WorldWideScience

Sample records for bed combustor fbc

  1. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  2. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  3. Energy recovery from heavy ASR by co-incineration in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Isabel; Caneghem, Jo van; Block, Chantal; Vandecasteele, Carlo [University of Leuven, Department of Chemical Engineering, Leuven (Belgium); Brecht, Andres van; Wauters, Guido [Indaver NV, Mechelen (Belgium)

    2012-10-15

    Automotive shredder residue (ASR) is a heterogeneous waste stream with varying particle size and elemental composition. Owing to its complexity and hazardous characteristics, landfilling of ASR is still a common practice. Nevertheless, incineration with energy recovery of certain ASR fractions (Waste-to-Energy, WtE) emerges as an interesting alternative. In a full scale experiment, a waste mix of 25 % heavy ASR, 25 % refuse derived fuel (RDF), and 50 % waste water treatment (WWT) sludge was incinerated in the SLECO fluidized bed combustor (FBC) at the Indaver site in Antwerp, Belgium. Input and output streams were sampled and analyzed to make an inventory of the most important pollutants and toxics. The inventory was further used to determine the environmental impact. Results are compared to those of two other scenarios: incineration of the usual waste feed (70 % RDF and 30 % WWT sludge) and co-incineration of 39 % ASR with 61 % WWT sludge. It can be concluded that co-incineration of heavy ASR in an existing FBC is a valid and clean technology to increase current reuse and recovery rates. In the considered FBC, 27 % of the energetic value of ASR can be recovered, while all emissions remain well below regulatory limits and only 12.6 % of the heavy ASR needs to be landfilled. The proportion of ASR in the input waste mix is however limited by the heavy metal concentration in the ASR and the generated ashes. (orig.)

  4. Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, K.; Desmond, J.; Leahy, J.J.; Howard-Hildige, R.; Ward, S. [University College Dublin, Dublin (Ireland). Agriculture and Food Engineering Department

    2001-01-01

    As a result of the recent Bovine Spongiform Encephalopathy crisis in the European beef industry, safe animal by-product disposal is currently being addressed. One such disposal option is the combustion of by-product material such as meat and bone meal (MBM) in a fluidised bed combustor (FBC) for the purpose of energy recovery. Two short series of combustion tests were conducted on a FBC at the University of Twente, the Netherlands. In the first series, pellets (10 mm in diameter and approximately 10 mm in length) were made from a mixture of MBM and milled peat, at MBM inclusion rates of 0%, 30%, 50%, 70% and 100%. In the second series of tests, the pellets were commercially made and were 4.8 mm in diameter and between 12 and 15 mm long. These pellets had a weight of about 0.3 g and contained 0%, 25%, 35%, 50% and 100% MBM inclusion with the peat. Both sets of pellets were combusted at 800{degree}C. The residence times in the FBC varied from 300 s (25% MBM inclusion) to 120 s (100% MBM inclusion) for the first series of pellets. Increasing compaction pressure increased the residence time. For the second series of pellets, the residence time varied from about 300 s (25% MBM inclusion) to 100 s (100% MBM inclusion). MBM was found to be a volatile product (about 65%) and co-firing it with milled peat in a pelleted feed format reduces its volatile intensity. Pellets made from 100% bone based meal remained intact within the bed and are thought to have undergone a process of calcination during combustion. A maximum MBM inclusion rate of 35% with milled peat in a pellet is recommended.

  5. Novel designs of fluidized bed combustors for low pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Bleek, C.M. van den [Delft Univ. of Technology (Netherlands). Dept. of Chemical Engineering; Dam-Johansen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1995-12-31

    It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the char combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.

  6. Air Distributor Designs for Fluidized Bed Combustors: A Review

    Directory of Open Access Journals (Sweden)

    A. Shukrie

    2016-06-01

    Full Text Available Fluidized bed combustion (FBC has been recognized as one of the suitable technologies for converting a wide variety of biomass fuels into energy. One of the key factors affecting the successful operation of fluidized bed combustion is its distributor plate design. Therefore, the main purpose of this article is to provide a critical overview of the published studies that are relevant to the characteristics of different fluidized bed air distributor designs. The review of available works display that the type of distributor design significantly affects the operation of the fluidized bed i.e., performance characteristics, fluidization quality, air flow dynamics, solid pattern and mixing caused by the direction of air flow through the distributors. Overall it is observed that high pressure drop across the distributor is one of the major draw backs of the current distributor designs. However, fluidization was stable in a fluidized bed operated at a low perforation ratio distributor due to the pressure drop across the distributor, adequate to provide uniform gas distribution. The swirling motion produced by the inclined injection of gas promotes lateral dispersion and significantly improves fluidization quality. Lastly, the research gaps are highlighted for future improvement consideration on the development of efficient distributor designs.

  7. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.W.; Krishnan, R.P.

    1980-10-01

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  8. Biomass ash-bed material interactions leading to agglomeration in FBC

    DEFF Research Database (Denmark)

    Visser, H.J.M.; van Lith, Simone Cornelia; Kiel, J.H.A.

    2008-01-01

    In (bubbling) fluidized-bed combustion and gasification of biomass, several potential problems are associated with the inorganic components of the fuel. A major problem area is defluidization due to bed agglomeration. The most common found process leading to defluidization in commercial-scale ins......In (bubbling) fluidized-bed combustion and gasification of biomass, several potential problems are associated with the inorganic components of the fuel. A major problem area is defluidization due to bed agglomeration. The most common found process leading to defluidization in commercial...... describes a fundamental study on the mechanisms of defluidization. For the studied process of bed defluidization due to sintering of grain-coating layers, it was found that the onset of the process depends on (a) a critical coating thickness, (b) on the fluidization velocity when it is below approximately...... four times the minimum fluidization velocity, and (c) on the viscosity (stickiness) of the outside of the grains (coating)....

  9. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  10. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  11. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  12. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    OpenAIRE

    Nurdil Eskin; Afsin Gungor

    2005-01-01

    In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB) combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circu...

  13. Grimethorpe experimental pressurized fluidized-bed combustor: in future energy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.B.

    1979-01-01

    The experimental pressurized fluidized bed combustor project at Grimethorpe, UK, is described. The design of the combustor, which is a pressure vessel containing a furnace, which contains the fluidized bed is discussed. Details of the process, the steam water circuit, the fuel system and method of feeding coal, ash removal during the process, the water treatment plant and plant control are given.

  14. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  15. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  16. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  17. Comprehensive Mathematical Model for Coal Combustion in a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    金晓钟; 吕俊复; 杨海瑞; 刘青; 岳光溪; 冯俊凯

    2001-01-01

    Char combustion is on a special reducing condition in the dense bed of a circulating fluidized bedcombustor. Experimental findings were used to develop a comprehensive mathematical model to simulate thehydrodynamic and combustion processes in a circulating fluidized bed combustor. In the model, gas-solidinteraction was used to account for the mass transfer between the bubble phase and the emulsion phase in thedense bed, which contributes to the reducing atmosphere in the dense bed. A core-annular structure wasassumed in the dilute area rather than a one-dimensional model. The submodels were combined to build thecomprehensive model to analyze the combustion in a circulating fluidized bed combustor and the effect ofoperating parameters on the coal combustion. The model predictions agree well with experimental results.

  18. Analysis of FBC deterministic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.

  19. Improved Robust Adaptive Control of a Fluidized Bed Combustor for Sewage Sludge

    Institute of Scientific and Technical Information of China (English)

    MENGHong-Xia; JIAYing-Min

    2005-01-01

    This paper presents a robust model reference adaptive control scheme to deal with uncertain time delay in the dynamical model of a fluidized bed combustor for sewage sludge. The theoretical analysis and simulation results show that the proposed scheme can guarantee not only stability and robustness, but also the adaptive decoupling performance of the system.

  20. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... durations of 5.5 h. A narrow continuous zone borders virtually all bed particles. The highest concentrations of potassium are found in this surface zone that also is enriched in appreciable amounts of other elements. Thin discontinuous films of adhesive cement, formed preferentially on surfaces and contact...

  1. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  2. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  3. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  4. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  5. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Richardson, T.L. [Environmental Protection Agency, Cincinnati, OH (United States)

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  6. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  7. Spectral methods applied to fluidized bed combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  8. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  9. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Science.gov (United States)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  10. Modeling of NO and N{sub 2}O emissions from biomass circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Gibbs, B.M. [Leeds Univ., Leeds (United Kingdom). Dept. of Fuel and Energy

    2002-07-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N{sub 2}O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH{sub 3}), hydrogen cyanide (HCN) and nitrogen (N{sub 2}). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH{sub 3} and the the homogeneous reaction of NH{sub 3} with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs.

  11. A novel vortex-fluidized bed combustor with two combustion chambers for rice-husk fuel

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T.

    2004-11-01

    Full Text Available A novel vortexing-fluidized bed combustor (VFBC using rice-husk as fuel was developed and presented. The combined characteristics of vortex combustion and fluidized bed combustion are the main features of the VFBC, which was designed to achieve high thermal capacity (MWth m-3, high thermal efficiency and low diameter to height ratio. The VFBC comprises a vertical cylinder chamber and a conical base, which provides a bed for incompletely combusted fuel. The overall dimensions are 1.10 m in height and 0.40 m in diameter. To evaluate combustor performance, the specific feed rate of fuel and mass flow rates of the primary, secondary, and tertiary air were varied independently of one another. The combustion appeared into two zones characterized by different combustion behaviors, i.e. 1 vortext combustion above the vortex ring and 2 fluidized bed combustion below the vortex ring. The fluidized bed zone has uniform temperature distributions across the cross-section of the combustor. The swirling of air above the vortex ringand the vortex ring itself played important roles in preventing the escape of combustion particulates. Bottomash appeared as fine black and grey particles of ash, which ranged in size from 200 to 600 µm. Fluidizationcould be initiated without the assistance of any inert material mixed into the bed. The experimental resultsindicated that thermal efficiency did not depend on the secondary or tertiary airflows, but was significantlyinfluenced by the excess air resulting from the combined total of the three airflows. The introduction of thetertiary airflow helped maintaining the temperature inside the combustor within acceptable levels. According to experimental conditions, i.e. a specific feed rate of 240 kg h-1m-3 and excess air (157%, it was found that the VFBC could achieve an exit gas temperature of 1060ºC, thermal efficiency of 95%, and thermal capacity of 0.91 MWth m-3. The amounts of CO2, CO, and O2 gases emitted were directly

  12. In-situ laser spectroscopy of CO, Ch4, and H2O in a particle laden laboratory-scale fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Lackner Maximilian

    2002-01-01

    Full Text Available The pyrolysis, devolatilization and char combustion of bituminous coal and biomass (beechwood, firwood were investigated in a laboratory-scale fluidized bed combustor by tunable diode laser spectroscopy. Individual fuel particles were suspended in the freeboard of the unit. The bed temperature was 800 °C, the oxygen partial pressure 0 to 20 kPa (0-10 vol.%. Two Fabry Perot type tunable near infrared diode lasers were deployed for quantitative in-situ species concentration measurements. CH4 and CO were measured simultaneously during devolatilization and char combustion in-situ 10 mm above the surface of the fuel particles as well as H2O using laser spectroscopy. Sand particles were passing the probing laser beam path. Besides the resonant absorption of the laser light by CO, CH4 and H2O severe and strongly transient non-resonant attenuation by partial blocking of the beam and beam steering effects occurred. By wavelength tuning the two laser sources, species concentrations could be determined. The measured absorbances had to be corrected for the real temperature measured at the position of the probing laser beam. In addition, CO, CO2 and O2 were determined ex-situ by con ventional methods. A spatial profile inside the FBC of major species (CH4, CO, CO2, O, H, OH was calculated using a chemical kinetics program for a single fuel particle in a plug flow reactor geometry. The results were compared to the experimental findings. Good agreement was found. Tunable diode laser spectroscopy was found to be an apt method of determining quantitative species concentrations of multiple gases in a high temperature multi phase environment.

  13. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  14. Combustion characteristics and emissions of Seyitomer lignite-olive cake mixture in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Devrim B. Kaymak; Husnu Atakul; Ekrem Ekinci [Istanbul Technical University, Istanbul (Turkey). Department of Chemical Engineering

    2007-07-01

    The low quality Turkish lignites cause acute pollution problems. Therefore, energy production from biomass, which has lower polluting potential due to its consumption of CO{sub 2} in the atmosphere and its low sulphur content, could be considered as an alternative solution. In this study, lignite-olive cake mixtures were burned in a fluidized bed combustor of 10 cm diameter. Temperature profiles, mechanisms of mixing and segregation, and gas emissions were investigated in the course of cocombustion. The lignite-olive cake mixture ratio and the coal particle size were selected as the experimental parameters. Temperature profiles of the fluidized bed show a lignite-olive cake flotsam rich behaviour and the effective parameter on segregation is the density difference between particles. The increase of the olive cake ratio in the mixture results in an important SO{sub 2} emissions decrease. The results also demonstrate that the NOx emissions remain at low values for all operating conditions.

  15. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  16. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    Science.gov (United States)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  17. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  18. Measurements of gas velocity in the freeboard of a pressurized fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Verloop, W.C. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hagen, T.H.J.J. van der [Interfaculty Reactor Inst., Dept. of Reactor Physics, Univ. of Technology, Delft (Netherlands); Boersma, D. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands); Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Univ. of Technology, Delft (Netherlands)

    1992-12-31

    The processes in the freeboard of a fluidized bed combustor have an important impact on both the elutriation of fly ash particles and the emission of noxious gases. The main features have been studied for already several decades. In order to understand the phenomena more thoroughly, the details have to be studied. This paper presents the results of measurements of the gas velocity at different locations in the freeboard. Experiments were performed in the pressurized fluidized bed combustor of the Delft University of Technology, The Netherlands, at 8 bar and a freeboard temperature of 850 C. The measuring method used the temperature flucutations naturally present in the combustion process which were recorded by axially displaced thermocouples. By means of mathematical correlation of the recorded signals, the local gas velocity is calculated. The resulting radial velocity profiles of the upper part of the freeboard are very similar to one-phase turbulent pipe flow profiles. Deviations from the expected axial symmetrical velocity profile which were measured at the lowest level are described to the non-axial symmetrical bed behaviour. (orig.) [Deutsch] Die Vorgaenge im Freiraum ueber Wirbelbettverbrennungssysteme spielen eine bedeutende Rolle bei der Entstehung und der Minimierung von festen und gasfoermigen Emissionen. Obwohl in diesem Zusammenhang schon seit langem wesentlichste Kenngroessen des Freiraums Gegenstand von Untersuchungen sind, beduerfen Einzelheiten der Gas- und Partikelstroemung noch weiterhin detaillierter Erfassung. Hierzu werden Daten der Geschwindigkeitsverteilung benoetigt, deren Ermittlung mit konventionellen Messtechniken, insbesondere in Druckwirbelschichtfeuerungen, technisch problematisch ist. In dem Vortrag wird ueber eine Messmethode zur Geschwindigkeitsbestimmung berichtet, bei der feuerungsseitige Temperaturschwankungen ueber in Stroemungsrichtung versetzte Thermoelemente aufgenommen und mathematisch korreliert werden. Diese Methode wurde

  19. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  20. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors. 11th technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  1. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  2. Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor

    Directory of Open Access Journals (Sweden)

    María E. Arce

    2013-11-01

    Full Text Available The biomass market has experienced an increase in development, leading to research and development efforts that are focused on determining optimal biofuel combustion conditions. Biomass combustion is a complex process that involves divergent parameters and thus requires the use of advanced analysis methods. This study proposes combining grey relational analysis (GRA and error propagation theory (EPT to select a biofuel and its optimal combustion conditions. This research will study three biofuels that are currently used in a region of South Europe (Spain, and the most important variables that affect combustion are the ignition front propagation speed and the highest temperature that is reached at the fixed bed combustor. The results demonstrate that a combination of both theories for the analysis of solid-state thermochemical phenomena enables a fast and simple way of choosing the best configuration for each fuel.

  3. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    Science.gov (United States)

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.

  4. Simultaneous reduction of SO{sub 2} and N{sub 2}O from a fluidized bed combustor without increasing NO{sub x} emission using fine sorbent circulation

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Satoh, M.; Fujikawa, T.; Sato, K.; Tonsho, M.; Inagaki, M. [Niigata Univ., Niigata (Japan). Dept. of Chemistry and Chemical Engineering

    2002-07-01

    This paper proposes a method to reduce nitrogen oxide (NO{sub x}) and sulphur dioxide (SO{sub 2}) emissions from a two-stage fluidized bed combustor in which fuel combustion is conducted in the lower bed and SO{sub 2} is captured from the flue gas in the upper bed. In particular, the study focused on the problem of increased NO{sub x} emissions resulting from in situ SO{sub 2} capture by sorbent limestone feed in a fluidized bed coal combustor. The study examined if the reduction in limestone size can suppress the increase in NO{sub x} emissions. It also examined how the reduction of nitrous oxide (N{sub 2}O) emission by limestone feed is affected by the size of the limestone. The increase in NO{sub x} is caused by oxidation of volatile-N components such as ammonia and hydrogen cyanide, which are released during coal devolatilization. It was suggested that NO{sub x} emissions can be controlled by separating the combustion zone from the desulfurization zone. This paper also describes a process to burn coarse coal in a bubbling fluidized bed and where the sorbent removed fines are then separated from the combustion coal. The removal of SO{sub 2} after combustion avoids an increase in NO{sub x} which would normally occur due to sorbent contact with volatile nitrogen. N{sub 2}O can be decomposed to nitrogen catalyzed by the sorbent in the freeboard. In terms of the effect of sorbent size on the relationship between NO{sub x} emissions and SO{sub 2} removal, the study showed that a large sorbent increased NO{sub x} emissions while a reduced sorbent size avoided an increased in NO{sub x} emissions. N{sub 2}O reduction by SO{sub 2} removal was observed. Sorbent-circulating FBC was found to be effective for reducing SO{sub 2} and N{sub 2}O without increasing NO{sub x}. 17 refs., 2 tabs., 6 figs.

  5. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  6. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    Science.gov (United States)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  7. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    Science.gov (United States)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  8. Decomposition and Reduction of N2O over Limestone under FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Vaaben, Rikke;

    1997-01-01

    The addition of limestone for sulfur retention in fluidized bed combustion (FBC) has in many cases been observed to influence the emission of N2O. The catalytic activity of N2O over calcined Stevns Chalk for decomposition of N2O in a laboratory fixed bed quartz reactor was measured. It was found...

  9. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality

  10. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    Science.gov (United States)

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions.

  11. Study of a 30 MW bubbling fluidized bed combustor based on co-firing biomass and coal

    Indian Academy of Sciences (India)

    Hemant Kumar; S K Mohapatra; Ravi Inder Singh

    2015-06-01

    Today’s power generation sources are largely dependent on fossil fuels due to which the future sustainable development has become a challenge. A significant amount of the pollutant emissions such as carbon dioxide, carbon monoxide and nitrogen oxide from the power sector is related to the use of fossil fuels for power generation. As the demand for electricity is growing rapidly, emissions of carbon dioxide and other pollutants from this sector can be expected to increase unless other alternatives are made available. Among the energy sources that can substitute fossil fuels, biomass fuels appear as one of the options with a high worldwide potential. In the Punjab region of India, Fluidized-bed combustion technology is being used for converting biomass into thermal energy and power generation in various small scale units. The investigation of biomass-based plant through experimental activities and numerical simulation is the scope of this study. The investigations were done at Captive Power Plant (CPP), Ambuja Cement Limited, a project of Holcim, District Ropar, India. During experimental investigations, the study of bed temperatures and steam temperatures at different zones has been done for coal fired and biomass fired combustors with 30% share. No clear effects of co-firing on boiler performance are observed. However, the operational behavior of the boiler in terms of bed temperature and stack emissions shows a different trend. During simulation, the contours of temperature have been obtained for both the boilers and the trends are found in agreement with real process.

  12. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality

  13. Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-08-27

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, which occupies a 400-acre industrial site along the north shore of the St. Johns River about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. JEA has indicated that construction may begin without DOE funding prior to the completion of the NEPA process in February 2000 and would continue until December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared funding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental

  14. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  15. Decomposition and reduction of N2O over Limestone under FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Vaaben, Rikke;

    1997-01-01

    The addition of limestone for sulfur retention in FBC has in many cases been observed to influence the emission of N2O. The catalytic activity of N2O over calcined Stevns Chalk for decomposition of N2O in a laboratory fixed bed quartz reactor was measured. It was found that calcined Stevns Chalk ...

  16. Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2013-01-01

    Full Text Available The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB, primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent’s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour, bed particles and water, have been carried out. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in the fluidized bed

  17. Reactivation of limestone sorbents in FBC for SO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    E.J. Anthony; E.M. Bulewicz; L. Jia [CETC-O/NRCan, Ottawa, ON (Canada)

    2007-04-15

    Fluidized bed combustion (FBC) has the considerable advantage of being capable of burning high-sulphur fuels while achieving in situ sulphur capture by means of limestone addition. Unfortunately the efficiency of this process is limited, and limestone utilization in the range of 30-45% is not uncommon. In consequence, improving limestone utilization has long been an aim of FBC research. The principal directions this research has taken are the use of water (as liquid or vapour) to reactivate the spent sorbent, or mixing of chemical additives with the limestone to improve its utilization. Despite research stretching over the entire history of FBC combustion, there are still no working commercial applications of reactivation technology noted in the open literature. The paper presents some of the more important research undertaken in this field and explores the major knowledge gaps that still exist in the area of sorbent reactivation. 131 refs., 6 figs., 6 tabs. 3 apps.

  18. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Zuhal [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: zuhalgogebakan@hotmail.com; Selcuk, Nevin [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: selcuk@metu.edu.tr

    2009-03-15

    This study describes the partitioning of 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and 9 major and minor elements (Al, Ca, Fe, K, Mg, Na, S, Si, Ti) during co-firing of olive residue, hazelnut shell and cotton residue with high sulfur and ash content lignite in 0.3 MW{sub t} Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig with limestone addition. Concentrations of trace elements in coal, biomass, limestone, bottom ash, cyclone ash and filter ash were determined by inductively coupled plasma optical emission and mass spectroscopy (ICP-OES and ICP-MS). Partitioning of major and minor elements are influenced by the ash split between the bottom ash and fly ash and that the major proportion of most of the trace elements (As, Ba, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Tl, V and Zn) are recovered in fly ash when firing lignite only. Co-firing lignite with biomass enhances partitioning of these elements to fly ash. Co-firing also shifts the partitioning of Cd, P, Sb and Sn from bottom to fly ash.

  19. Compression properties of dust cake of fine fly ashes from a fluidized bed coal combustor on a ceramic filter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.; Ha, S.J.; Jang, H.J. [Gyeongsang National University, Jinju (Republic of Korea). Dept. of Chemical Engineering & ERI

    2004-02-16

    Dust cake compressibility of fine fly ashes (from a coal power plant of fluidized bed combustor) on a ceramic filter was carefully investigated under well-controlled conditions and by measuring the cake thickness under filtration conditions using a laser displacement measuring system. Overall cake porosity and pressure drop of dust cake of three different particles of geometric mean diameters: 1.2, 2.2, and 3.6 {mu}m and the adjusted dynamic shape factors: 1.15, 1.28 and 1.64, respectively, were investigated, at face velocities of 0.02-0.08 m/s. Overall cake porosity was strongly dependent on face velocity and mass load but less dependent on particle sizes. It was understood that dust cake was compressed by reduction of previously formed cake layers with drag forces of lately formed dust layers. The expressions for overall cake porosity and pressure drop across the dust cake, and considering the compression effect, were developed with good agreement with experimental results.

  20. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co...

  1. Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal.

    Science.gov (United States)

    Zhang, Kai; Yu, Bangting; Chang, Jian; Wu, Guiying; Wang, Tengda; Wen, Dongsheng

    2012-09-01

    The fluidization characteristics of binary mixtures containing tobacco stem (TS) and cation exchange resin (a substitute for coal) were studied in a rectangular bed with the cross-section area of 0.3 × 0.025 m(2). The presence of herbaceous biomass particles and their unique properties such as low density and high aspect ratio resulted in different fluidization behaviors. Three fluidization velocities, i.e. initial, minimum and full fluidization velocities, were observed as the TS mass fraction increased from 7% to 20%, and four hydrodynamic stages were experienced, including the static, segregation, transition and mixing stages, with increasing operational gas velocities. The results suggest that the operational gas velocity should be in the range of 2.0-5.0 times of the minimum fluidization velocity of the binary mixtures, and less than 7% TS mass fraction should be used in an existing bubbling fluidized bed. Higher TS fraction inclusion requires the introduction of central jet gas to improve the mixing effect.

  2. Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Nigde University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, 51100 Nigde (Turkey)

    2010-04-15

    In this study, the combustion efficiency and the emission performance of biomass fired CFBs are tested via a previously published 2D model [Gungor A. Two-dimensional biomass combustion modeling of CFB. Fuel 2008; 87: 1453-1468.] against two published comprehensive data sets. The model efficiently simulates the outcome with respect to the excess air values, which is the main parameter that is verified. The combustion efficiency of OC changes between 82.25 and 98.66% as the excess air increases from 10 to 116% with the maximum error of about 8.59%. The rice husk combustion efficiency changes between 98.05 and 97.56% as the bed operational velocity increases from 1.2 to 1.5 m s{sup -1} with the maximum error of about 7.60%. CO and NO{sub x} emissions increase with increasing bed operational velocity. Increasing excess air results in slightly higher levels of NO{sub x} emission. A significant amount of combustion occurs in the upper zone due to the high volatile content of the biomass fuels. (author)

  3. Apparatus to reduce or eliminate combustor perimeter wall erosion in fluidized bed boilers or reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, D.E.

    1993-08-31

    A fluidized bed boiler or reactor is described comprising a housing, a reaction chamber within said housing, air distribution means within said reaction chamber, a plurality of water wall tubes approximately vertically disposed and arranged about the interior walls of said housing so as to define said reaction chamber, wherein the improvement comprises: providing at least a portion of the vertically disposed water wall tubes with an outward slope in the range between 2.5 to 10 such that the cross-section of the upper portion of said reaction chamber is smaller than the cross-section of the lower portion of said reaction chamber so as to reduce or eliminate erosion of said water wall tubes caused by impact from downward flowing solid particles.

  4. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

    2008-05-15

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

  5. Use of FBC ash and ponded coal-ash in ready-mixed concrete[ACI SP-235

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M. [Univ. of Wisconsin, Milwaukee, WI (United States). Center for By-Products Utilization; Botha, F.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    2006-07-01

    Clean coal ash waste from coal-fired power stations is currently under-utilized, as are control technologies for reducing SOx and NOx emissions resulting from fluidized bed combustion (FBC). FBC ash is produced by an FBC boiler in which the coal and limestone mixture is fluidized during the combustion process to allow removal of sulfur gases. This study was conducted to find practical solutions for using the waste product to address environmental concerns and the issue of reduced landfill space. In particular, the study focused on developing a manufacturing technology for the use of FBC and wet-collected, low-lime, coarse coal-ash (WA) in ready-mixed concrete. Nine concrete mixtures and test specimens were made at a ready-mixed concrete plant in Peoria, Illinois. The properties of fresh concrete were tested along with compressive strength, splitting-tensile strength, flexural strength and abrasion resistance for non-entrained, non-air-entrained with high-range water-reducing admixture (HRWRA), and air-entrained admixture (AEA) concrete. The percentage of FBC ash ranged from 22 to 45 per cent in the non-air-entrained concrete and 17 to 27 per cent in the concrete containing AEA. Resistance to salt-scaling of the AEA concrete mixtures exposed to deicing chemicals was also examined. The study showed that the use of normal dosages of AEA was not effective in concrete made with FBC ash. The results also indicated that non-air-entrained concrete mixtures could successfully incorporate up to 22 per cent FBC ash to cementitious material ratio (ash/cm) and a blend of 34 per cent FBC ash/cm and 5 per cent WA/aggregate. Up to 45 per cent FBC ash/cm and 5 per cent of WA/aggregate could also be used in non-air-entrained concrete mixtures using HRWRA for general concrete construction, as could concrete mixtures containing AEA incorporating up to 17 per cent FBC ash/cm with blends of 27 per cent FBC ash/cm and 5 per cent WA/aggregate. 17 refs., 2 tabs., 10 figs.

  6. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Science.gov (United States)

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  7. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  8. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

    1996-03-01

    Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

  9. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  10. Fluid dynamic simulation of the fluidized bed using propane-air fuel; Simulacao dinamica de um combustor de leito fluidizado utilizando como combustivel o ar-propanado

    Energy Technology Data Exchange (ETDEWEB)

    Lima Junior, L.P.; Lucena, S.; Silva, D.J. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica]. E-mail: limajun@br.inter.net

    2004-07-01

    This paper has for purpose to present the modeling and simulation of the homogeneous combustion of the mixture of propane-air in a combustor of fluidized bed with inert particles, basing on a stationary model with phases in series, being taken into account the thermal changes and mass changes among the phases and it changes thermal with the wall for radiation. Computational methods are used for such simulation and CFX 4.4 as dynamic flowing computation software (CFD), kindred of more proximity with the real aspects. Being studied like this dynamic and kinetic flowing parameters of the involved components. (author)

  11. Desulfurization in Reducing Atomosphere and Ammonia Injection Denitrification in a Coal—Fired Fluidized Bed COmbustor with FLy—Ash Recycle

    Institute of Scientific and Technical Information of China (English)

    ZhongZhaoping; ZhengHaiyun

    1997-01-01

    With the rising of IGCC and the second generation PFBC-CC,and with the development of tech-nology of staged combustion to lower emission of NOx,the desulfurization efficiency under reducing atmosphere is raised.In this paper,with the application of the fly-ash recycle and two-stage combustion technologies in a fluidized bed combustor,the desulfurization test under reducing atmosphere is described.Meanwhile,ammonia injection test was also conducted.Results show that desulfurization under reducing atmosphere has higher efficiency,and amoonia injection denitrification effect is very perfect.

  12. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  13. Flow Pattern in a Fluidized Bed with a Non-fluidized Zone

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim; Van den Bleek, Cor. M.

    1997-01-01

    The flow pattern of a fluidized bed with non-fluidized zones is investigated both experimentally and theoretically. Experiments were carried out in such a way that air was introduced only through part of the distributor. The results show a significant amount of air flowing to the zone where no air...... is introduced. However, once the gas velocity exceeds the minimum fluidization velocity in the zone where the air is introduced, the cross-flow hardly changes upon further increase of the gas velocity. A continuity equation and Ergun's equation are used to describe the flow pattern and pressure distribution...... over the bed. Very good agreement between the experimental and calculated results is achieved without any fitting parameter. The results are relevant to the understanding of heat transfer behaviour of a fluidized bed combustor (FBC) that is only partly fluidized to control its load....

  14. 飞灰流化床燃烧脱碳的试验研究%Experimental Study of Fly Ash Decarbonization on a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    梅琳; 卢啸风; 王泉海; 潘智; 杨宇; 洪勇; 方纯全; 郭宏; 阳向东

    2014-01-01

    飞灰回燃脱碳效率较低,导致回燃后飞灰仍不能满足综合利用的要求。文中基于飞灰的冷态流化特性,在自行设计的纯然飞灰的热态试验台上进行了燃烧脱碳试验。试验结果表明:CFB 飞灰能够在流化床内连续稳定燃烧,维持炉内燃烧的最小截面热负荷约为0.4MW/m2,对应的临界飞灰含碳量为18%。密相区温度和运行床压对飞灰脱碳均有一定的影响。飞灰燃烧后在底渣的增重份额很小,最大不超过15%。试验系统的最大脱碳效率约为75%,远远高于飞灰回燃的脱碳效率。%ABSTRACT:Because of the huge difference between original boiler operating conditions and fly ash ideal combustion state, the decarbonization effect is disappointed. Consequently, fly ash decarbonization experiments were carried out on a lab-scale CFB combustor designed base on fluidization properties of fly ash and the decarbonization characteristics were presented. Results show that fly ash requires a minimum sectional thermal load of 0.4MW/m2 for continuous and stable combustion in test combustor, the corresponding critical carbon content in the fly ash is 18%. The carbon content in the fly ash is clearly affected by the dense-bed temperature and bed pressure drop during the combustion process. In addition, the fly ash mass fraction in bottom ash does not exceed 15%. The maximum decarbonization efficiency of the test CFB combustor is approximately 75%, which is much higher than that of FARC.

  15. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.

    Science.gov (United States)

    Xie, Jian-jun; Yang, Xue-min; Zhang, Lei; Ding, Tong-li; Song, Wen-li; Lin, Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N20 were proposed.

  16. Emissions of SO2,NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass

    Institute of Scientific and Technical Information of China (English)

    XIE Jian-jun; YANG Xue-min; ZHANG Lei; DING Tong-li; SONG Wen-li; LIN Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N2O in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O are studied. The results show that an increase in the biomass shares results in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with the increasing biomass share slightly however, non-linear increase relationship between SO2 emission and fuel sulfur content is observed. Air staging decreases the NO emission significantly without raising the SO2 level. Though change the fuel feeding position from riser to downer results in a decrease in the NO emission level, no obvious change is observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission can significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions are discussed and the ways of simultaneous reduction of SO2, NO and N2O are proposed.

  17. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  18. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  19. Studies in an atmospheric bubbling fluidized-bed combustor of 10 MW power plant based on rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ravi Inder [Department of Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab 141 006 (India); Mohapatra, S.K. [Department of Mechanical Engineering, Thapar University, Patiala, Punjab (India); Gangacharyulu, D. [Department of Chemical Engineering, Thapar University, Patiala, Punjab (India)

    2008-11-15

    In this paper an experience, environmental assessment, a model for exit gas composition, agglomeration problem and a model for solid population balance of 10 MW power plant at Jalkheri, Distt. Fatehgarh Sahib, Punjab, India based on rice husk has been discussed. Three phase multistage mathematical model for exit gas composition of rice husk in fluidized bed has been derived. The model is based on three-phase theory of fluidization and material balance for shrinking rice husk particles and it is similar to model developed by Kunii and Levenspiel. The burning of rice husk is assumed to take place according to single film theory. The model has been used to predict the exit gas composition particularly O{sub 2}, CO{sub 2} and N{sub 2}. The agglomeration problem of above plant which is main reason for defluidization of bed has also been discussed. SEM of ash agglomerates has been done. Ash samples taken from the above 10 MW power plant at Jalkheri has been quantitatively analyzed. Finally solid population model has been formed to calculate bed carbon load and carbon utilization efficiency. Above two models are experimentally correlated with the data collected from the above 10 MW power plant at Jalkheri, Distt. Fatehgarh Sahib, Punjab, India which uses rice husk as a fuel input (at the time of study). All the results from the model for rice husk are coming with in permissible limits. (author)

  20. A circulating fluidized bed combustor system with inherent CO{sub 2} separation : application of chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Lyngfelt, A.; Mattisson, T.; Johnsson, F. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    This paper presents a method to achieve carbon dioxide-free combustion while still using fossil fuels as the energy source. The method is based on separation and disposal of carbon dioxide from combustion. Chemical looping combustion (CLC) uses metal oxide particles to transfer oxygen from air to a gaseous fuel. The gaseous fuel is combusted with inherent separation of carbon dioxide (a greenhouse gas) from the flue gas. A bubbling bed below the downcomer in the circulating fluidized bed acts as a fuel reactor where oxygen is transferred from the metal oxide to the fuel. The riser acts as the air reactor where the oxygen from the air oxidizes the previously reduced metal oxide. The fuel and combustion air are not in direct contact. The conceptual design of the pressurized CLC system was examined in order to map suitable conditions for the riser and to achieve sufficient net solids flux between the reactors and the bed mass in the riser. A range of possible operating conditions were suggested. The operating conditions depend on the reaction properties of the oxygen carriers. 16 refs., 1 tab., 8 figs.

  1. Erosion in Steam General Tubes in Boiler and ID Fans in Coal Fired FBC Power Plant

    Directory of Open Access Journals (Sweden)

    Shaheen Aziz

    2012-01-01

    Full Text Available The FBC (Fluidized Bed Combustion is a technique used to make solid particles behave like fluid and grow very fast for the power generation using low grade coal. Due to its merits, first time this technology has been introduced in Pakistan by installing 3x50 MW power plants at Khanote. Fluidized beds have long been used for the combustion of low-quality, difficult fuels and have become a rapidly developing technology for the clean burning of coal. The FBC Power Plant at Khanote has been facing operational and technical problems, resulting frequently shut down of generation units, consequently facing heavy financial losses. This study reveals that due to the presence of high percentage of silica in the lime stone that are further distributed in the bottom ash, fly ash and re-injection material, the generation tubes in the boiler and wings/blades of ID (Induced Draft fans were eroded. In addition, filter bags were also ruptured; resulting frequent shut down of power plant units.

  2. Theoretical investigations of the operating characteristics of circulating pressurized fluidized bed combustors; Theoretische Untersuchungen zum Betriebsverhalten zirkulierender Druckwirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, M.; Krumm, W.

    1999-07-01

    The combination of gas turbine and water-/steam cycle is a proper alternative to increase the efficiency of power plants. Coal fired power plants can be designed as reactors with pressurized coal gasification, pressurized coal dust combustion or a pressurized fluidized bed combustion to realize these plant design. Mathematical modeling and simulation are used to support the development of new power plant concepts, e.g. pressurized fluidized bed combustion. In this paper a one-dimensional model for a pressurized fluidized circulating bed combustion power plant is presented. The modeling structure allows to vary different parameters to identify the particular influence on the overall plant behavior. The model is enlarged by a more detailed balance for limestone. After describing the theoretical background of the influence of added limestone rate on the emissions of sulfurdioxide is shown. (orig.) [German] Ausgehend vom Prinzip eines Dampfkraftwerks mit atmosphaerischer Wirbelschichtfeuerung werden der Dampf- und Gasturbinenprozess bei den druckaufgeladenen Konzepten quasi parallel betrieben und die Gasturbine mit dem Rauchgas aus der Kohlenfeuerung beaufschlagt. Die wesentlichen Unterschiede zu erdgas- oder oelbefeuerten Kombianlagen sind bei den Druckwirbelschichtkonzepten, durch den in Zusammensetzung und Feuchtegehalt stark variierenden Brennstoff Kohle und durch die Auskopplung grosser Waermemengen bei der integrierten Dampferzeugung, gegeben. Der Hauptanteil der erzeugten elektrischen Leistung entfaellt auf den Dampfturbinenprozess. Druckwirbelschichtanlagen mit blasenbildender Wirbelschicht sind seit Anfang der 90er Jahre in Betrieb. Entsprechend der Entwicklung bei der atmopshaerischen Wirbelschichtfeuerung zeichnet sich als naechste Generation dieses Kraftwerkstyps die zirkulierende Druckwirbelschicht mit Heissgasfilter ab. Die mathematische Modellbildung hat sich zu einem anerkannten Werkzeug zur Unterstuetzung der Auslegung und der Untersuchung der Wirkung

  3. Pilot fluidized bed combustor system applied to thermal energy production from light hydrocarbons - part I: description and hydrodynamics analysis; Sistema combustor piloto a leito fluidizado para producao de energia termica a partir de hidrocarbonetos leves. Parte I: descricao e analise hidrodinamica do sistema

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro P. de; Souza Junior, Francisco de Assis; Alves, Stella M.A.; Estevao, Paulo [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lucena, Sergio; Souza, Phillipi R. de O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Controle e Otimizacao de Processos; Santos, Douglas A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2008-07-01

    During the last years, the employment of light hydrocarbons in combustion systems for power generation has been announced by Brazilian Government's like a great bet for diversification the energetic matrix in spite of the provisional crisis. As consequence, high demand and growing R and D investments caused immediate reflexes in all economical and industrial sectors of the Natural Gas chain, mainly considering the gas from Campos, Santos and Espirito Santo offshore fields offered to the market. Regarding this, Northeast Region of Brazil shows itself to be attentive to the energy market tendencies and to environmental sector, creating conditions for developing new technologies and applications for the gas consumption. Among the possible applications of the gas consumption, the fluidized bed combustion systems are highlighted, like a real alternative for energy applying of the hydrocarbons produced, considering a good safety range to effective environmental demands. Thereby, the present work aimed to perform the description of a pilot fluidized bed combustor system with sand using light hydrocarbons - specifically, natural gas and LPG. Thereby, said pilot fluidized bed combustor operates isothermically without developing flames and/or hot spots. Besides the exposed, a hydrodynamic analysis of the system was made, identifying variables and parameters onto fluidized bed combustion process. (author.

  4. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.; Seliuk, E. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

    2009-01-15

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MWt Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on all air-cooled probe at a temperature of 500{degree}C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  5. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Akpulat, O.; Varol, M.; Atimtay, A.T. [Middle East Technical University, Ankara (Turkey). Dept. of Environmental Engineering

    2010-08-15

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O{sub 2}, CO, SO{sub 2} and NOx were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO{sub 2} and NOx emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  6. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.

    Science.gov (United States)

    Akpulat, Onur; Varol, Murat; Atimtay, Aysel T

    2010-08-01

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O(2), CO, SO(2) and NO(x) were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO(2) and NO(x) emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  7. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.

    Science.gov (United States)

    Gogebakan, Zuhal; Gogebakan, Yusuf; Selçuk, Nevin; Selçuk, Ekrem

    2009-01-01

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  8. Geochemistry of FBC waste-coal slurry solid mixtures. Final technical report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31

    The three tasks conducted in this research project were related to understanding the geochemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals and rock fragments are separated from the coal and discharged in an aqueous slurry to an impoundment. After dewatering and closure of the impoundment, the pyrite can oxidize and produce acid that can migrate into the underlying groundwater system. The addition of FBC residue to the CSS will buffer the pore water pH to approximately 7.8. In Task 1, soluble components and acid-base react ion products from mixtures of FBC waste and CSS were extracted for 3 to 180 days in aqueous batch experiments. The results of these extractions showed that, eventually, the extracts would attain a pH between 7 and 8. That pH range is characteristic of an aqueous system in equilibrium with calcite, gypsum, and atmospheric carbon dioxide. After 180 days, the mean calcium concentration in all of the extracts was 566{+-}18 mg/L and sulfate concentrations averaged 2420{+-}70 mg/L. In Task 2, three extracts from CSS/FBC residue mixtures were prepared for use in experiments to determine the adsorption/desorption reactions that occur between solutes in the extracts and two common Illinois soils. Time constraints allowed the use of only two of the extracts for adsorption studies. The concentrations of most solutes were not significantly lowered by adsorption at the pH of the extract-soil suspension, nor over a wide range of pH. The results suggest that the type of solutes that were released by the CSS/FBC residue mixture would not be attenuated by adsorption. In a modified Task 3, the literature on the kinetics of pyrite oxidation in near-neutral to alkaline pH was reviewed in preparation for future development of a computer model of pyrite oxidation in CSS/FBC residue codisposal.

  9. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  10. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  11. IEA FBC Biannual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Matinlinna, J.

    1995-12-31

    This publication is the 14th report (biannual, 1993-1994) of the Executive Committee of the International Energy Agency (IEA) Implement Agreement for Co-operation in the Filed of Fluidized Bed Conversion of Fuels Applied to Clean Energy Production. It has been submitted to IEA in accordance with the provisions of the agreement. This report is edited by Aabo Akademi University, Finland, which has been the operating agent during 1994. The report includes contributions from all the participating member countries. During this period Aabo Akademi University received additional financial support from the Combustion and Gasification Programme LIEKKI 2 of Finland

  12. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  13. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  14. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    Science.gov (United States)

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition.

  15. Analysis of combustion efficiency in CFB coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Department of Mechanical Engineering, Faculty of Engineering and Architecture

    2008-06-15

    Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged. 46 refs., 16 figs., 6 tabs.

  16. Steam hydration-reactivation of FBC ashes for enhanced in situ desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Fabio Montagnaro; Marianna Nobili; Antonio Telesca; Gian Lorenz Valenti; Edward J. Anthony; Piero Salatino [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Chimica

    2009-06-15

    Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200{sup o}C and 250{sup o}C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200{sup o}C and 300{sup o}C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850{sup o}C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity. 36 refs., 6 figs., 2 tabs.

  17. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... for the emission of NOx from FBC has been developed as part of a JOULE project. The model is based on the two-phase theory of fluidization for the bed with a Kunii-Levenspiel type freeboard model and includes submodels for coal devolatilization, combustion of volatiles and char and a detailed model of NO formation...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed...

  18. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  19. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  20. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

    2010-07-15

    Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

  1. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim;

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed...

  2. Combustor concepts for aircraft gas turbine low-power emissions reduction

    Science.gov (United States)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Three combustor concepts have been designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the Hot Wall Combustor employs a thermal barrier coating and impingement cooled liners, the Recuperative Cooling Combustor preheats the air before entering the combustion chamber, and the Catalytic Converter Combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultra-low levels of unburned hydrocarbons and carbon monoxide emissions can be achieved with this technology.

  3. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  4. One dimensional numerical simulation of small scale CFB combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)

  5. Operating Experience from two new Biomass Fired FBC-Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolhar-Nordenkampf, M.; Tschanun, I.; Kaiser, S. [Austrian Energy and Environment AG, Vienna (Austria)

    2006-07-15

    The use of renewable fuels in industrial power plants is rising continuously. The driving forces are the Kyoto protocol for CO{sub 2} reduction resulting in government support for green power electricity, substitution of imported primary energy and multi-fuel concepts together with RDF. Biomass fuel exists in various forms, traditionally as wood, bark, harvesting residues sewage sludge and organic waste. A favourable combustion technology is Austrian Energy's 'ECOFLUID' bubbling fluidized bed. Advantageous is the principle of a substoichiometric bed operation which allows bed temperature control in the range between 650 deg C - 850 deg C. Therefore, also fuel with low ash melting temperature can be burned. The applied staged combustion concept results in a homogenous temperature profile in the furnace and first pass of the boiler and thus low NO{sub x} emission. One new plant, owned by Energie AG in Timelkam/Austria has been commissioned in winter 2005. The main fuel of this 57 t/h boiler is bark, wood residues and waste wood up to 30% of the total thermal capacity. Grinding dust and saw dust can be co-fired, too. Optionally, sludge and animal wastes can be fired. The boiler is designed for 42 barg at live steam temperature of 440 deg C. The other new 30 MW{sub th} plant, owned by M-real Hallein AG in Hallein/Austria has been commissioned in winter 2005, too. The boiler is fired with wood chips, bark, rejects and other paper mill residues and furthermore it is able to burn the sludge of the mills own waste water treatment plant. Beside the boiler works as a post combustion system for exhaust gases from a 1 MW Biogas Otto-Engine, or alternatively it is able to burn the biogas directly. The boiler is designed for 61 barg at live steam temperature of 450 deg C.

  6. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  7. Neural Network Based Montioring and Control of Fluidized Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to

  8. Combustor liner construction

    Science.gov (United States)

    Craig, H. M.; Wagner, W. B.; Strock, W. J. (Inventor)

    1983-01-01

    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses.

  9. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  10. Environmental & Health Hazards of Fly Ash & SOx from FBC Power Plant at Khanote

    Directory of Open Access Journals (Sweden)

    Shaheen Aziz

    2010-12-01

    Full Text Available Lakhra coal reserves are estimated to about 1328 million tones. Most of mined Coal in Pakistan has been used for power generation in addition to some other uses. Lakhra coal (lignite reserves are very high in sulphur content, moisture and ash that not only cause environmental pollution but also cause operational problems. In order to avoid environmental & operational problems, clean coal technology (FBC technology has been used globally because of its merits. In FBC power plant, sulphure is captured by using limestone. In Pakistan, 3x50MW power plant was installed at Khanote to utilize the lakhra coal for the first time. The present study is focused on formation of ash & sulphur. In the FBC power plant at khanote, the generation rate of fly ash & bottom ash was 55680 m3/hr and 16550 m3/hr respectively. Unexpected huge amount of ash causes environmental problem in shape of particulate matter that causes respiratory diseases in the workers. It also affects nearby villages by polluting agricultural land, cattles & habitants. The present research not only indentifies the risks on the basis of extensive experimental analysis, but also proposed solution for its proper disposal.

  11. 燃煤流化床中氯对碳钢腐蚀的影响机制%EFFECT OF CHLORINE ON THE DEGRADATION OF A CARBON STEEL IN A COAL-FIRED FLUIDIZED-BED COMBUSTOR

    Institute of Scientific and Technical Information of China (English)

    彭晓; W.P.Pan; J.T.Riley

    2004-01-01

    在小规模流化床(FBC)中燃烧一种低S高Cl煤1000 h后,对放置于接近沸腾床位置的A210-C碳钢管腐蚀情况进行分析.发现在碳钢管表面温度为470℃~560℃的区域腐蚀产物(主要为Fe2O3)严重剥落.剥落的腐蚀产物表面覆盖一层沉积盐,部分区域发现有(K,Na)Cl.对残留在钢管表面的腐蚀层进行分析,发现在腐蚀层-碳钢界面或其附近的基体中出现局部氯化,导致形成FeCl2层;局部快速腐蚀,形成向基体一侧的腐蚀突体;形成内部空洞这三种腐蚀形态.并对此现象的产生及Cl2的影响机制进行了详细探讨.

  12. Staged fluidized-bed combustion and filter system

    Science.gov (United States)

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  13. NOx and N{sub 2}O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Werther, J.; Ogada, T. [Technical University Hamburg-Harburg, Hamburg (Germany). Chemical Engineering

    2001-01-01

    Incineration is one of the major methods for the disposal of sewage sludge. Currently, several plants are incinerating mechanically dewatered (wet) sludge (20-40 wt.% d.m.) or semi-dried sewage sludge (3-55 wt.% d.m.), although some plants burn dry sludge (with more than 80 wt.% d.m.). Whereas significant information is available on NOx and N{sub 2}O emissions characteristics of wet and dry sludge, not much has been reported on semi-dried sludge. This paper presents some of the results obtained from the combustion of semi-dried sludge in a semi-pilot scale fluidised bed combustor (150 mm in diameter and 9 m high) together with some measurements from a large-scale FBC incineration plant (7 m{sup 2} bed area, 9 m high and a capacity of 3 t/h dry sludge). The investigations have shown that semi-dried sludge exhibit emission characteristics which are similar to those of wet sludge. NOx decreases slightly whereas N{sub 2}O remains more or less the same with increase in oxygen concentrations. Just like wet sludge, staged combustion was not effective for the reduction of NOx and N{sub 2}O. However, increasing the freeboard temperature led to rapid reduction of N{sub 2}O and some NOx reduction was achieved using flue gas recycling technique. Comparison shows that the results from the test rig were more or less similar to those obtained from the large-scale plants. 28 refs., 14 figs., 2 tabs.

  14. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  15. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  16. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  17. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  18. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim;

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...

  19. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  20. Fluidized-bed reactor model with generalized particle balances. Part 2. Coal combustion application

    Energy Technology Data Exchange (ETDEWEB)

    Overturf, B.W.; Reklaitis, G.V.

    1983-09-01

    In the second part, the model is applied to the study of an atmospheric fluidized-bed coal combustor. Case studies are investigated to show the effects of a number of parameters. Proper representation of the grid region and use of actual feed distributions are shown to be essential to the prediction of combustor performance. Better particle elutriation and single-particle combustion sub-models are found to be key requirements for improved combustor modelling.

  1. Methanol tailgas combustor control method

    Science.gov (United States)

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  2. Precise f_{D*,B*} and f_{B_c} from QCD spectral sum rules

    CERN Document Server

    Narison, Stephan

    2014-01-01

    Anticipating future precise measurements of the B-like leptonic decays for alternative determinations of the CKM mixing angles or/and for predicting their semi-leptonic and hadronic decays, we pursue our program on the B-like mesons by improving the estimates of f_D* and f_B* [analogue to f_\\pi=130.4(2) MeV] using suitable ratios of the well-established (inverse) Laplace sum rules less affected by the systematics and known to N2LO pQCD and where the full d=6 non-perturbative condensate contributions are included. An estimate of the N3LO terms based on geometric growth of the pQCD series is included in the error calculations. Our optimal results based on stability criteria and on an (in)dependence on the choice of the QCD subtraction point read: f_D*/f_D=1.209(22),f_B*/f_B=1.031(8) which imply : f_D*=246(7) MeV and f_B*=212(8) MeV if we use our recent results in [1] for f_D and f_B. We complete the analysis by a direct estimate of f_Bc using the complete NLO + N2LO for massless m_c pQCD expression and complete...

  3. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  4. DEVELOPMENT POTENTIALS AND RESEARCH NEEDS IN CIRCULATING FLUIDIZED BED COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2003-01-01

    First a report about present status of circulating fluidized bed reactors for coal and multi-fuel combustion in power plants is given. Thereafter the development potentials and research needs for further improvement of CFB combustors operating with finely grained bed materials are discussed and recommendations for direction of further research and development work are presented.

  5. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  6. 基于LSSVM-GPC的流化床锅炉多变量协调控制方法%Multivariable coordinated control method of FBC boiler based on LSSVM-GPC

    Institute of Scientific and Technical Information of China (English)

    孙立; 潘蕾; 沈炯

    2013-01-01

    In order to achieve good control performance of fluidized bed combustion (FBC) boilers with the dynamic characteristics of multi-variables, strong coupling, and time delays, a coordinated generalized predictive control method based on the least-squares support vector machine ( LSSVM-GPC) is developed. First, a precise identification model from the FBC mechanism model is obtained by using the LSSVM approach, and then the generalized predictive model is derived from the LSS-VM decision function. The comparisons among several modeling approaches show that the LSSVM prediction model can accurately describe the output characteristics of the plants and effectively remove the measurement noises. For avoiding ill-conditioned matrixes and frequent varying of manipulating variables in the control decisions, a coordinated control strategy based on the LSSVM-GPC algorithm is developed by using the correlation analysis on the FBC process. Simulation results show that the approach obviously improves the rapidness and stability of the FBC load control; meanwhile it keeps the bed temperature settled well. Further, it avoids the frequently varying of the actuators; thus the control strategy is optimal and energy-saving.%为了获得良好的流化床锅炉控制品质,提出了一种基于最小二乘支持向量机广义预测控制(LSSVM-GPC)的多变量协调控制方法,以适应流化床锅炉多变量、强耦合、大滞后的动力学特性.在研究流化床机理模型的基础上,采用LSSVM算法辨识流化床模型,并将所得的决策函数转化为广义预测模型.对比结果显示,LSSVM预测模型能够准确描述对象输出特性,并有效去除测量噪声.为了解决FBC多变量预测控制中易出现的病态矩阵以及调节量动作频繁等问题,进一步利用关联分析法,设计了基于LSSVM-GPC的流化床协调控制方法.仿真结果表明,结合该方法能使锅炉负荷响应具有良好的快速性和稳定性,同时能保持床温

  7. Numerical Modelling of Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    M. Deepu

    2007-07-01

    Full Text Available Numerical modelling of turbulent-reacting flow field of supersonic combustion ramjet(scramjet combustors are presented. The developed numerical procedure is based on the implicittreatment of chemical source terms by preconditioning and solved along with unstedy turbulentNavier-Stokes equations explicitly. Reaction is modelled using an eight-step hydrogen-airchemistry. Code is validated against a standard wall jet experimental data and is successfullyused to model the turbulent-reacting flow field resulting due to the combustion of hydrogeninjected from diamond-shaped strut and also in the wake region of wedge-shaped strut placedin the heated supersonic airstream. The analysis could demonstrate the effect of interaction ofoblique shock wave with a supersonic stream of hydrogen  in its (fuel-air mixing and reactionfor strut-based scramjet combustors.

  8. Assessment of Combustor Working Environments

    OpenAIRE

    Leiyong Jiang; Andrew Corber

    2012-01-01

    In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the com...

  9. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  10. COMPUTATIONALLY INTELLIGENT MODELLING AND CONTROL OF FLUIDIZED BED COMBUSTION PROCESS

    Directory of Open Access Journals (Sweden)

    Ivan T Ćirić

    2011-01-01

    Full Text Available In this paper modelling and control approaches for fluidized bed combustion process have been considered, that are based on the use of computational intelligence. Proposed adaptive neuro-fuzzy-genetic modelling and intelligent control strategies provide for efficient combining of available expert knowledge with experimental data. Firstly, based on the qualitative information on the desulphurization process, models of the SO2 emission in fluidized bed combustion have been developed, which provides for economical and efficient reduction of SO2 in FBC by estimation of optimal process parameters and by design of intelligent control systems based on defined emission models. Also, efficient fuzzy nonlinear FBC process modelling strategy by combining several linearized combustion models has been presented. Finally, fuzzy and conventional process control systems for fuel flow and primary air flow regulation based on developed models and optimized by genetic algorithms have also been developed. Obtained results indicate that computationally intelligent approach can be successfully applied for modelling and control of complex fluidized bed combustion process.

  11. Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  12. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  13. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  14. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  15. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  16. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  17. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2009-06-01

    Full Text Available A metamorphic limestone and a dolomite were employed as SO2 sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O2 level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (~60% for Ca/S = 2 was obtained.

  18. TRW Advanced Slagging Coal Combustor Utility Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  19. Turbulent Recirculating Flows in Isothermal Combustor Geometries

    Science.gov (United States)

    Lilley, D.; Rhode, D.

    1985-01-01

    Computer program developed that provides mathematical solution to design and construction of combustion chambers for jet engines. Improved results in areas of combustor flow fields accomplished by this computerprogram solution, cheaper and quicker than experiments involving real systems for models.

  20. Kinetics of Heterogeneous NO and N2O Reduction at FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Nielsen, Jannik Steen

    1999-01-01

    of the combustion chamber and adding secondary air in the top or in the cyclone. The change in reaction pathways for N2O and NO formation and reduction is very complex, and the catalytic activity of the solid material in the boiler may vary with the air staging. Samples of solids taken from large scale tests...... in a 12 MW CFB boiler under different operating conditions (no, severe and reversed air staging) have been tested in small scale laboratory fixed bed reactors. The activity of char and bed material (a mixture of sand, ash and partly sulfated limestone) for decomposition of N2O and simultaneous catalytic...... reduction of N2O and NO was measured. The char was found to be very active compared to bed material under inert conditions. There was no influence of operating conditions on the activity of the char. Pore diffusion influenced the reaction rate for particle sizes above 0.2 mm at 1076 K, and the larger...

  1. Limestone fragmentation and attrition during fluidized bed oxyfiring

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Piero Salatino [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2010-04-15

    Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface. 13 refs., 8 figs.

  2. Calculations of magnetohydrodynamic swirl combustor flowfields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Beer, J.H.; Khan, H.; Lilley, D.G.

    1982-09-01

    The objectives of the paper were to theoretically calculate and experimentally verify the fluid mechanics in the second stage of a model MHD swirl combustor with special emphasis on avoidance of the boundary-layer separation as the flow turns in to the MHD disk generator; to find the most suitable seed injection point at the entrance to the second stage which will yield uniform seed concentration at the combustor exit prior to entry into the disk generator. The model combustor is a multiannular swirl burner that is placed at the exit of the first-stage swirl combustor, which in turn can be used to vary the turbulent shear that arises between the individual swirling concentric annuli. This design permits ultrahigh swirl in the second stage with swirl vanes (if any) to be placed outside the very high temperature regions of the combustor in the clean preheated air. The gas burns completely in the second-stage combustor and turns 90 deg into the disk generator along a trumpet-shaped exit module. In this synoptic results are presented of the fluid mechanics in the trumpet-shaped second-stage exit module, with water as the working fluid.

  3. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Weinell, Claus Erik; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...

  4. Carbon attrition during the circulating fluidized bed combustion of a waste-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arena, U. [Consiglio Nazionale delle Ricerche, Naples (Italy). Inst. for Combustion Research; Naples Univ. (Italy). Dept. of Environmental Sciences; Mastellone, M.L. [Naples Univ. Federico II (Italy). Dept. of Chemical Engineering

    1999-07-01

    A biomass obtained as residue from food manufacturing of pine nuts was batchwise fed in a laboratory scale circulating fluidized bed combustor. The apparatus was operated under both inert and oxidizing conditions in order to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping from the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed combustor in order to point out peculiarities of attrition in the two apparatus. Results were compared with those obtained by burning in the same combustor a bituminous coal and a packaging-derived fuel, obtained from monomaterial collections of polyethylene terephtalate bottles. A different attrition phenomenology was found for each fuel and its peculiar features were taken into account. (orig.)

  5. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  6. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  7. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  8. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  9. Multi-Ducted Inlet Combustor Research and Development.

    Science.gov (United States)

    1983-11-01

    of a reactor or combustor as defined in equation (1) is the combustor volume divided by the fluid flow rate through the combustor. Therefore, for a...Development Laboratories, Inc., Costa Mesa, California, March, 1983. 3. 0. Levenspiel , Chemical Reaction Engineering, John Wiley and Sons, 1962. 59 •rac v £98 kg3-ඃ-,162-;8b

  10. Dilution jet experiments in compact combustor configurations

    Science.gov (United States)

    Greber, I.; Zizelman, J.

    1984-01-01

    This project concerns the effects of cooling jets on the velocity and temperature fields in a compact reverse flow combustor. The work is motivated by the need to limit the temperatures of post combustion gases in jet engines to values within the endurance capabilities of turbine blades. The application requires not only that the temperature be kept sufficiently low but also that a suitably tailored temperature profile be provided at the combustor exit, with higher temperatures generally permissible at the blade tip than at the blade root because of higher centrifugal loads at the root. Flows in reverse flow combustor accelerate both longitudinally because of area changes and transversely because of flow turning. The current project started with flow visualization experiments in water, using aqueous solutions of zinc bromide to model the relatively higher density of cooling jets.

  11. Variable volume combustor with aerodynamic support struts

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  12. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  13. Thermal Imaging Control of Furnaces and Combustors

    Energy Technology Data Exchange (ETDEWEB)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  14. Computation of Three-Dimensional Combustor Performance

    Science.gov (United States)

    Srivatsa, S.

    1985-01-01

    Existing steady-state 3-D computer program for calculating gasturbine flow fields modified to include computation of soot and nitrogen oxide emission. In addition, radiation calculation corrected for soot particles. These advanced tools offer potential of reducing design and development time required for gas-turbine combustors.

  15. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  16. A Mathematical Model for Differential—Velocity Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    LiZhao; XiangdongXu

    1999-01-01

    The scheme of differential-velocity circulating fluidized bed was put forward by Thermal Engineering Department of Tsinghua university in 1992 and got patent simultaneously.An internal bed material circulation in combustor can be established by the discrepancy of entrainment at different air velocity,and separates the combustor into three different velocity regions,which constitutes the differential-velocity inside circulation.Mathematical modeling and simulation may facilitate understanding,Development and operation of this new process.Here cell model method was adopted to set up the model.

  17. 磨细固硫灰渣作为混合材对水泥性能的影响%Performance of Cement Blending Pulverized Ash and Slag from Fluidized Bed Combustion

    Institute of Scientific and Technical Information of China (English)

    牛茂威; 谢小莉; 林洲; 张克; 钱觉时

    2013-01-01

    Fluidized bed combustion (FBC) ash and slag with higher anhydrite and f-CaO may cause poor volume stability used as cement mixing materials. By controlling the dosage of the FBC ash and slag, grinding them to different fineness, the standard consistency requirement, linear expansion rate and mortar strength of the cement blended FBC ash and slag were tested, and compared with the ordinary Portland cement. Results show that increasing the fineness of FBC ash and slag, especially for the ash, could reduce the standard consistency requirement of the cement and delay the setting time. Variation in fineness of FBC ash and slag has no significant influence on the shrinkage in air curing, and higher fineness would accelerate the early expansion in moisture curing, which is within a safe range. The increase of the fineness of FBC ash and slag promotes remarkably the strength of the cement. It is suggested that milling is beneficial to utilization of the FBC ash and slag in cement.%  流化床固硫灰渣含有较高无水石膏和f-CaO,作为水泥混合材利用时会存在体积稳定性问题。在控制固硫灰渣掺量前提下,将固硫灰渣粉磨至不同细度,测试了掺加固硫灰渣的水泥标准稠度需水量、线性膨胀率和胶砂强度,并与普通硅酸盐水泥进行对比。结果表明,提高固硫灰渣细度,特别是固硫灰细度,能使水泥标准稠度需水量减少;固硫灰渣细度提高,水泥凝结时间有所延长;自然养护条件下,固硫灰渣细度变化对水泥收缩没有明显影响,潮湿养护下,磨细固硫灰渣早期能够释放较多膨胀,但处于可控范围;固硫灰渣细度增加,水泥强度明显提高。磨细有利于固硫灰渣作为水泥混合材利用。

  18. Assumed PDF modeling in rocket combustor simulations

    Science.gov (United States)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  19. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  20. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  1. SEWAGE SLUDGE COMBUSTION IN A SPOUTED BED CASCADE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Mirko Barz

    2003-01-01

    @@ In modern society, sewage is disposed of in a two-step process: it is first made into granules and the sewage sludge granules are then burned in an appropriate combustor. The present paper describes a spouted bed cascade system for sewage sludge combustion developed at the Technical University of Berlin at the turn of the present century. Combustion results in the recovery of the combustible matters of the sewage in the form of thermal energy.

  2. Regenerative Portland cement sorbents for fluidized-bed combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, A S; Sethi, D; Steinberg, M

    1980-01-01

    Portland cements are commercially available construction materials that contain high concentrations of calcium silicates. The silicates are highly reactive towards SO/sub 2/ at temperatures and pressures encountered in atmospheric and pressurized FBC's. Of the Portland cements tested, PC III appears to have the highest sulfation capacity when sulfated by SO/sub 2/ at FBC conditions. A thermodynamic analysis of the sulfation of calcium silicates indicates that they are capable of reducing the concentration of SO/sub 2/ in FBC combustion gases to within the current EPA emission limits. The optimum temperature for sulfation of 16/20 mesh PC III pellets is about 1000/sup 0/C in comparison to about 875/sup 0/ for natural limestones. The higher observed optimum temperature is an advantage because combustion and power cycle efficiencies tend to increase as bed temperature increases. The reactions for regenerating sulfated calcium silicates are similar to those for regenerating calcium sulfate. However, the equilibrium partial pressures of SO/sub 2/ in the reductive decomposition of sulfated silicates are much higher than for sulfate lime. This implies that higher SO/sub 2/ concentrations will be attainable in the regenerator off-gas which will result in more economical conversion of SO/sub 2/ to sulfur or sulfuric acid. The sulfation capacity and regeneration efficiency of PC III pellets do not deteriorate with repeated sulfation/regeneration cycling. This indicates that PC III pellets are suitable for use in regenerative systems. The sulfation capacity of PC III is independent of pressure up to at least 10 atm.

  3. Effects of fluidized bed combustion residue on pecan seedling growth and nutrient content. [Carya illinoensis

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.H.; White, A.W. Jr.; Bennett, O.L.

    1985-01-01

    Fluidized bed combustion residue from a calcitic limestone source (FBCRC), a by-product of scrubbing SO/sub 2/ from fossil fuel fired boilers using the FBC technique was evaluated as a source of calcium for pecan (Carya illinoensis (Wang.) K. Koch) seedlings. Fluidized bed combustion residue produced following injection of calcitic limestone into the combustion chamber was more effective in neutralizing soil acidity and increasing extractable soil Ca levels than agricultural calcitic limestone. The Ca concentration in the pecan leaves was increased linearly by Ca rates for both 12- and 24-week growth periods, but stem and petiole Ca concentration was increased linearly for the second 12-week growth period. Macronutrient concentrations were affected by Ca rates for both 12- and 24-week growth periods, but no effect was observed with Ca source. The primary difference was between the control and all other Ca rates.

  4. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion

    DEFF Research Database (Denmark)

    Pazos, Marta; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2010-01-01

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative...

  5. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  6. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  7. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  8. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  9. Numerical investigation of recirculation in the UTSI MHD combustor

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

    1983-09-01

    Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

  10. System and method for reducing combustion dynamics in a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  11. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  12. Developments in fluidized bed conversion of solid fuels

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2016-01-01

    Full Text Available A summary is given on the development of fluidized bed conversion (combustion and gasification of solid fuels. First, gasification is mentioned, following the line of development from the Winkler gasifier to recent designs. The combustors were initially bubbling beds, which were found unsuitable for combustion of coal because of various drawbacks, but they proved more useful for biomass where these drawbacks were absent. Instead, circulating fluidized bed boilers became the most important coal converters, whose design now is quite mature, and presently the increments in size and efficiency are the most important development tasks. The new modifications of these conversion devices are related to CO2 capture. Proposed methods with this purpose, involving fluidized bed, are single-reactor systems like oxy-fuel combustion, and dual-reactor systems, including also indirect biomass gasifiers.

  13. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  14. Co-combustion of waste from olive oil production with coal in a fluidised bed.

    Science.gov (United States)

    Cliffe, K R; Patumsawad, S

    2001-01-01

    Waste from olive oil production was co-fired with coal in a fluidised bed combustor to study the feasibility of using this waste as an energy source. The combustion efficiency and CO emission were investigated and compared to those of burning 100% of coal. Olive oil waste with up to 20% mass concentration can be co-fired with coal in a fluidised bed combustor designed for coal combustion with a maximum drop of efficiency of 5%. A 10% olive oil waste concentration gave a lower CO emission than 100% coal firing due to improved combustion in the freeboard region. A 20% olive oil waste mixture gave a higher CO emission than both 100% coal firing and 10% olive oil waste mixture, but the combustion efficiency was higher than the 10% olive oil waste mixture due to lower elutriation from the bed.

  15. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  16. Induction time effects in pulse combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  17. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  18. Oxy-combustor operable with supercritical fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  19. Meat and bone meal as secondary fuel in fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou [National Technical University of Athens, Athens (Greece). Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  20. Application of numerical analysis to jet engine combustor design

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-04-01

    The design and development process of jet engine combustors in Ishikawajima-Harima Heavy Industries Co., Ltd. was presented which is featured by iterated numerical analyses in earlier stages of design. The analytical methods used, models applied and features were given together with verification results of numerical analyses of a velocity profile in a dump diffuser, flow and temperature distribution in a combustion liner, and liner skin temperature distribution. As examples in design and development of an airblast fuel injector type high temperature combustor, analytical results of the followings were given: flows through a diffuser, flows through a combustion liner, flows through liner cooling slots and liner skin temperature distribution. In addition, results of three-dimensional flow analysis were given in terms of optimization of design parameters for a jet-swirl combustor and calculation of a centrifugal force for a jet-swirl combustor liner as examples. 6 refs., 18 figs., 1 tab.

  1. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  2. Transient heat transfer properties in a pulse detonation combustor

    OpenAIRE

    Fontenot, Dion G.

    2011-01-01

    Approved for public release; distribution is unlimited. The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure for chamber refresh conditions. In a pulse detonation combustor, a supersonic detonation wave is the method for transforming chemical energy into mechanical energy and the wave propagates much faster than the subsonic flames in devices such as rockets and ramjets. The flow...

  3. Variable volume combustor with an air bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  4. Co-combustion of automotive shredder residue (ASR) and sewage sludge with a mixture of industrial and household waste in an 20MW fluidized bed combustor; Samfoerbraenning av bilfluff, roetslam och avfall i en 20 MW fluidbaeddpanna - Studier av braenslesammansaettningens paaverkan paa belaeggningsbildning

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Johansson, Andreas; Johansson, Linda; Wikstroem-Blomqvist, Evalena

    2007-07-01

    In order to prevent a further increased use of resources and to decrease the environmental impact from landfills, organic wastes are today diverted towards material and energy recovery. This creates a waste market with an increasing number of waste fractions that needs to be treated properly. As an example, in Sweden it has recently been prohibited to landfill source separated combustible waste (2002) and organic waste (2005). Wastes as automotive shredder residue (ASR) and sewage sludge can no longer be landfilled and needs to be either material or energy recovered, which challenge the waste treatment sector. This work investigates the effects of ASR and sewage sludge co-combustion in a 20 MW Energy-from-Waste plant (bubbling fluidised bed). The long term objective of the work is to increase the fuel flexibility, the boiler availability and the power production. This report focus on boiler operation and combustion performance in terms of agglomeration, deposit rates and emissions. In addition to the tests with ASR and sewage sludge, repeated measurements were performed during normal load as a reference. The results show that the co-combusted fractions of ASR and sewage sludge, which on mass basis constituted 6 % and 15 % respectively, did not increase the risk for agglomeration or deposits on heat-exchanging surfaces. Instead, compared to the two reference cases, the deposit rates decreased when sewage sludge was added. Only minor variation in the emissions was seen between the different cases. The levels of I-TEQs were far below the legislated values in all cases

  5. 组合流化床燃烧器烧焦管内固含率的径向分布研究%Study on radial profiles of solid fraction in coke-burning riser of a compound fluidized bed combustor

    Institute of Scientific and Technical Information of China (English)

    严超宇; 卢春喜; 王德武; 曹睿; 刘艳升

    2011-01-01

    The radial local solid fraction ( εs ) in a large- scale compound fiuidized bed coke -burning riser was experimentally measured by using the particle concentration fiber probe. The medium system used was the air- sand particles. The superficial gas velocity( us) in the coke - burning riser ranged from 3. 156 m/s to 5. 989 m/s,and the particle circulating flux(Gs)varied between 40.8 kg/(m2 · s) and 229.4 kg/( m2 · s). The results showed that the radial distribution of εs in the coke - burning riser displayed the core - annulus pattern, which demonstrated that the heterogeneous phase structure existed in the riser, the dispersed particle dilute phase in the core region, and the particle cluster dense phase in close to the riser wall region. εs decreased with increasing ug, but increased with increasing Gs. The variation of εs with the operating conditions was more remarkable in close to the riser wall region than in the core region. The experiential model of εs was obtained by fitting the experimental data at given cross - sectional averaged solid fraction. The model predicted values agreed well with the experimental data.%在组合流化床燃烧器的冷态实验装置上,以空气-石英砂颗粒为流化介质体系,在烧焦管内表观气速(ug)为3.156~5.989m/s,颗粒循环强度(Gs)为40.8~229.4 kg/(m2·s)的条件下,采用光纤颗粒浓度测量仪对烧焦管内床层径向局部位置的固含率(εs)进行了测定.结果表明,烧焦管内εs沿床层径向呈中心稀边壁浓的环-核形分布形态,呈现出非均一的相结构;εs随ug的升高而减小,且随Gs的升高而增大,这种影响规律在烧焦管的边肇区比中心区更为显著.根据实验数据关联出截面平均固含率不变条件下的径向局部εs的计算式,所得计算值与实验值基本吻合.

  6. Metallic species derived from fluidized bed coal combustion. [59 references

    Energy Technology Data Exchange (ETDEWEB)

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  7. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  8. Bed rest during pregnancy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000581.htm Bed rest during pregnancy To use the sharing features on ... your daily activities. Why Do I Need Bed Rest? Bed rest used to be recommended routinely for ...

  9. Combustion modeling in a model combustor

    Institute of Scientific and Technical Information of China (English)

    L.Y.Jiang; I.Campbell; K.Su

    2007-01-01

    The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group (RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation (EDS),probability density function (PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.

  10. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  11. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-01-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  12. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-09-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  13. Materials problems in fluidized-bed combustion systems: effect of process variables on in-bed corrosion. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.J.; Rogers, E.A.; LaNauze, R.D.

    1980-08-01

    The influence of operating conditions in a coal fired fluidized bed combustor on the rate of fireside corrosion of air cooled heat exchanger tubes, with metal temperatures in the range 540/sup 0/C to 900/sup 0/C, has been investigated. Four 250 hour tests were carried out on a 0.3 m square atmospheric pressure fluidized bed combustor operating with a fluidizing velocity of 0.9 ms/sup -1/, 10 to 20% excess air and bed temperatures of 850/sup 0/C and 900/sup 0/C. The feed coal was Illinois No. 6 which was used both with and without the addition of limestones to suppress the emission of sulfur oxides. A test without the addition of limestone showed very little corrosive attack of any metal components. Tests with the addition of limestone showed a range of corrosive attack. In general, where different alloy types were exposed at the same metal temperature, the iron based austenitic steels showed a better corrosion resistance than the nickel based alloys. This result strongly supports the model for the corrosion which has been developed as a result of the earlier investigations. This model postulates that local regions of low oxygen activity exist in the system, and, in the presence of calcium sulfate, these result in the generation of high local sulfur activities. The combination of low oxygen and high sulfur activities leads to sulfidation of sensitive alloys.

  14. Experimental Study of Ethylene Combustion in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    XIAO Yin-li; SONG Wen-yan; LE Jia-ling

    2008-01-01

    In this paper the ignition characteristics of gaseous ethylene hydrocarbon fuel is investigated in the supersonic clean airstreams experimental facility with a resistance heater. The generic cavity flame holder is used to create recirculation and promote the fuel/air mixing at the lower wall of the combustor. Three different injection concepts are considered in this research: (1) ethylene injection upstream of the cavity; (2) ethylene and hydrogen injection upstream of the cavity simultaneously; (3) ethylene injection preceded by pilot hydrogen injection. The pilot injection showed to be a supportive tool for holding the flame of the main normal ethylene fuel injection. Therefore, using pilot hydrogen injection and cavity configuration necessitates optimizing the combustor length to ensure the complete combustion and the full liberation of the chemical energy stored in the fuel before exiting the combustor. The present study proved the possibility of igniting the ethylene and maintaining its flame in the supersonic airstreams.

  15. Nonluminous Spray Combustion in a Jet-Mixing-Type Combustor

    OpenAIRE

    1990-01-01

    A new combustion system called a jet-mixing-type combustor was designed to obtain a nonluminous blue flame of a kerosene spray. A spray was injected by a conventional-type swirl atomizer into the combustor, and combustion air was introduced through a baffle plate with 16 inlet holes. The principle of this combustion method was revealed as a prompt mixing of the air and spray, which was achieved by high-speed air jets. The combustion characteristics such as combustion stability, temperature di...

  16. Variable volume combustor with center hub fuel staging

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  17. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  18. Numerical Simulations of Static Tested Ramjet Dump Combustor

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  19. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  20. Experimental Study on Coal Multi-generation in Dual Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    Fan Xiaoxu; Lu Qinggang; Na Yongjie; Liu Qi

    2007-01-01

    An atmospheric test system of dual fluidized beds for coal multi-generation was built. One bubbling fluidized bed is for gasification and a circulating fluidized bed for combustion. The two beds are combined with two valves:one valve to send high temperature ash from combustion bed to the gasification bed and another valve to send char and ash from gasification bed to combustion bed. Experiments on Shenhua coal multi-generation were made at temperatures from 1112 K to 1191 K in the dual fluidized beds. The temperatures of the combustor are stable and the char combustion efficiency is about 98%. Increasing air/coal ratio to the fluidized bed leads to the increase of temperature and gasification efficiency. The maximum gasification efficiency is 36.7% and the calorific value of fuel gas is 10.7 MJ/Nm3. The tar yield in this work is 1.5%, much lower than that of pyrolysis.Carbon conversion efficiency to fuel gas and flue gas is about 90%.

  1. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    Science.gov (United States)

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  2. Evaluation of cement production using a pressurized fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Eshbach, R.

    1994-01-01

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  3. Catalytic combustor for integrated gasification combined cycle power plant

    Science.gov (United States)

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  4. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  5. Internal circulating fluidized bed incineration system and design algorithm.

    Science.gov (United States)

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful.

  6. Internal circulating fluidized bed system and design algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The internal circulating fluidized bed (ICFB) system ischaracterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste(MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system issuccessful.

  7. Air Emissions Guide for Air Force Mobile Sources: Methods for Estimating Emissions of Air Pollutants for Mobile Sources at U.S. Air Force Installations

    Science.gov (United States)

    2013-01-01

    CFRM Continuous Flow Rate Monitor CH4 Methane CI Compression Ignition CNG Compressed Natural Gas CO Carbon Monoxide Co Cobalt CONUS...Certification Program ºF Degrees Fahrenheit FAA Federal Aviation Administration FBC Fluidized Bed Combustor FCAW Flux-Cored Arc Welding FESOP Federally...sources like power plants and industrial boilers burn fuels such as gasoline, coal , or oil. Nitrogen Oxides produce a reddish-brown tint to smog

  8. Introduction to Bed Bugs

    Science.gov (United States)

    The common bed bug (Cimex lectularius) is a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. EPA and other agencies all consider bed bugs a public health pest, but bed bugs are not known to transmit disease.

  9. Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale

    Institute of Scientific and Technical Information of China (English)

    周昊; 黄燕; 莫桂源; 廖子昱; 岑可法

    2013-01-01

    With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N2O, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the ma-jority of fuel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N2O. But in labora-tory scale CFB, the conversion of fuel-N to N2O is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in-creasing N2O formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N2O are smaller than laboratory scale CFB.

  10. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Joe Enneking

    2011-05-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  11. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  12. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  13. Computational investigation on combustion instabilities in a rocket combustor

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing

    2016-10-01

    High frequency combustion instability is viewed as the most challenging task in the development of Liquid Rocket Engines. In this article, results of attempts to capture the self-excited high frequency combustion instability in a rocket combustor are shown. The presence of combustion instability was demonstrated using point measurements, along with Fast Fourier Transform analysis and instantaneous flowfield contours. A baseline case demonstrates a similar wall heat flux profile as the associated experimental case. The acoustic oscillation modes and corresponding frequencies predicted by current simulations are almost the same as the results obtained from classic acoustic analysis. Pressure wave moving back and forth across the combustor was also observed. Then this baseline case was compared against different fuel-oxidizer velocity ratios. It predicts a general trend: the smaller velocity ratio produces larger oscillation amplitudes than the larger one. A possible explanation for the trend was given using the computational results.

  14. Flame quenching process in cavity based on model scramjet combustor

    Institute of Scientific and Technical Information of China (English)

    Yu Pan; Jing Lei; Jian-Han Liang; Wei-Dong Liu; Zhen-Guo Wang

    2012-01-01

    The flame quenching process in combustors was observed by high speed camera and Schlieren system,at the inflow conditions of Ma =2.64,To =1 483 K,P0 =1.65 MPa,T =724 K and P =76.3 kPa.Changing process of the flame and shock structure in the combustor was clearly observed.The results revealed that the precombustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while.The rime of quenching process was extended by the cavity flame holder,and the ability of flame holding was enhanced by arranging more cavities in the downstream as well.The flame was blown from the upstream to the downstream,so the flame in the downstream of the cavity was quenched out later than that in the upstream.

  15. Systems and methods for preventing flashback in a combustor assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Stevenson, Christian Xavier

    2016-04-05

    Embodiments of the present application include a combustor assembly. The combustor assembly may include a combustion chamber, a first plenum, a second plenum, and one or more elongate air/fuel premixing injection tubes. Each of the elongate air/fuel premixing injection tubes may include a first length at least partially disposed within the first plenum and configured to receive a first fluid from the first plenum. Moreover, each of the elongate air/fuel premixing injection tubes may include a second length disposed downstream of the first length and at least partially disposed within the second plenum. The second length may be formed of a porous wall configured to allow a second fluid from the second plenum to enter the second length and create a boundary layer about the porous wall.

  16. System for tuning a combustor of a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John

    2016-12-27

    A system for tuning a combustor of a gas turbine includes a flow sleeve having an annular main body. The main body includes an upstream end, a downstream end, an inner surface and an outer surface. A cooling channel extends along the inner surface of the main body. The cooling channel extends at least partially between the downstream end and the upstream end of the main body.

  17. Design and Performance of an Improved Trapped Vortex Combustor

    Institute of Scientific and Technical Information of China (English)

    JIN Yi; HE Xiaomin; JIANG Bo; WU Zejun; DING Guoyu

    2012-01-01

    A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out,altitude relight,operating range,as well as a potential to decrease NOx emissions compared to conventional combustors.The present paper discusses the improved designs of the new combustor over the prior ones of our research group,including that:a) the overall dimensions,both axial and radial,are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized,and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9° is added.A series of experiments (cavity-fueled only,under atmospheric pressure) has been conducted to investigate the performance of the improved TVC.Experimental results show that at the inlet temperature of 523 K,the inlet pressure of 0.1 MPa,stable operation of the TVC test rig is observed for the Mach number 0.15-0.34,indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases,the combustion efficiency decreases,while the increase of the inlet temperature is beneficial to high combustion efficiency; besides,the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed.The outlet temperature profiles feature a bottom in the mid-height of the exit.This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design.

  18. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics

    Institute of Scientific and Technical Information of China (English)

    Feng Duan; Chiensong Chyang; Jiaruei Wen; Jim Tso

    2013-01-01

    Some municipal solid waste (MSW) can be used as the fuel.Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI).Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste,and silica sand was used as the bed material.The effects of operating conditions,such as the bed temperature,freeboard temperature,excess oxygen ratio,and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated.The experimental results show that the freeboard temperature is the most important factor for CO emission.The order of operating conditions impact on the NO emission is:(1) excess oxygen ratio; (2) bed temperature; (3)freeboard temperature; and (4) static bed height.Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm.On the other hand,the cyclone has no significant effect on the NO emission.Despite having high nitrogen content,a low conversion from fuel-N to NO was attained.Compared with other types of combustors,VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  19. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics.

    Science.gov (United States)

    Duan, Feng; Chyang, Chiensong; Wen, Jiaruei; Tso, Jim

    2013-09-01

    Some municipal solid waste (MSW) can be used as the fuel. Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI). Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste, and silica sand was used as the bed material. The effects of operating conditions, such as the bed temperature, freeboard temperature, excess oxygen ratio, and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated. The experimental results show that the freeboard temperature is the most important factor for CO emission. The order of operating conditions impact on the NO emission is: (1) excess oxygen ratio; (2) bed temperature; (3) freeboard temperature; and (4) static bed height. Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm. On the other hand, the cyclone has no significant effect on the NO emission. Despite having high nitrogen content, a low conversion from fuel-N to NO was attained. Compared with other types of combustors, VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  20. Experimental study of entrainment phenomenon in a trapped vortex combustor

    Institute of Scientific and Technical Information of China (English)

    Zhang Rongchun; Fan Weijun

    2013-01-01

    Trapped vortex combustor (TVC) is an advanced low-pollution gas turbine combustor,with the adoption of staged combustion technique.To achieve low-pollutant emission and better combustion performance,the proportion of the air flow in each combustion zone should be precisely determined in the design of the combustor.Due to the presence of entrainment phenomenon,the total air flow in the cavity zone is difficult to estimate.To overcome the measurement difficulty,this study adopts the indirect measurement approach in the experimental research of entrainment phenomenon in the cavity.In accordance with the measurement principle,a TVC model fueled by methane is designed.Under two experimental conditions,i.e.with and without direct air intake in the cavity,the influence of the mainstream air flow velocity,the air intake velocity in the cavity,the height of inlet channel,the structure of holder and the structural proportion of the cavity on entrainment in the cavity is studied,respectively,through experiment at atmospheric temperature and pressure.The results suggest that the air flow velocity of mainstream,the air intake velocity of the cavity and the structure of the holder exert significant influence on the air entrainment,while the influence of structural proportion of the cavity is comparatively insignificant.The square root of momentum ratio of cavity air to mainstream air could be used to analyze the correlation of the entrainment data.

  1. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  2. Evaluation of a staged fuel combustor for turboprop engines

    Science.gov (United States)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  3. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  4. Fluidized bed calciner apparatus

    Science.gov (United States)

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  5. Conceptual studies and preliminary design of a fluid bed fired boiler for service in an electric utility

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-28

    As a part of this study, B and W was to develop fluid bed system design bases and parameters using any and all sources available. The design parameters used for the fluid bed boiler designs in this study were actually developed by B and W as part of their in-house AFB development program and also as a part of the subject design study. To properly carry out the assessment portion of the work it was essential to develop an understanding of the basic interrelationship of variables in order that the final comparisons would be of consistent and realistic as possible. Inputs to meet this goal were largely based on available literature, B and W experience, and engineering judgment. In some cases we also had to venture into some theoretical development work if published results appeared incomplete. The key subject areas to be covered in subsequent pages are listed: General, Fluidizing Velocity Requirements, FBC Feed Particle Size Requirements, Calculated Slip Velocities as a Function of Particle Size and Dispersed Density, Heat Transfer Equations, Heat Transfer to Horizontal Tubes in Shallow Fluidized Beds, Combustion Efficiencies, Sulfur Capture, Freeboard Performance, Distributor Plate Design, and Economic Considerations.

  6. Experimental investigation of fluidised bed co-combustion of meat and bone meal with coals and olive bagasse

    Energy Technology Data Exchange (ETDEWEB)

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Pavlidou; E. Kakaras [National Technical University of Athens, Athens (Greece). Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering

    2006-09-15

    Meat and bone meal (MBM) were co-fired in a laboratory scale fluidised bed combustion (FBC) apparatus together with three different primary fuels: two coal types and olive bagasse residues. Several two component fuel blends were tested under different combustion conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidised bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions, which are reduced by MBM derived volatiles. The MBM ash, although containing bone material rich in Ca, did not create any noteworthy desulphurisation effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The experimental work is evaluated with bed agglomeration indices from literature. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of conglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus are not problematic. On the contrary, the co-combustion tests of olive bagasse residues with MBM led to a prompt loss of fluidisation, as a consequence of the high potassium and silicon content of the olive bagasse, the chlorine contents in both MBM and olive bagasse, and the high phosphorus content in the MBM also forming eutectics with potassium. 44 refs., 17 figs., 5 tabs.

  7. Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach

    NARCIS (Netherlands)

    Tinga, Tiedo; Kampen, van J.F.; Jager, de B.; Kok, J.B.W.

    2007-01-01

    A life assessment was performed on a fighter jet engine annular combustor liner, using a combined fluid/structural approach. Computational fluid dynamics analyses were performed to obtain the thermal loading of the combustor liner and finite element analyses were done to calculate the temperature an

  8. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor organics. 60.53a Section 60.53a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.53a Standard for municipal waste combustor organics. (a) (b) On and after the...

  9. Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

    NARCIS (Netherlands)

    Shahi, M.; Kok, J.B.W.; Pozarlik, A.K.; Roman Casado, J.C.; Sponfeldner, T.

    2014-01-01

    The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas

  10. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bodruzzaman, M.; Essawy, M.A.

    1996-07-30

    We have developed techniques to control the chaotic behavior in the Fluidized Bed (FBC) Systems using Artificial Neural Networks (ANNs). For those techniques to cross from theory to implementation, the computer programs we are developing have to be interfaced with the outside world, as a necessary step towards the actual interface with an FBC system or its experimental mock up. For this reason we are working on a Data Acquisition Board setup that will enable communication between our programs and external systems. Communication is planned to be enabled in both ways to deliver feedback signals from a system to the control programs in one way, and the control signals from the control programs to the controlled system in the other way. On the other hand, since most of our programs are PC based, they have to follow the revolutionary progress in the PC technology. Our programs were developed in the DOS environment using an early version of Microsoft C compiler. For those programs to meet the current needs of most PC users, we are working on converting those programs to the Windows environment, using a very advanced and up to date C++ compiler. This compiler is known as the Microsoft Visual C++ Version 4.0. This compiler enables the implementation of very professional and sophisticated Windows 95, 32 bit applications. It also allows a simple utilization of the Object Oriented Programming (OOP) techniques, and lots of powerful graphical and communication tools known as the Microsoft Foundation Classes (MFC). This compiler also allows creating Dynamic Link Libraries (DLLS) that can be liked together or with other Windows programs. These two main aspects, the computer-system interface and the DOS-Windows migration will give our programs a leap frog towards their real implementation.

  11. Large eddy simulation of a high aspect ratio combustor

    Science.gov (United States)

    Kirtas, Mehmet

    The present research investigates the details of mixture preparation and combustion in a two-stroke, small-scale research engine with a numerical methodology based on large eddy simulation (LES) technique. A major motivation to study such small-scale engines is their potential use in applications requiring portable power sources with high power density. The investigated research engine has a rectangular planform with a thickness very close to quenching limits of typical hydrocarbon fuels. As such, the combustor has a high aspect ratio (defined as the ratio of surface area to volume) that makes it different than the conventional engines which typically have small aspect ratios to avoid intense heat losses from the combustor in the bulk flame propagation period. In most other aspects, this engine involves all the main characteristics of traditional reciprocating engines. A previous experimental work has identified some major design problems and demonstrated the feasibility of cyclic combustion in the high aspect ratio combustor. Because of the difficulty of carrying out experimental studies in such small devices, resolving all flow structures and completely characterizing the flame propagation have been an enormously challenging task. The numerical methodology developed in this work attempts to complement these previous studies by providing a complete evolution of flow variables. Results of the present study demonstrated strengths of the proposed methodology in revealing physical processes occuring in a typical operation of the high aspect ratio combustor. For example, in the scavenging phase, the dominant flow structure is a tumble vortex that forms due to the high velocity reactant jet (premixed) interacting with the walls of the combustor. Since the scavenging phase is a long process (about three quarters of the whole cycle), the impact of the vortex is substantial on mixture preparation for the next combustion phase. LES gives the complete evolution of this flow

  12. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  13. A conceptual design of shock-eliminating clover combustor for large scale scramjet engine

    Science.gov (United States)

    Sun, Ming-bo; Zhao, Yu-xin; Zhao, Guo-yan; Liu, Yuan

    2017-01-01

    A new concept of shock-eliminating clover combustor is proposed for large scale scramjet engine to fulfill the requirements of fuel penetration, total pressure recovery and cooling. To generate the circular-to-clover transition shape of the combustor, the streamline tracing technique is used based on an axisymmetric expansion parent flowfield calculated using the method of characteristics. The combustor is examined using inviscid and viscous numerical simulations and a pure circular shape is calculated for comparison. The results showed that the combustor avoids the shock wave generation and produces low total pressure losses in a wide range of flight condition with various Mach number. The flameholding device for this combustor is briefly discussed.

  14. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  15. Dynamic analysis of a flameless combustion model combustor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flameless combustion is a new technology with the following advantages:1)Ultra-low emissions of both NOX and CO;2)fuel flexibility,from liquid fuels,natural gas to hydrogen-rich syngas;3)lower possibility of flashback and thermoacoustic oscillations.In this paper,we focus on the dynamic characteristics of a flameless model combustor.Experimental results show that flameless combustion can lower emissions while maintaining combustion stability.However,combining a pilot flame with flameless combustion may excite thermoacoustic instability.

  16. Diffusion Combustion in a Tube-Nested Combustor

    OpenAIRE

    Tetsuji, Seko; Ryosuke, Matsumoto; Yoshitomo, Shintani; Isao, Ishihara; Mamoru, Ozawa

    2004-01-01

    An advanced-type compact water-tube boiler has been designed on the basis of the new concept of cooling flame by water-tube bank in the furnace, and is referred to as "tube-nested combustor". It realized drastic reduction in boiler size as well as in the NO_x emission. In this present study, aiming at further improvement of boiler efficiency and reduction of NO_x emission, the combustion characteristics in the furnace were investigated by using the test boiler of 0.5t/h steam output. Experime...

  17. Device for improved air and fuel distribution to a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  18. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  19. Technical evaluation: pressurized fluidized-bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  20. State of the art of pressurized fluidized bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.

    1980-09-01

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  1. Combustion Model FOr Staged Circulating Fluidized Bed BOiler

    Institute of Scientific and Technical Information of China (English)

    FandJianhua; LuQinggang; 等

    1997-01-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion,which takes fluid dynamics,combustion,heat transfer,pollutants formation and retention,into account was developed in the institute of Engineering Thermophysics(IET)recently.The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure.The chemical species CO,CO2,H2,H2O,CH4,O2 and N2 were considered in the reaction process.The mathematical model consisted of sub-modeles of fluid namics,coal heterogeneous and gas homogeneous chemical reactions.heat transfer,particle fragmentation and attrition,mass and energy balance tec.The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data.The main submodels and simulation results are given in this paoper.

  2. Bed Bugs FAQs

    Science.gov (United States)

    ... Bed bugs have been found in five-star hotels and resorts and their presence is not determined ... sleep. These areas include apartments, shelters, rooming houses, hotels, cruise ships, buses, trains, and dorm rooms. They ...

  3. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  4. Three Dimensional CFD Analysis of the GTX Combustor

    Science.gov (United States)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  5. Scaling of heat transfer in gas-gas injector combustor

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Wei; Cai Guo-Biao; Gao Yu-Shan

    2011-01-01

    The scaling of heat transfer in gas-gas injector combuetor is investigated theoretically, numerically and experimentally based on the previous study on the scaling of gas-gas combustion flowfield. The similarity condition of the gas-gas injector combustor heat transfer is obtained by conducting a formulation analysis of the boundary layer Navier-Stokes equations and a dimensional analysis of the corresponding heat transfer phenomenon. Then, a practicable engineering scaling criterion of the gas-gas injector combustor heat transfer is put forward. The criterion implies that when the similarity conditions of inner flowfield are satisfied, the size and the pressure of gas-gas combustion chamber can be changed, while the heat transfer can still be qualitatively similar to the distribution trend and quantitatively correlates well with the size and pressure as q ∝ pc0.8dt-0.2. Based on the criterion, single-element injector chambers with different geometric sizes and at different chamber pressures ranging from 1 MPa to 20 MPa are numerically simulated. A single-element injector chamber is designed and hot-fire tested at seven chamber pressures from 0.92 MPa to 6.1 MPa.The inner wall heat flux are obtained and analysed. The numerical and experimental results both verified the scaling criterion in gas-gas injector combustion chambers under different chamber pressures and geometries.

  6. Detecting deterministic nature of pressure measurements from a turbulent combustor

    Science.gov (United States)

    Tony, J.; Gopalakrishnan, E. A.; Sreelekha, E.; Sujith, R. I.

    2015-12-01

    Identifying nonlinear structures in a time series, acquired from real-world systems, is essential to characterize the dynamics of the system under study. A single time series alone might be available in most experimental situations. In addition to this, conventional techniques such as power spectral analysis might not be sufficient to characterize a time series if it is acquired from a complex system such as a thermoacoustic system. In this study, we analyze the unsteady pressure signal acquired from a turbulent combustor with bluff-body and swirler as flame holding devices. The fractal features in the unsteady pressure signal are identified using the singularity spectrum. Further, we employ surrogate methods, with translational error and permutation entropy as discriminating statistics, to test for determinism visible in the observed time series. In addition to this, permutation spectrum test could prove to be a robust technique to characterize the dynamical nature of the pressure time series acquired from experiments. Further, measures such as correlation dimension and correlation entropy are adopted to qualitatively detect noise contamination in the pressure measurements acquired during the state of combustion noise. These ensemble of measures is necessary to identify the features of a time series acquired from a system as complex as a turbulent combustor. Using these measures, we show that the pressure fluctuations during combustion noise has the features of a high-dimensional chaotic data contaminated with white and colored noise.

  7. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    Simulations with a mathematical model of a pressurized bubbling fluidized-bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are reported. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and includes homogeneous....... The sensitivity of the simulated NO emission with respect to hydrodynamic and combustion parameters in the model is investigated and the mechanisms by which the parameters influence the emission of NO is explained. The analysis shows that the most important hydrodynamic parameters are the minimum fluidization...

  8. Experimental Study on Effects of Fuel Injection on Scramjet Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    Wu Xianyu; Li Xiaoshan; Ding Meng; Liu Weidong; Wang Zhenguo

    2007-01-01

    In order to investigate the effects of fuel injection distribution on the scramjet combustor performance, there are conducted three sets of test on a hydrocarbon fueled direct-connect scramjet test facility. The results of Test A; whose fuel injection is carried out with injectors located on the top-wall and the bottom-wall, show that the fuel injection with an appropriate close-front and centralized distribution would be of much help to optimize combustor performances. The results of Test B, whose fuel injection is performed at the optimal injection locations found in Test A, with a given equivalence ratio and different injection proportions for each injector, show that this injection mode is of little benefit to improve combustor performances. The results of Test C with a circumferential fuel injection distribution displaies the possibility of ameliorating combustor performance. By analyzing the effects of injection location parameters on combustor performances on the base of the data of Test C, it is clear that the injector location has strong coupled influences on combustor performances. In addition, an inner-force synthesis specific impulse is used to reduce the errors caused by the disturbance of fuel supply and working state of air heater while assessing combustor performances.

  9. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  10. CFD predictions of LBO limits for aero-engine combustors using fuel iterative approximation

    Institute of Scientific and Technical Information of China (English)

    Hu Bin; Huang Yong; Wang Fang; Xie Fa

    2013-01-01

    Lean blow-out (LBO) is critical to operational performance of combustion systems in propulsion and power generation.Current predictive tools for LBO limits are based on decadesold empirical correlations that have limited applicability for modern combustor designs.According to the Lefebvre's model for LBO and classical perfect stirred reactor (PSR) concept,a load parameter (LP) is proposed for LBO analysis of aero-engine combustors in this paper.The parameters contained in load parameter are all estimated from the non-reacting flow field of a combustor that is obtained by numerical simulation.Additionally,based on the load parameter,a method of fuel iterative approximation (FIA) is proposed to predict the LBO limit of the combustor.Compared with experimental data for 19 combustors,it is found that load parameter can represent the actual combustion load of the combustor near LBO and have good relativity with LBO fuel/air ratio (FAR).The LBO FAR obtained by FIA shows good agreement with experimental data,the maximum prediction uncertainty of FIA is about ± 17.5%.Because only the non-reacting flow is simulated,the time cost of the LBO limit prediction using FIA is relatively low (about 6 h for one combustor with computer equipment of CPU 2.66 GHz × 4 and 4 GB memory),showing that FIA is reliable and efficient to be used for practical applications.

  11. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  12. Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The combustion of coal and/or biomass (sludge, wood waste, RDF, etc.) in a circulating fluidized bed has been a commercial topper for over 20 years, and references to principles and applications are numerous and widespread although few data are presented concerning the operation of large scale CFB-units. The authors studied the CFB-combustion at UPM-Kymmene (Ayr), a major paper mill relying for its steam production upon the combustion of coal (80-85%), wood bark (5-10%) and wastewater treatment sludge (5-10%). The maximum capacity of the CFB is 58 MWth.A complete diagnostic of the operation was made, and additional tests were performed to assess the operating mode. The plant schematics,relevant dimensions and process data are given. To assess the operation of the UPM-CFB, it is important to review essential design parameters and principles of CFB combustors, which will be discussed in detail to include required data, heat balance and flowrates, operating versus transport velocity, kinetics and conversion (including the possible effect of the Bouduard reaction if carbon is present).Since the residence time in the riser and the cyclone efficiency determine the burnout of circulating fuel-particles, the UPM-CFB was subjected to a stimulus response technique using nickel oxide as tracer. Results illustrate the efficiency of the cyclone separation and the number of recycle loops for particles of a given size. Results will also be used to assess the cyclone operation and efficiency and to comment upon expected and measured carbon conversion.

  13. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  14. Fast Ignition and Stable Combustion of Coarse Coal Particles in a Nonslagging Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    BiaoZhou; X.L.Wang; 等

    1995-01-01

    A combustion set-up of an innovative nonalagging cyclone combustor called “Spouting-Cyclone Combustor(SCC)”,,with two-stage combustion,organized in orthogonal vortex flows,was established and the experimental studies on the fast ignition and stable combustion of coarse coal particles in this combustor were carried out.The flame temperature versus ignition time and the practical fast ignition the temperature fields in SCC were obtained.These results whow that it is possible to obtain highly efficient and clean combustion of unground coal particles by using this technology.

  15. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    OpenAIRE

    Jichao Hu; Juntao Chang; Wen Bao

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-je...

  16. Flame dynamics in a micro-channeled combustor

    Science.gov (United States)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  17. Combustion of hydrogen in an experimental trapped vortex combustor

    Science.gov (United States)

    Wu, Hui; Chen, Qin; Shao, Weiwei; Zhang, Yongliang; Wang, Yue; Xiao, Yunhan

    2009-09-01

    Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested under different operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out) were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex construction in the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achieved an excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data, OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp =0.4, fuel split =0.4, and primary air/fuel premixed.

  18. Turbulent transport measurements in a model of GT-combustor

    Science.gov (United States)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  19. Near-zero emissions combustor system for syngas and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  20. Gas turbine combustor exit piece with hinged connections

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.

  1. Parametric Design of Injectors for LDI-3 Combustors

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2015-01-01

    Application of a partially calibrated National Combustion Code (NCC) for providing guidance in the design of the 3rd generation of the Lean-Direct Injection (LDI) multi-element combustion configuration (LDI-3) is summarized. NCC was used to perform non-reacting and two-phase reacting flow computations on several LDI-3 injector configurations in a single-element and a five-element injector array. All computations were performed with a consistent approach for mesh-generation, turbulence, spray simulations, ignition and chemical kinetics-modeling. Both qualitative and quantitative assessment of the computed flowfield characteristics of the several design options led to selection of an optimal injector LDI- 3 design that met all the requirements including effective area, aerodynamics and fuel-air mixing criteria. Computed LDI-3 emissions (namely, NOx, CO and UHC) will be compared with the prior generation LDI- 2 combustor experimental data at relevant engine cycle conditions.

  2. Bed bug deterrence

    Directory of Open Access Journals (Sweden)

    Haynes Kenneth F

    2010-09-01

    Full Text Available Abstract A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them. See research article http://www.biomedcentral.com/1741-7007/8/121

  3. in Spouted Bed

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2013-01-01

    Full Text Available Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases.

  4. Virtual Test Bed

    Science.gov (United States)

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Virtual Test Bed 5a. CONTRACT NUMBER 5b. GRANT...Virtual Test Bed Donald T. Resio U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory Vicksburg, MS 39180-6199 Phone...into three parts: 1) assembly of field and laboratory data sets for testing ; 2) set-up of a benchmark system; and 3) exercising the benchmark system

  5. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  6. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  7. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  8. Thermoacoustic analysis of the dynamic pressure inside a model combustor during limit cycle oscillations

    NARCIS (Netherlands)

    Alemela, Panduranga Reddy; Roman Casado, Juan; Tarband Veeraraghavan, Santos Kumar; Kok, Jim

    2013-01-01

    In this work comprehensive experimental and numerical studies incorporating the most relevant physical mechanisms causing limit cycle pressure and combustion rate oscillations (LCO) in a laboratory scale combustor will be discussed. The strong interaction between the aerodynamics-combustion-acoustic

  9. Design of Combustor for Long-range Ram-jet Engine and Performance of Rectangular Analog

    Science.gov (United States)

    Rayle, Warren D; Koch, Richard G

    1954-01-01

    The report describes the design of a piloted combustor intended for a ram-jet engine of long flight range. The unit comprises a large annular basket of V-type cross-section, the inner surface of which is slotted and bent into small V-gutters. At the trailing edge of the basket, eight V-gutters are used to propagate the flame into the main stream. A rectangular analog of this combustor was tested at air-flow conditions corresponding to those that might be obtained during cruise. At these conditions, combustion efficiencies of as much as 90 percent were calculated for the combustor at the design equivalence ratio of 0.52. The performance of the unit was relatively insensitive to mounting and flow variables; the greatest effect on efficiency was that of the manner and location of the fuel injection. A full-scale version of this combustor has been designed for a 48-inch-diameter engine.

  10. Robust High Fidelity Large Eddy Simulation Tool for Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop and demonstrate the use of Large Eddy Simulation (LES) for computations of gas turbine combustor flow and transport processes, using the...

  11. A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor

    Science.gov (United States)

    Hao, Nguyen Thanh

    2014-06-01

    This study presents the use of a new chemical reactor network (CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics (CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.

  12. Heat transport and parametric simulation of a porous ceramic combustor in a gas turbine environment

    Science.gov (United States)

    Lu, Wei David

    2002-09-01

    This study is to generate basic knowledge of heat transport inside a porous ceramic combustor in a gas turbine combustion environment. This work predicts the peak temperature inside the porous ceramic combustor, which directly affects the combustor life cycle and flame stability characteristics within the ceramic media. The results will help to generate an operating window for the stable operation of the porous ceramic combustor under the operating conditions of a gas turbine. A theoretical model is developed to study the operational characteristics of the combustor. The model used here accounts for both radiative and convective thermal transport between the solid and gas phases. The solid is assumed to absorb, emit, and scatter radiative energy. A one-step global reaction mechanism is used to model the released energy due to combustion. The effects of the properties of the porous material on gas and solid phase temperature distribution, radiative flux distribution, and flame location (as indicated by local temperature) were investigated. The results confirm that radiative heat transfer is a key mechanism in the stable operation of the combustor. For proper functioning of the combustor, the temperature of the porous material (the solid temperature) must be lowered in order to maintain material and structural integrity. Yet, the gas phase temperature has to be high enough so that a stable combustion process can be maintained. A lower value for the porous material temperature of the combustor can be obtained by enhancing the radiative output from the combustor to the downstream sections. This can be achieved by choosing optimized values of porosity and other properties of the porous ceramic matrix. Higher solid phase thermal conductivity enhances the radiative output from the combustor and helps to reduce the porous material's temperature. It is also desirable that the porous layer has an optimized optical thickness so that the radiative output of the combustor is

  13. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei

    Energy Technology Data Exchange (ETDEWEB)

    Grumiaux, F.; Demuynck, S.; Schikorski, D.; Lemiere, S.; Lepretre, A. [Universite Lille Nord de France, Villeneuve Dascq (France)

    2010-03-15

    Earthworms (Eisenia andrei) were exposed, in controlled conditions, to metal-contaminated soils previously treated in situ with two types of fluidized bed combustion ashes. Effects on this species were determined by life history traits analysis. Metal immobilizing efficiency of ashes was indicated by metal bioaccumulation. Ashes-treated soils reduced worm mortality compared to the untreated soil. However, these ashes reduced both cocoon hatching success and hatchlings numbers compared to the untreated soil. In addition, sulfo-calcical ashes reduced or delayed worm maturity and lowered cocoon production compared to silico-alumineous ones. Metal immobilizing efficiency of ashes was demonstrated for Zn, Cu and to a lesser extent Pb. Only silico-alumineous ashes reduced Cd bioaccumulation, although Cd was still bioconcentrated. Thus, although ash additions to metal-contaminated soils may help in immobilizing metals, their use might result, depending on the chemical nature of ashes, to severe detrimental effects on earthworm reproduction with possible long term consequences to populations.

  14. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  15. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  16. Laser-Induced Fluorescence and Performance Analysis of the Ultra-Compact Combustor

    Science.gov (United States)

    2008-06-01

    fuel consumption TVC Trapped Vortex Combustion UCC Ultra Compact Combustor UHC Unburned hydrocarbons UV Ultra-violet VI Virtual Instrument 2-D...unburned hydrocarbons ( UHC ), oxides of nitrogen (NOx), carbon monoxide (CO), and soot particles (Turns, 2006:3). In conventional combustors, a high...power (fuel-rich) condition tends to produce more NOx and soot, while low power (fuel-lean) produces more UHC and CO (Quaale, 2003:27). While the UCC

  17. Surviving Bed Rest

    Science.gov (United States)

    ... your pregnancy — and your bed rest start a family tree that you can share with your child someday firm up your baby-name choices; use books and websites for ideas organize photo albums read anything — ... people (friends and family) whom you know will probably give gifts build ...

  18. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  19. Fluidized bed combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kullendorff, A.; Wikner, J.

    1985-03-25

    The chamber is confined in a pressure vessel. The lower part of the chamber has tilted parallel gutters up to the height of the fluidized bed. The slope of the gutter walls is 5 degrees-15 degrees and the top area of the gutters is 1.3 to 3 times larger than their bottom.

  20. Non-reacting Flow Analysis from Combustor Inlet to Outlet using Computational Fluid Dynamics Code

    Directory of Open Access Journals (Sweden)

    G. Ananda Reddy

    2004-10-01

    Full Text Available This paper describes non-reacting flow analysis of a gas turbine combustion system. The method is based on the solution of Navier-Strokes equations using generalised non-orthogonal coordinate system. The turbulence effects are modelled through the renormalisation group k-E model. The method has been applied to a practical gas turbine combustor. The combustionsystem includes swirler vane passages, fuel nozzles, rotor bleed, customer bleed, air-blast atomiser, swirl cone, and all holes in primary , dilution , dome, flare, and cooling ring. Thetotal geometry has been created using the pre-processors GAMBIT and CATIA, and the meshing has been done using GAMBIT, and the analysis carried out in a FLUENT solver. The interaction between the diffuser and the combustor external flows plays a key role in controlling the pressure loss, air flow distribution around the combustor liner, durability, and stability. The aero gas turbine combustor designs are generally guided by experimental methods and past experience; however, experimental methods are inherently slow, costly, especially at hightemperature engine-operating conditions. These drawbacks and the growing need to understand the complex flow-field phenomenon involved, have led to the development of a numericalmodel for predicting flow in the gas turbine combustor. These models are used to optimise the design of the combustor and its subcomponents, and reduce cost, time, and the number ofexperiments.

  1. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  2. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  3. Combustion characteristics of Athabasca froth treatment tailings in a simulated fluidilized bed

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, P.; Ghosh, M.; Speirs, B. C. [Imperial Oil Resources (Canada); Leon, M. A.; Rao, S.; Dutta, A.; Basu, P. [Greenfield Research Inc. (Canada)

    2011-07-01

    In surface-mined oil sands, a stream of water, asphaltenes, solids and residual bitumen/solvent, known as PFT tailings, is created during the bitumen production process. The aim of this study was to investigate the use of this PFT tailings stream as a fuel source for combustion in a fluidized bed for energy recovery. To do so, physical and fluidization characteristics of the fuel as well as combustion kinetics were assessed through laboratory analysis. In addition, the fuel's combustion characteristics were investigated through experiments in a quartz wool matrix tubular reactor and theoretical calculations at various moisture contents. Results showed that this fuel can be burned in a fluidized bed with a reactivity comparable to that of coal samples. This research found that PFT tailings could be used to generate energy during disposal but further work will have to be undertaken in a hot CFB combustor to confirm this.

  4. Research on coal staged conversion poly-generation system based on fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Mingjiang Ni; Chao Li; Mengxiang Fang; Qinhui Wang; Zhongyang Luo; Kefa Cen

    2014-01-01

    A new coal staged conversion poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is the first pyrolysed in a fluidized pyrolyzer. The pyrolysis gas is then purified and used for chemical product or liquid fuel production. Tar is collected during purification and can be processed to extract high value product and to make liquid fuels by hydro-refining. Semi-coke from the pyrolysis reactor is burned in a circulating fluidized bed (CFB) combustor for heat or power generation. The system can realize coal multi-product generation and has a great potential to increase coal utilization value. A 1 MW poly-generation system pilot plant and a 12 MW CFB gas, tar, heat and power poly-generation system was erected. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12 m3/kg gas with 22 MJ/m3 heating value and about 10 wt%tar when using Huainan bituminous coal under pyrolysis temperature between 500 and 600 ?C. The produced gases were mainly H2, CH4, CO, CO2, C2H4, C2H6, C3H6 and C3H8. The CFB combustor can burn semi-coke steadily. The application prospect of the new system was discussed.

  5. VA National Bed Control System

    Data.gov (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  6. Bathing a patient in bed

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000427.htm Bathing a patient in bed To use the sharing features on this page, please enable JavaScript. Some patients cannot safely leave their beds to bathe. For ...

  7. Calcium sulphoaluminate cement made from fluidized bed combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, G.; Marroccoli, M.; Montagnaro, F.; Valenti, G.L.

    2000-07-01

    Wastes generated in a bench-scale atmospheric fluidized bed combustor, using two different coals (one from Poland and one from South Africa) and a high-lime limestone sorbent, were employed as raw materials for the synthesis of calcium sulphoaluminate (4 CaO{sub 3} Al{sub 2}O{sub 3}.SO{sub 3})-based cements, which can be utilized for a wide range of applications. Raw mixes containing the bed material were heated in an electric oven in the temperature range 1000-1200{degree}C. The best results in terms of reactants conversion and selectivity towards 4 CaO{sub 2} Al{sub 2}O{sub 3}.SO{sub 3} were obtained at 1200{degree}C with the addition of an external source of alumina which was required to avoid melting phenomena or integrate the Al{sub 2}O{sub 3} content necessary for the 4CaO{sub 3}.Al{sub 2}O{sub 3}-SO{sub 3} formation. 7 refs., 7 tabs.

  8. Granular-bed and ceramic candle filters in commercial plants: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1993-04-01

    Advanced coal fired power cycles require the removal of coal ash at high temperature and pressure. Granular-bed and ceramic candle filters can be used for this service. Conceptual designs for commercial size applications are made for each type of filter. The filters are incorporated in the design of a Foster Wheeler 450 MWe second generation pressurized fluidized bed combustion plant which contains a pressurized fluidized combustor and carbonizer. In a second application, the inters are incorporated in the design of a 100 MWe KRW (air) gasifier based power plant. The candle filter design is state of the art as determined from the open literature with an effort to minimize the cost. The granular-bed filter design is based on test work performed at high temperature and low pressure, tests at New York University performed at high pressure and temperate, and new analysis used to simplify the scale up of the filter and reduce overall cost. The incorporation of chemically reactive granites in the granular-bed filter for the removal of additional coal derived contaminants such as alkali or sulfur is considered. The conceptual designs of the granular-bed inter and the ceramic candle filter are compared in terms of the cost of electricity, capital cost, and operating and maintenance costs for each application.

  9. DEGRADATION OF A CARBON STEEL IN A FBC SYSTEM FIRING COALS CONTAINING SULFUR AND CHLORINE%FBC中含S和Cl煤燃烧下的碳钢退化研究

    Institute of Scientific and Technical Information of China (English)

    彭晓; WP Pan; RT Riley

    2003-01-01

    在实验室规模的流化床(FBC)中分别燃烧低S(0.97 mass%)与低Cl(0.026 mass%),中S(1.68 mass%)与高Cl(0.42 mass%),高S(4.48 mass%)与高Cl(0.41 mass%)三种煤各1000小时后,对放置于接近沸腾床位置的A210-C碳钢管的退化情况进行了研究.结果表明,(1)碳钢退化明显受温度影响,随表面温度的升高显著加快;(2)碳钢退化明显受飞行粒子带来的冲蚀影响;(3)燃烧低S低Cl煤对碳钢的耗损影响最小,而燃烧高S高Cl煤对碳钢耗损影响最大.同时根据对腐蚀产物的观测分析,对不同煤种燃烧产生的环境中碳钢的退化机制进行探讨.

  10. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh [Precision Combustion, Inc., North Haven, CT (United States); Baird, Benjamin [Precision Combustion, Inc., North Haven, CT (United States); Alavandi, Sandeep [Precision Combustion, Inc., North Haven, CT (United States); Pfefferle, William [Precision Combustion, Inc., North Haven, CT (United States)

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar

  11. Geomechanics of bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S.; Milnor, S.W.

    1979-06-08

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained.

  12. Olive cake combustion in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay; Ali Durmaz [Gazi University, Ankara (Turkey). Department of Mechanical Engineering, Engineering and Architecture Faculty

    2003-06-01

    In this study, a circulating fluidized bed of 125 mm diameter and 1800 mm height was used to find the combustion characteristics of olive cake (OC) produced in Turkey. A lignite coal that is most widely used in Turkey was also burned in the same combustor. The combustion experiments were carried out with various excess air ratios. The excess air ratio, {lambda} has been changed between 1.1 and 2.16. Temperature distribution along the bed was measured with thermocouples. On-line concentrations of O{sub 2}, SO{sub 2}, CO{sub 2}, CO, NOx and total hydrocarbons were measured in the flue gas. Combustion efficiencies of OC and lignite coal are calculated, and the optimum conditions for operating parameters are discussed. The combustion efficiency of OC changes between 82.25 and 98.66% depending on the excess air ratio. There is a sharp decrease observed in the combustion losses due to hydrocarbons and CO as the excess air ratio increases. The minimum emissions are observed at {lambda} = 1.35. Combustion losses due to unburned carbon in the bed material do not exceed 1.4 wt% for OC and 1.85 wt% for coal. The combustion efficiency for coal changes between 82.25 and 98.66% for various excess air ratios used in the study. The ash analysis for OC is carried out to find the suitability of OC ash to be used as fertilizer. The ash does not contain any hazardous metal. 7 refs., 10 figs., 6 tabs.

  13. Combustion oscillation study in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-Wei; He, Guo-Qiang; Qin, Fei; Xue, Rui; Wei, Xiang-Geng; Shi, Lei

    2016-12-01

    This study reports the combustion oscillation features in a three-dimensional (3D) rocket-based combined-cycle (RBCC) engine combustor under flight Mach number (Mflight) 3.0 conditions both experimentally and numerically. Experiment is performed on a direct-connect ground test facility, which measures the wall pressure along the flow-path. High-speed imaging of the flame luminosity and schlieren is carried out at exit of the primary rocket. Compressible reactive large eddy simulation (LES) with reduced chemical kinetics of a surrogate model for kerosene is performed to further understand the combustion oscillation mechanisms in the combustor. LES results are validated with experimental data by the time-averaged and root mean square (RMS) pressure values, and show acceptable agreement. Effects of the primary rocket jet on pressure oscillation in the combustor are analyzed. Relation of the high speed rocket jet oscillation, which is thought to among the most probable sources of combustion oscillation, with the RBCC combustor is recognized. Results reveal that the unsteady over-expanded rocket jet has significant impacts on the combustion oscillation feature of the RBCC combustor, which is different from a thermo-acoustics type oscillation. The rocket jet/air inflow physical interactions under different rocket jet expansion degrees are experimentally studied.

  14. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  15. Emission Characteristics of A P and W Axially Staged Sector Combustor

    Science.gov (United States)

    He, Zhuohui J.; Wey, Changlie; Chang, Clarence T.; Lee, Chi Ming; Surgenor, Angela D.; Kopp-Vaughan, Kristin; Cheung, Albert

    2016-01-01

    Emission characteristics of a three-cup P and W Axially Controlled Stoichiometry (ACS) sector combustor are reported in this article. Multiple injection points and fuel staging strategies are used in this combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve overall lean burn yielding very low NOx emissions. Combustion efficiencies at four ICAO LTO conditions were all above 99%. Three EINOx emissions correlation equations were developed based on the experimental data to describe the NOx emission trends of this combustor concept. For the 7% and 30% engine power conditions, NOx emissions are obtained with the low power configuration, and the EINOx values are 6.16 and 6.81. The high power configuration was used to assess 85% and 100% engine power NOx emissions, with measured EINOx values of 4.58 and 7.45, respectively. The overall landing-takeoff cycle NOx emissions are about 12% relative to ICAO CAEP/6 level.

  16. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  17. Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    Science.gov (United States)

    Heath, Christopher M.

    2016-01-01

    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.

  18. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  19. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  20. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up.

  1. Bed Rest Muscular Atrophy

    Science.gov (United States)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  2. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  3. Racing for the Bed

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    No one knows when the people ofMacheng City began to employthe marriage custom of racingfor the bed, once a custom unique to theTujia ethnic minority. It is said that at the end of awedding, bride and bridegroom enter thebridal chamber together and race for thebed. The one who is the first to sit on thebed will be the master of the new familyIt sounds unreasonable, but quite anumber of people believe in it.Therefore, on the wedding night, manybrides and bridegrooms try their best to

  4. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  5. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  6. Computational investigation of film cooling from cylindrical and row trenched cooling holes near the combustor endwall

    Directory of Open Access Journals (Sweden)

    Ehsan Kianpour

    2014-11-01

    Full Text Available This study was performed to investigate the effects of cylindrical and row trenched cooling holes with alignment angles of 0° and 90° at blowing ratio of 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three-dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The analysis has been carried out with Reynolds-Averaged Navier–Stokes turbulence model (RANS on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. Film cooling was placed along the combustor liner walls. In comparison with the baseline case of cooling holes, the application of a row trenched hole near the endwall surface doubled the performance of film cooling effectiveness.

  7. Wide range operation of advanced low NOx aircraft gas turbine combustors

    Science.gov (United States)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  8. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  9. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  10. Combustion analysis for flame stability predictions at ground level and altitude in aviation gas turbine engines with low emissions combustors

    Science.gov (United States)

    Turek, Tomas

    Low emissions combustors operating with low fuel/air ratios may have challenges with flame stability. As combustion is made leaner in the primary zone, the flame can lose its stability, resulting in operability problems such as relight, flameout or cold starting. This thesis analyzes combustion processes for the prediction of flame stability in low emissions combustors. A detailed review of the literature on flame stability was conducted and main approaches in flame stability modelling were indicated. Three flame stability models were proposed (Characteristic Time, Loading Parameter, and Combustion Efficiency models) and developed into a unique Preliminary Multi-Disciplinary Design Optimization (PMDO) tool. Results were validated with a database of experimental combustor test data and showed that flame stability can be predicted for an arbitrary shape of combustors running at any operational conditions including ground and altitude situations with various jet fuels and nozzles. In conclusion, flame stability can be predicted for newly designed low emission combustors.

  11. Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

    2007-05-01

    The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

  12. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  13. System for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David

    2016-05-31

    A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.

  14. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  15. Capacity control of power stations by O 2/H 2 rocket combustor technology

    Science.gov (United States)

    Sternfeld, Ing. H. J.

    1995-10-01

    The concept of a hydrogen/oxygen spinning reserve system is described. The novel component of this concept is a socalled hydrogen/oxygen steam generator derived from modern H 2/O 2 rocket combustor technology. With the HYDROSS-project the DLR and German power plant industries as well as electric utilities have converted the rocket combustor technology to a power plant component. The status of the project as well as technical problems encountered with the conversion are described. Finally, future options for utilizing H 2/O 2 steam generator technology for stand-by and peak-load power plants are discussed.

  16. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    Science.gov (United States)

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  17. Numerical Study of an Annular Gas Turbine Combustor with Dump Diffuser

    Institute of Scientific and Technical Information of China (English)

    J.X.Zhao; Y.B.Lai

    1999-01-01

    A general numerical method is presented for calculating steady three-dimensional and two-phase turbulent reactive flows with a nonstaggered body-fitted coordinate system in an annular gas turbine combustor with the dump diffuser.The modified two-equation model and the EDC turbulent combustion model are used for the gas phase.The liquid phase equations are solved in a Lagrangian frame of reference by PSIC algorithm.The effect of different velocity profiles at the entry of the prediffuser on combustor flow characteristics is calculated.

  18. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  19. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  20. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  1. Reuse of Partially Sulphated CFBC Ash as an SO2 Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yinghai; Jia, Lufei; Anthony, E.J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A1M1 (Canada); Nobili, M.; Telesca, A. [Department of Environmental Engineering and Physics, University of Basilicata, Viale dell' Ateneo, Lucano 10, 85100 Potenza (Italy); Montagnaro, F. [Department of Chemistry, University of Naples ' Federico II' , Monte Sant' Angelo, 80126 Naples (Italy)

    2010-06-15

    Ashes produced from fluidized bed combustors (FBC) burning high-sulphur fuels often contain 20-30 % unreacted CaO because of the limestone added to remove SO2 in situ. This paper presents the results from experiments into reactivating partially sulphated FBC ash (both bed ash and fly ash) with liquid water, steam and sodium carbonate. The water- or steam-hydrated ashes were subsequently re-sulphated in a thermogravimetric analyzer (TGA) with simulated flue gas. The TGA results show that, while liquid water and steam successfully hydrate and reactivate the unreacted CaO in the bed ash, the treated ashes sulphated to widely different extents. Attempts to reactivate fly ash with hydration failed, although fly ash by itself is extremely reactive. A pilot-scale mini-circulating FBC (CFBC) was also used to evaluate the results of reactivation on the bed ash by hydrating with liquid water and admixtures of inorganic salt (Na2CO3) in the form of either powder or solution. When the treated ash was re-injected into the combustor with the fuel, the effect on SO2 removal efficiency was negligible if Na2CO3 was added as powder. Doping with aqueous solution resulted in enhanced SO2 removal; however, the extent was lower than the level achieved if only water hydration was employed. Increasing the amount of water (from 10% to 30%) to reactivate the ash did not improve the sulphur capture capacity in the mini-CFBC. Overall, this study suggests that the most practical way for re-use of the partially sulphated bed ash as a sulphur sorbent is reactivation by water. A proposal for utilization of the fly ash in an economically reasonable way is also discussed.

  2. Evaluation of Durable Metallic Supports for Catalytic Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pint, BA

    2003-10-08

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and Catalytica Energy Systems Incorporated (CESI) to determine the properties of current metallic catalyst supports and examine new candidate alloys for this application. A team was established at ORNL to examine oxidation-limited lifetime of these thin-walled metallic components using standard lifetime models and to measure the mechanical properties of the foils (40-200:m in thickness) which can differ substantially from bulk properties. Oxidation experiments were conducted on foil specimens at 700-1100 C in laboratory air and in air with 10 vol.% water vapor to better simulate the combustor environment. At the higher test temperatures, time to oxidation-induced (i.e. breakaway oxidation) failure was determined in 1h cycles in order to verify predictions from a standard reservoir-type oxidation lifetime model. Selected specimens were run for >10,000h in 100 or 500h cycles at lower test temperatures in order to determine the oxidation kinetics for the model. The creep properties of selected foils were measured for 4,000-8,000h at operation-relevant stresses and temperatures. None of the new candidate alloys significantly out-performed currently used alloys in laboratory testing, particularly in oxidation lifetime testing. Therefore, engine testing was not performed on any of the new candidate alloys. Both the oxidation- and creep-resistance of FeCrAl alloys was greater than expected and the results of the CRADA allowed CESI to extend life or increase operating temperatures for these lower cost substrate alloys in the next generation of catalyst modules. Three work areas were defined for the CRADA. The first area was investigating the oxidation behavior of current and candidate alloy foils. The goal was to obtain data such as the oxidation rate as a function of temperature and environment, the time to breakaway oxidation at high test

  3. Trend of research and development of combustors for jet engines. Koku engine yo nenshoki no kenkyu kaihatsu doko

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1994-03-10

    To the aeroengine, a requirement for an improvement of the fuel consumption ratio from a viewpoint of the energy saving and for a reduction of the harmful exhaust materials from a viewpoint of environmental protection is being increasingly elevated. In order to improve a fuel consumption ratio of engine, making it a higher temperature and pressure is attempted for raising a engine cycle efficiency, and moreover there is a trend to elevate an inlet pressure and temperature of the combustor as for a combustor, and consequently an outlet temperature of the combustor becomes higher. Therefore to the combustor, a durability elongation of the liner and fuel injection valve, as well as a correspondence to a range expansion of a fuel-air ratio of the combustor are demanded. As the harmful exhaust materials, there are unburned hydrocarbon (UHC), carbon monoxides (CO), nitrogen oxides (NOx), and smoke. A reduction of NOx is most strongly requested at present. In addition to these requests on the combustor, making a study and development of the combustor more efficient is being demanded. For this purpose a numerical analysis is utilized by adapting the various purposes. As the recent utilization methods, the prediction examples of exhaust gas quantity are frequent. 14 refs., 12 figs., 1 tab.

  4. Pressurised fluidised bed combustion: an alternative for the clean use of coal. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Beucom O Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    Atmospheric fluidised bed combustion is an alternative worthy of consideration. It is a solution which maintains or even increases output slightly and, in the circulating fluidised bed variety, has the advantage of being able to burn an inconsistent quality of coal with a high sulphur content. The most important question is to what output this method can be developed whilst remaining competitive with other systems. There is a tendency to assume that atmospheric fluidised bed combustors can be developed up to 250 MW and that more powerful installations for electricity generation use systems with a higher output. In any case, this is no more than a general and preliminary observation. Its validity will be proved by the technical and economic results achieved with high output systems and by the availability of coal of the required mix of quality and price. 10 tabs., 10 figs.

  5. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    Science.gov (United States)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  6. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    Science.gov (United States)

    2009-12-01

    needles within a quarter of its cells.39 Hydrogen flows through the hypodermic needles , and air passes through the remaining cells. At the exit of the...5 II. Theory and Previous Research ........................................................................ 6 II.1 Standard Gas...flame temperatures, emissions and other characteristics. 6 II. Theory and Previous Research II.1 Standard Gas Turbine Engine Combustor A

  7. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    Science.gov (United States)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  8. Volatile properties of jet engine combustor particles during the partemis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Petzold, A. [Deutsche Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Wilson, C.W.

    2002-03-01

    The influence of fuel sulphur content (FSC) on exhaust particle properties from a jet engine combustor test rig was investigated during the EC PartEmis project. Volatile properties were measured using a Volatility Tandem Differential Mobility Analyser (V-TDMA). Measurements indicated that particles with diameter d <30 nm were more volatile than larger particles. (author)

  9. Studies of pressure oscillations in a research dump combustor. [low frequency vibration effect

    Science.gov (United States)

    Schadow, K. C.; Crump, J. E.; Derr, R. L.; Heaser, J. S.

    1980-01-01

    A coaxial research dump combustor was used to investigate the acoustic modes structure and its effect on the inlet shock system. Acoustic wave structure was determined including the amplitude, frequency, and phase as a function of position. Inlet shock position, shock displacement, shock displacement frequency, and phase relative to acoustic wave structure were also defined. All results were compared to with one dimensional modeling.

  10. Experimental and numerical studies of a lean-burn internally-staged combustor

    Institute of Scientific and Technical Information of China (English)

    Fu Zhenbo; Lin Yuzhen; Li Lin; Zhang Chi

    2014-01-01

    A lean-burn internally-staged combustor for low emissions that can be used in civil avi-ation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commer-cial computational fluid dynamics (CFD) software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emis-sions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx) emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR) at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO) cycle, this combustor enables 42%NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6) with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1%of total pressure during steady-state operations at the LTO cycle specific conditions.

  11. Experimental and numerical studies of a lean-burn internally-staged combustor

    Directory of Open Access Journals (Sweden)

    Fu Zhenbo

    2014-06-01

    Full Text Available A lean-burn internally-staged combustor for low emissions that can be used in civil aviation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commercial computational fluid dynamics (CFD software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emissions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO cycle, this combustor enables 42% NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6 with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1% of total pressure during steady-state operations at the LTO cycle specific conditions.

  12. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    Science.gov (United States)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  13. Effect of dilution holes on the performance of a triple swirler combustor

    Directory of Open Access Journals (Sweden)

    Ding Guoyu

    2014-12-01

    Full Text Available A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution holes on the performance of a triple swirler combustor. Experimental investigations are conducted at different inlet airflow velocities (40–70 m/s and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome heightdownstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  14. Effect of dilution holes on the performance of a triple swirler combustor

    Institute of Scientific and Technical Information of China (English)

    Ding Guoyu; He Xiaomin; Zhao Ziqiang; An Bokun; Song Yaoyu; Zhu Yixiao

    2014-01-01

    A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilu-tion holes and secondary dilution holes on the performance of a triple swirler combustor. Experi-mental investigations are conducted at different inlet airflow velocities (40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  15. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  16. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, December 1, 1994--February 28, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1996-03-01

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite, sulfided in the fluidized-bed reactor during last quarter, were analyzed. The extent of sulfidation in these samples was in the range of 20 to 50%, which represent carbonizer discharge material at different operating conditions. The high pressure thermogravimetric analyzer (BPTGA) unit has been modified and a new pressure control system was installed to eliminate pressure fluctuation during the sulfation tests.

  17. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.; Wangerow, J.R. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  18. Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure

    Science.gov (United States)

    Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.

    2002-01-01

    As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.

  19. NACA research on combustors for aircraft gas turbines I : effects of operating variables on steady-state performance

    Science.gov (United States)

    Olson, Walter T; Childs, J Howard

    1950-01-01

    Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.

  20. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    Analytical and experimental studies were conducted in three contract activities funded by the National Aeronautics and Space Administration, Lewis Research Center, to assess the impacts of broad property fuels on the design, performance, durability, emissions and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Trade-offs between fuel properties, exhaust emissions and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability and somewhat lesser impacts on starting characteristics, lightoff, emissions and smoke.

  1. Low NO/sub x/ Heavy Fuel Combustor Concept Program. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutrone, M B

    1981-10-01

    Six combustor concepts were designed, fabricated, and underwent a series of combustion tests with the objective of evaluating and developing a combustor capable of meeting US New Source Performance Standards (NSPS), dry, for high-nitrogen liquid fuels. Three rich/lean and three lean/lean two-stage combustors were tested with ERBS distillate, petroleum residual, and SRC-II coal derived liquid (CDL) fuels with fuel-bound nitrogen contents of 0.0054, 0.23, and 0.87 weight percent, respectively. A lean/lean concept was demonstrated with ultralow NO/sub x/ emissions, dry, of 5 gm NO/sub x/kg fuel on ERBS, and NO/sub x/ emissions meeting the NSPS NO/sub x/ standard on residual fuel. This combustor concept met operational goals for pressure drop, smoke, exhaust pattern factor, and combustion efficiency. A rich/lean concept was identified and developed which demonstrated NO/sub x/ emissions approaching the NSPS standards, dry, for all liquid fuels including the 0.87 weight percent nitrogen SRC-II coal-derived liquid. Exhaust pattern factor and pressure drop met or approached goals. Smoke emissions were higher than the program goal. However, a significant improvement was made with only a minor modification of the fuel injector/air swirler system, and further development should result in meeting smoke goals for all fuels. Liner metal temperatures were higher than allowable for commercial application. Conceptual designs for further development of these two rich/lean and lean/lean concepts have been completed which address smoke and metal temperature concerns, and are available for the next phase of this NASA-sponsored, DOE-funded program. Tests of a rich/lean concept, and a catalytic combustor concept using low- and intermediate-Btu simulated coal-derived gases will be completed during the ongoing Phase IA extension of this program.

  2. Development of an Air Assisted Fuel Atomizer (Liquid Siphon Type for a Continuous Combustor

    Directory of Open Access Journals (Sweden)

    Pipatpong Watanawanyoo

    2009-01-01

    Full Text Available This research was the study of a fuel injection system in continuous combustor. Air atomizing nozzle is developed to good efficiency injection and used low air pressure (68.95-275.79kPa to assist the atomizing nozzle. Refined palm oil and automotive diesel oil were the fuels for the experiment for the system of atomization. The atomizer was designed in a manner that air could flow through the small nozzle. Consequently, the low-pressure airflow could induce fuel by siphoning and break oil into small fine droplets that were delivered through the outlet. The aim of design and develop a continuous combustor is emphasized on simplicity for construction, inexpensive, good stability and reduce import fuel for continuous combustor. Material for combustor chamber is stainless steel in order to avoid oxidation at high combustion temperature. The results showed practical combustion performance using refined palm oil as fuel with ultra-low CO and HC emissions less than 206 ppm and 7 ppm. Another main advantage is a clean combustion, as no sulfur content in the fuel. As a result, the combustor performance testing was evaluated with refined palm oil and LPG. By regulating atomizing air pressure between 68.9995- 275.79 kPa (10-40psi, Siphon height 0.45 m and regulating LPG pressure of 6.8 kPa (1 psi, result showed that 0.0001167-0.00019936 kg/s of fuel consumption, hot gas produced from combustion was in the range of 308-4980C depending on oxidizing air mass flow regulated between 0.0695-0.1067kg/s. The LPG mass flow was regulated 0.000489 kg/s in order to sustain the combustion stability.

  3. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2017-01-01

    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  4. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  5. NO{sub x} formation and destruction in circulating fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Munts, V.A.; Lecomtseva, U.G.; Baskakov, A.P.; Putrick, S.B. [Ural State Technical Univ., Ekaterinburg (Russian Federation)

    2002-07-01

    In general, nitrogen oxides are formed in circulating fluidized bed combustors (CFBC) because of fuels that contain nitrogen. This paper describes how nitrogen oxide (NO{sub x}) is formed during the coal burning process. Two consecutive reactions occur. The first is the homogeneous oxidation of nitrogen-containing volatiles followed by the heterogeneous oxidation of char-bound nitrogen on the char surface. Kinetic constants of the oxidation reaction for nitrogen-containing volatile species were also determined for nitrogen contained in a coke residue. The rate of NO{sub x} reduction on the surface of char particles was also measured to calculate NO{sub x} concentrations in CFBC. It was determined that the estimated fraction of char-bound nitrogen converted into NO{sub x}, depends on the nitrogen content of the fuel and on the ratio of rate constants of nitrogen and carbon oxidation. 10 refs., 1 tab., 4 figs.

  6. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  7. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  8. Predicting freeboard heat transfer by using empirical correlations in high temperature fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Suleyman [Okan University Tuzla Kampusu, Faculty of Engineering and Architecture (Turkey)], email: suleyman.biyikli@okan.edu.tr

    2011-07-01

    This article investigates the heat transfer characteristics for horizontal tubes in a freeboard region of high temperature fluidized beds. The freeboard entrainment heights are calculated by using empirical correlations described in detail and used in estimating the heat transfer coefficients from a horizontal tube occurring by radiation, gas convection, and particle contact mechanisms in high temperature a fluidized bed combustor. The total average of these coefficients around a horizontal tube carrying water in high temperature fluidized beds can be written as the sum of convective, radiative, and fluidized-particle contact heat transfer coefficients and these correlations are tested against certain published experimental measurements. In full agreement with this data, it was observed that the calculated heat transfer coefficients increased with increasing gas velocity at a given tube elevation and they decreased and approached the values of single-phase gas convection and radiation with increasing tube elevation in the freeboard region while the relative contribution of radiation increases and approaches a constant fraction of total heat transfer.

  9. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H. [Ruhr Univ., Bochum (Germany); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T. [Colorado School of Mines (United States)

    1996-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  10. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  11. How to Find Bed Bugs

    Science.gov (United States)

    ... strap of old box spring covering that is housing adults, skin castings, feces, and eggs. (Photo courtesy ... Bed bugs can survive and remain active at temperatures as low as 7°C (46°F), but they die ...

  12. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  13. Bed Bugs: The Australian Response

    Directory of Open Access Journals (Sweden)

    Richard C. Russell

    2011-04-01

    Full Text Available Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard ‘A Code of Practice for the Control of Bed Bug Infestations in Australia’ that defines and promotes ‘best practice’ in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in ‘best practice’ while bed bugs remain problematic in Australia.

  14. Getting Rid of Bed Bugs

    Science.gov (United States)

    Jump to main content US EPA United States Environmental Protection Agency Search Search Bed Bugs Share Facebook Twitter ... integrated pest management. Preparing for control is very important whether you are considering hiring a professional or ...

  15. Top Ten Bed Bug Tips

    Science.gov (United States)

    ... temperatures are necessary for successful heat treatment. Black plastic bags in the sun might work to kill bed ... Place the used bag in a tightly sealed plastic bag and in an outside garbage bin. 10. Turn ...

  16. Sea bed mapping and inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 24 presentations on the topics: Sea bed mapping, inspection, positioning, hydrography, marine archaeology, remote operation vehicles and computerized simulation technologies, oil field activities and plans, technological experiences and problems. (tk)

  17. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  18. Evaluation of Kerosene Fuelled Scramjet Combustor using a Combination of Cooled and Uncooled Struts

    Directory of Open Access Journals (Sweden)

    C. Chandrasekhar

    2014-01-01

    Full Text Available The scramjet combustor a vital component of scramjet engine has been designed by employing fuel injection struts. Several experimental studies have been carried out to evaluate the propulsive performance and structural integrity of the in-stream fuel injection struts in the connect-pipe test facility. As the mission objective of hypersonic demonstrator is to flight test the scramjet engine for 20 s duration, in-stream fuel injection struts which are designed as heat sink devices encounter hostile flow field conditions especially in terms of high thermal and high convective loads in the scramjet combustor. To circumvent these adverse conditions, materials like Niobium C-103 and W-Ni-Fe alloys have been used for the construction of struts and a number of tests have been carried out to evaluate the survivability of the in-stream fuel injection struts in the scramjet combustor. The results thus obtained show that the erosion of leading edges of the Stage-II fuel injection struts in the initial phase and subsequently puncturing of the fuel injection manifold after 10-12 s of the test are noticed, while the other stages of the struts are found to be intact. This deteriorating leading edges of Stage-II struts with respect to time, affect the overall propulsive performance of the combustor. To mitigate this situation, Stage-II struts have been designed as cooled structure and other Stages of struts are designed as un-cooled structure. Material of construction of struts used is Nimonic C-263 alloy. This paper highlights the results of the static test of the scramjet combustor, which has been carried out at a combustor entry Mach number of 2.0, total temperature of 2000 K, with an overall kerosene fuel equivalence ratio of 1.0 and for the supersonic combustion duration of 20 s. Low back pressure has been created at the exit of the scramjet combustor using ejector system to avoid flow separation.Visual inspection of the fuel injection struts after the test

  19. Bedømmelsens kompleksitet

    Directory of Open Access Journals (Sweden)

    Elsa Schmidt

    2006-03-01

    Full Text Available I artiklen sammenholdes hverdagens bedømmelser af mennesker med de bedømmelser, der sker ved eksaminer. Der er forskelle på grund af det retlige grundlag, men også ligheder. Konkrete erfaringer med klage- og ankesager gennem 8 år fra faget psykologi på landsplan opsummeres. Nogle få praktiske løsninger beskrives.

  20. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  1. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Hao Ouyang

    2014-01-01

    Full Text Available The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight.

  2. Pressurised fluidised bed combustion: an alternative clean coal technology. La combustion en lecho fluido a presion, una alternativa de uso limpio del carbon en desarollo

    Energy Technology Data Exchange (ETDEWEB)

    Bencomo Perez-Zamora, V.; Menendez Perez, J.A.E. (ENDESA, Madrid (Spain))

    1988-11-01

    The primary aim of thistechnology is to reduce emissions of sulphur and nitrous oxides. Pilot plant tests have achieved a sulphur fixing rate of over 95%. Pressurised fluidised bed combustion also has advantages with regard to the emission of contaminants. Halogens, fluorine and chlorine, which in conventional combustion methods are released in the gases, to a large degree remain in the ash as do trace elements, such as arsenic, which usually vapourise at high temperatures in pulverised coal combustors. This technology also has a high output of between 38 and 40% net according to the type of coal used. 10 figs., 10 tabs.

  3. 49 CFR 236.336 - Locking bed.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking bed. 236.336 Section 236.336 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.336 Locking bed. The various parts of the locking bed, locking bed supports, and tappet...

  4. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  5. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  6. Rapid ignition of fluidized bed boiler

    Science.gov (United States)

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  7. Experimental and computational study of the effect of shocks on film cooling effectiveness in scramjet combustors

    Science.gov (United States)

    Kamath, Pradeep S.; Holden, Michael S.; Mcclinton, Charles R.

    1990-01-01

    This paper presents results from a study conducted to investigate the effect of incident oblique shocks on the effectiveness of a coolant film at Mach numbers, typical of those expected in a scramjet combustor at Mach 15 to 20 flight. Computations with a parabolic code are in good agreement with the measured pressures and heat fluxes, after accounting for the influence of the shock upstream of its point of impingement on the plate, and the expansion from the trailing edge of the shock generator. The test data shows that, for the blowing rates tested, the film is rendered largely ineffective by the shock. Computations show that coolant blowing rates five to ten times those tested are required to protect against shock-induced heating. The implications of the results to scramjet combustor design are discussed.

  8. CFD prediction of the reacting flow field inside a subscale scramjet combustor

    Science.gov (United States)

    Chitsomboon, T.; Northam, G. B.; Rogers, R. C.; Diskin, G. S.

    1988-01-01

    A three-dimensional, Reynolds-averaged Navier-Stokes CFD code has been used to calculate the reacting flowfield inside a hydrogen-fueled, subscale scramjet combustor. Pilot fuel was injected transversely upstream of the combustor and the primary fuel was injected transversely downstream of a backward facing step. A finite rate combustion model with two-step kinetics was used. The CFD code used the explicit MacCormack algorithm with point-implicit treatment of the chemistry source terms. Turbulent mixing of the jets with the airstream was simulated by a simple mixing length scheme, whereas near wall turbulence was accounted for by the Baldwin-Lomax model. Computed results were compared with experimental wall pressure measurements.

  9. Computational Analysis of Mixing and Transport of Air and Fuel in Co-Fired Combustor

    Directory of Open Access Journals (Sweden)

    Javaid Iqbal

    2015-01-01

    Full Text Available Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier?Stokes model comparing with 3D (Three Dimensional LES (Large Eddy Simulation. To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero

  10. Richtmyer-Meshkov Instability Induced Mixing Enhancement in the Scramjet Combustor with a Central Strut

    Directory of Open Access Journals (Sweden)

    Qingchun Yang

    2014-01-01

    Full Text Available Experimental and numerical study of Richtmyer-Meshkov instability (RMI induced mixing enhancement has been conducted in a liquid-fueled scramjet engine with a central strut. To generate the RMI in the scramjet engine, transverse high temperature jets are employed downstream the strut injector. Compared to the transverse ordinary temperature jet, the jet penetration into the supersonic airstream of high temperature jet increases by 60%. The numerical results indicate that the RMI phenomenon markedly enhances the mixing efficiency (up to 43%, which is necessary to initiate the chemical reactions. Ground experiments were carried out in the combustor, which verify the numerical method from the perspective of wall pressures of the combustor. In particular, the experiment results indicate that the RMI can benefit flame-holding due to the mixing enhancement.

  11. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  12. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  13. An Experimental Study of Turbulent Flow in Attachment Jet Combustors by LDV

    Institute of Scientific and Technical Information of China (English)

    JUNLI; CHENG-KANGWU

    1993-01-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone,provided by the Coanda effect of an attachment jet.The single attachment jet in a rectangular channel is a fundamental form of this type of flow.In this paper,the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV,The flowfield consists of a forward flow and two reverse flows.The forward one is composed of a curved and a straight section.The curved section resembles a bent turbulent free jet,and the straight part is basically a section of turbulent wall jet.A turbulent couter-gradient transport region exists at the curved section.According to the results,this kind of combustor should have a large sudden enlarge ment ratio and not too narrow in width.

  14. Coupling between Hydrodynamics, Acoustics, and Heat Release in a Self-Excited Unstable Combustor

    Science.gov (United States)

    2015-04-07

    analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver Phys. Fluids 27, 043602 (2015...10.1063/1.4918672 Ignition sequence of an annular multi-injector combustor Phys. Fluids 26, 091106 (2014); 10.1063/1.4893452 On the compressible...the expansion.4 Different source terms can then be interpreted as different contributing mechanisms. If only the first order linear terms are retained

  15. Modeling of complex physics & combustion dynamics in a combustor with a partially premixed turbulent flame

    OpenAIRE

    Shahi, Mina

    2014-01-01

    To avoid the formation of the high temperature stoichiometric regions in flames in a gas turbine combustor, and hence the formation of nitric oxides, an alternative concept of combustion technology was introduced by means of lean premixed combustion. However, the low emission of nitric oxides and carbon monoxide of the lean premixed combustion of natural gas comes at the cost of increased sensitivity to thermoacoustic instabilities. These are driven by the feedback loop between heat release, ...

  16. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor

    Science.gov (United States)

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R.

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the C H* chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  17. Computational Analysis of Geometric Effects on Strut Induced Mixing in a Scramjet Combustor

    Science.gov (United States)

    2009-03-01

    NASA also aided in the understanding of how VULCAN worked. Thanks to my advisor, Dr. Robert Greendyke, and the rest of the AFIT faculty for imparting...Magre, A. Bresson , F. Grisch, M. Orain, and M. Kodera, “Exper- imental study of strut injectors in a supersonic combustor using oh-plif,” AIAA Paper...OF RESPONSIBLE PERSON Dr. Robert Greendyke Associate Professor a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include

  18. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  19. Hygroscopic properties of jet engine combustor particles during the partemis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Petzold, A. [Deutsche Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Wilson, C.W.

    2002-03-01

    The influence of fuel sulphur content (FSC) on particle properties from a jet engine combustor test rig was investigated during the EC-project PartEmis. Hygroscopic growth factors were measured using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). While particles were hydrophobic at low FSC, hygroscopic growth factors increased significantly with increasing FSC. Under similar conditions small particles were more hygroscopic than large particles. (author)

  20. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. Efficiency and Pressure Loss Characteristics of an Ultra-Compact Combustor with Bulk Swirl

    Science.gov (United States)

    2007-06-01

    Compact Combustor UHC = Unburned hydrocarbons Symbols β = Angle or bypass ratio γ = Ratio of specific heats η = Efficiency π = Pressure ratio ρ...hydrocarbons ( UHC ), and oxides of nitrogen (NOx). Emissions of CO, UHCs , and NOx have had the most effort expended on them to reduce the quantity emitted...promise for lowered pollutant outputs because of its increased combustion efficiency. Typically, emissions of CO and UHC are the highest at idle

  2. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  3. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    Science.gov (United States)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  4. Augmentation of Stagnation Region Heat Transfer Due to Turbulence from a DLN Can Combustor

    Science.gov (United States)

    VanFossen, G. James; Bunker, Ronald S.

    2001-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NO(x), ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.

  5. Demonstration of a Reheat Combustor for Power Production With CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Ben Chorpening; Geo. A. Richards; Kent H. Casleton; Mark Woike; Brian Willis; Larry Hoffman

    2005-10-01

    Concerns about climate change have encouraged significant interest in concepts for ultralow or “zero”-emissions power generation systems. In a concept proposed by Clean Energy Systems, Inc., nitrogen is removed from the combustion air and replaced with steam diluent. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO2 and water streams. The concentrated CO2 stream could then serve as input to a CO2 sequestration process. In this study, experimental data are reported from a full-scale combustion test using steam as the diluent in oxy-fuel combustion. This combustor represents the “reheat” combustion system in a steam cycle that uses a high and low-pressure steam expansion. The reheat combustor serves to raise the temperature of the low-pressure steam turbine inlet, similar to the reheat stage of a conventional steam power cycle. Unlike a conventional steam cycle, the reheat enthalpy is actually generated by oxy-fuel combustion in the steam flow. This paper reports on the unique design aspects of this combustor, as well as initial emissions and operating performance.

  6. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  7. Flow-acoustic Characterisation of a Cavity-based Combustor Configuration

    Directory of Open Access Journals (Sweden)

    Krishna Kant Agarwal

    2011-10-01

    Full Text Available This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.Defence Science Journal, 2011, 61(6, pp.523-528, DOI:http://dx.doi.org/10.14429/dsj.61.870

  8. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  9. Parametric study of combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2016-10-01

    As a promising candidate for future air-breathing systems, the viability and efficiency of scramjet propulsion is challenged by a variety of factors including the combustion oscillation in scramjet combustor. A series of comparative experiments focusing on the combustion oscillation issue has been carried out in the present work. The obtained experimental results show that as the global equivalence ratio increases, the combustion oscillation becomes more regular and frequent which is the most intensive in the vicinity of the fuel jet and the periodic combustion oscillation is more possible when the injectors and flame-holding cavity are mounted on the expansion-side wall. In order to avoid the combustion oscillation in scramjet combustor, distributed injection scheme is an effective method which can induce two parts interacting stable flame. In addition, the results reveal that the varying fuel including hydrogen, ethylene and kerosene with different chemical kinetics has a significant effect on the reaction process in scramjet combustor, which can result in stable combustion, periodic oscillation and failed ignition respectively on the same operating condition of this paper. We believe that the present work is helpful to the designing of scramjet propulsion device.

  10. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    Science.gov (United States)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  11. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    Science.gov (United States)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  12. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  13. Chaotic behavior monitoring & control in fluidized bed systems using artificial neural network. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bodruzzaman, M.

    1996-10-30

    We have developed techniques to control the chaotic behavior in Fluidized Bed Systems (FBC) systems using recurrent neural networks. For the sake of comparison of the techniques we have developed with the traditional chaotic system control methods, in the past three months we have been investigating the most popular and first known chaotic system control technique known as the OGY method. This method was developed by Edward Ott, Celso Grebogi and James York in 1990. In the past few years this method was further developed and applied by many researchers in the field. It was shown that this method has potential applications to a large cross section of problems in many fields. The only remaining question is whether it will prove possible to move from laboratory demonstrations on model systems to real world situations of engineering importance. We have developed computer programs to compute the OGY parameters from a chaotic time series, to control a chaotic system to a desired periodic orbit, using small perturbations to an accessible system parameter. We have tested those programs on the logistic map and the Henon map. We were able to control the chaotic behavior in such typical chaotic systems to period 1, 2, 3, 5..., as shown in some sample results below. In the following sections a brief discussion for the OGY method will be introduced, followed by results for the logistic map and Henon map control.

  14. Experimental and Numerical Studies of Vitiated Air Effects on Hydrogen-fueled Supersonic Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    LUO Feiteng; SONG Wenyan; ZHANG Zhiqiang; LI Weiqiang; LI Jianping

    2012-01-01

    This paper deals with the vitiation effects of test air on the scramjet performance in the ground combustion heated facilities.The primary goal is to evaluate the effects of H2O and CO2,the two major vitiated species generated by combustion heater,on hydrogen-fueled supersonic combustor performance with experimental and numerical approaches.The comparative experiments in the clean air and vitiated air are conducted by using the resistance heated direct-connected facility,with the typical Mach 4 flight conditions simulated.The H2O and CO2 species with accurately controlled contents are added to the high enthalpy clean air from resistance heater,to synthesize the vitiated air of a combustion-type heater.Typically,the contents of H2O species can be varied within the range of 3.5%-30o% by mole,and 3.0%-10% for CO2 species.The total temperature,total pressure,Mach number and O2 mole fraction at the combustor entrance are well-matched between the clean air and vitiated air.The combustion experiments are completed at the fuel equivalence ratios of 0.53 and 0.42 respectively.Furthermore,three-dimensional (3D) reacting flow simulations of combustor towpath are performed to provide insight into flow field structures and combustion chemistry details that cannot resolved by experimental instruments available.Finally,the experimental data,combined with computational results,are employed to analyze the effects of H2O and CO2 vitiated air on supersonic combustion characteristics and performance.It is concluded that H2O and CO2 contaminants can significantly inhibit the combustion induced pressure rise measured from combustor wall,and the pressure profile decreases with the increasing H2O and CO2 contents in nonlinear trend;simulation results agree well with experimental data and the overall vitiation effects are captured; direct extrapolation of the results from vitiated air to predict the performance of actual flight conditions could result in over-fueling the combustor

  15. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  16. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO Power Engineering, Vantaa (Finland); Kauppinen, E.; Latva-Somppi, J.; Kurkela, J. [VTT Chemical Technology, Espoo (Finland); Partanen, J. [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  17. Laboratory rearing of bed bugs

    Science.gov (United States)

    The resurgence of bed bugs Cimex lectularius L. in the United States and worldwide has resulted in an increase in research by university, government, and industry scientists directed at the biology and control of this blood-sucking pest. A need has subsequently arisen for producing sufficient biolog...

  18. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  19. Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Straub; Kent H. Casleton; Robie E. Lewis; Todd G. Sidwell; Daniel J. Maloney; George A. Richards

    2005-01-01

    This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel types. This approach combines the potential advantages of a staged rich-burn, quick-mix, lean-burn (RQL) combustor with the revolutionary trapped vortex combustor (TVC) concept. Although RQL combustors have been proposed for low-Btu fuels, this paper considers the application of an RQL combustor for high-Btu natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atm (1013 kPa or 147 psia) and an inlet-air temperature of 644 K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts per million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions; however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.

  20. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1995-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors. In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen, calcium sulfide and calcium carbonate will be determined by conducting tests in a pressurized thermogravimetric analyzer unit. The sulfate tests conducted during this quarter, focused on the determination of the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen. The test parameters included CO{sub 2} and O{sub 2} concentrations, reaction temperature and pressure, as well as the sorbent particle size. The results obtained during this quarter suggest that the rate of sulfation reaction involving partially sulfided half-calcined dolomite and oxygen is very fast at temperatures above 850 C which rapidly increases with increasing temperature, achieving more than 85% conversion in less than a few minutes. The reaction appears to continue to completion, however, above 85% conversion, the rate of reaction appears to be low, requiring long residence time to reach complete conversion.

  1. [Historical analysis of the hospital bed].

    Science.gov (United States)

    Fajardo-Ortiz, Guillermo; Fajardo-Dolci, Germán

    2010-01-01

    Until now the bed has been the basic physical resource in hospitals. This type of furniture has served to study and treat patients, through out the centuries it has undergone changes in the materials they are made of dimensions, functionality, accessories, aesthetic, and design. The hospital bed history is not well known, there are thousands of documents about the evolution of hospitals, but not enough is known about hospital beds, a link between the past and the present. The medical, anthropological, technological, social, and economic dynamics and knowledge have produced a variety of beds in general and hospital beds in particular. From instinctive, rustic, poor and irregular "sites" that have differed in shape and size they had evolved into ergonomic equipment. The history of the hospital bed reflects the culture, techniques and human thinking. Current hospital beds include several types: for adults, for children, for labor, for intensive therapy, emergency purposes, census and non census beds etc.

  2. Chinese Bedding Technology Standard under Drafting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    National Home Textile Standardization Technology Committee(NHTSTC)set up its Bedding Branch Committee. This will promote the work of Chinese bedding technology standardization and a symbol that China step up to meet the

  3. Pulling a patient up in bed

    Science.gov (United States)

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  4. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  5. Thermodynamic analysis of the gasification of coal water slurry fuels for a circulating fluidized bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.; Yavuzkurt, S.; Scaroni, A. [National Taiwan University, Taipei (Taiwan)

    2002-07-01

    To validate the concept of coal gasification in the integrated coal gasification combined cycle (IGCC), a novel laboratory gasifier consisting of a circulating fluidized bed and a cyclone combustor has been constructed. This paper reports a thermodynamic analysis conducted to predict the maximum capacity and the condition for best operation of this circulating fluidized bed gasifier, which has an inside diameter of 0.3048 m and a height of 2.5 m. The equilibrium feed rates of materials and the quality of the product gas are described as a function of the reactor temperature, the thermal capacity of the gasifier, and the water concentration in coal water slurry fuel. The results of parametric analysis show that the thermal efficiency decreases, but the efficiency of desulfurization increases as the reactor temperature increases. The thermal capacity of the gasifier has no influence on the quality of the product gas. The thermal efficiency and the efficiency of desulfurization decrease as the water concentration in the coal water slurry increases. The desulfurization in the gasifier at equilibrium conditions is very efficient and meets the EPA regulations of the USA.

  6. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes.

  7. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  8. Bed Bug Education for School Maintenance

    Science.gov (United States)

    Henriksen, Missy

    2012-01-01

    Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.

  9. 21 CFR 868.5180 - Rocking bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  10. Characteristics of fluidized-packed beds

    Science.gov (United States)

    Gabor, J. D.; Mecham, W. J.

    1968-01-01

    Study of fluidized-packed bed includes investigation of heat transfer, solids-gas mixing, and elutriation characteristics. A fluidized-packed bed is a system involving the fluidization of small particles in the voids of a packed bed of larger nonfluidized particles.

  11. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  12. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  13. Application of numerical analysis to jet engine combustor design. Jet engine nenshoki sekkei eno suchi kaiseki no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, H. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1990-11-01

    Numerical methods are applied in practice to complement and support jet engine combustor design and development. Part of the conventional design-trial fabrication-testing performance evaluation cycle replaced by iterated numerical analysis applied in a preliminary cycle of design-evaluation, undertaken before proceeding to actual trial fabrication testing and final evaluation. Presented examples are of numerical methods applied to design/development of a high temperature combustor of airblast fuel injector type, in which analysis is undertaken of flows through diffuser and through combustion liner, of temperature distributions, of flows through liner cooling slots, and liner skin temperature distributions. Furthermore, results of three-dimensional flow analysis are applied to optimizing the design parameters of a jet-swirl combustor and to calculation of the centrifugal force in a jet swirl combustion liner. 3 refs., 18 figs., 1 tab.

  14. Review of acute cancer beds.

    LENUS (Irish Health Repository)

    Evans, D S

    2012-01-01

    A review of admissions to cancer services at University Hospital Galway (UHG) was undertaken to assess the appropriateness of hospital usage. All cancer specialty patients admitted from 26-28 May 2009 were reviewed (n = 82). Chi square tests, Exact tests, and One-way ANOVA were utilised to analyse key issues emerging from the data. Fifty (61%) were classified as emergencies. Twenty three (67%) occupied a designated cancer bed with 24 (30%) in outlying non-oncology wards. The mean length of stay was 29.3 days. Possible alternatives to admission were identified for 15 (19%) patients. There was no evidence of discharge planning for 50 (60%) admissions. There is considerable potential to make more appropriate utilisation of UHG for cancer patients, particularly in terms of reducing bed days and length of stay and the proportion of emergency cancer admissions, and further developing integrated systems of discharge planning.

  15. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  16. THE BAUXITES AND JELAR - BEDS

    Directory of Open Access Journals (Sweden)

    Krešimir Sakač

    1993-12-01

    Full Text Available Minor bauxite deposits and occurrences were formed in technically disturbed environments in the middle part of the Adriatic geotectonic unit in Dinarides, contemporary with the clastic Jelar-beds in the Late Lutetian time. Uneven chemical composition of these Eocene bauxites, their sporadic occurrences in developed paleorelief as well as characteristic petrographic composition of the immediate overlying rocks point out at different genetical conditions (the paper is published in Croatian.

  17. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume 1: Executive summary

    Science.gov (United States)

    Giramonti, A. J.; Lessard, R. D.; Merrick, D.; Hobson, M. J.

    1981-09-01

    An energy storage system for electric utility peak load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak load power plant dependence on petroleum based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal fired fluidized bed combustor/compressed air energy storage systems was performed and is described.

  18. Materials problems in fluidized-bed combustion systems. Appendix 2. Test specimen preparation, handling, and posttest evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.; Holder, J.C.; Minchener, A.J.; Page, A.J.; La Nauze, R.D.

    1980-05-01

    Appendix 2 presents the metallographic data compiled by the National Coal Board, Coal Research Establishment, on materials tested for the Electric Power Research Institute Contract R P 388-1 with Combustion Systems Ltd., UK. Two 1000 h tests were carried out to investigate the corrosion performance of boiler and gas turbine alloys exposed in and above a fluidised bed coal combustor. Details are given of the preparation, handling, and examination procedures. Results of metallographic examination and chemical analyses on the samples examined by CRE are provided. This appendix does not attempt to draw any conclusions from the data: such conclusions appear in the main report. Description of the tests and plant performance data are given in Appendix 1 of this report.

  19. A nonlinear dynamical system for combustion instability in a pulse model combustor

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  20. Spatially-resolved measurements of soot size and population in a swirl-stabilized combustor

    OpenAIRE

    1985-01-01

    Isooctane, and mixtures of isooctane with various ring and aromatic compounds blended to yield the same smoke point were separately injected through a twin-fluid atomizer into a turbulent, swirl-stabilized model combustor. A nonintrusive optical probe based on larege angle (60°, 20°) intensity ratio scattering was used to yield a point measurement of soot particulate in the size range of 0.08 to 0.38 μm. The velocity and temperature fields were characterized by a two-color laser anemometer an...

  1. Drag and distribution measurements of single-element fuel injectors for supersonic combustors

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The drag caused by several vortex generating fuel injectors for scramjet combustors was measured in a Mach 2 to 3.5 airstream. Injector drag was found to be strongly dependent on injector thickness ratio. The distribution of helium injected into the stream was measured both in the near field and the far field of the injectors for a variety of pressure ratios. The far field results differed appreciably from measurements in the near field. Injection pressure ratio was found to profoundly influence the penetration. One of the aerowing configurations tested yielded low drag consistent with desirable penetration and spreading characteristics.

  2. Experimental Studies on Swirling Gas—Particle Flows in a Spouting —Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    L.X.Zhou; B.Zhou; 等

    1992-01-01

    The gas and particle time-averaged velocity and RMS fluctuation velocity of swirling gas-particle flows in a spouting-cyclone combustor were maesured by a hot-ball probe and a conventional LDV system.The results show large velocity slip between the two phases both in tangential and axial directions and high noisotropic turbulence of the two phases were also observed which is favorable to coal combustion.the particle RMS flutuation velocity is higher than the gas RMS fluctuation velocity only in some regions of the flow field.

  3. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    CERN Document Server

    Magri, Luca; Nicoud, Franck; Juniper, Matthew

    2016-01-01

    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by up to $\\sim\\mathcal{O}(M)$, as many as the Monte Carlo samples.

  4. Radial flow fuel nozzle for a combustor of a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  5. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.

    Science.gov (United States)

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  6. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  7. Agglomeration-Free Distributor for Fluidized Beds

    Science.gov (United States)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  8. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xu, Guangwen [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Suda, Toshiyuki [Research Laboratory, IHI Corporation, Ltd., Yokohama (Japan); Murakami, Takahiro [National Institute of Advanced Science and Technology, Tsukuba (Japan)

    2010-08-15

    Biomass containing water of 30-65 wt.% and rich in cellulose, such as various grounds of drinking materials and the lees of spirit and vinegar, is not suitable for biological digestion, and the thermal conversion approach has to be applied to its conversion into bioenergy. The authors have recently worked on converting such biomass into middle heating-value gas via dual fluidized bed gasification (DFBG) integrated with various process intensification technologies. This article is devoted to highlighting those technical ways, including the choice of the superior technical deployment for a DFBG system, the impregnation of Ca onto fuel in fuel drying, the integration of gas cleaning with fuel gasification via two-stage DFBG (T-DFBG), and the decoupling of fuel drying/pyrolysis and char gasification via the decoupled DFBG (D-DFBG). The attained results demonstrated that the superior deployment of bed combination for the DFBG should be a bubbling/turbulent fluidized bed gasifier integrated with a pneumatic riser combustor. In terms of improving efficiency of fuel conversion into combustible gas and suppressing tar generation during gasification, the impregnation of Ca onto fuel exhibited distinctively high upgrading effect, while both the T-DFBG and D-DFBG were also demonstrated to be effective to a certain degree. (author)

  9. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  10. Equilibrium bed-concentration of nonuniform sediment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Knowledge of the equilibrium bed-concentration is vital to mathematical modeling of the river-bed deformation associated with suspended load but previous investigations only dealt with the reference concentration of uniform sediment because of difficulties in observation of the bed-concentration. This work is a first attempt to develop a theoretical formula for the equilibrium bed-concentration of any fraction of nonuniform sediment defined at the bed-surface. The formula is based on a stochastic-mechanistic model for the exchange of nonuniform sediment near the bed, and described as a function of incipient motion probability, non-ceasing probability, pick-up probability, and the ratio of the average single-step continuous motion time to static time. Comparison of bed-concentration calculated from the proposed formula with the measured data showed satisfactory agreement, indicating the present formula can be used for solving the differential equation governing the motion of suspended load.

  11. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  12. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  13. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  14. Experimental Study in a Swirl-Stabilized Combustor with and Without Spray Combustion

    Science.gov (United States)

    Ghaffarpour, Mohammad-Reza

    1992-01-01

    To investigate the combustion characteristics and structure of hollow-cone spray flames similar to those occurring in the primary zone of gas turbine combustion chambers, a swirl-stabilized combustor and a water-cooled stainless-steel gas sampling probe were designed. A kerosene spray was generated by a simplex atomizer with a nominal angle of 30 degrees. Swirling air with swirl number of 1.5 was produced from an air swirl plate. Video imaging and photography were employed to document the flame stability and its structure with changes in both design and operating conditions. A Phase Doppler Particle Analyzer (PDPA) was used to measure the drop size, mean and rms values of axial drop velocity and other relevant parameters with and without combustion. Air and fuel flow rates and other conditions were kept identical for reacting and non-reacting cases to investigate effects of combustion alone on the spray. A thermocouple was used to measure the average uncorrected temperature in this turbulent spray flame. A gas chromatograph was also employed to measure the gaseous species concentrations such as hydrogen, oxygen, nitrogen, carbon monoxide, methane, and carbon dioxide in this combustor.

  15. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  16. Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane

    Science.gov (United States)

    Xiao, Wei; Huang, Yong

    2016-05-01

    Lean blowout (LBO) limits is critical to the operational performance of combustion systems in propulsion and power generation. The swirl cup plays an important role in flame stability and has been widely used in aviation engines. Therefore, the effects of swirl cup geometry and flow dynamics on LBO limits are significant. An experiment was conducted for studying the lean blowout limits of a single dome rectangular model combustor with swirl cups. Three types of swirl cup (dual-axial swirl cup, axial-radial swirl cup, dual-radial swirl cup) were employed in the experiment which was operated with aviation fuel (Jet A-1) and methane under the idle condition. Experimental results showed that, with using both Jet A-1 and methane, the LBO limits increase with the air flow of primary swirler for dual-radial swirl cup, while LBO limits decrease with the air flow of primary swirler for dual-axial swirl cup. In addition, LBO limits increase with the swirl intensity for three swirl cups. The experimental results also showed that the flow dynamics instead of atomization poses a significant influence on LBO limits. An improved semi-empirical correlation of experimental data was derived to predict the LBO limits for gas turbine combustors.

  17. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  18. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  19. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    Science.gov (United States)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  20. 3D measurements of ignition processes at 20 kHz in a supersonic combustor

    Science.gov (United States)

    Ma, Lin; Lei, Qingchun; Wu, Yue; Ombrello, Timothy M.; Carter, Campbell D.

    2015-05-01

    The ignition dynamics in a Mach 2 combustor were investigated using a three-dimensional (3D) diagnostic with 20 kHz temporal resolution. The diagnostic was based on a combination of tomographic chemiluminescence and fiber-based endoscopes (FBEs). Customized FBEs were employed to capture line-of-sight integrated chemiluminescence images (termed projections) of the combustor from eight different orientations simultaneously at 20 kHz. The measured projections were then used in a tomographic algorithm to obtain 3D reconstruction of the sparks, ignition kernel, and stable flame. Processing the reconstructions frame by frame resulted in 4D measurements. Key properties were then extracted to quantify the ignition processes, including 3D volume, surface area, sphericity, and velocity of the ignition kernel. The data collected in this work revealed detailed spatiotemporal dynamics of the ignition kernel, which are not obtainable with planar diagnostics, such as its growth, movement, and development into "stable" combustion. This work also illustrates the potential for obtaining quantitative 3D measurements using tomographic techniques and the practical utility of FBEs.

  1. The Berlin emissivity database (BED)

    Science.gov (United States)

    Maturilli, A.; Helbert, J.; Moroz, L.

    2008-03-01

    Remote-sensing infrared spectroscopy is the principal field of investigation for planetary surfaces composition. Past, present and future missions to the solar system bodies include in their payload, instruments measuring the emerging radiation in the infrared range. Apart from measuring the reflected radiance, more and more spacecrafts are equipped with instruments measuring directly the emitted radiation from the planetary surface. The emitted radiation is not only a function of the composition of the material but also of its texture and especially the grain size distribution. For the interpretation of the measured data an emissivity spectral library of planetary analogue materials in grain size fractions appropriate for planetary surfaces is needed. The Berlin emissivity database (BED) presented here is focused on relatively fine-grained size separates, providing thereby a realistic basis for the interpretation of thermal emission spectra of planetary regoliths. The BED is therefore complimentary to existing thermal emission libraries, like the ASU library for example. BED currently contains emissivity spectra of plagioclase and potassium feldspars, low Ca and high Ca pyroxenes, olivine, elemental sulfur, Martian analogue minerals and volcanic soils, and a lunar highland soil sample measured in the wavelength range from 7 to 22 μm as a function of particle size. For each sample we measured the spectra of four particle size separates ranging from <25 to 250 μm. The device we used is built at DLR (Berlin) and is coupled to a Fourier-transform infrared spectrometer Bruker IFS 88 purged with dry air and equipped with a nitrogen-cooled MCT detector. All spectra were acquired with a spectral resolution of 4 cm -1. We are currently working on upgrading our emissivity facility. A new spectrometer (Bruker VERTEX 80 V) and new detectors will allow us to measure the emissivity of samples in the wavelength range from 1 to 50 μm in a vacuum environment. This will be

  2. [Special beds. Pulmonary therapy system].

    Science.gov (United States)

    Calixto Rodríguez, Joaquín; Rodríguez Martínez, Xavier; Marín i Vivó, Gemma; Paunellas Albert, Josep

    2008-10-01

    To be bedridden reduces one's capacity to move and produces muscular debility that affects the respiratory system leading to a decreased effectiveness in expectoration, the ability to spit up sputum. The pulmonary therapy system integrated in a bed is the result of applying motorized elements to the articulation points of the bad in order to achieve safe positions at therapeutic angles, which improve the breathing-perfusion (blood flow) relationship. This system also makes it possible to apply vibration waves to the patient which favor the elimination of bronchial-pulmonary secretions, the rehabilitation of the bedridden patient and decrease the work load for nursing personnel.

  3. Designing a CR Test bed

    DEFF Research Database (Denmark)

    2014-01-01

    with their own set up, since the potential costs and efforts could not pay back in term of expected research results. Software Defined Radio solutions offer an easy way to communication researchers for the development of customized research test beds. While several hardware products are commercially available......, an overview on common research-oriented software products for SDR development, namely GNU Radio, Iris, and ASGARD, will be provided, including how to practically start the software development of simple applications. Finally, best practices and examples of all the software platforms will be provided, giving...

  4. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  5. Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen

    Science.gov (United States)

    Gröning, Stefan; Hardi, Justin; Suslov, Dmitry; Oschwald, Michael

    2017-03-01

    Since the late 1960s, low hydrogen injection temperature is known to have a destabilising effect on rocket engines with the propellant combination hydrogen/oxygen. Self-excited combustion instabilities of the first tangential mode have been found recently in a research rocket combustor operated with the propellant combination hydrogen/oxygen with a hydrogen temperature of 95 K. A hydrogen temperature ramping experiment has been performed with this research combustor to analyse the impact of hydrogen temperature on the self-excited combustion instabilities. The temperature was varied between 40 and 135 K. Contrary to past results found in literature, the combustor was found to be stable at low hydrogen temperatures while increased oscillation amplitudes of the first tangential mode were found at higher temperatures of around 100 K and above, which is consistent with previous observations of instabilities in this combustor. Further analysis shows that hydrogen temperature has a strong impact on the combustion chamber resonance frequencies. By varying the hydrogen injection temperature, the frequency of the first tangential mode is shifted to coincide with the second longitudinal resonance frequency of the liquid oxygen injector. Excitation of combustion chamber pressure oscillations was observed during such events.

  6. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.

    2000-01-01

    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced co

  7. Volatile properties of jet engine combustor particles during the hot-end simulator (HES) PartEmis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Petzold, A.; Wilson, C.W.

    2003-03-01

    Test rig measurements on a combustor in 2001 were extended in 2002 on a Hot-End Simulator (HES), designed to simulate the turbine section of a jet engine. Volatile properties were measured using a Volatility Tandem Differential Mobility Analyser (VTDMA). Initial analyses indicate that the HES has a negligible influence on particle properties. (author)

  8. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  9. The WCSAR telerobotics test bed

    Science.gov (United States)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  10. Classifying bed inclination using pressure images.

    Science.gov (United States)

    Baran Pouyan, M; Ostadabbas, S; Nourani, M; Pompeo, M

    2014-01-01

    Pressure ulcer is one of the most prevalent problems for bed-bound patients in hospitals and nursing homes. Pressure ulcers are painful for patients and costly for healthcare systems. Accurate in-bed posture analysis can significantly help in preventing pressure ulcers. Specifically, bed inclination (back angle) is a factor contributing to pressure ulcer development. In this paper, an efficient methodology is proposed to classify bed inclination. Our approach uses pressure values collected from a commercial pressure mat system. Then, by applying a number of image processing and machine learning techniques, the approximate degree of bed is estimated and classified. The proposed algorithm was tested on 15 subjects with various sizes and weights. The experimental results indicate that our method predicts bed inclination in three classes with 80.3% average accuracy.

  11. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  12. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field

  13. Combustor Modelling

    Science.gov (United States)

    1980-02-01

    Diagnostics in Gas Phase Combustion Systems", Progress in Astrona.utics and Aeronautics, ed. B.T. Zinn, vol. 53, pp. 421, 1977. 21. Tipler , W. "The...obtained on the disc-in-duct (Fig. 1C ) flameholder (negligible together: the result is shown in Fig. 5 with the universal fueopertrtinaefecs) stc 1

  14. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  15. Flue gas desulfurization by rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  16. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  17. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    ETO, J.; LASSETER, R.; SCHENKMAN, B.; STEVENS, J.; KLAPP, D.; VOLKOMMER, H.; LINTON, E.; HURTADO, H.; ROY, J.

    2010-06-08

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1 a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2 an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3 a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources.

  18. Metabolic Resistance in Bed Bugs

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    2011-03-01

    Full Text Available Blood-feeding insects have evolved resistance to various insecticides (organochlorines, pyrethroids, carbamates, etc. through gene mutations and increased metabolism. Bed bugs (Cimex lectularius are hematophagous ectoparasites that are poised to become one of the major pests in households throughout the United States. Currently, C. lectularius has attained a high global impact status due to its sudden and rampant resurgence. Resistance to pesticides is one factor implicated in this phenomenon. Although much emphasis has been placed on target sensitivity, little to no knowledge is available on the role of key metabolic players (e.g., cytochrome P450s and glutathione S-transferases towards pesticide resistance in C. lectularius. In this review, we discuss different modes of resistance (target sensitivity, penetration resistance, behavioral resistance, and metabolic resistance with more emphasis on metabolic resistance.

  19. LES study of intermittency in soot formation in a model aircraft combustor

    Science.gov (United States)

    Koo, Heeseok; Raman, Venkat; Mueller, Michael; Geigle, Klaus Peter

    2015-11-01

    Intermittent soot formation is one of the modeling challenges that prevent accurate predictions of soot concentration in a turbulent reacting flow. Due to the highly unsteady and irregular sooting behavior, formation of soot is acutely sensitive to the flow and gas phase history. Therefore, we need to accurately capture interactions between soot chemistry, particle dynamics, and turbulent flame as well as the turbulent reacting flow. In this study, large eddy simulation (LES) is used to understand the model sensitivity to the soot prediction. Hybrid method of moment (HMOM) soot model is used that accommodates detailed process of soot particle and soot precursor evolution. Gas phase chemistry uses flamelet progress variable approach with an additional enthalpy dimension to include soot radiation effect. The developed numerical model is tested on the DLR swirl combustor that emulates the rich-quench-lean (RQL) configuration using secondary oxidation air injection.

  20. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    Science.gov (United States)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  1. Predictions and measurements of isothermal flowfields in axisymmetric combustor geometries. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Rhodes, D. L.; Lilley, D. G.

    1985-01-01

    Numerical predictions, flow visualization experiments and time-mean velocity measurements were obtained for six basic nonreacting flowfields (with inlet swirl vane angles of 0 (swirler removed), 45 and 70 degrees and sidewall expansion angles of 90 and 45 degrees) in an idealized axisymmetric combustor geometry. A flowfield prediction computer program was developed which solves appropriate finite difference equations including a conventional two equation k-epsilon eddy viscosity turbulence model. The wall functions employed were derived from previous swirling flow measurements, and the stairstep approximation was employed to represent the sloping wall at the inlet to the test chamber. Recirculation region boundaries have been sketched from the entire flow visualization photograph collection. Tufts, smoke, and neutrally buoyant helium filled soap bubbles were employed as flow tracers. A five hole pitot probe was utilized to measure the axial, radial, and swirl time mean velocity components.

  2. Investigation of LPP combustors under elevated pressure conditions; Untersuchungen zu LPP-Flugtriebwerksbrennkammern unter erhoehtem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.

    2001-05-01

    The development of new combustor concepts for aero engines to meet future emissions regulations in based on a detailed knowledge of the combustion process and the velocity field. In the presented thesis, non intrusive measurements were performed in a model combustion chamber under almost realistic pressure and temperature conditions. The species OH, NO, unburned hydrocarbons and fuel droplets were detected in 2 dimensions with the Laser Induced Fluorescence (LIF). The velocity field was measured with the Particle Image Velocimetry technique (PIV). [German] Die Weiterentwicklung neuer Brennkammerkonzepte zur Erfuellung zukuenftiger Schadstoffemissionsrichtlinien erfordert genaue Kenntnisse der ablaufenden Verbrennungs- und Stroemungsvorgaenge in der Brennkammer. Bei den in der Arbeit vorgestellten Untersuchungen wurden in einer LPP-Modellbrennkammer unter annaehernd realistischen Eintrittsbedingungen die Spezies OH, NO, unverbrannte Kohlenwasserstoffe sowie noch fluessiger Brennstoff zweidimensional anhand der Laserinduzierten Fluoreszenz (LIF) nachgewiesen. Das Stroemungsfeld wurde mit Hilfe der Particle Image Velocimetry (PIV) gemessen.

  3. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  4. System for supporting a bundled tube fuel injector within a combustor

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  5. Large-Eddy Simulation of combustion instabilities in a variable-length combustor

    Science.gov (United States)

    Garby, Romain; Selle, Laurent; Poinsot, Thierry

    2013-01-01

    This article presents a simulation of a model rocket combustor with continuously variable acoustic properties thanks to a variable-length injector tube. Fully compressible Large-Eddy Simulations are conducted using the AVBP code. An original flame stabilization mechanism is uncovered where the recirculation of hot gases in the corner recirculation zone creates a triple flame structure. An unstable operating point is then chosen to investigate the mechanism of the instability. The simulations are compared to experimental results in terms of frequency and mode structure. Two-dimensional axi-symmetric computations are compared to full 3D simulations in order to assess the validity of the axi-symmetry assumption for the prediction of mean and unsteady features of this flow. Despite the inaccuracies inherent to the 2D description of a turbulent flow, for this configuration and the particular operating point investigated, the axi-symmetric simulation qualitatively reproduces some features of the instability.

  6. Large-eddy simulations of real-fluid effects in rocket engine combustors

    Science.gov (United States)

    Ma, Peter C.; Hickey, Jean-Pierre; Ihme, Matthias

    2013-11-01

    This study is concerned with the LES-modeling of real-fluid effects in rocket combustors. The non-ideal fluid behavior is modeled using the Peng-Robinson equation of state, and high-pressure effects on the thermo-viscous transport properties are also considered. An efficient and robust algorithm is developed to evaluate the thermodynamic state-vector. The highly non-linear coupling of the primitive thermodynamic variables in regions near the critical point requires special consideration to avoid spurious numerical oscillations. To avoid these non-physical oscillations, a second-order essentially non-oscillatory (ENO) scheme is applied in regions that are identified by a density-based sensor. The resulting algorithm is applied in LES to a coaxial rocket-injector, and super- and transcritical operating conditions are considered. Simulation results and comparisons with experimental data will be presented, and the influence of boundary conditions on the mixing characteristics will be discussed.

  7. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity

    CERN Document Server

    Magri, Luca; Juniper, Matthew

    2016-01-01

    We present an adjoint-based method for the calculation of eigenvalue perturbations in nonlinear, degenerate and non self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first- and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurations are analysed. The benchmark sensitivities are obtained by finite difference, which involves solving the nonlinear eigenproblem at least as many times as the number of parameters. By solving only one adjoint eigenproblem, we obtain the sensitivities to any thermo-acoustic parameter, which match the finite-difference solutions at much lower computational cost.

  8. Vortex-acoustic lock-on in bluff-body and backward-facing step combustors

    Indian Academy of Sciences (India)

    S R Chakravarthy; R Sivakumar; O J Shreenivasan

    2007-02-01

    Experimental data on acoustic pressure measurements obtained over a wide range of conditions is reported for two simple geometries that are commonly studied for their combustion dynamics behaviour. These geometries are the confined bluff-body and the confined backward-facing steps. The data indicate regimes of flow-acoustic lock-on that signifies the onset of combustion instability, marked by the excitation of high-amplitude discrete tones of sound in the combustor. The highspeed chemiluminescence imaging of the combustion zone indicates heat-release-rate fluctuations occurring at the same frequencies as observed in the acoustic spectra. Attention is then devoted to the data obtained under cold-flow conditions to illustrate distinctly different behaviour than when combustion instability occurs, contrary to the commonly held view that the combustion process does not alter the underlying fluid mechanical processes under low-Mach number conditions.

  9. Regeneration of sulfated limestone from FBCs. Quarterly report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Chopra, O.K.; Lenc, J.F.; Moulton, D.S.; Nunes, F.F.; Smith, G.W.; Smyk, E.B.; Jonke, A.A.

    1979-01-01

    These studies support the national development program in fluidized-bed combustion. The objective of this program is to develop an economically acceptable process for the regeneration of the partly sulfated limestone product of a fluidized-bed coal combustor, and to obtain the design data needed for the construction of larger regenerators. This report presents information on: a thermodynamic analysis of the one-step reductive decomposition regeneration process, an evaluation of a regeneration process using a rotary kiln, and the use of fly ash for the reduction of gaseous SO/sub 2/ elemental sulfur. In the previous year, studies of the effect of limestone sulfation-enhancement agents (e.g., NaCl and CaCl/sub 2/) on corrosion of FBC structural materials were described. Results of these tests are reported here.

  10. Nonlinear dynamical characteristics of bed load motion

    Institute of Scientific and Technical Information of China (English)

    BAI; Yuchuan; XU; Haijue; XU; Dong

    2006-01-01

    Bed forms of various kinds that evolve naturally on the bottom of sandy coasts and rivers are a result of the kinematics of bed load transport. Based on the group motion of particles in the bed load within the bottom layer, a study on the nonlinear dynamics of bed load transport is presented in this paper. It is found that some development stages, such as the initiation, the equilibrium sediment transport, and the transition from a smooth bed to sand dunes, can be accounted for by different states in the nonlinear system of the bed load transport. It is verified by comparison with experimental data reported by Laboratoire Nationae D'Hydraulique, Chatou, France, that the evolution from a smooth bed to sand dunes is determined by mutation in the bed load transport. This paper presents results that may offer theoretical explanations to the experimental observations. It is also an attempt to apply the state-of-the-art nonlinear science to the classical sediment transport mechanics.

  11. Hipparions of the Laetolil Beds, Tanzania

    NARCIS (Netherlands)

    Hooijer, D.A.

    1979-01-01

    The Laetolil Beds in Tanzania, 20-30 miles south of Olduvai Gorge, have been extensively sampled by parties under the leadership of Mrs. Dr. Mary D. Leakey, who very kindly sent me Hipparion material collected in 1974, 1975, and 1976. In a restudy of proboscidean material from these beds described b

  12. Bed-levelling experiments with suspended load

    NARCIS (Netherlands)

    Talmon, A.M.; De Graaff, J.

    1991-01-01

    Bed-levelling experiments are conducted in a straight laboratory channel. The experiments involve a significant fraction of suspended sediment transport. The purpose of the experiments is to provide data for modelling of the direction of sediment transport on a transverse sloping alluvial river bed,

  13. International Standardization of Bed Rest Standard Measures

    Science.gov (United States)

    Cromwell, Ronita L.

    2010-01-01

    This slide presentation gives an overview of the standardization of bed rest measures. The International Countermeasures Working Group attempted to define and agree internationally on standard measurements for spaceflight based bed rest studies. The group identified the experts amongst several stakeholder agencys. It included information on exercise, muscle, neurological, psychological, bone and cardiovascular measures.

  14. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  15. Gruppebaseret behandling af BED - et faseopdelt behandlingstilbud

    DEFF Research Database (Denmark)

    Laust, Jakob; Lau, Marianne Engelbrecht; Waaddegaard, Mette

    2015-01-01

    konsekvenser. BED blev i 2013 optaget i DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) som en selvstændig diagnose og BED forventes medtaget i den forestående revision af det internationale diagnose system, ICD-11. Sundhedsstyrelsen gav på denne baggrund satspuljemidler til erfaringsopsamling...

  16. Particle pressures in fluidized beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  17. Particle Pressures in Fluidized Beds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  18. Determination of true bed thickness using folded bed model and borehole data

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.S.; Velasquillo-Martinez, L.G.; Grajales-Nishimura, J.M.; Murillo-Muneton, G. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Garcia-Hernandez, J. [Petroleos Mexicanos Exploracion y Produccion, Tamaulipas (Mexico); Nieto-Samaniego, A.F. [Nacional Autonoma de Mexico Univ., Veracruz (Mexico). Centro de Geociencias

    2007-11-15

    The actual thickness of a given formation perpendicular to the bedding plane is known as the true bed thickness. Petroleum engineers rely on information regarding true bed thickness, particularly in dipping beds and in deviated holes because reservoir volume and isochore maps depend on these properties and not on the measured thickness. True bed thickness can be estimated from information gathered from well logs such as the dipmeter and borehole images. However, when deviations and dips exceed 10 degrees, corrections are needed. In this paper, a folded bed model was proposed to calculate the true bed thickness in the subsurface utilizing well log data. The value of true bed thickness (t) was shown to depend on the angle and the direction of the dip of the measured formation, as well as the drift angle and azimuth of the borehole. A case study from the Cantarell oil field in the southern Gulf of Mexico, offshore Campeche, was used to test the folded bed method. The model was shown to yield more uniform spatial change of the values of t, compared to the monoclinal bed model that often overestimates the average value of t. The maximum relative deviation of t from the monoclinal bed model reached 22.3 per cent and the maximum absolute deviation of t reached 34.5 m. The key factors that influence the values of t were found to be the bed dip, the dip difference between the top and base of the bed and the deviated angle of the well. The folded bed model yielded fewer changed values of the true bed thickness. 10 refs., 2 tabs., 9 figs.

  19. Consideraciones sobre una cámara de combustión experimental de 400 kW // Considerations on a 400 kW experimental combustor.

    Directory of Open Access Journals (Sweden)

    J. A. Cabrera Rodríguez

    2000-03-01

    Full Text Available El trabajo aborda el diseño térmico y constructivo de la cámara de combustión de un combustor experimental para lasimulación de procesos reales de combustión. Se analizan distintas variantes constructivas y se valora su influencia en elcomportamiento del horno, su estabilidad térmica y los gastos energéticos incurridos durante su funcionamiento.Palabras claves: Cámara de combustión, diseño, combustor.________________________________________________________________________________AbstractThe work approaches the thermal and mechanical design of a combustion chamber of an experimental combustor for thesimulation of real combustion process. Different designs are analyzed and their influence is valued in the behavior of thefurnace, thermal stability and cost incurred during their operation.Key words: Combustor, furnace design, thermical design .

  20. Does Bedding Affect the Airway and Allergy?

    Directory of Open Access Journals (Sweden)

    J Crane

    2011-03-01

    Full Text Available Various cross-sectional and longitudinal studies have suggested that synthetic bedding is associated with asthma, allergic rhinitis and eczema while feather bedding seems to be protective. Synthetic bedding items have higher house dust mite allergen levels than feather bedding items. This is possibly the mechanism involved although fungal and bacterial proinflammatory compounds and volatile organic compounds may play a role. In this review we present and discuss the epidemiological evidence and suggest possible mechanisms. Primary intervention studies are required to show whether feather bedding is protective for the development of childhood asthma and allergic diseases while secondary intervention studies are required to potentially reduce symptoms and medication use in subjects with established disease.

  1. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  2. Power generation from animal meal in the circulating fluidized bed combustor at Lippewerk, Luenen; Energetische Nutzung von Tiermehl in der Zirkulierenden Wirbelschichtanlage (ZWS) auf dem Lippewerk, Luenen

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, A. [Rethmann Lippewerk GmbH, Luenen (Germany)

    2001-07-01

    Experiments have shown that the Luenen plant can be operated with animal meal as mono-fuel. In fact, combustion characteristics will be better and emissions lower. The ash has an excellent burnout. It contains no proteins, so it appears reasonable to assume that any prions will be destroyed during combustion. [German] Auf Basis der bestehenden Betriebserfahrungen ist die ZWS in Luenen technisch nachweislich in der Lage, 100% der Feuerungswaermeleistung ueber Tiermehl abzudecken. Damit ist ein Betrieb als Monobrennstoffanlage durchfuehrbar. Besonders erfreulich ist zu werten, dass sich bei dem Einsatz von Tiermehl das Verbrennungsverhalten der Anlage positiver darstellt und eine Verbesserung der Emissionssituation auftritt. Die entstehende Asche weist einen ungewoehnlich guten Ausbrand auf. In ihr sind Proteine nicht mehr nachweisbar und daraus kann rueckgeschlossen werden, dass in der ZWS auch potentiell Prionen vernichtet werden. (orig.)

  3. Innovative Bed Load Measurement System for Large Alpine Gravel-Bed Rivers

    Science.gov (United States)

    Seitz, H.; Habersack, H. M.

    2009-04-01

    The aim of the work is to figure out the bed load transport processes using direct and surrogate measurement methods for the free flowing reach of the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria. There are some techniques for bed load measurements in natural streams; we used collecting moving particles and indirectly determining transport intensity at the study sites. Former measurements in the study reach were performed also using mobile bed load samplers and fixed bed load samplers. Individually they all are adequate bed load measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. The investigation payed special attention on results out of the geophone installations, whereas steel plate vibrations (the plates are mounted on top of concrete structures even with the river bed surface) caused by bed load particles with a diameter larger than about 20 mm are inducing a signal into the geophones. The signal above a defined threshold voltage than is recorded in a computer system as the sum of impacts during one minute intervals. The spatio-temporal distribution of the transported bed load material, its amount and the transport processes itself could be figured out for the first time out of continuous data collection since 2006 for large alpine gravel-bed rivers. Before building up the gauging stations there were no continuous recordings of bed load transport processes in large alpine rivers over their entire cross section, hence the investigation promises a better process understanding and the possibility to determine bed load transport rates and a rough approximation of the grain size distributions of the transported bed load material under different flow conditions. A relation between detected geophone records, the flow discharge and direct bed load sampling methods (Large Helley Smith

  4. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine. The Gantt Chart on the following page details progress by task.

  5. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion -- FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  6. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    Science.gov (United States)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  7. Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-03-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

  8. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-06-01

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  9. Combustion of olive cake and coal in a bubbling fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Murat Varol; Aysel T. Atimtay [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2007-07-15

    Combustion performances and emission characteristics of olive cake and coal are investigated in a bubbling fluidized bed. Flue gas concentrations of O{sub 2}, CO, SO{sub 2}, NOx, and total hydrocarbons (C{sub m}H{sub n}) were measured during combustion experiments. Operational parameters (excess air ratio {lambda}, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. Combustion efficiencies in the range of 83.6-90.1% were obtained for olive cake with {lambda} of 1.12-2.30. For the setup used in this study, the optimum operating conditions with respect to NOx and SO{sub 2} emissions were found as 1.2 for {lambda}, and 50 L/min for secondary air flowrate for the combustion of olive cake. 10 refs., 8 figs., 3 tabs.

  10. Circulating fluidized-bed boilers: Enhancing reagent utilization while maintaining proper SO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Dubose, R.E.; Ray, D.M. [Univ. of North Carolina, Chapel Hill, NC (United States); Wofford, J.; Buecker, B.

    1997-12-31

    Unit performance, and related operation and maintenance costs, for circulating fluidized bed (CFB) combustors are very dependent on the sorbent selected for SO{sub 2} removal. Limestone is the typical reagent of choice, but variations in quality can have a dramatic impact on the reaction efficiency. This paper discusses the results of full-scale tests and subsequent use of a high-quality sorbent in the two CFBs serving the University of North Carolina at Chapel Hill. The tests were necessary because of the desire to optimize performance based on the economics of limestone utilization and ash disposal. It was considered, also, that the reagent in use prior to the tests was not very reactive and caused ash handling problems. Project organizers used the full-scale tests to examine the effects of sorbent quality and grind size on the efficiency of the process. The tests indicated that reagent consumption would be reduced by 50% or more with the new sorbent. Plant personnel verified this conclusion when they began feeding the new reagent on a permanent basis. Reagent usage and ash production significantly decreased and have remained low in the three years since the change was made. The results outlined in this paper clearly indicate the large impact that reagent quality has on CFB operation. For present and prospective CFB managers, these results can justify the search for, and use of, limestone sorbents that might otherwise be considered too expensive or too distant from the plant. 39 figs.

  11. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  12. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  13. Characterization of limestone reactivity with SO{sub 2} and sulfur capture modelling under fluidized bed combustion conditions; Bestaemning av kalkstensreaktivitet med avseende paa SO{sub 2} och modellering av avsvavling foer foerbraenning i fluidiserad baedd

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T. [Chalmers Univ. of Technology and Univ. of Goeteborg, Goeteborg (Sweden). Dept. of Inorganic Chemistry; Lyngfelt, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1996-12-01

    During combustion of fossil fuels, SO{sub 2} is released to the atmosphere. Because of environmental concern with acid rain, the capture of SO{sub 2} is a very important process. Fluidized bed combustion (FBC) is a combustion method where limestone may be added to the furnace chamber to capture SO{sub 2} as the stable product CaSO{sub 4}. In the present work a relatively simple laboratory method has been developed for characterizing limestone reactivity with SO{sub 2}. The reactivity data from such investigations are used, together with residence time and particle size distribution, in a sulfur capture model for fluidized bed boilers that predicts the sulfur capture as a function of the Ca/S molar ratio. In addition, the model predicts the conversion of CaO to CaSO{sub 4} for all particle sizes present in a boiler. The model was developed and verified using data from two boilers, a 12 and a 40 MW circulating fluidized bed boiler, and showed reasonable agreement for both boilers. In addition to the development of a sulfur capture model, the effects of SO{sub 2} and CO{sub 2} concentrations, particle size, temperature variations, and reducing conditions on the sulfation reaction was studied using a fixed-bed quartz reactor. The sulfation reaction was also studied for long periods of time, up to 60 hours. This was done because of the long residence times of certain particle sizes that may exist in a fluidized bed boiler. From the parameter study it was found that particle size and variations between oxidizing and reducing conditions had a large effect on the sulfation behaviour. The investigation of long sulfation times showed that the reaction continued even at high degrees of conversion, although at a very slow rate. CO{sub 2} concentration had a moderate effect on the sulfation reaction while temperature variations showed no effect on the final conversion between CaO and CaSO{sub 4}. 29 refs, 25 figs, 4 tabs

  14. CERTS Microgrid Laboratory Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  15. Mix bed type desalting device

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Shuichi; Shiozawa, Yoshihiro; Kazama, Seiichi

    1998-12-18

    The present invention provides a condensate desalting device of a BWR type reactor capable of preventing degradation of ion exchange resins by water containing oxidative materials such as hydrogen peroxide thereby keeping reactor water at high purity. Namely, a mixed bed type desalting device comprises a desalting tower for removing impurities in water by ion exchange resins and a regeneration device for cleaning/regenerating the ion exchange resins. Means for loading iron cruds into water is disposed in the desalting tower. With such a constitution, oxidative materials such as hydrogen peroxide react with the iron cruds thereby enabling to suppress oxidative reaction during ion exchange. Since passage or cleaning/regeneration of water is conducted while loading the iron cruds between ion exchange resin particles and on the surface layer of an ion exchange resin layer by using the above-mentioned reaction, degradation of ion exchange performance of the ion exchange resins by hydrogen peroxide can be prevented upon condensate cleaning operation or resin cleaning/regeneration. As a result, degradation of quality of reactor water can be suppressed. (I.S.)

  16. Modeling nitrate removal in a denitrification bed.

    Science.gov (United States)

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  17. Factors Associated With Infant Bed-Sharing

    Science.gov (United States)

    Heere, Megan; Moughan, Beth; Alfonsi, Joseph; Rodriguez, Jennifer; Aronoff, Stephen

    2017-01-01

    Objective: Bed-sharing is associated with sudden infant death syndrome and accidental suffocation and strangulation in bed. The purpose of this study was to identify risk factors for newborn bed-sharing. Methods: Postpartum mothers from a university maternity service were contacted by phone to complete a survey. Demographic and environmental data were collected; newborn bed-sharing and sleep environment were self-reported. Results: A total of 1261 mothers completed surveys; bed-sharing was reported by 79 mothers (6.3%). Multivariate logistic regression identified referral to a nurse (odds ratio [OR] = 10; 95% confidence interval [CI] = 4.5-30) and sleep location “other” than a crib, bassinet, or Pack and Play (OR = 7.1; 95% CI = 1.9-25.9) as factors associated with an increased risk of bed-sharing; formula feeding (OR = 0.4; 95% CI = 0.20-0.77) and crib sleeping (OR = 0.49; 95% CI = 0.26-0.86) reduced this risk. Conclusion: Infants with no identifiable places to sleep, significant health issues, and who are breastfed are more likely to bed-share. Interventional studies should be directed at these factors. PMID:28229101

  18. Heat and Mass Transfer Enforcement of Vibrating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    ChuZhide; YangJunhong; 等

    1994-01-01

    This paper briefly introduces the development of vibrating fluidized bed at home and abroad,elaborates the vibration properties of vibrating fluidized bed.the fluidizing velocity and pressure drop of the bed layer,it also deduces the non-steady state drying dynamic equations of vibrating fluidized bed,analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.

  19. DEVELOPMENT OF HELMHOLTZ-TYPE PULSE COMBUSTOR%Helmholtz型脉动燃烧器的研制

    Institute of Scientific and Technical Information of China (English)

    李保国; 洪新华

    2001-01-01

    对膜片阀式Helmholtz型脉动燃烧器进行了研究,设计功率为25 kW,以液化石油气为燃料,工作频率从60~110Hz可调,还分析了脉动燃烧器各主要部件的结构,确定了设计原则.%A Helmholtz-type pulse combustor with a flapper valve is designed. The capacity of the combustor is 25kW and it uses liquefied petroleum gas as fuel, and frequency ranges from 60~110Hz. Its main units are analyzed and design principle is determined.

  20. Prediction of hydrodynamics and chemistry of confined turbulent methane-air frames in a two concentric tube combustor

    Science.gov (United States)

    Markatos, N. C.; Spalding, D. B.; Srivatsa, S. K.

    1978-01-01

    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed.