimental work, tries to identify the behavior of charcoal beds in terms of pressure drop vs the aerosol mass loading and of aerosol retention efficiency. On the basis of the experimental findings, the prediction of the behavior of the real beds is carried out in the third part, as regards the pressure drop through the beds, related to the selected accident scenarios. In addition in this last part the results of a preliminary evaluation of the maximum decay power picked up by the beds without reaching the carbon self-ignition temperature have been reported

  2. A Prototype Four Inch Short Hydride (Fish) Bed As A Replacement Tritium Storage Bed

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi4.25Al0.75 metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi4.15Al0.85 material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  3. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  4. Debris bed cooling following an HCDA in a fast reactor. Final report

    International Nuclear Information System (INIS)

    Natural convection within simulated core debris beds has been experimentally and theoretically investigated. The effect of heating method on bed behavior has been found to be important. For directly-heated beds, variations of the downward and upward power fraction and Nusselt numbers with bed loading, power density, particle size, overlying fluid layer height and top surface boundary condition have been determined. Generalized correlations for the upward and downward Nusselt numbers as functions of the internal Rayleigh number have been obtained. Particle tracing techniques have been used to visualize the flow patterns within the bed and overlying fluid layer. The temperature distributions within the bed and overlying fluid layer have also been measured. The experimental data have been compared with COMMIX-lA predictions. Poor agreement has been obtained for both the integral quantities, i.e. downward and upward power fractions and Nusselt numbers, as well as the steady state velocity and temperature distributions. The code does not correctly predict either the magnitude or even the trend of the data

  5. The age for the fossil-bearing Tabbowa beds in Sri Lanka

    Science.gov (United States)

    Chang, S. C.; Dassanayake, S.; Wang, J.

    2014-12-01

    Well-preserved terrestrial fossils, mainly including conifers, cycads and ferns, were discovered from the Tabbowa beds in northwestern Sri Lanka. The high diversity and abundance of plants and insects from these Jurassic sediments provide a unique window to understand floral evolution and plant-insect co-evolution in the Mesozoic. For example, unearthed fossils from the Tabbowa beds indicate that leaf feeding and dwelling insects played a significant role in the Jurassic ecosystem. For another example, feeding and chewing marks on leaves allow studying insect behavior and paleo-ecology. Additionally, the recent discoveries of Otozamites latiphyllus and Otozamites tabbowensis from these sediments provide evidence that Bennettitales, an extinct order of seed plants, widely spread in the Gondwana during the Jurassic period. Although most fossils are yet to be well studied, and only few of the fossil occurrences have been published in western journals, plant fossils from the Tabbowa beds have great potential for substantially increasing our knowledge of Jurassic terrestrial ecosystems. The fossil-bearing Tabbowa beds are mainly composed of sandstone, siltstone, and mudstone with occasional thin bands of nodular limestone. Until now, radio-isotopic age determinations for the fossil-rich Tabbowa beds are lacking. In this study, we investigate the geological and geochronological setting of this area by dating detrital zircons from the Tabbowa beds. The age data will allow testing several hypotheses regarding the plant evolution, the basin development of this region.

  6. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    International Nuclear Information System (INIS)

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests

  7. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  8. Bed bug outbreak in a neonatal unit.

    Science.gov (United States)

    Bandyopadhyay, T; Kumar, A; Saili, A

    2015-10-01

    There has been a worldwide increase in bed bug infestations over the last 10-15 years. A major stigma is placed upon the institutions found to be infested. We report our experience with an outbreak of the tropical bed bug, Cimex hemipterus, in a neonatal unit. The outbreak not only affected the admitted newborns and mothers by causing a wide variety of rashes and inducing sleeplessness, but also impinged upon the health professionals and their families by producing similar symptomology. It is important for healthcare providers to be aware of, and for each healthcare facility to have, bed bug prevention and control policies. PMID:25591490

  9. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  10. Absorber rod for pebble-bed reactor

    International Nuclear Information System (INIS)

    The absorber rod that can be moved into the pebble bed from the top reflector is enclosed by a cladding tube which, if it is completely moved down, ends above the pebble bed and is open at the bottom. Through the cladding tube the absorber rod is cooled with gas. The cladding tube consists of e.g. boron steel. If the absorber rod is drawn it takes along the cladding tube which is moved into the guide tube like a telescope. The rigidity of that part of the absorber rod projecting from the pebble bed is thus guaranteed. (DG)

  11. Study on the one-dimensional flow characteristics of the counter-current flow in debris beds

    International Nuclear Information System (INIS)

    The debris bed must be cooled to avoid further degradation of the core since the degraded core still releases decay heat. Even if the degraded core is in water, it cannot be assumed that the coolability of the degraded core would be maintained, since the degraded core may be melted again if dryout occurs. It is thus necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. Dryout phenomena in the debris bed is dominated by two-phase flow behavior in the debris bed. Especially, it is indicated that dryout phenomena in debris bed is strongly affected by counter-current flow limitation (CCFL) in the debris bed. Therefore, it is important to know the CCFL characteristics in the debris bed. If one hope to analyze counter-current flow in the debris bed by using the same method as usual two-fluid model, it is necessary to know the interfacial and wall friction factors. However, it is not clear that the correlations for interfacial and wall friction factor for a pipe can be used for counter-current flow in the debris bed. In order to determine the interfacial and wall friction factors, it is necessary to obtain wall and interfacial shear stresses. The wall and interfacial shear stresses are depend on the void fraction and differential pressure. At present, there is no available data for local void fraction and local pressure distribution in the debris bed at CCFL since it is very difficult to measure the flow characteristics in the complex geometry such as the debris bed. In the present study, local void fraction and local pressure distributions are measured simultaneously as well as the flow rates for gas and liquid. From the measurement data, the wall and interfacial shear stress are estimated. Finally the wall and interfacial shear stress are determined from the experimental data. (J.P.N.)

  12. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    International Nuclear Information System (INIS)

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  13. Morphodynamics of a granular bed in a water-filled cylinder subjected to perturbed oscillations

    Science.gov (United States)

    Duran-Matute, Matias; van Gorp, Thijs; van Heijst, Gertjan

    2015-11-01

    We study experimentally the morphodynamics of a granular bed at the bottom of an oscillating water-filled cylinder. The granules are translucent PMMA particles with a typical size of 2mm. The bed thickness is measured in real time using a light attenuation technique. As shown already by previous work, the bed remains flat close to the center of the cylinder, and radial ripples form at outer radii. The size of the inner flat region and the number or ripples depend on the frequency and amplitude of the cylinder's oscillation. In the present work, we are interested in the dynamics and control of the bed forms when the primary sinusoidal signal of the oscillation is perturbed by adding a second sinusoidal signal with a relatively small amplitude, a different frequency, and a phase lag. Varying the parameters of the secondary signal results in a signal that can be asymmetric or modulated, for example. These properties translate into the bed producing simple behavior like the propagation of the ripples at a constant speed or more complex behavior like the time dependent coarsening and thinning of the ripples. This research is funded by NWO (the Netherlands) through the VENI grant 863.13.022.

  14. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  15. Influência da expansão por umidade no comportamento mecânico de argilas para uso em blocos de cerâmica vermelha - revisão Influence of moisture expansion on the mechanical behavior of structural clay materials for use in ceramic bricks - review

    Directory of Open Access Journals (Sweden)

    R. A. Andrade

    2011-09-01

    . In literature there is much emphasis on problems generated by the ME and the tensions resulting from this expansion, but until now there is a lack of data on mechanical behavior of ceramics after ME. Recent works in UFCG specifically deal with this problem in ceramic bricks. Initially it was found that in the case of ceramic bodies for use in red ceramic burned at different temperatures, ranging from 700 to 1100 ºC with ME induced by soaking, boiling and autoclaving, the ME correlated with the mechanical behavior of burned bodies, and a reduction in modulus of rupture with the rising of ME was observed. Researches undertaken with compositions developed using clay and calcium carbonate and magnesium carbonate as adds for red ceramic, burned from 850 to 1000 °C, showed the beneficial effect of calcium carbonate in reducing moisture expansion and rise modulus of rupture. Correlations between ME and modulus of rupture, was observed when calcium carbonate was used as additive. However, this associations was noted when magnesium carbonate was used as additive. Works carried out using fine quartz as additive of red ceramic compositions and aiming glassy phases development not observed well defined correlations between ME and modulus of rupture. The addition of 10 and 20% of fine quartz improve the mechanical strength of ceramic bodies after autoclaving and that the addition of 30% of quartz decreases its mechanical strength.

  16. Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences

    Directory of Open Access Journals (Sweden)

    Mats Meriste

    2015-05-01

    Full Text Available We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

  17. Bed Bug Infestations and Control Practices in China: Implications for Fighting the Global Bed Bug Resurgence

    Directory of Open Access Journals (Sweden)

    Changlu Wang

    2011-04-01

    Full Text Available The bed bug resurgence in North America, Europe, and Australia has elicited interest in investigating the causes of the widespread and increasing infestations and in developing more effective control strategies. In order to extend global perspectives on bed bug management, we reviewed bed bug literature in China by searching five Chinese language electronic databases. We also conducted telephone interviews of 68 pest control firms in two cities during March 2011. In addition, we conducted telephone interviews to 68 pest control companies within two cities in March 2011. Two species of bed bugs (Cimex lectularius L. and Cimex hemipterus (F. are known to occur in China. These were common urban pests before the early1980s. Nationwide “Four-Pest Elimination” campaigns (bed bugs being one of the targeted pests were implemented in China from 1960 to the early 1980s. These campaigns succeeded in the elimination of bed bug infestations in most communities. Commonly used bed bug control methods included applications of hot water, sealing of bed bug harborages, physical removal, and applications of residual insecticides (mainly organophosphate sprays or dusts. Although international and domestic travel has increased rapidly in China over the past decade (2000–2010, there have only been sporadic new infestations reported in recent years. During 1999–2009, all documented bed bug infestations were found in group living facilities (military dormitories, worker dormitories, and prisons, hotels, or trains. One city (Shenzhen city near Hong Kong experienced significantly higher number of bed bug infestations. This city is characterized by a high concentration of migratory factory workers. Current bed bug control practices include educating residents, washing, reducing clutter, putting items under the hot sun in summer, and applying insecticides (pyrethroids or organophosphates. There have not been any studies or reports on bed bug insecticide

  18. Relationship Development in Greenfield Expansions

    DEFF Research Database (Denmark)

    Drogendijk, Rian; Andersson, Ulf

    2013-01-01

    This paper investigates conceptually how new Greenfield subsidiaries develop relationships over time. We focus our analysis on the earliest start-up stage of new Greenfield subsidiaries, and on the dynamics of relationships development with five different groups of actors within the MNC and the...... local environment of the new Greenfield. We argue that relationship strength, or the intensity of interaction and resource exchange, depends on the new Greenfield''s degree of dependence or interdependence within these relationships and develop propositions based on institutional theory, resource...... dependency theory and network approaches. In the concluding sections we suggest directions for future work to enhance understanding of the dynamics of relationship management in new Greenfield expansions....

  19. STRUCTURAL DAMAGE MODEL OF UNSATURATED EXPANSIVE SOIL AND ITS APPLICATION IN MULTI-FIELD COUPLE ANALYSIS ON EXPANSIVE SOIL SLOPE

    Institute of Scientific and Technical Information of China (English)

    LU Zai-hua; CHEN Zheng-han; FANG Xiang-wei; GUO Jian-feng; ZHOU Hai-qing

    2006-01-01

    Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content,suction, and the damage region as well as plastic region in an expansive soil slope were obtained.

  20. Extended Analytic Device Optimization Employing Asymptotic Expansion

    Science.gov (United States)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  1. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    E K Narayanan; S Thangavelu

    2001-02-01

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  2. IceBridge BedMachine Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains bed topography beneath the Greenland Ice Sheet based on mass conservation derived from airborne radar tracks and satellite radar. The data...

  3. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of...

  4. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered...

  5. Government’s Role in Urban Construction Land Expansion

    OpenAIRE

    Chen, Chun; Feng, Chang-Chun

    2010-01-01

    Focusing on urban construction land expansion, governmental influence on expansion of urban construction land in China is analyzed from fiscal decentralization, government game and land system. Due to fiscal decentralization and coupled with GDP-based performance evaluation system, local government seeks to maximizing economic profits. Whereas, land systems such as land property, land expropriation and land transfer system, let the local governments’ profit seeking behavior can be achieved....

  6. Pressurised fluidised bed power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, S.A.; Anderson, L. [ABB Carbon AB, Finspong (Sweden)

    1997-12-31

    The combined experience from almost 75,000 hours of operation on widely different coals in Pressurised Fluidised bed Combined-cycle (PFBC) plants in Sweden, Spain, the US and Japan have demonstrated the viability of ABB`s PFBC technology and the general simplicity of the concept, as well as plant control principles and serviceability. This technology is now commercially offered world-wide and PFBC is being recognized as a competitive solution for power and for combined heat and power applications. The combined-cycle feature makes PFBC highly efficient for power generation. When compared with conventional power plants, and for the same steam conditions, a PFBC plant typically produces at least 10% more electricity from the same amount of coal. There is potential for future additional efficiency increases. The coals used so far in the existing PFBC power plants include bituminous coals with a wide range of sulphur and ash contents, and a sub-bituminous Spanish `black lignite` with extremely high and variable levels of sulphur, ash, and moisture. Brown coal from the eastern parts of Germany will be used as the fuel in a newly ordered PFBC plant in Cottbus, Germany. Oil shale, petcoke, anthracite, and different types of biomass mixed with coal are presently being considered for other PFBC projects under discussion. PFBC is suitable for greenfield plants, but a market also exists for PFBC repowering of older steam plants. Repowering provides an opportunity to convert older, low capacity factor units into assets that lower the system`s production costs as well as improving environmental performance. Ash utilisation also holds promise, elevating the ash from a disposable waste to a valuable resource. 6 refs., 3 figs., 1 tab.

  7. Use of plutonium in pebble bed HTGRs

    International Nuclear Information System (INIS)

    This paper provides a summary of the current status of world-wide inventories of weapon-grade plutonium and plutonium from reprocessing of power reactor fuel. It addresses the use of pebble bed HTGRs for consumption of the plutonium in terms of the fuel cycle options. The requirements and neutronics aspects, and results from parameter studies conducted using pebble bed reactor types, are discussed, along with proliferation and waste disposal aspects. (author)

  8. Cognitive and emotional functioning in BED

    OpenAIRE

    Kittel, Rebekka; Brauhardt, Anne; Hilbert, Anja

    2016-01-01

    Objective: Binge-eating disorder (BED) is characterized by recurrent episodes of binge eating and is associated with eating disorder and general psychopathology and overweight/obesity. Deficits in cognitive and emotional functioning for eating disorders or obesity have been reported. However, a systematic review on cognitive and emotional functioning for individuals with BED is lacking. Method: A systematic literature search was conducted across three databases (Medline, PubMed, and PsycI...

  9. Suicide following an infestation of bed bugs

    OpenAIRE

    Burrows, Stephanie; Perron, Stéphane; Susser, Stephanie

    2013-01-01

    Patient: Male, 62 Final Diagnosis: Bipolar disorder Symptoms: Bordeline personality disorder Medication: — Clinical Procedure: Bed bug infestation Specialty: Psychiatry Objective: Unusual clinical course Background: In the past decade, bed bug infestations have been increasingly common in high income countries. Psychological consequences of these infestations are rarely examined in the scientific literature. Case Report: We present a case, based on a coroner’s investigation report, of a woman...

  10. A new bed elevation dataset for Greenland

    OpenAIRE

    Griggs, J. A.; Bamber, J. L.; R. T. W. L. , Hurkmans; J. A. Dowdesewell; Gogineni, S. P.; I. Howat; Mouginot, J.; Paden, J.; S. Palmer; E. Rignot; D. Steinhage

    2013-01-01

    We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2011. Around 344 000 line kilometres of airborne data were used, with the majority of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non glaciated terrain to produce a consistent bed digital elevation model (DEM) o...

  11. A new bed elevation dataset for Greenland

    OpenAIRE

    Bamber, J. L.; Griggs, J. A.; Hurkmans, R.T.W.L.; Dowdeswell, J. A; Gogineni, S. P.; I. Howat; Mouginot, J.; Paden, J.; S. Palmer; E. Rignot; D. Steinhage

    2013-01-01

    We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2012. Around 420 000 line kilometres of airborne data were used, with roughly 70% of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non-glaciated terrain to produce a consistent bed digital elevat...

  12. An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2010-01-01

    A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns...... with two different types of cross-section. Comparison with numerical results show that our expansion provides more accurate predictions of the behavior than usual expansions. The method is based on an extended version of the principle of virtual displacements that covers cases with auxiliary conditions...

  13. : REM sleep behavior disorder

    OpenAIRE

    Arnulf, Isabelle

    2012-01-01

    Patients with REM sleep behavior disorder (RBD) enact violent dreams during REM sleep in the absence of normal muscle atonia. This disorder is highly frequent in patients with synucleinopathies (60%-100% of patients) and rare in patients with other neurodegenerative disorders. The disorder is detected by interview plus video and sleep monitoring. Abnormal movements expose the patients and bed partners to a high risk of injury and sleep disruption. The disorder is usually alleviated with melat...

  14. Novel thermal expansion of lead titanate

    Institute of Scientific and Technical Information of China (English)

    XING Xianran; DENG Jinxia; CHEN Jun; LIU Guirong

    2003-01-01

    Lattice parameters of lead titanate were precisely re-determined in the ternperature range of-150-950℃ by high precision XRPD measurements. It was clarified that there was no any evidence for a new phase transition at low temperatures. Tetragonal distortion strain decreases with temperature increasing. A novel thermal expansion was observed, positive thermal expansion from-150℃ to room temperature (RT) and above 490℃, and the negative thermal expansion in the temperature range of RT-490℃. A big jump of thermal expansion coefficient is attributed to the tetragonal-cubic phase transition. A rationalization for the negative thermal expansion of PbTiO3 is due to the decrease of anion-anion repulsion as polyhedra become more regular at heating. The mechanisms of positive and negative thermal expansions were elucidated as the same nature in the homogenous tetragonal phase at present case.

  15. Pressurized electrolysis stack with thermal expansion capability

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  16. The Physiology of Bed Rest. Chapter 39

    Science.gov (United States)

    Fortney, Suzanne M.; Schneider, Victor S.; Greenleaf, John E.

    1996-01-01

    Prolonged rest in bed has been utilized by physicians and other health-care workers to immobilize and confine patients for rehabilitation and restoration of health since time immemorial. The sitting or horizontal position is sought by the body to relieve the strain of the upright or vertical postures, for example during syncopal situations, bone fractures, muscle injuries, fatigue, and probably also to reduce energy expenditure. Most health-care personnel are aware that adaptive responses occurring during bed rest proceed concomitantly with the healing process; signs and symptoms associated with the former should be differentiated from those of the latter. Not all illnesses and infirmities benefit from prolonged bed rest. Considerations in prescribing bed rest for patients-including duration, body position, mode and duration of exercise, light-dark cycles, temperature, and humidity-have not been investigated adequately. More recently, adaptive physiological responses have been measured in normal, healthy subjects in the horizontal or slightly head-down postures during prolonged bed rest as analogs for the adaptive responses of astronauts exposed to the microgravity environment of outer and bed-rest research.

  17. Investigation of volumetrically heated debris bed quenching

    Energy Technology Data Exchange (ETDEWEB)

    Konovalikhin, M.J.; Sehgal, B.R. [Royal Institute of Technology, Div. of Nuclear Power Safety, Stockholm (Sweden)

    2001-07-01

    A series of experiments were conducted at RIT (Royal Institute of Technology) in which hot homogeneous and stratified particle beds were quenched by establishing a column of water onto the top of the bed and by injection of water from the bottom delivered through downcomers from the water overlayer. For this experimental program the following approach was adopted. Since corium debris have a particle size distribution and are more like sand, the debris beds were built with sand of different particle size distributions, heated with a network of thin heaters, distributed uniformly in the sand bed to produce uniform volumetric heat generation. Low porosity beds were constructed, since they are the most difficult to quench with top flooding. The primary objective was to obtain data, which will provide a phenomenological basis for assessing margins for coolability of a degraded core debris bed in the lower head of an LWR vessel as well as steam generation rate from the interactions between core debris and water. This paper summarizes the experimental results along with related analysis. (authors)

  18. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  19. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    International Nuclear Information System (INIS)

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  20. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    International Nuclear Information System (INIS)

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested

  1. GAUSSIAN WHITE NOISE CALCULUS OF GENERALIZED EXPANSION

    Institute of Scientific and Technical Information of China (English)

    陈泽乾

    2002-01-01

    A new framework of Gaussian white noise calculus is established, in line with generalized expansion in [3, 4, 7]. A suitable frame of Fock expansion is presented on Gaussian generalized expansion functionals being introduced here, which provides the integral kernel operator decomposition of the second quantization of Koopman operators for chaotic dynamical systems, in terms of annihilation operators (e)t and its dual, creation operators (e)*t.

  2. Effects of subsurface cavity expansion in clays

    OpenAIRE

    Au, SKA; Yeung, AT; Soga, K; Cheng, YM

    2007-01-01

    Subsurface cavity expansion in clay induced by compaction grouting can generate upward displacement of clay and/or increase in effective stress leading to consolidation, resulting in settlement compensation and/or shear strength enhancement respectively. However, the two potential benefits of subsurface cavity expansion may offset each other. Experiments and numerical simulations on the engineering behaviour of E-grade kaolin induced by subsurface pressure-controlled cavity expansion were con...

  3. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  4. On progressive filtration expansion with a process

    OpenAIRE

    Kchia, Younes; Protter, Philip

    2011-01-01

    In this paper we study progressive filtration expansions with cadlag processes. Using results from the weak convergence of sigma fields theory, we first establish a semimartingale convergence theorem. Then we apply it in a filtration expansion with a process setting and provide sufficient conditions for a semimartingale of the base filtration to remain a semimartingale in the expanded filtration. Finally, an application to the expansion of a Brownian filtration with a time reversed diffusion ...

  5. Density gradients and the expansion-shrinkage transition during sintering

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Peizhen K.; Li Wenxia; Lannutti, John J

    2004-04-19

    Links between density gradients, internal microstructure and in situ sintering shrinkage in compacts formed from spray-dried alumina powder are established using a laser dilatometer and X-ray computed tomography (CT). All samples initially have the same overall density but different internal structures. An expansion-shrinkage transition occurs between 1000 and 1100 deg. C. Forming conditions appear to play a role: the samples compacted at 25% RH (Relative Humidity) shrank more rapidly than those compacted at 98% RH below 1300 deg. C; above 1300 deg. C, however, the specimen formed at 98% RH shrank more rapidly. CT examination following sintering showed both preservation and exaggeration of the original density gradients. Microstructural connectivity apparently contributes to both the observed macroscopic expansion and the onset of shrinkage. Discrete element modeling clearly suggests that the effective 'transmission' of particle-level behavior to the macroscopic level is controlled both by internal agglomerate density and initial agglomerate bonding.

  6. How Will Section 1115 Medicaid Expansion Demonstrations Inform Federal Policy?

    Science.gov (United States)

    Rosenbaum, Sara; Schmucker, Sara; Rothenberg, Sara; Gunsalus, Rachel

    2016-05-01

    Section 1115 of the Social Security Act allows the U.S. Department of Health and Human Services and states to test innovations in Medicaid and other public welfare programs without formal legislative action. Six states currently operate their Medicaid expansions as demonstrations and several more are expected to seek permission to do so. While the current Medicaid expansion demonstrations vary, they share a major focus: increasing beneficiaries' financial responsibility for the cost of coverage and care. Demonstrations include requirements that Medicaid beneficiaries pay enrollment fees and cost-sharing that exceed traditional Medicaid limits. Others propose tying beneficiaries' financial responsibility to behavioral changes in health and wellness, while still others impose penalties for nonpayment of enrollment fees. Evaluations must consider the impact of these requirements on access, use of care, and health status, as well as the feasibility of demonstration reforms and their impact on administrative efficiency, providers, and health plans. PMID:27214927

  7. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  8. TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HE Yin-nian

    2005-01-01

    A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0-th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example,namely, the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.

  9. Structure and thermal expansion of liquid bismuth

    Directory of Open Access Journals (Sweden)

    Mudry S.

    2015-12-01

    Full Text Available Experimental structural data for liquid Bi were used for estimation of the main structure parameters as well as the thermal expansion coefficient both in supercooled and superheated temperature ranges. It was shown that the equilibrium melt had a positive thermal expansion coefficient within a temperature range upon melting and a negative one at higher temperatures. The former was related to structure changes upon melting, whereas the latter with topologic disordering upon further heating. It was found that the superheated melt had a negative thermal expansion coefficient. The results obtained from structural data were compared with the thermal expansion coefficient calculated from the data of density for liquid Bi.

  10. The fluidized bed reactor with a prepolymerization system and its influence on polymer physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    Fernandes F.A.N.

    2003-01-01

    Full Text Available This work addresses the influence of a prepolymerization system on the behavior of the fluidized bed reactor used for polyethylene production. Its influence on the polymer's physicochemical characteristics and production was also studied. The results indicate that the use of prepolymerized catalyst particles results in milder temperatures in the fluidized bed reactor, thus avoiding the formation of hot spots, melting of the polymer particle and reactor shutdown. Productivity can be enhanced depending on the operational conditions used in the prepolymerization reactor.

  11. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    OpenAIRE

    W. A. Wan Ab Karim Ghani; Alias, A. B.; K.R.CLIFFE

    2009-01-01

    Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had incre...

  12. Physical and Hydrodynamic Properties of Spherical Cellulose—Titanium Dioxide Composite Matrix for Expanded Bed Adsorption

    Institute of Scientific and Technical Information of China (English)

    雷引林; 林东强; 姚善泾; 刘坐镇; 朱自强

    2003-01-01

    Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing,Solid matrix is the principal pillar supporting the successful application of EBA.A novel spherical ceelulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration.Its typical physical properties were wet density 1.18g.cm-3,,diameters in the range of 100-300μm ,porosity 85.5%,and water content 72.3%.Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass )glycerol solution as mobile phases,The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.

  13. Thermal expansion and phase transitions of α-AlF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Hancock, Justin C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2014-11-15

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.

  14. Behavioral ecology of sika deer in spring in semi-natural area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Behaviors of sika deer in spring were studied by scan sampling, ad libitum sampling, and all-occurrence recording methods during 1998. The results showed that behaviors of sika deer in spring can be classified by seven categories: grazing, ruminating, bedding, moving, standing, drinking, alert, agonistic and other behaviors. Various behavioral models were more regular. Grazing behavior was a kind of mainly behavioral model.

  15. 21 CFR 880.5110 - Hydraulic adjustable hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydraulic adjustable hospital bed. 880.5110... Therapeutic Devices § 880.5110 Hydraulic adjustable hospital bed. (a) Identification. A hydraulic adjustable hospital bed is a device intended for medical purposes that consists of a bed with a hydraulic...

  16. Model of rough bed for numerical simulation of saltation

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    19, 3 (2015), s. 366-385. ISSN 1964-8189 R&D Projects: GA ČR GA103/09/1718; GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : saltation * bed load transport * rough bed * armoured bed * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.514, year: 2014

  17. Anion exchange purification of plasmid DNA using expanded bed adsorption.

    Science.gov (United States)

    Ferreira, G N; Cabral, J M; Prazeres, D M

    2000-01-01

    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step. PMID:10840595

  18. Cognitive-Behavioral Therapy, Behavioral Weight Loss, and Sequential Treatment for Obese Patients with Binge-Eating Disorder: A Randomized Controlled Trial

    Science.gov (United States)

    Grilo, Carlos M.; Masheb, Robin M.; Wilson, G. Terence; Gueorguieva, Ralitza; White, Marney A.

    2011-01-01

    Objective: Cognitive-behavioral therapy (CBT) is the best established treatment for binge-eating disorder (BED) but does not produce weight loss. The efficacy of behavioral weight loss (BWL) in obese patients with BED is uncertain. This study compared CBT, BWL, and a sequential approach in which CBT is delivered first, followed by BWL (CBT + BWL).…

  19. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  20. Indoor Tanning and Problem Behavior

    Science.gov (United States)

    Bagdasarov, Zhanna; Banerjee, Smita; Greene, Kathryn; Campo, Shelly

    2008-01-01

    Objective: The authors examined factors predicting college students' use of tanning beds. Participants and Methods: Undergraduate students (N = 745) at a large Northeastern university participated in the study by answering a survey measuring tanning behavior and other psychosocial variables, including sensation seeking, self-esteem, tanning image…

  1. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  2. Bed and breakfasts in Virginia :identification and success factors

    OpenAIRE

    Kaufman, Tammie J

    1994-01-01

    Virginia bed and breakfast operations were researched in order to determine the attitudes/beliefs which were necessary for success in the bed and breakfast industry. The objectives of the study were to: (1) identify demographics of Virginia bed and breakfast operations; (2) identify successful bed and breakfast operations based upon their self definition of success; (3) identify the attitudes and beliefs operators believe are necessary for success in running a bed and breakf...

  3. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  4. Virial expansion coefficients in the harmonic approximation

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.;

    2012-01-01

    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to...

  5. Opposite expansion system of fast bubble chambers

    International Nuclear Information System (INIS)

    Pneumatic opposite expansion system, operating on frequency up to 100 Hz and minimal cycle duration up to 3 ms, is created for accomplishingh expansion working cycle of a precision liquid-hydrogen fast bubble chamber. Fast-action hydraulic servo slide valves with electric control are used as command and control elements

  6. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  7. The Expansion Postponement in Pure Type Systems

    Institute of Scientific and Technical Information of China (English)

    宋方敏

    1997-01-01

    The expansion postponement problem in Pure Type Systems is an open problem raised by R.Pollack in 1992.In this paper,the author presents a set of necessary and sufficient conditions for this problem and a set of sufficient conditions for it.The author also gives some properties for pure typ systems without the expansion rule.

  8. Earnings Returns to the British Education Expansion

    Science.gov (United States)

    Devereux, Paul J.; Fan, Wen

    2011-01-01

    We study the effects of the large expansion in British educational attainment that took place for cohorts born between 1970 and 1975. Using the Quarterly Labour Force Survey, we find that the expansion caused men to increase education by about a year on average and gain about 8% higher wages; women obtained a slightly greater increase in education…

  9. A combinatorial construction of symplectic expansions

    CERN Document Server

    Kuno, Yusuke

    2010-01-01

    The notion of a symplectic expansion directly relates the topology of a surface to formal symplectic geometry. We give a method to construct a symplectic expansion by solving a recurrence formula given in terms of the Baker-Campbell-Hausdorff series.

  10. A reduced volumetric expansion factor plot

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  11. Flow distribution of pebble bed high temperature gas cooled reactors using Large Eddy Simulation

    International Nuclear Information System (INIS)

    The simulation of complex three-dimensional gas flow through the gaps of the spherical fuel elements (fuel pebbles) of Pebble Bed Modulator Reactor is performed. This will help in understanding the highly three-dimensional, complex flow phenomena in pebble bed caused by flow curvature. The flow of this type has distinctive features, which strongly affect the boundary layer behavior. The transition from a laminar to turbulent flow around this curved flow occurs at different Reynolds (Re) numbers. Noncircular curved flows as in the pebble-bed situation need to be investigated. In this study, Large Eddy Simulation (LES) is used in modeling the turbulence to overcome the shortcoming of the Reynolds Average Navier-Stokes approach. (author)

  12. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers. PMID:18614348

  13. Development of Soda Residue Concrete Expansion Agent

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-min; WANG Li-jiu; M F Mohd Zain; F C Lai

    2003-01-01

    A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue-soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage-compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage-compensating and mechanical properties.The raw materials component,production process,technical properties,micro-analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO-ySO3-zAl2O3.

  14. Maxwell superalgebras and Abelian semigroup expansion

    International Nuclear Information System (INIS)

    The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2) leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM(N) recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N). Moreover, we show that new minimal Maxwell superalgebras type sMm+2 and their N-extended generalization can be obtained using the S-expansion procedure

  15. In-bed accountability of tritium in production scale metal hydride storage beds

    International Nuclear Information System (INIS)

    An 'in-bed accountability' (IBA) flowing gas calorimetric measurement method has been developed and implemented to eliminate the need to remove tritium from production scale metal hydride storage beds for inventory measurement purposes. Six-point tritium IBA calibration curves have been completed for two, 390 gram tritium metal hydride storage beds. The calibration curves for the two tritium beds are similar to those obtained from the 'cold' test program. Tritium inventory errors at the 95 percent confidence level ranged from ± 7.3 to 8.6 grams for the cold test results compared to ± 4.2 to 7.5 grams obtained for the two tritium calibrated beds. 5 refs., 4 figs., 1 tab

  16. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture.

    Science.gov (United States)

    Garcia, Arlene; McGlone, John J

    2014-01-01

    The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding; >50% moisture) over two seasons (>23.9 °C summer, pig observations). "Score" was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was affected by bedding type, ramp angle, and season (P pigs improved animal welfare. PMID:26479010

  17. The thermal conductivity of beds of spheres

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.

    1987-01-01

    The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 ..mu..m dia solid Al/sub 2/O/sub 3/, the same Al/sub 2/O/sub 3/ spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al/sub 2/O/sub 3/, Al/sub 2/O/sub 3//center dot/7 w/o Cr/sub 2/O/sub 3/, and partially stabilized ZrO/sub 2/. The hollow microspheres had diameters from 2100 to 3500 ..mu..m and wall thicknesses from 80 to 160 ..mu..m. 12 refs., 7 figs., 4 tabs.

  18. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Mixing equilibrium in two-density fluidized beds by DEM

    Science.gov (United States)

    Di Renzo, A.; Di Maio, F. P.

    2010-05-01

    Interaction of fluid and granular flows in dense two-phase systems is responsible for the significantly different behavior of units used in the chemical industry such as fluidized beds. The momentum exchange phenomena involved during gas fluidization of a binary mixture of solids differing in density is such that the continuous mixing action of the fluid flowing upwards counteracts the natural tendency of the two (fluidized) solids to segregate with the heavier component fully settling at the bottom of the bed. In the present work the complex hydrodynamics of two-density gas-fluidized beds is studied by means of a DEM-CFD computational approach, combining the discrete element method (DEM) and a solution of the locally averaged equations of motion (CFD). The model is first validated against experimental data and then used to investigate the role of gas velocity versus density ratio of the two components in determining the distribution of the components in the system. It is shown first that a unique equilibrium composition profile is reached independent of the initial arrangements of the solids. Then, numerical simulations are used to find the equilibrium conditions of mixing/segregation as a function of the gas velocity in excess of the minimum fluidization velocity of the heavier component and as a function of the density ratio of the two solid species. A mixing map on the gas velocity-density ratio plane is finally reconstructed by plotting iso-mixing lines that shows quantitatively how conditions ranging from full mixing to fully segregated components are obtained.

  20. Granular Dynamics in Pebble Bed Reactor Cores

    Science.gov (United States)

    Laufer, Michael Robert

    This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times. A new Monte Carlo algorithm was developed to study the residence time distributions of pebbles in different radial zones. These dry experiments demonstrated the basic viability of radial pebble zoning in cores with diverging geometry before pebbles reach the active core. Results are also presented from PREX 3.1, a scaled facility that uses simulant materials to evaluate the impact of coupled fluid drag forces on the granular dynamics in the PB-FHR core. PREX 3.1 was used to collect first of a kind pebble motion data in a multidimensional porous media flow field. Pebble motion data were collected for a range of axial and cross fluid flow configurations where the drag forces range from half the buoyancy force up to ten times greater than the buoyancy force. Detailed analysis is presented for the pebble velocity field, mixing behavior, and residence time

  1. Cumulant expansions for atmospheric flows

    Science.gov (United States)

    Ait-Chaalal, Farid; Schneider, Tapio; Meyer, Bettina; Marston, J. B.

    2016-02-01

    Atmospheric flows are governed by the equations of fluid dynamics. These equations are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifest itself only weakly through interactions of nontrivial mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. Here we show how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can capture the growth of the convective boundary layer. However, it does not capture important turbulent transport terms in the turbulence kinetic energy budget. Second, we study the evolution of two-dimensional large-scale waves, which are representative of waves seen in Earth's upper atmosphere. We demonstrate that a cumulant expansion truncated at second order (CE2) can capture the evolution of such waves and their nonlinear interaction with the mean flow in some circumstances, for example, when the wave amplitude is small enough or the planetary rotation rate is large enough. However, CE2 fails to capture the flow evolution when strongly nonlinear eddy-eddy interactions that generate small-scale filaments in surf zones around critical layers become important. Higher-order closures can capture these missing interactions. The results point to new ways in which the dynamics of turbulent boundary layers may be represented in climate models, and they illustrate different classes

  2. The behaviour of turbulence anisotropy through shock waves and expansions

    Science.gov (United States)

    Minh, H. H.; Kollmann, W.; Vandromme, D.

    1985-01-01

    A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients play also a very important role for these processes, but at different locations within the boundary layer. This aspect may be emphasized by the analysis of turbulence anisotropy through shock waves and expansions.

  3. Thermal expansion of Al3Ce at very low temperatures

    International Nuclear Information System (INIS)

    Below 1 K the thermal expansion coefficient α of Al3Ce is negative and linearly approaches zero at 0 K. The pressure variation of the specific heat γT deduced from the initial variation of α is very strong: 0.62 J/K2 mole kbar. These properties cannot be interpreted with a single ion Kondo effect model but can be interpreted in terms of Fermi liquid (F.L.) behavior. The magnetostriction experiments clearly show the differences between an ordinary F.L. such as 3He and the F.L. built with a lattice of magnetic ions coupled with and by itinerant electrons

  4. The potential carcinogenic risk of tanning beds: clinical guidelines and patient safety advice

    International Nuclear Information System (INIS)

    In 2009, the WHO listed ultraviolet (UV) radiation as a group 1 carcinogen. In spite of this, each year, millions of people tan indoor in Western countries. The aim of this review is to summarize evidence of tanning bed carcinogenesis and to present guidelines for use of tanning beds and patient safety advice. A narrative review of the literature was conducted based on both PubMed and Medline searches and on literature review of the retrieved papers. Use of indoor tanning beds represents a significant and avoidable risk factor for the development of both melanoma and nonmelanoma skin cancers. Frequent tanners are more often adolescent females. Tanning beds have additional potential adverse effects such as burns, solar skin damage, infection, and possibly also addictive behavior. The effort in preventing UV light-induced carcinogenesis should currently be aimed at developing new strategies for public health information. Tanning beds are one preventable source of UV radiation. In the majority of people solar UV radiation continues to be the major factor and therefore anti-tanning campaigns must always include sunbathers

  5. Linking Radial Species Segregation and Bubbling Patterns in Gas-Fluidized Beds.

    Science.gov (United States)

    Joseph, Gustavo; Hrenya, Christine; Kozlowski, Joe

    2007-11-01

    Binary mixtures of gas-fluidized Geldart Group B particles with size and/or density differences were experimentally investigated at gas velocities up to 3 times the complete fluidization velocities (ufc) of the mixtures. Steady state operation of the bed was ensured prior to data collection. Local bubbling information (mean bubble size, bubble rise velocity, and bubbling frequency) was obtained throughout the bed by means of a backscattered-light optical probe. Segregation data were obtained via bed ``freezing'' and subsequent sieving of layers. Monodisperse runs were also performed as benchmarks for the binary-mixture runs. Perceptible radial variations in species composition were encountered, with the less massive particles tending toward the bed center in most cases. For systems where the species differed in both size and density, the bottom layer presents a reversal of radial segregation pattern at gas velocities below 2ufc. At velocities below 2ufc, bubbling is seen predominantly at the bed periphery, with qualitative differences between monodisperse and mixed systems above 2ufc. A detailed analysis of the bubbling patterns at the various compositions and gas velocities is presented, and links to the observed segregation behavior are made.

  6. Biological and physical contributions to the accumulation of strombid gastropods in a Pliocene shell bed

    Energy Technology Data Exchange (ETDEWEB)

    Geary, D.H. (Univ. of Wisconsin, Madison (USA)); Allmon, W.D. (Univ. of South Florida, Tampa (USA))

    1990-06-01

    Before the evolutionary and ecological information contained in shell beds can be interpreted, the conditions of shell bed formation must be understood. Here the authors investigate the mode and time scale of accumulation of a dense layer of Strombus floridanus in the Pliocene Pinecrest Beds of Florida. They utilize a variety of comparative taphonomic data, including the extent of encrustation and boring on strombid shells of different ontogenetic ages, and on accompanying pelecypods of different ecological types. The taphonomic comparisons enable them to reconstruct more accurately the events of shell bed formation. The formation of the strombid shell layer involved both biological and physical components. The characteristically gregarious behavior of Strombus is reflected in the large number of individuals preserved in this layer. Based on average densities of individuals in strombid colonies today, the authors estimate that a time period of tens to hundreds of years was required to accumulate these fossils. Repeated sediment winnowing by storms, followed by rapid reburial in a regime of at least episodically high sedimentation rates, is the most likely mechanism of accumulation, and accounts for the observed patterns of encrustation and boring on the shells of Strombus and various associated pelecypods. The origin of Florida's Plio-Pleistocene shelly sands is poorly understood; analysis of this bed may provide a working model for future taphonomic studies.

  7. Circulating fluidized bed combustion in the turbulent regime: Modeling of carbon combustion efficiency and sulfur retention

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Gayan, P.; Grasa, G.; Diego, L.F. de; Armesto, L.; Cabanillas, A.

    1999-07-01

    In this work carbon combustion efficiencies and sulfur retentions in CFBC under the turbulent regime were studied. Experimental results were obtained from the combustion of a lignite and an anthracite with a limestone in a CBF pilot plant with 20 cm internal diameter and 6.5 m height. The effect of operating conditions such as coal and limestone particle size distributions, temperature, excess air, air velocity and Ca/S molar ratio on carbon combustion efficiency and sulfur retention was studied. On the other hand, a mathematical model for the carbon combustion efficiencies and sulfur retentions in circulating fluidized bed combustors operating under the turbulent regime was developed. The model has been developed considering the hydrodynamics behavior of a turbulent bed, the kinetics of carbon combustion and sulfur retention in the riser. The hydrodynamics characteristics of the turbulent regime were previously studied in a cold pilot plant and equations to determine the axial and radial voidage in the bed were proposed. A core-annulus structure in the dilute region of the bed was found in this regime. Carbon combustion and sulfur retention were modeled by modifying a model developed for fast beds and taking into account turbulent regime characteristics. The experimental results of carbon combustion efficiencies and sulfur retentions were compared with those predicted by the model and a good correlation was found for all the conditions used.

  8. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  9. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  10. Use of rice husk for the removal of methylene blue in fixed-bed columns

    Directory of Open Access Journals (Sweden)

    Yurany A. Villada-Villada

    2014-08-01

    Full Text Available This work shows the use of rice husk in the removal of cationic dye methylene blue on continuous system. A factorial design 23 with center points and random distribution was implemented to evaluate the correlation of the experimental factors in the adsorption process. The considered variables were pH, particle size, salt presence, flow rate, dye initial concentration, and bed depth. The samples were analyzed in defined time intervals. The amount of removed dye was quantified by UV spectroscopy - Visible. Adams-Bohart, Thomas and BDST (Bed-depht/service time analysis models were used to predict the breakthrough curves using non-linear regression and establish the characteristic parameters of the process. It was found that the transference of dye toward the adsorbent is favored by a basic pH, a small particle size, low flow rate and dye concentration, and high bed depth. The design of experiments established that the initial dye concentration and the bed depth were the most significant factors. Regarding the models, the Thomas provided the best fit to describe the breakthrough curves in experimental conditions and Adams-Bohart was found suitable for dynamic behavior limited to the initial part. Finally, BDST model exhibited a good correlation and allowed to establish that bed depth is a determinant factor for scaling process.

  11. An analysis of the chaotic motion of particles of different sizes in a gas fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles.Typical particles are selected representing three kinds of particle motion:a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.

  12. FBR and RBR particle bed space reactors

    International Nuclear Information System (INIS)

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 100K), high coolant-outlet temperatures (1500 to 30000K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H2-cooled mode. The RBR will operate only in the open-cycle H2-cooled mode

  13. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  14. Fixed bed suspended core nuclear reactor concept

    International Nuclear Information System (INIS)

    The fixed bed nuclear reactor (FBNR) is essentially a pressurized light water reactor having spherical fuel elements constituting a suspended reactor core at its lowest bed porosity. The principle features of the proposed reactor are that the concept is polyvalent, simple in design, may operate either as fixed or fluidized bed, have the core suspended contributing to inherent safety, passive cooling features of the reactor. The reactor is modular and has an integrated primary system utilizing either water, supercritical steam or helium gas as its coolant. Some of the advantages of the proposed reactor are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (orig.)

  15. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    Science.gov (United States)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  16. Improvement to deep graphite bed filters

    International Nuclear Information System (INIS)

    This invention relates to an improvement to deep graphite bed filters. It has a use in the filtration of the water of nuclear reactor systems. These filters are composed of a vessel filled with granulated graphite and fitted with an intake tube for the liquid to be filtered located at the top of the vessel, and an outlet tube located at the bottom. Ancillary pipes are used for the regeneration of the filter by removal of the clogged-up graphite fill and its replacement by a fresh bed. The graphite bed rests on wire gauze which in turn rests on a perforated plate, so fitted that it is able to withstand the graphite fill and the thrust of the liquid. The graphite in such a filter, when it is used to filter the water of the primary system of a nuclear reactor, is of high chemical purity and the granules are between 0.28 mm and 3.3 mm in dimension, with a minimum 80% with dimensions between 0.8 and 3.3 mm. The resistance of the graphite to wearing down is very good. The capacity coefficient in the graphite bed is around 55 to 60%. This invention produces a filter than can be used with a high throughput of liquid to be filtered, for instance more than 4m3/hdm2 and to a high temperature in the order of 2500C. At the upper part of the filter, there is a liquid distribution device made up of an assembly of coaxial truncated walls flared at the bottom. The graphite bed also has the shape of a truncated cone, to make it easy to loosen the settlement again and to facilitate the emptying; the perforated plate bearing the graphite bed is given an inclined setting towards the nozzle of an extraction valve

  17. Exercise countermeasures for bed-rest deconditioning

    Science.gov (United States)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  18. Iowa Wavering on Medicaid: From Expansion to Modernization.

    Science.gov (United States)

    Wright, Brad; Potter, Andrew J; Nattinger, Matthew C

    2016-04-01

    Iowa is one of six states to expand Medicaid through section 1115 waivers. Iowa's alternative approach to Medicaid expansion, known as the Iowa Health and Wellness Plan, was the result of a bipartisan compromise, motivated by the pending expiration of a preexisting section 1115 waiver that served sixty-five thousand Iowans. The Iowa Health and Wellness Plan emphasizes personal responsibility and private involvement. Key features include beneficiary premiums, incentives for healthy behaviors, and premium assistance for some beneficiaries to purchase insurance in the health insurance marketplace. However, Iowa has struggled to implement its expansion as initially envisioned, due largely to the lack of private insurers willing and able to insure new Medicaid enrollees in the marketplace. In 2016 Iowa will dramatically increase the role of managed care in Medicaid, with the vast majority of beneficiaries receiving almost all Medicaid services through a capitated managed care organization. This article highlights the local factors driving expansion, the interplay of the state and federal political landscape, the challenges of providing consumer choice within Iowa's marketplace, and the future of Iowa's Medicaid program under managed care. PMID:26732318

  19. Thermal expansion and Grueneisen parameters of high Tc superconductors

    International Nuclear Information System (INIS)

    This paper reports that the thermal expansion of a material is of basic interest because it is part of the equation-of-state, that is the relation between pressure P, volume V and temperature T. It is of technical interest because of engineering requirements for compatibility of materials and associated estimates of stress and strain in structures where temperatures change. In the case of high-Tc superconductors, knowledge of their expansion behavior is complementary to knowledge of heat capacity at constant pressure Cp (or constant volume Cv) and the elastic stiffnesses cij in understanding the interaction energy and its volume dependence. Technically, it is also necessary for successful design of thin-film devices, cables, etc. Our state of knowledge of thermal expansion and elastic moduli, particularly of well-characterized low-porosity specimens and single crystals is still very inadequate but the present survey may help to pin-point the areas of agreement and some of the deficiencies in data

  20. Attractive Hubbard model: Homogeneous Ginzburg-Landau expansion and disorder

    Science.gov (United States)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2016-02-01

    We derive a Ginzburg-Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres-Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose-Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic "bare" density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T c, is also controlled only by disorder widening of the conduction band (density of states).

  1. Nonlinear temperature characteristic of thermal expansion of Grf/Mg composites

    Institute of Scientific and Technical Information of China (English)

    SONG Mei-hui; XIU Zi-yang; WU Gao-hui; CHEN Guo-qin

    2009-01-01

    Graphite fiber reinforced magnesium matrix(Grf/Mg) composites were fabricated by squeeze casting technology. M40 graphite fibers were reinforced to AZ91D and ZM6, their thermal expansion behaviors of M40/AZ91D and M40/ZM6 composites in the temperature range from 20 to 490 ℃ were investigated. The results show that the interfacial species and thermal stress have significant influence on the thermal expansion behavior of the composites. Simultaneously, the longitudinal coefficient of thermal expansion of Grf/Mg composites are affected by the thermal stress, interfacial species and yield strength of matrix alloy, it also decreases with increasing temperature and descending rate of longitudinal coefficient of thermal expansion(CTEs) of Grf/Mg composites changed in different temperature ranges. In terms of different descending rates, the curve of coefficient of thermal expansion vs temperature can be divided into three stages. The matrix alloys M40/AZ91D and M40/ZM6 yield at 170 and 155℃ in the thermal expansion, respectively.

  2. The Effects of Dinner-to-Bed Time and Post-Dinner Walk on Gastric Cancer Across Different Age Groups

    Science.gov (United States)

    Xu, Le; Zhang, Xi; Lu, Jun; Dai, Jia-Xi; Lin, Ren-Qin; Tian, Fang-Xi; Liang, Bing; Guo, Yi-Nan; Luo, Hui-Yu; Li, Ni; Fang, Dong-Ping; Zhao, Ruo-Hua; Huang, Chang-Ming

    2016-01-01

    Abstract Gastric cancer (GC) remains a major killer throughout the world. Despite the dramatic decrease in GC over the last century, its etiology has not yet been well characterized. This study investigated the possible independent and combined effects of the dinner-to-bed time and post-dinner walk on the risk for GC across different age groups. A population-based, case–control study was conducted in southeast China, including 452 patients with GC and 465 age-, race-, and gender-matched controls. A self-designed questionnaire was used to collect information on demographic characteristics, dinner-to-bed time, post-dinner walk, and other behavioral factors. Conditional logistic regression models were used to estimate the effects of the dinner-to-bed time and post-dinner walk as well as their joint effect on the risk for GC across different age groups. Individuals with dinner-to-bed time 55 years old. PMID:27100427

  3. Shrinkage and Expansive Strain of Concrete with Fly Ash and Expansive Agent

    Institute of Scientific and Technical Information of China (English)

    GAO Peiwei; LU Xiaolin; TANG Mingshu

    2009-01-01

    The effects of fly ash and MgO-type expansive agent on the shrinkage and expan-sive strain of concrete with high magnesia cement were investigated. The results show that high volumes of fly ash may reduce the shrinkage strain of concrete and inhibit the expansive strain of concrete with MgO-type expansive agent, but can not eliminate the shrinkage of concrete. MgO-type expansive agent may produce expansive strain and compensate the shrinkage strain of concrete, re-lieve the cracking risk, but the hydration product of magnesia tends to get together in paste and pro-duce expansive cracking of concrete with high magnesia content according to SEM observation.

  4. Thermal regeneration in fix-bed reactors

    International Nuclear Information System (INIS)

    The thermal behaviour of a catalytic reactor with regeneration, from a simplified model is studied. Plug-flow is postulated to the reactor and a two-phase model for simulating heat transfer between the bed and the gas is used, disregarding the conduction terms. The computational results for an exothermal catalytic reaction are presented. The effect of the duration of the period and the inlet temperature of the gas in the bed temperature profiles is studied, as well as the evolution since the functioning until the steady state. (E.G.)

  5. ACS air bearing test-bed design

    OpenAIRE

    Glitt, Sascha

    2010-01-01

    This thesis is about the construction and design of a new air bearing test-bed to verify the programmed ACS attitude control algorithm and to validate the ACS MATLAB/SimuLink¬ model of NPSAT1, the second small satellite currently under development at the Naval Postgraduate School Space Systems Academic Group. The software was already verified and validated using a comparable air bearing test-bed. But due to changes in hardware from commercial magnetic torque rods to custom, NPS-built, magneti...

  6. Numerical simulation of nuclear pebble bed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shams, A., E-mail: shams@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Roelofs, F., E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, E., E-mail: emiliob@MIT.EDU [Massachusetts Institute of Technology (MIT) (United States)

    2015-08-15

    Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with

  7. Numerical simulation of nuclear pebble bed configurations

    International Nuclear Information System (INIS)

    Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with

  8. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Binlin; Song, Yongchen [School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2010-10-15

    Hydrogen production from steam reforming of glycerol in a fluidized bed reactor has been simulated using a CFD method by an additional transport equation with a kinetic term. The Eulerian-Eulerian two-fluid approach was adopted to simulate hydrodynamics of fluidization, and chemical reactions were modelled by laminar finite-rate model. The bed expansion and pressure drop were predicted for different inlet gas velocities. The results showed that the flow system exhibited a more heterogeneous structure, and the core-annulus structure of gas-solid flow led to back-mixing and internal circulation behaviour, and thus gave a poor velocity distribution. This suggests the bed should be agitated to maintain satisfactory fluidizing conditions. Glycerol conversion and H{sub 2} production were decreased with increasing inlet gas velocity. The increase in the value of steam to carbon molar ratio increases the conversion of glycerol and H{sub 2} selectivity. H{sub 2} concentrations in the bed were uneven and increased downstream and high concentrations of H{sub 2} production were also found on walls. The model demonstrated a relationship between hydrodynamics and hydrogen production, implying that the residence time and steam to carbon molar ratio are important parameters. The CFD simulation will provide helpful data to design and operate a bench scale catalytic fluidized bed reactor. (author)

  9. 振动流化床干燥机运转引起的楼面振动测试及分析%THE SPOT TESTING AND FEA OF THE VIBRATION BEHAVIOR OF BEAM-PLATES SYSTEM CAUSED BY THE VIBRATION OF FLUIDIZED BED DRYER

    Institute of Scientific and Technical Information of China (English)

    王蕊; 郭昭胜; 崔娟玲

    2014-01-01

    对振动流化床干燥机运转导致的楼面振动响应进行现场测试,得到了振动设备的扰力、频率、隔振支座的工作性能以及楼面强迫振动响应的规律。基于现场测试结果,利用ANSYS 有限元软件对4种不同工况下楼面的强迫振动进行了仿真分析,得到梁板结构的振动和传递规律。结果表明:楼面振动响应在布置振动设备的框架区格内较大,框架梁上测点的振动响应明显小于次梁;振动响应沿楼面纵向测点迅速衰减,并可将多台振动设备的综合振动效应视为单台振动设备振动效应的线性叠加;强迫共振是引起楼面较大振动的内在原因。利用简化连续正交各向异性板模型和结构自振频率灵敏度分析技术快速地获得了结构刚度的最佳修改位置和修改量。最后,采用有限元模型,经试算提出了合理经济的楼板减振处理方案。%The vibration behavior of beam-plates system caused by the vibration of fluidized bed dryer was tested .The disturbing force and frequency of vibrating equipment , working performance of the existing isolation bearing and response of floor vibration was obtained .According to the spot test results ,finite element analysis of simple harmonic vibration was carried out by ANSYS software .The test results show that floor vibration response is larger in frame regions having vibration equipment;vibration response of monitoring points on frame beam is much less than that of monitoring points on secondary beam , vibration response of measuring points decay soon along the floor longitudinal points.The linear superposition comprehensive vibration effect of multiple vibration equipment can be regarded as a single vibration equipment vibration effect , the main cause of factory floor of big vibration is forced resonance .Based on a simply continuous orthotropic plate model and the eigenfrequency sensitivity analysis technique , the optimal

  10. Novel Simulated moving bed technologies

    Energy Technology Data Exchange (ETDEWEB)

    Purdue University

    2003-12-30

    Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly

  11. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    Directory of Open Access Journals (Sweden)

    Arlene Garcia

    2014-12-01

    Full Text Available The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°, five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay, two moistures (dry or wet bedding; >50% moisture over two seasons (>23.9 °C summer, <23.9 °C winter were assessed for slips/falls/vocalizations (n = 6,000 pig observations. “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01. Providing bedding reduced (P < 0.05 scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01. Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was

  12. From Modern Push-Button Hospital-beds to 20th Century Mechatronic Beds: A Review

    Science.gov (United States)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    The aim of this work is to present the different aspects of modern high complexity electric beds of the period 1940 until 2000 exclusively. The chronology of the product has been strictly divided into three big stages: electric and semi-electric beds (until the 90’s), mechatronic beds (90’s until 2000) and, mechatronic intelligent beds of the last 15 years. The latter are not considered in this work due to the extension for its analysis. The justification for classifying the product is presented under the concepts of medical, assistive and mobility devices. Relevant aspects of common immobility problems of the different types of patients for which the beds are mainly addressed are shown in detail. The basic functioning of the patient’s movement generator and the implementation of actuators, together with IT programs, specific accessories and connectivity means and network-communication shown in this work, were those that gave origin to current mechatronic beds. We present the historical evolution of high complexity electric beds by illustrating cases extracted from a meticulous time line, based on patents, inventions and publications in newspapers and magazines of the world. The criteria adopted to evaluate the innovation were: characteristics of controls; accessories (mattresses, lighting, siderails, etc.), aesthetic and morphologic properties and outstanding functionalities.

  13. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  14. Experimental studies on the coolability of packed beds. Flooding of hot dry packed beds

    International Nuclear Information System (INIS)

    In case of a severe accident in a nuclear power plant meltdown of the reactor core can occur and form a packed bed in the lower plenum of the reactor pressure vessel (RPV) after solidification due to contact with water. The removal of after-heat and the long-term coolability is of essential interest. The efficient injection of cooling water into the packed bed has to be assured without endangering the structural integrity of the reactor pressure vessel. The experiments performed aimed to study the dry-out and the quenching (flooding) of hot dry packed beds. Two different inflow variants, bottom- and top-flooding including the variation of the starting temperature of the packed bed and the injection rate were studied. In case of bottom flooding the quenching time increases with increasing packed bed temperature and decreasing injection rate. In case of top flooding the flow pattern is more complex, in a first phase the water flows preferentially toward the RPV wall, the flow paths conduct the water downwards. The flow resistance of the packed bed increases with increasing bed temperatures. The quenching temperatures increase significantly above average.

  15. Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel

    International Nuclear Information System (INIS)

    Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergun and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR. (authors)

  16. Study on heat and mass transfer between a greenhouse considered as a solar air heater and a rock packed bed as ambient control system

    International Nuclear Information System (INIS)

    A general study on heat transfer in dry packed beds is made, with special emphasis in comparing different transient models and in identifying the required conditions by which the attained results are equivalent. The differences in thermal behaviour on packed beds, when simultaneous heat mass transfer occurs as wet air is used as heat transfer fluid and exchanges heat and water with the solid in the bed, is analyzed. We modelize wet packed beds considering them as one dimension adsorbents beds, with dispersive and non-dispersive models, where adsorption, condensation-evaporation and liquid water downward flow from condensate phenomena are present. Models were solved numerically and experiments with a rock bed with dry and wet air through it, were made to test assumptions and to further understand the behavior of the system, obtaining a pretty good agreement between expected and measured profiles of the temperature evolution within the packed bed. As a possible application of the wet rock bed for storage purposes, a forced ventilation greenhouse was characterized as a wet air solar heater and analyzed the energetic potential of storing the heat that has to be rejected during daytime to control the crop ambient conditions, in a rock bed for later use at night for heating. (author)

  17. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  18. Thermal expansion in the orthorhombic γ phase of ZrW2O8

    International Nuclear Information System (INIS)

    The thermal expansion of the orthorhombic γ phase of ZrW2O8 has been measured using neutron powder diffraction from 4.6 to 410 K, where it transforms to the cubic α phase. At low temperature, γ-ZrW2O8 has a negative thermal expansion, but the thermal expansion becomes less negative with increasing temperature and is slightly positive at room temperature. This behavior can be explained in terms of the contributing phonon modes: At low temperature, the vibrational modes lead to a negative thermal expansion, but additional modes that become active upon increasing temperature add positive contributions. Above room temperature, the a and b axes increase more sharply while the c axis reverses its behavior and decreases with increasing temperature. This unusual behavior can be explained in terms of a thermally activated process, presumed to result from oxygen-atom migration, that makes an additional contribution to the thermal expansion. (c) 1999 The American Physical Society

  19. Extrudate Expansion Modelling through Dimensional Analysis Method

    DEFF Research Database (Denmark)

    A new model framework is proposed to correlate extrudate expansion and extrusion operation parameters for a food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. energy, water content and temperature, are suggested to...... describe the extrudates expansion. From the three dimensionless groups, an equation with three experimentally determined parameters is derived to express the extrudate expansion. The model is evaluated with whole wheat flour and aquatic feed extrusion experimental data. The average deviations of the...

  20. ON CONVERGENCE OF WAVELET PACKET EXPANSIONS

    Institute of Scientific and Technical Information of China (English)

    Morten Nielsen

    2002-01-01

    It is well known that the-Walsh-Fourier expansion of a function from the block space ([0, 1 ) ), 1 <q≤∞, converges pointwise a.e. We prove that the same result is true for the expansion of a function from in certain periodixed smooth periodic non-stationary wavelet packets bases based on the Haar filters. We also consider wavelet packets based on the Shannon filters and show that the expansion of Lp-functions, 1<p<∞, converges in norm and pointwise almost everywhere.