WorldWideScience

Sample records for bearing hardware melting

  1. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  2. Hardware-in-loop simulation on hydrostatic thrust bearing worktable pose

    Institute of Scientific and Technical Information of China (English)

    韩桂华; 邵俊鹏; 秦柏; 董玉红

    2008-01-01

    A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.

  3. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  4. Unusual Siderite-Bearing Dendrites in Melt Pockets of the Elga IIE Iron

    Science.gov (United States)

    Teplyakova, S. N.; Artemov, V. V.; Vasiliev, A. L.

    2012-03-01

    The Elga iron contains melt pockets with dedritic texture not only inside Fe,Ni-metal but also inside silicate inclusions (SI). The unusual siderite-bearing melt pockets inside SIs has never been previously observed in any types of meteorites.

  5. Novel hot-melting hyperbranched poly(ester-amine) bearing self-complementary quadruple hydrogen bonding units

    Institute of Scientific and Technical Information of China (English)

    Yi Peng Qiu; Li Ming Tang; Yu Wang; Shi You Guan

    2008-01-01

    Hyperbranched poly(amine-ester)s bearing serf-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties,which make them suitable as novel hot-melting materials.

  6. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae are present in a broad range of glass products, but due to their negative impact on e.g., the optical and mechanical properties, elimination of striae from melts is a key issue in glass technology. By varying melting temperatures, retentions times and redox conditions of an iron-b...

  7. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    International Nuclear Information System (INIS)

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction

  8. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    Science.gov (United States)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched

  9. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  10. Copper partitioning between felsic melt and H2O-CO2 bearing saline fluids

    Science.gov (United States)

    Tattitch, Brian C.; Candela, Philip A.; Piccoli, Philip M.; Bodnar, Robert J.

    2015-01-01

    Analysis of fluid inclusions from porphyry copper deposits reveals that magmatic vapor and brine are vital for the removal of copper from arc magmas and its transport to the site of ore deposition. Experiments in melt-vapor-brine systems allow for investigation of the partitioning of copper between silicate melts and volatile phases at magmatic conditions. The presence of CO2 affects both the pressure at which a melt saturates with respect to volatile phases. Therefore, the partitioning of copper among felsic (rhyolitic) melt, vapor and brine in CO2-bearing experiments was examined to provide insights into copper partitioning and the generation of porphyry copper and related deposits. We present results from experiments performed at 800 °C and 100 MPa in CO2-bearing melt-vapor-brine systems with XCO2v+b = 0.10 and 0.38. The compositions of vapor and brine inclusions, and run-product glasses, were determined during the course of this investigation. Microthermometric measurements of fluid inclusions show an increase in the salinity of the magmatic brine (∼65 to ∼70 wt% NaCleq) and decrease in the salinity of the vapor (∼3.5 to ∼1 wt% NaCleq) as XCO2 is increased from 0.10 to 0.38. The partitioning of copper between brine and vapor (DCub/v ± 2 σ) increases from 25 (±6) at XCO2 = 0.10, to 100 (±30) at XCO2 = 0.38 . The partitioning of copper between vapor and melt (DCuv/m ± 2 σ) decreases from 9.6 (±3.3) at XCO2 = 0.10 , to 2 (±0.8) at XCO2 = 0.38 . These data demonstrate that copper partitioning in sulfur-free, CO2-bearing systems is controlled by the changes in the salinity of the vapor and brine that, in turn, are functions of XCO2 . No change in the apparent equilibrium constants for Cu-Na exchange was observed in Fe-bearing experiments which supports a salinity-dependent model for copper partitioning. An existing model (MVPart) for ore metal partitioning between melt and volatile phases was modified to incorporate partitioning data from CO2

  11. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    Science.gov (United States)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  12. An experimental study of dehydration melting of phengite-bearing eclogite at 1.5-3.0 GPa

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; JIN ZhenMin; ZHANG JunFeng

    2009-01-01

    Dehydration melting experiments were performed on ultrahigh-pressure eclogite from Bixiling in the Dabie orogen at 1.5-3.0 GPa and 800-950℃ using piston cylinder apparatus. The results show that (1)eclogite with ~5% phengite started to melt at T≤800-850℃ and P=1.5-2.0 GPa and produced about 3% granitic melt; (2) the products of dehydration melting of phengite-bearing eclogite vary with temperature and pressure. Fluid released from dehydration of phengite and zoisite leads to partial melting of eclogite and formation of plagioclase reaction rim around kyanite at pressures of 1.5-2.0 GPa and temperatures of 800-850℃; (3) phengite reacted with omphacite and quartz and produced oligoclase,kyanite and melt at elevated temperatures. Oligoclase is the primary reaction product produced by partial melting of phengite in the eclogite; and (4) the dehydration melting of phengite-bearing eclogite at pressures of 1.5-3.0 GPa and temperatures ≥900℃ results in formation of garnets with higher molar fraction of pyrope (37.67 wt.%-45.94 wt.%). Potassium feldspar and jadeite occur at P = 2.4-3.0GPa and T≥900℃, indicating higher pressure and fluid-absent conditions. Our results constrain the solidus for dehydration melting of phengite-bearing eclogite at pressures of 1.5-3.0 GPa. Combining experi- mental results with field observations of partial melting in natural eclogites, we concluded that phengite-bearing eclogites from the Dabie-Sulu orogen were able to partially molten at P= 1.5-2.0 GPa and T= 800-850℃ during exhumation. The ultrahigh-high pressure eclogites would have experienced partial melting in association with metamorphic phase transformation under different fluid conditions.

  13. Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite

    Science.gov (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2015-01-01

    present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus-solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt-melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source-metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi-Koolau basalts in the Hawaiian hot spot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling.

  14. Bear

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?

  15. Reduction-melting behaviors of boron-bearing iron concentrate/carbon composite pellets with addition of CaO

    Institute of Scientific and Technical Information of China (English)

    Jing-song Wang

    2015-01-01

    Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work de-scribes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction–melting behavior and proper-ties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than 1wt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt%to 0.046wt%as the CaO content of the pellets increased from 1wt%to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction–melting separation of the composite pellets with added CaO was also deduced.

  16. Crystal-bearing lunar spherules: Impact-melting of the Moon's crust and implications for the origin of meteoritic chondrules

    Science.gov (United States)

    Ruzicka, Alex; Snyder, Gregory A.; Taylor, Lawrence A.

    2000-01-01

    Crystal-bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact-melt-rock (62295) samples can be classified into two types: feldspathic and olivine-rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene-olivine mesostasis; the less common olivine-rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred-olivine texture. Bulk-chemical and mineral-chemical data strongly suggest that feldspathic CLSs formed by impact-melting of mixtures of ferroan anorthosite and Mg-suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine-rich CLSs also formed by impact-melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely-zoned "relict" plagioclase grains that were not entirely melted during CLS formation, thin (?5 ?m thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile-rich (Na-K-P-rich) environment. CLSs were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low-velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact-melt droplets to partially or completely crystallize in free-flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor-fractionation appears to have played a less important role in

  17. Dynamics of iron-bearing borosilicate melts: Effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions

    International Nuclear Information System (INIS)

    The dynamic properties of a series of iron-bearing sodium borosilicate melts have been investigated to determine how structure and composition control viscosity, electrical conductivity and the kinetics of iron redox reactions and, thus, atomic mobility as involved in these different processes. For this purpose, four compositions with 67 mol% SiO2 and B2O3 contents ranging from 0 to 22 mol% have been studied. In addition to viscosity and electrical conductivity, we have determined the kinetics of the iron redox reaction by isothermal iron K-edge XANES and Raman spectroscopy experiments performed as a function of time from 710 to 1570 K. Substitution of sodium for boron at constant SiO2 content first causes transformation of BO3 triangles into BO4 tetrahedra until an excess of sodium induces instead melt depolymerization. These changes in the degree of polymerization and boron coordination lead to a maximum in oxygen diffusivity at around 18 mol% B2O3, and correlatively, to a viscosity minimum. Because this change of trigonal into tetrahedral boron requires charge compensation of B3+ by cations such as Na+ ions, the mobility of Na+ decreases and reduces the rate of oxidation. In addition, the decreasing fraction of Na+ ions and their change from a free to a charge compensating role explain the decreasing redox diffusivities and electrical conductivities of the samples. (authors)

  18. Experimentally-determined carbon isotope fractionation in and between methane-bearing melt and fluid to upper mantle temperatures and pressures

    Science.gov (United States)

    Mysen, Bjorn

    2016-07-01

    The behavior of melts and fluids is at the core of understanding formation and evolution of the Earth. To advance our understanding of their role, high-pressure/-temperature experiments were employed to determine melt and fluid structure together with carbon isotope partitioning within and between (CH4 +H2O +H2)-saturated aluminosilicate melts and (CH4 +H2O +H2)-fluids. The samples were characterized with vibrational spectroscopy while at temperatures and pressures from 475° to 850 °C and 92 to 1158 MPa, respectively. The solution equilibrium is 2CH4 +Qn = 2 CH3- +H2O +Q n + 1 where the superscript, n, in the Qn-notation describes silicate species where n denotes the number of bridging oxygen. The solution equilibrium affects the carbon isotope fractionation factor between melt and fluid, αmelt/fluid. Moreover, it is significantly temperature-dependent. The αmelt/fluid < 1 with temperatures less than about 1050 °C, and is greater than 1 at higher temperature. Methane-bearing melts can exist in the upper mantle at fO2 ≤fO2 (MW) (Mysen et al., 2011). Reduced (Csbnd H)-species in present-day upper mantle magma, therefore, are likely. During melting and crystallization in this environment, the δ13C of melts increases with temperature at a rate of ∼ 0.6 ‰ /°C. From the simple-system data presented here, at T ≤ 1050°C, melt in equilibrium with a peridotite-(CH4 +H2O +H2)-bearing mantle source will be isotopically lighter than fluid. At higher temperatures, melts will be isotopically heavier. Degassing at T ≤ 1050°C will shift δ13C of degassed magma to more positive values, whereas degassing at T ≥ 1050°C, will reduce the δ13C of the degassed magma.

  19. Fe behavior in iron-bearing phonolitic and pantelleritic melts and its significance for magma dynamics in the volcanic conduits

    Science.gov (United States)

    Borovkov, Nikita; Hess, Kai-Uwe; Fehr, Karl-Thomas; Cimarelli, Corrado; Dingwell, Donald Bruce

    2014-05-01

    The style of volcanic eruptions is determined entirely by dynamics of magma ascent in conduits. Physical properties of a silicate melt, particulary viscosity, are responsible for fragmentation processes, bubble growth and their ascent, which are in their turn related to explosivity of eruptions. Therefore, comprehension of the macroscopic properties of silicate melts is required for adequate conduit modelling. Considering eruptions of Mt. Vesuvius, Italy, we observe that eruption style varies from strombolian to plinean and sub-plinean which is related to the changes of melts viscosity in conduits. At Vesuvius the composition of volcanic deposits (III phase) is mainly phonolitic with 5 - 8 wt. % FeO. Fe changes the valence and coordination depending on oxidation state. The changing of iron coordination causes increasing or decreasing viscosity because of the presence of higher or lower amounts of Fe species coordinated with stronger covalence bonds. Mossbauer spectra of iron-bearing natural pantelleritic and phonolitic glasses were studied to get data on speciation and coordination state of iron. Mössbauer spectroscopy measures hyperfine interactions (isomer shift (IS)) and quadrupole splitting (QS)) at Fe atoms embedded in glass structure, which provide the amount of ferric and ferrous iron and their coordination state depending on Redox conditions. Based on these data, we have considered redox-viscosity relationships and also iron coordination effects on viscosity of both mentioned natural melt compositions. For glasses, due to short range order, the Mössbauer spectra were fitted using mathematical procedures based on functional analysis (extended Voight lineshape included in "Recoil" and "Mosslab" software). Mössbauer spectra are deconvoluted in two sites: ferrous iron (IS=0,79-1,00 mm/s; QS= 1,78-2,25 mm/s) and ferric iron (IS=0,26-0,50 mm/s; QS= 0,75-0,95 mm/s). For both sites we observe that IS and QS gradually decrease towards more oxidized conditions

  20. Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium-titanium magnetite

    Institute of Scientific and Technical Information of China (English)

    Xiang-xin Xue

    2016-01-01

    The effect of sinter with different MgO contents on the softening–melting behavior of mixed burden made from chro-mium-bearing vanadium–titanium magnetite was investigated. The results show that with increasing MgO content in the sinter, the softening interval and melting interval increased and the location of the cohesive zone shifted downward slightly and became moderately thicker. The softening–melting characteristic value was less pronounced when the MgO content in the sinter was 2.98wt%–3.40wt%. Increasing MgO content in the sinter reduced the content and recovery of V and Cr in the dripped iron. In addition, greater MgO contents in the sinter resulted in the generation of greater amounts of high-melting-point components, which adversely affected the permeability of the mixed burden. When the softening–melting behavior of the mixed burden and the recovery of valuable elements were taken into account, proper MgO con-tents in the sinter and slag ranged from 2.98wt% to 3.40wt% and from 11.46wt% to 12.72wt%, respectively, for the smelting of burden made from chromium-bearing vanadium–titanium magnetite in a blast furnace.

  1. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes

    Science.gov (United States)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Massonne, Hans-Joachim; Langone, Antonio; Visonà, Dario

    2015-08-01

    Kyanite-bearing migmatitic paragneiss of the lower Greater Himalayan Sequence (GHS) in the Kali Gandaki transect (Central Himalaya) was investigated. In spite of the intense shearing, it was still possible to obtain many fundamental information for understanding the processes active during orogenesis. Using a multidisciplinary approach, including careful meso- and microstructural observations, pseudosection modelling (with PERPLE_X), trace element thermobarometry and in situ monazite U-Th-Pb geochronology, we constrained the pressure-temperature-time-deformation path of the studied rock, located in a structural key position. The migmatitic gneiss has experienced protracted prograde metamorphism after the India-Asia collision (50-55 Ma) from ~ 43 Ma to 28 Ma. During the late phase (36-28 Ma) of this metamorphism, the gneiss underwent high-pressure melting at "near peak" conditions (710-720 °C/1.0-1.1 GPa) leading to kyanite-bearing leucosome formation. In the time span of 25-18 Ma, the rock experienced decompression and cooling associated with pervasive shearing reaching P-T conditions of 650-670 °C and 0.7-0.8 GPa, near the sillimanite-kyanite transition. This time span is somewhat older than previously reported for this event in the study area. During this stage, additional, but very little melt was produced. Taking the migmatitic gneiss as representative of the GHS, these data demonstrate that this unit underwent crustal melting at about 1 GPa in the Eocene-Early Oligocene, well before the widely accepted Miocene decompressional melting related to its extrusion. In general, kyanite-bearing migmatite, as reported here, could be linked to the production of the high-Ca granitic melts found along the Himalayan belt.

  2. Tooling Converts Stock Bearings To Custom Bearings

    Science.gov (United States)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  3. Influence of processing medium on frictional wear properties of ball bearing steel prepared by laser surface melting coupled with bionic principles

    International Nuclear Information System (INIS)

    Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel.

  4. Influence of processing medium on frictional wear properties of ball bearing steel prepared by laser surface melting coupled with bionic principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hong, E-mail: wangct08@mails.jlu.edu.c [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Chengtao [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Faw-Volkswagen Automotive Company Ltd., Changchun 130011 (China); Guo Qingchun [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Brilliance Automobile Engineering Research Institute, Shenyang 110141 (China); Yu Jiaxiang [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Mingxing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190 (China); Liao Xunlong [Technical Management Department, CNNC China Zhongyuan Engineering Corp. Ltd., No 487 Tianlin Road, Shanghai 200233 (China); Zhao Yu [School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Ren Luquan [Key Lab of Terrain Machinery Bionics Engineering, Ministry of Education, Jilin University, Changchun 130025 (China)

    2010-09-03

    Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel.

  5. Hardware malware

    CERN Document Server

    Krieg, Christian

    2013-01-01

    In our digital world, integrated circuits are present in nearly every moment of our daily life. Even when using the coffee machine in the morning, or driving our car to work, we interact with integrated circuits. The increasing spread of information technology in virtually all areas of life in the industrialized world offers a broad range of attack vectors. So far, mainly software-based attacks have been considered and investigated, while hardware-based attacks have attracted comparatively little interest. The design and production process of integrated circuits is mostly decentralized due to

  6. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge

    Science.gov (United States)

    Jégo, Sébastien; Dasgupta, Rajdeep

    2013-06-01

    To constrain the sulfur enrichment of arc magma source-regions and the agent of sulfur transport from subducting slab to mantle wedge, here we report experimental measurements of sulfur content at sulfide saturation (SCSS) of slab-derived hydrous partial melts at 2.0 and 3.0 GPa and from 800 to 1050 °C, using Ni-NiO (NNO) and Co-CoO (CCO) external oxygen fugacity (fO2) buffers. A synthetic H2O-saturated MORB with 1 wt.% S (added as pyrite) was used as starting material. All experiments produced pyrrhotite- and fluid-saturated assemblages of silicate glass, clinopyroxene, garnet, quartz, and rutile (plus amphibole at 2 GPa/800 °C and phengite at 3 GPa/850 °C). The silicate partial melt composition evolves from rhyolitic to rhyodacitic compositions with increasing temperature and melting degree in equilibrium with an eclogitic residue, showing substantial decrease in SiO2 and Mg# and increase in FeOT, TiO2 and Na2O. At all temperatures melt sulfur concentrations are very low, with an average of 110 ± 50 ppm S, similar to previous measurements at lower pressures. Melt SCSS appears to be mainly controlled by the melt composition, the activity of water, aH2O and the sulfur fugacity, fS2 (calculated from the composition of pyrrhotite). Mass-balance calculations show that the proportion of bulk sulfur dissolved in the silicate melt is negligible (<0.005 wt.% of the bulk sulfur). In contrast, diminishing proportion of pyrrhotite with increasing temperature suggests that the fluid phase at equilibrium may contain as much as 10-15 wt.% S at ⩾1050 °C, and more than 40 wt.% of the bulk sulfur initially present in the slab may be transferred to the aqueous fluid. Our data also suggest that fluid/melt sulfur partitioning increases with increasing temperature, from ˜300 at 900 °C to ˜1200 at 1050 °C, whereas pressure appears to have less of an effect. With respect to fO2, no real difference of fluid/melt S partitioning, within data uncertainties, between NNO and CCO at

  7. Hardware Implementation of AES

    Directory of Open Access Journals (Sweden)

    Aakrati Chaturvedi

    2014-01-01

    Full Text Available The Advanced Encryption Standard algorithm can be efficiently programmed in software and implemented in hardware. Field Programmable Gate Array (FPGA devices are considered as efficient and cost effective solution for hardware. This research is in context to efficient hardware implementation of AES algorithm with language platform as VHDL (Very High Speed Integrated Circuit Hardware Description language. This research is in context to efficient hardware implementation of AES algorithm with 128-192-256 key all in one module with language platform as VHDL (Very High Speed Integrated Circuit Hardware Description language. The software part has been created, processed and simulated through Xilinx ISE 9.2. A compact design approach has been chosen to implement the algorithm with minimal hardware. As for hardware, Spartan 3AN family device (XC3S700A device is used

  8. Introduction to Hardware Security

    Directory of Open Access Journals (Sweden)

    Yier Jin

    2015-10-01

    Full Text Available Hardware security has become a hot topic recently with more and more researchers from related research domains joining this area. However, the understanding of hardware security is often mixed with cybersecurity and cryptography, especially cryptographic hardware. For the same reason, the research scope of hardware security has never been clearly defined. To help researchers who have recently joined in this area better understand the challenges and tasks within the hardware security domain and to help both academia and industry investigate countermeasures and solutions to solve hardware security problems, we will introduce the key concepts of hardware security as well as its relations to related research topics in this survey paper. Emerging hardware security topics will also be clearly depicted through which the future trend will be elaborated, making this survey paper a good reference for the continuing research efforts in this area.

  9. Hardware removal - extremity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007644.htm Hardware removal - extremity To use the sharing features on this page, please enable JavaScript. Surgeons use hardware such as pins, plates, or screws to help ...

  10. Amphibole—Bearing Peridotite Xenoliths from Nushan,Anhui Province:Evidence for Melt Percolation Process in the Upper mantle and Lithospheric uplift

    Institute of Scientific and Technical Information of China (English)

    徐义刚; J.C.MERCIER

    1997-01-01

    The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan,Anhui province,can be classified as two suites:a hydrous suite characterized by the ubiquitous occurrence of (Ti-) pargasite and an anhydrous suite.The nineral chemistry reveals that the anhydrous suite and one associated phlogopite-bearing lherzolite are equilibrated under temperature conditions of 1000-1100℃,whereas amplhibole-bearing peridotites display distinct disequilibrum features,indicating partial reequilibration from 1050 to 850℃ and locally down to 750℃. The amplhbole-bearing peridotites were probably the uppermost part of the high temperature anhydrous suite which was modally modifed by fractionating H2O-rich metasomatic agent during regional upwelling.This relatively recent lithospheric uplift event followed an older uplift event recognized from pyroxene unmixing of domains in local equilibrium,as well as the dominant deformation texture in the anhydrous suite.The first thermal disturbance can be linked with the regional extension and widespread basaltic volcanism in Jiangsu-Anhui provinces since Early Tertiary and the formation of the nearby Subei(North Jiangsu) fault-depression basin during the Eocene,while the second event in association with the formation of amphiboles probably indicates the continuation but diminution of upwared mantle flux since Neogene in response to the change in tectonic regime for eastern china.

  11. Carbon Solubility in Core Melts in Shallow Magma Ocean Environment and its bearing on Distribution of Carbon between Deep Earth Reservoirs

    Science.gov (United States)

    Dasgupta, R.; Walker, D.

    2007-12-01

    Carbon affects the melting phase relations of mantle rocks [1] and core metal [2], influences the physical properties of molten silicates and metals, and also has significant effect on partitioning of other key elements between various deep Earth phases. But the carbon budget of Earth's deep mantle and core is poorly constrained due to lack of knowledge of behavior of carbon during core formation. In order to determine the storage capacity of dissolved carbon in metallic core melts and to put constraints on partitioning of carbon between silicate mantle and metallic core, we have determined the solubility of carbon in molten core metal at P- T conditions relevant for a shallow magma ocean.Experiments are performed at 2 GPa and to 2500 °C using a piston cylinder apparatus. Pure Fe-rod or a mixture of Fe-5.2%Ni loaded into graphite capsules were used as starting materials. Al coated run products are analyzed by EMP. Carbon concentration of 5.8 ± 0.4 wt.% at 2000 °C, 6.5 ± 0.9 wt.% at 2250 °C, and 7.5 ± 1.2 wt.% at 2500 °C are measured in quenched iron melt saturated with graphite. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to that of pure Fe.We have compared our solubility data and an estimate of the current carbon content of the mantle with the carbon content of core melts and residual mantle silicates respectively, derived from equilibrium batch or fractional segregation of core liquids, to constrain the partition coefficient of carbon between silicate and metallic melts in a magma ocean, DC. Translation of the limits of DC, derived from our solubility data, on calculation of carbon content of the residual silicate shows that the observed mantle concentration of carbon is too low to be matched by the process of shallow magma ocean fractionation of carbon between metal and silicate in a chondritic protoearth. If carbon solubility in liquid Fe does not change strongly as a function of

  12. Open Hardware Business Models

    OpenAIRE

    Edy Ferreira

    2008-01-01

    In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  13. Open Hardware Business Models

    Directory of Open Access Journals (Sweden)

    Edy Ferreira

    2008-04-01

    Full Text Available In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  14. Silicate-salt(sulfate) liquid immiscibility: a study of melt inclusions in minerals of the Mushugai-Khuduk carbonatite-bearing complex ( southern Mongolia )%硅酸盐-盐(硫酸盐)流体不混溶:蒙古南部Mushugai-Khuduk含火成碳酸岩杂岩体矿物中的熔体包裹体研究

    Institute of Scientific and Technical Information of China (English)

    Irina A.Andreeva; Vyacheslav I.Kovalenko; Vladimir B.Naumov

    2007-01-01

    Crystalline and melt inclusions were studied in garnet, diopside, potassium feldspar, and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk, southern Mongolia. Phlogopite, clinopyroxene, albite, potassium feldspar, sphene, wollastonite, magnetite, Ca and Sr sulfates, fluorite, and apatite were identified among the crystalline inclusions.The melt inclusions were homogenized at 1010 ~ 1080℃ and analyzed on an electron microprobe. Silicate, salt, and combined silicatesalt melt inclusions were found. Silicate melts show considerable variations in SiO2 concentration (56 to 66wt% ), high Na2O + K2O(up to 17wt% ), and elevated Zr, F, and Cl contents. In terms of bulk rock chemistry, the silicate melts are alkali syenites. During thermometric experiments, salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO2. These melts are enriched in alkalis, Ba, Sr, P, F, and Cl. The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt (sulfate)liquids.

  15. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  16. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  17. Hardware description languages

    Science.gov (United States)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  18. SOM Hardware-Accelerator

    OpenAIRE

    Rüping, Stefan; Porrmann, Mario; Rückert, Ulrich

    1997-01-01

    Many applications of Selforganizing Feature Maps (SOMs) need a high performance hardware system in order to be efficient. Because of the regular and modular structure of SOMs , a hardware realization is obvious. Based on the idea of a massively parallel system, several chips have been designed, manufactured and tested by the authors. In this paper a high performance system with the latest NBISOM_25 chips is presented. The NBISOM_25 integrated circuit contains 25 processing elements in a 5 by ...

  19. Using Low Melting Point Oil-bearing Wax to Produce Quality Paraffin with an Appropriate Process%利用低熔点含油蜡选择适当生产工艺生产优质石蜡

    Institute of Scientific and Technical Information of China (English)

    冯韬

    2012-01-01

    文章介绍了利用酮苯脱蜡装置的富裕低熔点蜡为主要原料,结合利用减四线含油蜡,采用发汗窄馏分切割脱油工艺与溶剂脱油工艺对原料进行预处理,联合白土精制工艺生产优质半精炼蜡。叙述了原料的来源、实验室产品试制和装置生产全过程。%The paper described utilizing excess low melting point wax of the Butanone-Toluene de-waxing device as main raw material,selecting the oil-bearing wax paste of VGO No.4 as another component,adopting sweating process and solvent de-oiling process to deal with the materials,combining clay refining process to manufacture quality Semi-refined paraffin wax.The paper described the source of raw materials,trial manufacturing of laboratory products and devices of the whole production process also.

  20. Melting of Ice under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  1. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  2. Hardware Objects for Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Thalinger, Christian; Korsholm, Stephan;

    2008-01-01

    Java, as a safe and platform independent language, avoids access to low-level I/O devices or direct memory access. In standard Java, low-level I/O it not a concern; it is handled by the operating system. However, in the embedded domain resources are scarce and a Java virtual machine (JVM) without...... an underlying middleware is an attractive architecture. When running the JVM on bare metal, we need access to I/O devices from Java; therefore we investigate a safe and efficient mechanism to represent I/O devices as first class Java objects, where device registers are represented by object fields. Access...... to those registers is safe as Java’s type system regulates it. The access is also fast as it is directly performed by the bytecodes getfield and putfield. Hardware objects thus provide an object-oriented abstraction of low-level hardware devices. As a proof of concept, we have implemented hardware objects...

  3. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  4. RRFC hardware operation manual

    International Nuclear Information System (INIS)

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  5. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    International Nuclear Information System (INIS)

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  6. Sterilization of space hardware.

    Science.gov (United States)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  7. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  8. DCSP hardware maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Pazmino, M.

    1995-11-01

    This paper discusses the necessary changes to be implemented on the hardware side of the DCSP database. DCSP is currently tracking hardware maintenance costs in six separate databases. The goal is to develop a system that combines all data and works off a single database. Some of the tasks that will be discussed in this paper include adding the capability for report generation, creating a help package and preparing a users guide, testing the executable file, and populating the new database with data taken from the old database. A brief description of the basic process used in developing the system will also be discussed. Conclusions about the future of the database and the delivery of the final product are then addressed, based on research and the desired use of the system.

  9. Spent fuel assembly hardware

    International Nuclear Information System (INIS)

    When spent nuclear fuel is disposed of in a repository, the waste package will include the spent fuel assembly hardware, the structural portion of the fuel assembly, and the fuel pins. The spent fuel assembly hardware is the subject of this paper. The basic constituent parts of the fuel assembly will be described with particular attention on the materials used in their construction. The results of laboratory analyses performed to determine radionuclide inventories and trace impurities also will be described. Much of this work has been incorporated into a US Department of Energy (DOE) database maintained by Oak Ridge National Laboratory (ORNL). This database is documented in DOE/RW-0184 and can be obtained from Karl Notz at ORNL. The database provides a single source for information regarding wastes that may be sent to the repository

  10. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubble...

  11. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  12. Open hardware for open science

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  13. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  14. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  15. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  16. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  17. Hardware assisted hypervisor introspection.

    Science.gov (United States)

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system. PMID:27330913

  18. Hardware multiplier processor

    Science.gov (United States)

    Pierce, Paul E.

    1986-01-01

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  19. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  20. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; Partridge, Harry; Sherman, Aaron; McCabe, Mary

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware

  1. Secure coupling of hardware components

    NARCIS (Netherlands)

    Knobbe, J.W.; Hoepman, J.H.; Joosten, H.J.M.

    2011-01-01

    A method and a system for securing communication between at least a first and a second hardware components of a mobile device is described. The method includes establishing a first shared secret between the first and the second hardware components during an initialization of the mobile device and, f

  2. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...

  3. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  4. Hardware Evolution of Control Electronics

    Science.gov (United States)

    Gwaltney, David; Steincamp, Jim; Corder, Eric; King, Ken; Ferguson, M. I.; Dutton, Ken

    2003-01-01

    The evolution of closed-loop motor speed controllers implemented on the JPL FPTA2 is presented. The response of evolved controller to sinusoidal commands, controller reconfiguration for fault tolerance,and hardware evolution are described.

  5. NDAS Hardware Translation Layer Development

    Science.gov (United States)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  6. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  7. Carburized Bearing Steel 20Cr2Ni4A Melting with EAF%电弧炉冶炼20Cr2Ni4A渗碳轴承钢

    Institute of Scientific and Technical Information of China (English)

    吴耀光

    2001-01-01

    开发了用10t-EAF熔炼20Cr2Ni4A渗碳轴承钢的工艺过程.结果表明,在合理的试验条件下,能获得电解杂质总量合格的产品,因此,单一电弧炉冶炼是可行的.%The development of the carburized bearing steel 20Cr2Ni4A with 10 t EAF, was introduced. The results show that the fiuishing product, with and lower inclusion content, was producted by the single Electro ARC Furnace.

  8. Raspberry Pi hardware projects 1

    CERN Document Server

    Robinson, Andrew

    2013-01-01

    Learn how to take full advantage of all of Raspberry Pi's amazing features and functions-and have a blast doing it! Congratulations on becoming a proud owner of a Raspberry Pi, the credit-card-sized computer! If you're ready to dive in and start finding out what this amazing little gizmo is really capable of, this ebook is for you. Taken from the forthcoming Raspberry Pi Projects, Raspberry Pi Hardware Projects 1 contains three cool hardware projects that let you have fun with the Raspberry Pi while developing your Raspberry Pi skills. The authors - PiFace inventor, Andrew Robinson and Rasp

  9. Flywheel energy storage with superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  10. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  11. Commodity hardware and software summary

    Energy Technology Data Exchange (ETDEWEB)

    Wolbers, S.

    1997-04-01

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC`s for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given.

  12. Modular hardware synthesis using an HDL. [Hardware Description Language

    Science.gov (United States)

    Covington, J. A.; Shiva, S. G.

    1981-01-01

    Although hardware description languages (HDL) are becoming more and more necessary to automated design systems, their application is complicated due to the difficulty in translating the HDL description into an implementable format, nonfamiliarity of hardware designers with high-level language programming, nonuniform design methodologies and the time and costs involved in transfering HDL design software. Digital design language (DDL) suffers from all of the above problems and in addition can only by synthesized on a complete system and not on its subparts, making it unsuitable for synthesis using standard modules or prefabricated chips such as those required in LSI or VLSI circuits. The present paper presents a method by which the DDL translator can be made to generate modular equations that will allow the system to be synthesized as an interconnection of lower-level modules. The method involves the introduction of a new language construct called a Module which provides for the separate translation of all equations bounded by it.

  13. Scaling Laws for Melting Ice Avalanches

    Science.gov (United States)

    Turnbull, B.

    2011-12-01

    This Letter describes an investigation of interfacial melting in ice-bearing granular flows. It is proposed that energy associated with granular collisions causes melting at an ice particle’s surface, which can thus occur at temperatures well below freezing. A laboratory experiment has been designed that allows quantification of this process and its effect on the dynamics of a granular shear flow of ice spheres. This experiment employs a rotating drum, half filled with ice particles, situated in a temperature controlled laboratory. Capillary forces between the wetted melted particle surfaces lead to the clumping of particles and enhanced flow speeds, in turn leading to further melting. Dimensional analysis defines a parameter space for further experimentation.

  14. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  15. Hardware-Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  16. IRST system: hardware implementation issues

    Science.gov (United States)

    Deshpande, Suyog D.; Chan, Philip; Ser, W.; Venkateswarlu, Ronda

    1999-07-01

    Generally, Infrared Search and Track systems use linear focal-plane-arrays with time-delay and integration, because of their high sensitivity. However, the readout is a cumbersome process and needs special effort. This paper describes signal processing and hardware (HW) implementation issues related to front-end electronics, non-uniformity compensation, signal formatting, target detection, tracking and display system. This paper proposes parallel pipeline architecture with dedicated HW for computationally intensive algorithms and SW intensive DSP HW for reconfigurable architecture.

  17. Generic Hardware Architectures for Sampling and Resampling in Particle Filters

    Directory of Open Access Journals (Sweden)

    Petar M. Djurić

    2005-10-01

    Full Text Available Particle filtering is a statistical signal processing methodology that has recently gained popularity in solving several problems in signal processing and communications. Particle filters (PFs have been shown to outperform traditional filters in important practical scenarios. However their computational complexity and lack of dedicated hardware for real-time processing have adversely affected their use in real-time applications. In this paper, we present generic architectures for the implementation of the most commonly used PF, namely, the sampling importance resampling filter (SIRF. These provide a generic framework for the hardware realization of the SIRF applied to any model. The proposed architectures significantly reduce the memory requirement of the filter in hardware as compared to a straightforward implementation based on the traditional algorithm. We propose two architectures each based on a different resampling mechanism. Further, modifications of these architectures for acceleration of resampling process are presented. We evaluate these schemes based on resource usage and latency. The platform used for the evaluations is the Xilinx Virtex II pro FPGA. The architectures presented here have led to the development of the first hardware (FPGA prototype for the particle filter applied to the bearings-only tracking problem.

  18. Hunting for hardware changes in data centres

    International Nuclear Information System (INIS)

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  19. LaRC Thermoplastic Hardware

    Science.gov (United States)

    1994-01-01

    LaRC/Graphite molded parts. These two parts are examples of self lubrication thermoplastic graphite filled parts. One is a piston ring which could find use in an oiless compressor or pump, the other part is a thrust bearing. These parts have softening points approaching 250 degrees C and are suitable for use at elevated temperatures in harsh environments.

  20. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  1. GENI: Grid Hardware and Software

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  2. Laser photography system: hardware configuration

    Science.gov (United States)

    Piszczek, Marek; Rutyna, Krzysztof; Kowalski, Marcin; Zyczkowski, Marek

    2012-06-01

    Solution presented in this article is a system using image acquisition time gating method. The time-spatial framing method developed by authors was used to build Laser Photography System (LPS). An active vision system for open space monitoring and terrorist threats detection is being built as an effect of recent work lead in the Institute of Optoelectronics, MUT. The device is destined to prevent and recognize possible terrorist threats in important land and marine areas. The aim of this article is to discuss the properties and hardware configuration of the Laser Photography System.

  3. 16 CFR 1508.6 - Hardware.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hardware. 1508.6 Section 1508.6 Commercial... FULL-SIZE BABY CRIBS § 1508.6 Hardware. (a) A crib shall be designed and constructed in a manner that eliminates from any hardware accessible to a child within the crib the possibility of the...

  4. 16 CFR 1509.7 - Hardware.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hardware. 1509.7 Section 1509.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.7 Hardware. (a) The hardware in a non-full-size baby crib shall...

  5. High exposure hardware removal activity readiness evaluation

    International Nuclear Information System (INIS)

    This document comprises the Readiness Evaluation Plan for the High Exposure Rate Hardware (HERH) Removal Activity planned for the N Basin area at the Hanford Reservation in Richland Washington. This activity will consist of collecting hardware, depositing hardware in stainless-steel fuel element storage baskets, placing baskets in specially fabricated steel grout pipe, and encasing the contents in a high-slump grout

  6. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  7. Hardware complications in scoliosis surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Kaushik; Mohaideen, Ahamed [Department of Orthopaedic Surgery and Musculoskeletal Services, Maimonides Medical Center, Brooklyn, NY (United States); Thomson, Jeffrey D. [Connecticut Children' s Medical Center, Department of Orthopaedics, Hartford, CT (United States); Foley, Christopher L. [Department of Radiology, Connecticut Children' s Medical Center, Hartford, Connecticut (United States)

    2002-07-01

    Background: Scoliosis surgery has undergone a dramatic evolution over the past 20 years with the advent of new surgical techniques and sophisticated instrumentation. Surgeons have realized scoliosis is a complex multiplanar deformity that requires thorough knowledge of spinal anatomy and pathophysiology in order to manage patients afflicted by it. Nonoperative modalities such as bracing and casting still play roles in the treatment of scoliosis; however, it is the operative treatment that has revolutionized the treatment of this deformity that affects millions worldwide. As part of the evolution of scoliosis surgery, newer implants have resulted in improved outcomes with respect to deformity correction, reliability of fixation, and paucity of complications. Each technique and implant has its own set of unique complications, and the surgeon must appreciate these when planning surgery. Materials and methods: Various surgical techniques and types of instrumentation typically used in scoliosis surgery are briefly discussed. Though scoliosis surgery is associated with a wide variety of complications, only those that directly involve the hardware are discussed. The current literature is reviewed and several illustrative cases of patients treated for scoliosis at the Connecticut Children's Medical Center and the Newington Children's Hospital in Connecticut are briefly presented. Conclusion: Spine surgeons and radiologists should be familiar with the different types of instrumentation in the treatment of scoliosis. Furthermore, they should recognize the clinical and roentgenographic signs of hardware failure as part of prompt and effective treatment of such complications. (orig.)

  8. Travel Software using GPU Hardware

    CERN Document Server

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  9. Electronic processing and control system with programmable hardware

    Science.gov (United States)

    Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)

    1998-01-01

    A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.

  10. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential.However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and ...

  11. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile; Beale, R

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential. However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and...

  12. Hardware Implementation of Singular Value Decomposition

    Science.gov (United States)

    Majumder, Swanirbhar; Shaw, Anil Kumar; Sarkar, Subir Kumar

    2016-06-01

    Singular value decomposition (SVD) is a useful decomposition technique which has important role in various engineering fields such as image compression, watermarking, signal processing, and numerous others. SVD does not involve convolution operation, which make it more suitable for hardware implementation, unlike the most popular transforms. This paper reviews the various methods of hardware implementation for SVD computation. This paper also studies the time complexity and hardware complexity in various methods of SVD computation.

  13. Electronic hardware implementations of neutral networks

    Science.gov (United States)

    Thakoor, A. P.; Moopenn, A.; Lambe, John; Khanna, S. K.

    1987-01-01

    This paper examines some of the present work on the development of electronic neural network hardware. In particular, the investigations currently under way at JPL on neural network hardware implementations based on custom VLSI technology, novel thin film materials, and an analog-digital hybrid architecture are reviewed. The availability of such hardware will greatly benefit and enhance the present intense research effort on the potential computational capabilities of highly parallel systems based on neural network models.

  14. Hardware Trojan Horses in Cryptographic IP Cores

    OpenAIRE

    Bhasin, Shivam; Danger, Jean-Luc; Guilley, Sylvain; Ngo, Xuan Thuy; Sauvage, Laurent

    2013-01-01

    International audience Detecting hardware trojans is a difficult task in general. In this article we study hardware trojan horses insertion and detection in cryptographic intellectual property (IP) blocks. The context is that of a fabless design house that sells IP blocks as GDSII hard macros, and wants to check that final products have not been infected by trojans during the foundry stage. First, we show the efficiency of a medium cost hardware trojans detection method if the placement or...

  15. Implementation of Hardware Accelerators on Zynq

    DEFF Research Database (Denmark)

    Toft, Jakob Kenn

    processors, which has made hardware accelerators an essential part of several datacentres and the worlds fastest super-computers. In this work, two different hardware accelerators were implemented on a Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two accelerators are based on two different...... of the ARM Cortex-9 processor featured on the Zynq SoC, with regard to execution time, power dissipation and energy consumption. The implementation of the hardware accelerators were successful. Use of the Monte Carlo processor resulted in a significant increase in performance. The Telco hardware accelerator...

  16. An Algebraic Hardware/Software Partitioning Algorithm

    Institute of Scientific and Technical Information of China (English)

    秦胜潮; 何积丰; 裘宗燕; 张乃孝

    2002-01-01

    Hardware and software co-design is a design technique which delivers computer systems comprising hardware and software components. A critical phase of the co-design process is to decompose a program into hardware and software. This paper proposes an algebraic partitioning algorithm whose correctness is verified in program algebra. The authors introduce a program analysis phase before program partitioning and develop a collection of syntax-based splitting rules. The former provides the information for moving operations from software to hardware and reducing the interaction between components, and the latter supports a compositional approach to program partitioning.

  17. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Madsen, Jan; Knudsen, Peter Voigt

    1998-01-01

    This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...... as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search...

  18. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...... as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search....

  19. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  20. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  1. Maintenance Free Bearings

    OpenAIRE

    S. M. Muzakkir & Harish Hirani

    2015-01-01

    In the present research work the need of a Maintenance Free Bearings (MFB) is established. The paper presents preliminary friction calculations to highlight the ways to achieve maintenance free bearings. The existing technologies of well established maintenance free bearings are described. The hybridization of bearing technologies to achieve low cost maintenance free bearings has been exemplified. Finally a combination of passive magnetic repulsion and hydrodynamics ha...

  2. HSX hardware, control and diagnostics

    International Nuclear Information System (INIS)

    The HSX Helically Symmetric Stellarator has been operational for the last year, making plasmas at 0.5T using 28 GHz ECH. During this phase of operation, hardware, machine diagnostics, and plasma diagnostics have been continually implemented to improve machine operation and control, and plasma diagnostic capabilities. This paper will provide and overview of the basic machine control concepts, some details of the He glow discharge cleaning methods used to provide density control under plasma operation, and some details of the LabViewR (National Instruments) and SLC interfaced machine control, timing and diagnostics. Low-level machine operation (coil deflection, ground currents, vacuum base pressures and contaminants, etc.), motor generator, Gyrotron, coil cooling and temperature monitoring is also performed using the LabView/SLC combination; more of which is planned for the ensuing months. Diagnostic implementation, from 288 GHz microwave interferometer, diamagnetic loop signals, optical and x-ray diagnostics, probes, etc., are primarily interfaced using LabView A/D, digital and analog I/O, and timing cards controlled by PC computers: all of which save the data to a PC based data storage site. A ten-chord fir Thomson Scattering system and a multichannel ECE system are under construction for operation in the near future, again with primary control and data interface planned for incorporation into the PC based system. A SQL database is currently under implementation to improve overall data searching capabilities and accessibility, and to facilitate data backup and protection. Both MatLabR and IDLR are currently used for data analysis and presentation, which will be maintained through the database implementation. Copyright (2002) Australian National University- Research School of Physical Sciences and Engineering

  3. Tinker's Toys: Lessons from Bank Street: Hardware.

    Science.gov (United States)

    Tinker, Robert

    1985-01-01

    Bank Street Laboratory (a set of hardware/software tools for measuring temperature, light, and sound) consists of a board that plugs into Apple microcomputers, cabling, software, and six probes. Discusses the laboratory's hardware, including the analog-to-digital converter, multiplier chip, and modular connectors. Circuit diagrams of components…

  4. Relational algebra as formalism for hardware design

    NARCIS (Netherlands)

    Berg, ten A.J.W.M.; Huijs, C.; Krol, Th.

    1993-01-01

    This paper introduces relational algebra as an elegant formalism to describe hardware behaviour. Hardware behaviour is modelled by functions that are represented by sets of tables. Relational algebra, developed for designing large and consistent databases is capable to operate on sets of tables and

  5. Computer hardware description languages - A tutorial

    Science.gov (United States)

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  6. Returned Solar Max hardware degradation study results

    International Nuclear Information System (INIS)

    The Solar Maximum Repair Mission returned with the replaced hardware that had been in low Earth orbit for over four years. The materials of this returned hardware gave the aerospace community an opportunity to study the realtime effects of atomic oxygen, solar radiation, impact particles, charged particle radiation, and molecular contamination. The results of these studies are summarized

  7. NPSAT1 attitude control subsystem hardware-in-the-loop simulation

    OpenAIRE

    Schmidt, Alexander

    2003-01-01

    NPSAT1 is a three-axis stabilized spacecraft. Its Attitude Control Subsystem (ACS) uses a magnetic control approach that will be used for the first time. The Magnetic control approach is verified with an ACS SIMULINK model of NPSAT1. The correct SIMULINK implementation of the magnetic control algorithm will be verified with an ACS air bearing SIMULINK model and a hardware-embedded ACS control algorithm SIMULINK model that controls the test platform on a spherical air bearing table. This is a ...

  8. Space shuttle main engine hardware simulation

    Science.gov (United States)

    Vick, H. G.; Hampton, P. W.

    1985-01-01

    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME.

  9. Mobile Melt-Dilute Technology Development Project FY 2005 Test Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sell; Donald Fisher

    2006-01-01

    The adaptation of Melt-Dilute technology to a mobile and deployable platform progressed with the installation of the prototype air-cooled induction furnace and power generator in an ISO cargo container. Process equipment tests were conducted in FY’05 on two fronts: the melt container and its associated hardware and the mobile furnace and generator. Container design was validated through tests at elevated temperature and pressure, under vacuum, and subjected to impact. The Mobile Melt-Dilute (MMD) furnace and power source tests were completed per the plan. The tests provided information necessary to successfully melt and dilute HEU research reactor fuel assemblies.

  10. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  11. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano

    Science.gov (United States)

    Yu, Xun; Lee, Cin-Ty A.

    2016-09-01

    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from 30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of dikes, which individually cannot be resolved by seismic studies.

  12. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  13. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...

  14. Hardware device binding and mutual authentication

    Science.gov (United States)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  15. Programmable hardware for reconfigurable computing systems

    Science.gov (United States)

    Smith, Stephen

    1996-10-01

    In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.

  16. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  17. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K

    2002-01-01

    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  18. IDD Archival Hardware Architecture and Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  19. A High Performance SOFM Hardware-System

    OpenAIRE

    Rüping, Stefan; Porrmann, Mario; Rückert, Ulrich

    1997-01-01

    Many applications of Selforganizing Feature Maps (SOFMs) need a high performance hardware system in order to be efficient. Because of the regular and modular structure of SOFMs, a hardware realization is obvious. Based on the idea of a massively parallel system, several chips have been designed, manufactured and tested by the authors. In this paper a high performance system with the latest NBISOM_25 chips is presented. The NBISOM_25 integrated circuit contains 25 processing elements in a 5 by...

  20. ASIC life extension through hardware patch interfaces

    OpenAIRE

    Bryksin, Vladyslav Sergeevich

    2009-01-01

    Specialized processor designs and ASICs offer lower power consumption and greater efficiency compared to general purpose processors. However, the drawback of specialized hardware designs is the reduction in the generality of workloads that they are able to handle. An important characteristic of specialized hardware designs is the inability to manage changes in the underlying applications. This thesis describes and analyzes the concept of ASIC patching in the Arsenal design: a mechanism to mit...

  1. Cooperative communications hardware, channel and PHY

    CERN Document Server

    Dohler, Mischa

    2010-01-01

    Facilitating Cooperation for Wireless Systems Cooperative Communications: Hardware, Channel & PHY focuses on issues pertaining to the PHY layer of wireless communication networks, offering a rigorous taxonomy of this dispersed field, along with a range of application scenarios for cooperative and distributed schemes, demonstrating how these techniques can be employed. The authors discuss hardware, complexity and power consumption issues, which are vital for understanding what can be realized at the PHY layer, showing how wireless channel models differ from more traditional

  2. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  3. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  4. Evolvable Hardware Based Software-Hardware Co-Designing Platform ECDP

    Institute of Scientific and Technical Information of China (English)

    TU Hang; WU Tao-jun; LI Yuan-xiang

    2005-01-01

    Based on the theories of EA (Evolutionary Algorithm) and EHW (Evolvable Hardware), we devise an EHW-based software-hardware co-designing platform ECDP, on which we provided standards for hardware system encoding and evolving operation designing, as well as circuit emulating tools. The major features of this system are: two-layer-encoding of circuit structure, off-line evolving with software emulation and the evolving of genetic program designing. With this system, we implemented the auto-designing of some software-hardware systems, like the random number generator.

  5. Symptomatic Hardware Removal After First Tarsometatarsal Arthrodesis.

    Science.gov (United States)

    Peterson, Kyle S; McAlister, Jeffrey E; Hyer, Christopher F; Thompson, John

    2016-01-01

    Severe hallux valgus deformity with proximal instability creates pain and deformity in the forefoot. First tarsometatarsal joint arthrodesis is performed to reduce the intermetatarsal angle and stabilize the joint. Dorsomedial locking plate fixation with adjunctive lag screw fixation is used because of its superior construct strength and healing rate. Despite this, questions remain regarding whether this hardware is more prominent and more likely to need removal. The purpose of the present study was to determine the incidence of symptomatic hardware at the first tarsometatarsal joint and to determine the incidence of hardware removal resulting from prominence and/or discomfort. A review of 165 medical records of consecutive patients who had undergone first tarsometatarsal joint arthrodesis with plate fixation was conducted. The outcome of interest was the incidence of symptomatic hardware removal in patients with clinical union. The mean age was 55 (range 18.4 to 78.8) years. The mean follow-up duration was 65.9 ± 34.0 (range 7.0 to 369.0) weeks. In our cohort, 25 patients (15.2%) had undergone hardware removed because of pain and irritation. Of these patients, 18 (72.0%) had a locking plate and lag screw removed, and 7 (28.0%) had crossing lag screws removed. The fixation of a first tarsometatarsal joint fusion poses a difficult situation owing to minimal soft tissue coverage and the inherent need for robust fixation to promote fusion. Hardware can become prominent postoperatively and can become painful and/or induce cutaneous compromise. The results of the present observational investigation imply that surgeons can reasonably inform patients that the incidence of symptomatic hardware removal after first tarsometatarsal arthrodesis is approximately 15% within a median duration of 9.0 months after surgery.

  6. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  7. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  8. Carbonate melts in the Earth's mantle

    Science.gov (United States)

    Gygi, F.; Caracas, R.; Cohen, R. E.

    2010-12-01

    We perform a molecular dynamics study of the properties of the carbonated silicate melts at realistic thermodynamic conditions of the Earth’s mantle. We employ the Qbox package based on a highly efficient plane wave and pseudopotentials implementation of density-functional theory. We work on three distinct compositions: Mg2SiO4, 16Mg2SiO4+CO2 and 16Mg2SiO4+MgCO3 and study the effect of the carbonization on the melt properties as well as the difference in effects between the CO2 molecule and the CO32- anionic group. We focus on the Earth-relevant isotherm at 3000K. At ambient pressure the silicon is in tetrahedral coordination as SiO4 with no polymerization between the tetrahedra. The C atoms are the most mobile in the system followed by O. The diffusion of the CO2 molecule takes place through intermediate short-lived CO32- states. In agreement with previous studies on pure magnesium silicate melts the polymerization of the tetrahedra is enhanced by pressure; the onset of the five-fold coordination of the silicon atoms occurs after 40 GPa. The thermal dilatation of the CO2-bearing fluid is 17kbars/1000K at ambient pressure and 3000K. The density differences due to the addition of CO2 and of MgCO3 to the Mg2SiO4 melts are small at ambient pressures and 3000K. Most significantly, we find that independent linear CO2 molecules at low pressures change to CO3 groups that are part of the melt structure with increasing pressure.

  9. Communication Estimation for Hardware/Software Codesign

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    This paper presents a general high level estimation model of communication throughput for the implementation of a given communication protocol. The model, which is part of a larger model that includes component price, software driver object code size and hardware driver area, is intended to be ge......This paper presents a general high level estimation model of communication throughput for the implementation of a given communication protocol. The model, which is part of a larger model that includes component price, software driver object code size and hardware driver area, is intended...... it provides a basis for decision making with respect to communication protocols/components and communication driver design in the initial design space exploration phase of a co-synthesis process where a large number of possibilities must be examined and where fast estimators are therefore necessary. The fill...... model allows for additional (money) cost, software code size and hardware area tradeoffs to be examined...

  10. A Hardware Abstraction Layer in Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Korsholm, Stephan; Kalibera, Tomas;

    2011-01-01

    Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform-independent language, delegates access...... to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this article is a proposal...... for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path...

  11. Hardware Accelerators for Elliptic Curve Cryptography

    Directory of Open Access Journals (Sweden)

    C. Puttmann

    2008-05-01

    Full Text Available In this paper we explore different hardware accelerators for cryptography based on elliptic curves. Furthermore, we present a hierarchical multiprocessor system-on-chip (MPSoC platform that can be used for fast integration and evaluation of novel hardware accelerators. In respect of two application scenarios the hardware accelerators are coupled at different hierarchy levels of the MPSoC platform. The whole system is implemented in a state of the art 65 nm standard cell technology. Moreover, an FPGA-based rapid prototyping system for fast system verification is presented. Finally, a metric to analyze the resource efficiency by means of chip area, execution time and energy consumption is introduced.

  12. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  13. Robot navigation system using intrinsic evolvable hardware

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently there has been great interest in the idea that evolvable system based on the principle of ar tifcial intelligence can be used to continuously and autonomously adapt the behaviour of physically embedded systems such as autonomous mobile robots and intelligent home devices. Meanwhile, we have seen the introduc tion of evolvable hardware(EHW): new integrated electronic circuits that are able to continuously evolve to a dapt the chages in the environment implemented by evolutionary algorithms such as genetic algorithm(GA)and reinforcement learning. This paper concentrates on developing a robotic navigation system whose basic behav iours are obstacle avoidance and light source navigation. The results demonstrate that the intrinsic evolvable hardware system is able to create the stable robotiiuc behaviours as required in the real world instead of the tra ditional hardware systems.

  14. Quantitative hardware prediction modeling for hardware/software co-design

    NARCIS (Netherlands)

    Meeuws, R.J.

    2012-01-01

    Hardware estimation is an important factor in Hardware/Software Co-design. In this dissertation, we present the Quipu Modeling Approach, a high-level quantitative prediction model for HW/SW Partitioning using statistical methods. Our approach uses linear regression between software complexity metric

  15. Optimal Synchronizability of Bearings

    OpenAIRE

    Araújo, N. A. M.; Seybold, H.; Baram, R. M.; Herrmann, H. J.; Andrade, J. S.

    2013-01-01

    Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized (bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal synchronization properties through fine tuning of the local interaction strength as a function of node degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)]. We show that, in analogy...

  16. Bear Spray Safety Program

    Science.gov (United States)

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  17. Economic impact of syndesmosis hardware removal.

    Science.gov (United States)

    Lalli, Trapper A J; Matthews, Leslie J; Hanselman, Andrew E; Hubbard, David F; Bramer, Michelle A; Santrock, Robert D

    2015-09-01

    Ankle syndesmosis injuries are commonly seen with 5-10% of sprains and 10% of ankle fractures involving injury to the ankle syndesmosis. Anatomic reduction has been shown to be the most important predictor of clinical outcomes. Optimal surgical management has been a subject of debate in the literature. The method of fixation, number of screws, screw size, and number of cortices are all controversial. Postoperative hardware removal has also been widely debated in the literature. Some surgeons advocate for elective hardware removal prior to resuming full weightbearing. Returning to the operating room for elective hardware removal results in increased cost to the patient, potential for infection or complication(s), and missed work days for the patient. Suture button devices and bioabsorbable screw fixation present other options, but cortical screw fixation remains the gold standard. This retrospective review was designed to evaluate the economic impact of a second operative procedure for elective removal of 3.5mm cortical syndesmosis screws. Two hundred and two patients with ICD-9 code for "open treatment of distal tibiofibular joint (syndesmosis) disruption" were identified. The medical records were reviewed for those who underwent elective syndesmosis hardware removal. The primary outcome measurements included total hospital billing charges and total hospital billing collection. Secondary outcome measurements included average individual patient operative costs and average operating room time. Fifty-six patients were included in the study. Our institution billed a total of $188,271 (USD) and collected $106,284 (55%). The average individual patient operating room cost was $3579. The average operating room time was 67.9 min. To the best of our knowledge, no study has previously provided cost associated with syndesmosis hardware removal. Our study shows elective syndesmosis hardware removal places substantial economic burden on both the patient and the healthcare system.

  18. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  19. Human Centered Hardware Modeling and Collaboration

    Science.gov (United States)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  20. Hardware Accelerated Sequence Alignment with Traceback

    Directory of Open Access Journals (Sweden)

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  1. Language of CTO interventions - Focus on hardware.

    Science.gov (United States)

    Mishra, Sundeep

    2016-01-01

    The knowledge of variety of chronic total occlusion (CTO) hardware and the ability to use them represents the key to success of any CTO interventions. However, the multiplicity of CTO hardware and their physical character and the terminology used by experts create confusion in the mind of an average interventional cardiologist, particularly a beginner in this field. This knowledge is available but is scattered. We aim to classify and compare the currently used devices based on their properties focusing on how physical character of each device can be utilized in a specific situation, thus clarifying and simplifying the technical discourse.

  2. Emerging melt quality control solution technologies for aluminium melt

    Institute of Scientific and Technical Information of China (English)

    Arturo Pascual, Jr

    2009-01-01

    The newly developed "MTS 1500" Melt Treatment System is performing the specifically required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing-by automated dosage of the melt treatment agents-the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor "Alspek H", a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specified and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness.This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modification and grain refinement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device "Alspek MQ" to provide foundry men better tools in meeting the increasing quality and tighter specification demand from the industry.

  3. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  4. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  5. Image Interpolation With Dedicated Digital Hardware

    Science.gov (United States)

    Hartenstein, R.; Wagner, G.; Simons, D.; Coulson, J.

    1986-01-01

    Algorithm for interpolating two-dimensional image data to change picture-element spacing implemented in dedicated digital hardware for high-speed execution. System interpolates 100 times as fast as generalpurpose computer. Image resampling occurs first along one image axis and then along other, using two interpolation devices implemented in series.

  6. The fast Amsterdam multiprocessor (FAMP) system hardware

    CERN Document Server

    Hertzberger, L O; Kieft, G; Kisielewski, B; Van Koningsveld, L; Wiggers, L W

    1981-01-01

    The architecture of a multiprocessor system is described that will be used for online filter and second stage trigger applications. The system is based on the MC68000 microprocessor from Motorola. Emphasis is paid to hardware aspects, in particular the modularity, processor communication and interfacing. (8 refs).

  7. Computer hardware for radiologists: Part I.

    Science.gov (United States)

    Indrajit, Ik; Alam, A

    2010-08-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium(®) 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration. PMID:21042437

  8. Computer hardware for radiologists: Part I

    International Nuclear Information System (INIS)

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration

  9. QCE : A Simulator for Quantum Computer Hardware

    NARCIS (Netherlands)

    Michielsen, Kristel; Raedt, Hans De

    2003-01-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.

  10. Enabling Open Hardware through FOSS tools

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Software developers often take open file formats and tools for granted. When you publish code on github, you do not ask yourself if somebody will be able to open it and modify it. We need the same freedom in the open hardware world, to make it truly accessible for everyone.

  11. Digital Hardware Design Teaching: An Alternative Approach

    Science.gov (United States)

    Benkrid, Khaled; Clayton, Thomas

    2012-01-01

    This article presents the design and implementation of a complete review of undergraduate digital hardware design teaching in the School of Engineering at the University of Edinburgh. Four guiding principles have been used in this exercise: learning-outcome driven teaching, deep learning, affordability, and flexibility. This has identified…

  12. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2003-01-01

    and that the advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  13. Computer hardware for radiologists: Part I

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM, Picture Archiving and Communication System (PACS, Radiology information system (RIS technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU, the chipset, the random access memory (RAM, the memory modules, bus, storage drives, and ports. The personnel computer (PC has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs. The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  14. Arbitrary Hardware Software Trade-Offs

    NARCIS (Netherlands)

    Middelhoek, Peter F.A.

    1995-01-01

    This paper discusses a novel transformation-based design methodology and its use in the design of complex programmable VLSI systems. During the life-cycle of a complex system, the optimal trade-off between partially implementing in hardware or software is changing. This is due to varying system requ

  15. Microprocessor Design Using Hardware Description Language

    Science.gov (United States)

    Mita, Rosario; Palumbo, Gaetano

    2008-01-01

    The following paper has been conceived to deal with the contents of some lectures aimed at enhancing courses on digital electronic, microelectronic or VLSI systems. Those lectures show how to use a hardware description language (HDL), such as the VHDL, to specify, design and verify a custom microprocessor. The general goal of this work is to teach…

  16. Computer hardware for radiologists: Part I.

    Science.gov (United States)

    Indrajit, Ik; Alam, A

    2010-08-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium(®) 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  17. A mathematical approach towards hardware design

    NARCIS (Netherlands)

    Smit, Gerard J.M.; Kuper, Jan; Baaij, Christiaan P.R.; Athanas, P.M.; Becker, J.; Teich, J.; Verbauwhede, I.

    2010-01-01

    Today the hardware for embedded systems is often specified in VHDL. However, VHDL describes the system at a rather low level, which is cumbersome and may lead to design faults in large real life applications. There is a need of higher level abstraction mechanisms. In the embedded systems group of th

  18. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  19. Postflight hardware evaluation (RSRM-29, STS-54)

    Science.gov (United States)

    1993-09-01

    This document is the final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the RSRM-29 flight set. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64221), represents a summary of the RSRM-29 hardware evaluation. Disassembly evaluation photograph numbers are logged in TWA-1990. The RSRM-29 flight set disassembly evaluations described in this document were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on September 9, 1993. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.

  20. Bearing fatigue investigation 3

    Science.gov (United States)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  1. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager;

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setti...

  2. Arcturus and the Bears

    Science.gov (United States)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  3. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  4. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  5. Campus Information Network Hardware System Design%Campus Information Network Hardware System Design

    Institute of Scientific and Technical Information of China (English)

    刘正勇

    2011-01-01

    The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system structure design and the network export

  6. Orthopyroxene survival in deep carbonatite melts: implications for kimberlites

    Science.gov (United States)

    Stone, Rebecca S.; Luth, Robert W.

    2016-07-01

    Kimberlites are rare diamond-bearing volcanic rocks that originate as melts in the Earth's mantle. The original composition of kimberlitic melt is poorly constrained because of mantle and crustal contamination, exsolution of volatiles during ascent, and pervasive alteration during and after emplacement. One recent model (Russell et al. in Nature 481(7381):352-356, 2012. doi: 10.1038/nature10740) proposes that kimberlite melts are initially carbonatitic and evolve to kimberlite during ascent through continuous assimilation of orthopyroxene and exsolution of CO2. In high-temperature, high-pressure experiments designed to test this model, assimilation of orthopyroxene commences between 2.5 and 3.5 GPa by a reaction in which orthopyroxene reacts with the melt to form olivine, clinopyroxene, and CO2. No assimilation occurs at 3.5 GPa and above. We propose that the clinopyroxene produced in this reaction can react with the melt at lower pressure in a second reaction that produces olivine, calcite, and CO2, which would explain the absence of clinopyroxene phenocrysts in kimberlites. These experiments do not confirm that assimilation of orthopyroxene for the entirety of kimberlite ascent takes place, but rather two reactions at lower pressures (<3.5 GPa) cause assimilation of orthopyroxene and then clinopyroxene, evolving carbonatitic melts to kimberlite and causing CO2 exsolution that drives rapid ascent.

  7. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  8. Experimental and calculation-theoretical justifications of design of hydrostatic bearings of MCP in reactor facility with HLMC

    International Nuclear Information System (INIS)

    Experimental and calculation and theoretical justification of normal operation of hydrostatic bearings (HSB) is conducted. The consideration is given to the procedures of calculation and recommendations on developing optimal designs of plain bearings in main circulation pumps working with high-temperature lead melt coolant for reactor circuit conditions. It is shown that chosen variants of HSB design after hydrothermal and tribotechnical investigations provide necessary characteristics of HSB on high-temperature lead melt

  9. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  10. Reconfigurable hardware for an augmented reality application

    Science.gov (United States)

    Toledo Moreo, F. Javier; Martinez Alvarez, J. Javier; Garrigos Guerrero, F. Javier; Ferrandez Vicente, J. Manuel

    2005-06-01

    An FPGA-based approach is proposed to build an augmented reality system in order to aid people affected by a visual disorder known as tunnel vision. The aim is to increase the user's knowledge of his environment by superimposing on his own view useful information obtained with image processing. Two different alternatives have been explored to perform the required image processing: a specific purpose algorithm to extract edge detection information, and a cellular neural network with the suitable template. Their implementations in reconfigurable hardware pursue to take advantage of the performance and flexibility that show modern FPGAs. This paper describes the hardware implementation of both the Canny algorithm and the cellular neural network, and the overall system architecture. Results of the implementations and examples of the system functionality are presented.

  11. A fully superconducting bearing system for flywheel applications

    Science.gov (United States)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  12. Computer hardware for radiologists: Part I

    OpenAIRE

    Indrajit I; Alam A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware...

  13. Hardware Virtualization towards a Proficient Computing Environment

    OpenAIRE

    Shweta Agrawal

    2013-01-01

    In the recent few years Server Virtualization and Green Information Technology have become very popular and are fast becoming the norm in organizations of all disciplines and sizes. Today, different methods of energy savings are in use and in great demand. One of the newest methods in the IT to control the pollution of the environment and the greenhouse effect is Green IT that is directly connected with the Virtualization of Hardware Resources.Virtualization is the presentation of an environm...

  14. Evaluating IP security on lightweight hardware

    OpenAIRE

    Khurri, Andrey

    2011-01-01

    TCP/IP communications stack is being increasingly used to interconnect mobile phones, PDAs, sensor motes and other wireless embedded devices. Although the core functionality of communications protocols has been successfully adopted to lightweight hardware from the traditional Internet and desktop computers, suitability of strong security mechanisms on such devices remains questionable. Insufficient processor, memory and battery resources, as well as constraints of wireless communications limi...

  15. Hardware-Independent Proofs of Numerical Programs

    Science.gov (United States)

    Boldo, Sylvie; Nguyen, Thi Minh Tuyen

    2010-01-01

    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically proved

  16. Compressive Sensing Image Sensors-Hardware Implementation

    OpenAIRE

    Shahram Shirani; M. Jamal Deen; Mohammadreza Dadkhah

    2013-01-01

    The compressive sensing (CS) paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementa...

  17. Particle Transport Simulation on Heterogeneous Hardware

    CERN Document Server

    CERN. Geneva

    2014-01-01

    CPUs and GPGPUs. About the speaker Vladimir Koylazov is CTO and founder of Chaos Software and one of the original developers of the V-Ray raytracing software. Passionate about 3D graphics and programming, Vlado is the driving force behind Chaos Group's software solutions. He participated in the implementation of algorithms for accurate light simulations and support for different hardware platforms, including CPU and GPGPU, as well as distributed calculat...

  18. Hardware Accelerated Sequence Alignment with Traceback

    OpenAIRE

    Scott Lloyd; Snell, Quinn O

    2009-01-01

    Biological sequence alignment is an essential tool used in molecular biology and biomedical applications. The growing volume of genetic data and the complexity of sequence alignment present a challenge in obtaining alignment results in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is pres...

  19. PERFORMANCE ANALYSIS OF HARDWARE TROJAN DETECTION METHODS

    OpenAIRE

    Ehsan, Sharifi; Kamal, Mohammadiasl; Mehrdad, Havasi; Amir, Yazdani

    2015-01-01

    Due to the increasing use of information and communication technologies in most aspects of life, security of the information has drawn the attention of governments and industry as well as the researchers. In this regard, structural attacks on the functions of a chip are called hardware Trojans, and are capable of rendering ineffective the security protecting our systems and data. This method represents a big challenge for cyber-security as it is nearly impossible to detect with any currently ...

  20. Acceleration of Astrophysical Simulations with Special Hardware

    OpenAIRE

    Marcus Martinez, Guillermo Anibal

    2011-01-01

    This work presents the raceSPH and raceGRAV accelerator libraries, designed to interface astrophysical simulations with special-purpose hardware. The raceSPH focuses on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approximating force interactions in fluid dynamics. Accelerators used range from vectorizing units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in ...

  1. Trends in computer hardware and software.

    Science.gov (United States)

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware. PMID:8470690

  2. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  3. "Greenbook Algorithms and Hardware Needs Analysis"

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Oehmen, Chris S.; Baxter, Douglas J.

    2007-01-09

    "This document describes the algorithms, and hardware balance requirements needed to enable the solution of real scientific problems in the DOE core mission areas of environmental and subsurface chemistry, computational and systems biology, and climate science. The MSCF scientific drivers have been outlined in the Greenbook, which is available online at http://mscf.emsl.pnl.gov/docs/greenbook_for_web.pdf . Historically, the primary science driver has been the chemical and the molecular dynamics of the biological science area, whereas the remaining applications in the biological and environmental systems science areas have been occupying a smaller segment of the available hardware resources. To go from science drivers to hardware balance requirements, the major applications were identified. Major applications on the MSCF resources are low- to high-accuracy electronic structure methods, molecular dynamics, regional climate modeling, subsurface transport, and computational biology. The algorithms of these applications were analyzed to identify the computational kernels in both sequential and parallel execution. This analysis shows that a balanced architecture is needed with respect to processor speed, peak flop rate, peak integer operation rate, and memory hierarchy, interprocessor communication, and disk access and storage. A single architecture can satisfy the needs of all of the science areas, although some areas may take greater advantage of certain aspects of the architecture. "

  4. A hardware implementation of neural network with modified HANNIBAL architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum youb; Chung, Duck Jin [Inha University, Inchon (Korea, Republic of)

    1996-03-01

    A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). 14 refs., 10 figs., 3 tabs.

  5. Management recommendations: Bear River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Bear River Migratory Bird Refuge, by a land use specialist. Recommendations, time frame and additional...

  6. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  7. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  8. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  9. My Little Teddy Bear

    Institute of Scientific and Technical Information of China (English)

    钱佳楠

    2005-01-01

    @@ As Valentine's Day came closer,every shop was full of colourful gifts such as cookies in the shape of heart, chocolates,Teddy Bears and so on.When I step into a shop on February 14th,I felt most lonely as I was alone.With mv eves fixed on a lovely Teddy Bear, I wished that someone could send me this stuffed toy.

  10. A Comparative Study on Hardware Platforms for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thang Vu Chien

    2012-01-01

    Full Text Available Recently, Wireless Sensor Networks (WSNs attract a great deal of research attention, and are envisioned to support a variety of applications, including building monitoring, environment control, wild-life habitat monitoring, forest fire detection, industry automation, military, security, and health-care. Over the years, we have seen a variety of hardware platforms for WSNs to facilitate developing WSN applications. In this paper, we provide a comprehensive review of existing hardware platforms for WSNs. We first present the hardware architecture of a wireless sensor node. We then survey the major hardware platforms for WSNs and present a comparison of these hardware platforms. Finally we present some recommendations from the perspectives of hardware platform developers and hardware platform users. The authors hope that making information about existing hardware platforms will assist researchers working in this area to appreciate the diversity of platforms available to them and to help them select the most appropriate platform for their purposes.

  11. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  12. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  13. Inner Loop Optimizations in Mapping Single Threaded Programs to Hardware

    OpenAIRE

    Desai, Madhav

    2014-01-01

    In the context of mapping high-level algorithms to hardware, we consider the basic problem of generating an efficient hardware implementation of a single threaded program, in particular, that of an inner loop. We describe a control-flow mechanism which provides dynamic loop-pipelining capability in hardware, so that multiple iterations of an arbitrary inner loop can be made simultaneously active in the generated hardware, We study the impact of this loop-pipelining scheme in conjunction with ...

  14. Computer hardware for radiologists: Part 2

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU, chipset, random access memory (RAM, and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ′ever increasing′ digital future.

  15. Computer hardware for radiologists: Part 2

    International Nuclear Information System (INIS)

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future

  16. Hardware Virtualization towards a Proficient Computing Environment

    Directory of Open Access Journals (Sweden)

    Shweta Agrawal

    2013-06-01

    Full Text Available In the recent few years Server Virtualization and Green Information Technology have become very popular and are fast becoming the norm in organizations of all disciplines and sizes. Today, different methods of energy savings are in use and in great demand. One of the newest methods in the IT to control the pollution of the environment and the greenhouse effect is Green IT that is directly connected with the Virtualization of Hardware Resources.Virtualization is the presentation of an environment to one layer in an information technology stack that abstracts or represents a lower layer. It makes it possible for the IT professional to run a number of machines on a single physical machine.In this study we elicit the concept of Hardware Virtualization. We illustrate the procedure of Hardware Virtualization using a real-world example and then we emulate a virtualized infrastructure to contrast against the physical infrastructure on the basis of CPU utilization. We have used the VMware Workstation 7.1.0 as a software tool for virtualization and AVG PC Tune Up 2011 to present the difference in CPU utilization before and after virtualization.This paper helps to identify the main reasons for the growing need for data centre virtualization. The results in this paper show that a virtualized infrastructure can potentially increase the CPU utilization by a significant margin, thereby suggesting an efficient and faster way of resource utilization, saving processing time, reducing the cost incurred in building separate physical servers and furthermore reducing the power consumption.

  17. Open Source Hardware for DIY Environmental Sensing

    Science.gov (United States)

    Aufdenkampe, A. K.; Hicks, S. D.; Damiano, S. G.; Montgomery, D. S.

    2014-12-01

    The Arduino open source electronics platform has been very popular within the DIY (Do It Yourself) community for several years, and it is now providing environmental science researchers with an inexpensive alternative to commercial data logging and transmission hardware. Here we present the designs for our latest series of custom Arduino-based dataloggers, which include wireless communication options like self-meshing radio networks and cellular phone modules. The main Arduino board uses a custom interface board to connect to various research-grade sensors to take readings of turbidity, dissolved oxygen, water depth and conductivity, soil moisture, solar radiation, and other parameters. Sensors with SDI-12 communications can be directly interfaced to the logger using our open Arduino-SDI-12 software library (https://github.com/StroudCenter/Arduino-SDI-12). Different deployment options are shown, like rugged enclosures to house the loggers and rigs for mounting the sensors in both fresh water and marine environments. After the data has been collected and transmitted by the logger, the data is received by a mySQL-PHP stack running on a web server that can be accessed from anywhere in the world. Once there, the data can be visualized on web pages or served though REST requests and Water One Flow (WOF) services. Since one of the main benefits of using open source hardware is the easy collaboration between users, we are introducing a new web platform for discussion and sharing of ideas and plans for hardware and software designs used with DIY environmental sensors and data loggers.

  18. Computer hardware for radiologists: Part 2.

    Science.gov (United States)

    Indrajit, Ik; Alam, A

    2010-11-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future. PMID:21423895

  19. Improving web server efficiency on commodity hardware

    OpenAIRE

    Beltrán Querol, Vicenç

    2008-01-01

    El ràpid creixement de la Web requereix una gran quantitat de recursos computacionals que han de ser utilitzats eficientment. Avui en dia, els servidors basats en hardware estendard son les plataformes preferides per executar els servidors web, ja que són les plataformes amb millor relació rendiment/cost. El treball presentat en aquesta tesi esta dirigit a millorar la eficàcia en la gestió de recursos dels servidors web actuals. Per assolir els objectius d'aquesta tesis s'ha caracteritzat e...

  20. INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS

    International Nuclear Information System (INIS)

    The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers

  1. Hardware Design of a Smart Meter

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko

    2014-09-01

    Full Text Available Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and eliminating human errors due to manual readings which would ultimately reduce labour costs, diagnosis and instantaneous fault detection. This allows for predictive maintenance resulting in a more efficient and reliable distribution network.

  2. A building block for hardware belief networks.

    Science.gov (United States)

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-01-01

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models. PMID:27443521

  3. Fast Gridding on Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard;

    2007-01-01

    The most commonly used algorithm for non-cartesian MRI reconstruction is the gridding algorithm [1]. It consists of three steps:                    1) convolution with a gridding kernel and resampling on a cartesian grid, 2) inverse FFT, and 3) deapodization. On the CPU the convolution step is th...... implemented on graphics hardware giving a significant speedup compared to CPU based alternatives. We present a novel GPU implementation of the convolution step that overcomes the problems of memory bandwidth that has limited the speed of previous GPU gridding algorithms [2]....

  4. Exploiting Semiconductor Properties for Hardware Trojans

    CERN Document Server

    Shiyanovskii, Y; Papachristou, C; Weyer, D; Clay, W

    2009-01-01

    This paper discusses the possible introduction of hidden reliability defects during CMOS foundry fabrication processes that may lead to accelerated wearout of the devices. These hidden defects or hardware Trojans can be created by deviation from foundry design rules and processing parameters. The Trojans are produced by exploiting time-based wearing mechanisms (HCI, NBTI, TDDB and EM) and/or condition-based triggers (ESD, Latchup and Softerror). This class of latent damage is difficult to test due to its gradual degradation nature. The paper describes life-time expectancy results for various Trojan induced scenarios. Semiconductor properties, processing and design parameters critical for device reliability and Trojan creation are discussed.

  5. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  6. SuperCDMS Cold Hardware Design

    International Nuclear Information System (INIS)

    We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.

  7. The Cryptographic Strength of Tamper-Proof Hardware

    OpenAIRE

    Nilges, Tobias

    2015-01-01

    Tamper-proof hardware has found its way into our everyday life in various forms, be it SIM cards, credit cards or passports. Usually, a cryptographic key is embedded in these hardware tokens that allows the execution of simple cryptographic operations, such as encryption or digital signing. The inherent security guarantees of tamper-proof hardware, however, allow more complex and diverse applications.

  8. A Short Historical Survey of Functional Hardware Languages

    OpenAIRE

    Gang Chen

    2012-01-01

    Functional programming languages offer a high degree of abstractions and clean semantics, which are desirable for hardware descriptions. This short historical survey is about functional languages specifically created for hardware design and verification. It also includes those hardware languages or formalisms which are strongly influenced by functional programming style.

  9. Safe to Fly: Certifying COTS Hardware for Spaceflight

    Science.gov (United States)

    Fichuk, Jessica L.

    2011-01-01

    Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.

  10. FPGA Acceleration by Dynamically-Loaded Hardware Libraries

    DEFF Research Database (Denmark)

    Lomuscio, Andrea; Nannarelli, Alberto; Re, Marco

    Hardware acceleration is a viable solution to obtain energy efficiency in data intensive computation. In this work, we present a hardware framework to dynamically load hardware libraries, HLL, on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on...

  11. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    with a hardware area constraint and the problem of minimizing hardware area with a system execution time constraint. The target architecture consists of a single microprocessor and a single hardware chip (ASIC, FPGA, etc.) which are connected by a communication channel. The algorithm incorporates a realistic...

  12. Unifying Approach to Software and Hardware Design for Scientific Calculations

    OpenAIRE

    Litvinov, G. L.; Maslov, V. P.; Rodionov, A. Ya.

    1999-01-01

    A unifying approach to software and hardware design generated by ideas of Idempotent Mathematics is discussed. The so-called idempotent correspondence principle for algorithms, programs and hardware units is described. A software project based on this approach is presented. Key words: universal algorithms, idempotent calculus, software design, hardware design, object oriented programming

  13. Space Telecommunications Radio Systems (STRS) Hardware Architecture Standard: Release 1.0 Hardware Section

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen

    2008-01-01

    This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  14. Arc Magma Genesis from Melting of Mélange Diapirs

    Science.gov (United States)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.

    2015-12-01

    Alkaline basalts occur in many subduction-related volcanic settings, including the Sunda, Izu-Bonin, Honshu, Aeolian, and Aleutian arcs, yet their origin continues to be debated. Recent studies have suggested that buoyant material (mélange) from the slab-wedge interface may rise into the hot corner of the mantle wedge as low-density plumes or diapirs, where it will melt or induce mantle melting due to dehydration. High-pressure mélange rocks represent a mixture of mafic, ultramafic, and sedimentary components, and are often dominated by chlorite. Mélange rocks are also enriched in accessory phases such as monazite, zircon, and rutile, which host a variety of trace elements. We present results from experimental melting of chlorite-rich mélange material at mantle wedge conditions that reproduce many of the compositional features of subduction-related lavas. Piston cylinder experiments were performed at conditions appropriate for mantle wedge diapirs (1030-1280 °C, 1.5-2.5 GPa) using natural mélange rocks from Syros, Greece. Experimental melts derived from omphacite-epidote-phengite bearing chlorite schists range in composition from basaltic trachyandesites to trachydacites to more alkaline melt compositions (50.7-60.73 wt% SiO2, 7.48-12.93 wt% Na2O+K2O). All of the experimental melts are characterized by high alumina contents (16.79-21.36 wt% Al2O3). Minerals coexisting with these melts include clinopyroxene, amphibole (at lower T) or olivine (at higher T), garnet (at higher P), ilmenite and/or rutile, and zircon. Trace element patterns in our experimentally produced melts are similar to those from arc volcanoes worldwide. Experimental melts are enriched in large ion lithophile elements (Cs, Rb, Ba, K, Pb, Sr) and depleted in high field strength elements (Nb, Ta, and Ti). Zirconium and Hf are enriched relative to the rare earth elements (REE), which show flat to heavy REE depleted patterns depending on the presence of residual garnet. Thorium is fractionated

  15. MULTIPLE MELTING IN NYLON 1010

    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung

    1983-01-01

    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  16. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  17. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  18. CASIS Fact Sheet: Hardware and Facilities

    Science.gov (United States)

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  19. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  20. Introduction to Hardware Security and Trust

    CERN Document Server

    Wang, Cliff

    2012-01-01

    The emergence of a globalized, horizontal semiconductor business model raises a set of concerns involving the security and trust of the information systems on which modern society is increasingly reliant for mission-critical functionality. Hardware-oriented security and trust issues span a broad range including threats related to the malicious insertion of Trojan circuits designed, e.g.,to act as a ‘kill switch’ to disable a chip, to integrated circuit (IC) piracy,and to attacks designed to extract encryption keys and IP from a chip. This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade.  Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems.  This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of,and trust in, modern society�...

  1. ARM assembly language with hardware experiments

    CERN Document Server

    Elahi, Ata

    2015-01-01

    This book provides a hands-on approach to learning ARM assembly language with the use of a TI microcontroller. The book starts with an introduction to computer architecture and then discusses number systems and digital logic. The text covers ARM Assembly Language, ARM Cortex Architecture and its components, and Hardware Experiments using TILM3S1968. Written for those interested in learning embedded programming using an ARM Microcontroller. ·         Introduces number systems and signal transmission methods   ·         Reviews logic gates, registers, multiplexers, decoders and memory   ·         Provides an overview and examples of ARM instruction set   ·         Uses using Keil development tools for writing and debugging ARM assembly language Programs   ·         Hardware experiments using a Mbed NXP LPC1768 microcontroller; including General Purpose Input/Output (GPIO) configuration, real time clock configuration, binary input to 7-segment display, creating ...

  2. Optimizing imaging hardware for estimation tasks

    Science.gov (United States)

    Kupinski, Matthew A.; Clarkson, Eric; Gross, Kevin; Hoppin, John W.

    2003-05-01

    Medical imaging is often performed for the purpose of estimating a clinically relevant parameter. For example, cardiologists are interested in the cardiac ejection fraction, the fraction of blood pumped out of the left ventricle at the end of each heart cycle. Even when the primary task of the imaging system is tumor detection, physicians frequently want to estimate parameters of the tumor, e.g. size and location. For signal-detection tasks, we advocate that the performance of an ideal observer be employed as the figure of merit for optimizing medical imaging hardware. We have examined the use of the minimum variance of the ideal, unbiased estimator as a figure of merit for hardware optimization. The minimum variance of the ideal, unbiased estimator can be calculated using the Fisher information matrix. To account for both image noise and object variability, we used a statistical method known as Markov-chain Monte Carlo. We employed a lumpy object model and simulated imaging systems to compute our figures of merit. We have demonstrated the use of this method in comparing imaging systems for estimation tasks.

  3. Blood Pump Bearing System

    Science.gov (United States)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  4. Hardware development process for Human Research facility applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  5. Hardware-Software Co-Simulation for SOC Functional Verification

    Institute of Scientific and Technical Information of China (English)

    YAN Ying-jian; LIU Ming-ye

    2005-01-01

    A hardware-software co-simulation method for system on chip (SOC) design is discussed. It is based on an instruction set simulator (ISS) and an event-driven hardware simulator, and a bus interface model that is described in C language provides the interface between the two. The bus interface model and the ISS are linked into a singleton program the software simulator, which communicate with the hardware simulator through Windows sockets. The implementation of the bus interface model and the synchronization between hardware and software simulator are discussed in detail. Co-simulation control of the hardware simulator is also discussed.

  6. The Little Bear

    Institute of Scientific and Technical Information of China (English)

    林战峰; 乐伟国

    2007-01-01

    @@ 一、故事内容 A little bear has a magic stick.It can make his wishes come true. One day,the little bear is walking in the forest.He sees a bird.It is flying in the sky.It has two beautiful wings."I want two beautiful wings.I wish I can fly like a bird,"he says to the magic stick.Two beautiful wings come out from his back and he can fly like a bird now.He is very happy.

  7. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  8. Silver Bear for Screenplay

    Institute of Scientific and Technical Information of China (English)

    LIU YUNYUN

    2010-01-01

    @@ Chinese director Wang Quan'an won the Silver Bear Prize at the 60th Berlin International Film Festival that lasted during February 11 to 21 tor the best screenplay for his movie Apart Together.The film also opened the festival.

  9. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  10. Compressive Sensing Image Sensors-Hardware Implementation

    Directory of Open Access Journals (Sweden)

    Shahram Shirani

    2013-04-01

    Full Text Available The compressive sensing (CS paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementations of CS encoding in optical and electrical domains is presented. Considering the recent advances in CMOS (complementary metal–oxide–semiconductor technologies and the feasibility of performing on-chip signal processing, important practical issues in the implementation of CS in CMOS sensors are emphasized. In addition, the CS coding for video capture is discussed.

  11. Locating hardware faults in a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  12. Perspectives in Simulation Hardware and Software Architecture

    Directory of Open Access Journals (Sweden)

    W.O. Grierson

    1985-10-01

    Full Text Available Historically, analog and hybrid computer systems have provided effective real-time solutions for the simulation of large dynamic systems. In the mid 1970s, ADI concluded that these systems were no longer adequate to meet the demands of larger, more complex models and the demand for greater simulation accuracy. The decision was to design an all-digital system to satisfy these growing requirements (see Gilbert and Howe, (1978. This all-digital approach was called the SYSTEM 10. The SYSTEM 10 has been effective in solving time-critical simulation problems and in replacing the previous approach of utilizing hybrid computers. Recent advances in 100 K emitter coupled logic (ECL now make it possible to support a new generation of equipment that expands modeling capabilities to serve simulation needs. The hardware and software concepts of this system, called the SYSTEM 100, are the subject of this paper.

  13. Current conveyors variants, applications and hardware implementations

    CERN Document Server

    Senani, Raj; Singh, A K

    2015-01-01

    This book serves as a single-source reference to Current Conveyors and their use in modern Analog Circuit Design. The authors describe the various types of current conveyors discovered over the past 45 years, details of all currently available, off-the-shelf integrated circuit current conveyors, and implementations of current conveyors using other, off-the-shelf IC building blocks. Coverage includes prominent bipolar/CMOS/Bi-CMOS architectures of current conveyors, as well as all varieties of starting from third generation current conveyors to universal current conveyors, their implementations and applications. •Describes all commercially available off-the-shelf IC current conveyors, as well as hardware implementations of current conveyors using other off-the-shelf ICs; • Describes numerous variants of current conveyors evolved over the past forty five years; • Describes a number of Bipolar/CMOS/Bi-CMOS architectures of current conveyors, along with their characteristic features; • Includes a comprehe...

  14. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa

    2008-04-01

    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  15. Compressive sensing image sensors-hardware implementation.

    Science.gov (United States)

    Dadkhah, Mohammadreza; Deen, M Jamal; Shirani, Shahram

    2013-01-01

    The compressive sensing (CS) paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementations of CS encoding in optical and electrical domains is presented. Considering the recent advances in CMOS (complementary metal-oxide-semiconductor) technologies and the feasibility of performing on-chip signal processing, important practical issues in the implementation of CS in CMOS sensors are emphasized. In addition, the CS coding for video capture is discussed. PMID:23584123

  16. Protection of Accelerator Hardware: RF systems

    CERN Document Server

    Kim, S-H

    2016-01-01

    The radio-frequency (RF) system is the key element that generates electric fields for beam acceleration. To keep the system reliable, a highly sophisticated protection scheme is required, which also should be designed to ensure a good balance between beam availability and machine safety. Since RF systems are complex, incorporating high-voltage and high-power equipment, a good portion of machine downtime typically comes from RF systems. Equipment and component damage in RF systems results in long and expensive repairs. Protection of RF system hardware is one of the oldest machine protection concepts, dealing with the protection of individual high-power RF equipment from breakdowns. As beam power increases in modern accelerators, the protection of accelerating structures from beam-induced faults also becomes a critical aspect of protection schemes. In this article, an overview of the RF system is given, and selected topics of failure mechanisms and examples of protection requirements are introduced.

  17. EPICS: Allen-Bradley hardware reference manual

    International Nuclear Information System (INIS)

    This manual covers the following hardware: Allen-Bradley 6008 -- SV VMEbus I/O scanner; Allen-Bradley universal I/O chassis 1771-A1B, -A2B, -A3B, and -A4B; Allen-Bradley power supply module 1771-P4S; Allen-Bradley 1771-ASB remote I/O adapter module; Allen-Bradley 1771-IFE analog input module; Allen-Bradley 1771-OFE analog output module; Allen-Bradley 1771-IG(D) TTL input module; Allen-Bradley 1771-OG(d) TTL output; Allen-Bradley 1771-IQ DC selectable input module; Allen-Bradley 1771-OW contact output module; Allen-Bradley 1771-IBD DC (10--30V) input module; Allen-Bradley 1771-OBD DC (10--60V) output module; Allen-Bradley 1771-IXE thermocouple/millivolt input module; and the Allen-Bradley 2705 RediPANEL push button module

  18. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware.

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.

  19. Effects of Huangqi and bear bile on recurrent parotitis in children: a new clinical approach*

    OpenAIRE

    Ruan, Wen-hua; Huang, Mei-Li; He, Xiao-lei; Feng ZHANG; Tao, Hai-biao

    2013-01-01

    Objective: To evaluate the pharmacological effects of traditional Chinese medicine, bear bile capsule and Huangqi granule, on recurrent parotitis in children. Methods: In this prospective, controlled, and randomized study, a total of 151 young children were divided into three groups: Group A included massaging the children’s parotid region and melting vitamin C in their mouth daily; Group B included swallowing bear bile capsule and Huangqi granule daily; and Group C included massages and vita...

  20. Magnetic bearings grow more attractive

    Science.gov (United States)

    1993-10-01

    Advances in materials and electronics have enabled designers to devise simpler, smaller magnetic bearings. As a result, costs have dropped, widening the applications for these very-low-friction devices. Avcon (Advanced Controls Technology) has patented a permanent-magnet bias actively controlled bearing. Here high-energy rare earth permanent-magnet materials supply the basic bearing load levitation, while servo-driven electromagnets generate stabilization and centering forces for motion contol. Previous heavy-duty magnetic bearings used electromagnets entirely for suspension and control, which led to large bearings and control systems with higher power requirements. Avcon has developed several types of permanent-magnet bias bearings. The simplest is the radial repulsion bearing. Avcon's homopolar permanent-magnet bias active bearing is the most versatile of the company's designs.

  1. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    Science.gov (United States)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  2. Enhanced detection of rolling element bearing fault based on stochastic resonance

    Science.gov (United States)

    Zhang, Xiaofei; Hu, Niaoqing; Cheng, Zhe; Hu, Lei

    2012-11-01

    Early bearing faults can generate a series of weak impacts. All the influence factors in measurement may degrade the vibration signal. Currently, bearing fault enhanced detection method based on stochastic resonance(SR) is implemented by expensive computation and demands high sampling rate, which requires high quality software and hardware for fault diagnosis. In order to extract bearing characteristic frequencies component, SR normalized scale transform procedures are presented and a circuit module is designed based on parameter-tuning bistable SR. In the simulation test, discrete and analog sinusoidal signals under heavy noise are enhanced by SR normalized scale transform and circuit module respectively. Two bearing fault enhanced detection strategies are proposed. One is realized by pure computation with normalized scale transform for sampled vibration signal, and the other is carried out by designed SR hardware with circuit module for analog vibration signal directly. The first strategy is flexible for discrete signal processing, and the second strategy demands much lower sampling frequency and less computational cost. The application results of the two strategies on bearing inner race fault detection of a test rig show that the local signal to noise ratio of the characteristic components obtained by the proposed methods are enhanced by about 50% compared with the band pass envelope analysis for the bearing with weaker fault. In addition, helicopter transmission bearing fault detection validates the effectiveness of the enhanced detection strategy with hardware. The combination of SR normalized scale transform and circuit module can meet the need of different application fields or conditions, thus providing a practical scheme for enhanced detection of bearing fault.

  3. S-Isotope Fractionation between Fluid and Silicate Melts

    Science.gov (United States)

    Fiege, A.; Holtz, F.; Shimizu, N.; Behrens, H.; Mandeville, C. W.; Simon, A. C.

    2013-12-01

    Large amounts of sulfur (S) can be released from silicate melts during volcanic eruption. Degassing of magma can lead to S-isotope fractionation between fluid and melt. However, experimental data on fluid-melt S-isotope fractionation are scarce and no data exist for silicate melts at temperatures (T) > 1000°C. Recent advances in in situ S-isotope analyses using secondary ion mass spectroscopy (SIMS) enable determinations of the isotopic composition in silicate glasses with low S content [1] and allow us to investigate experimentally fluid-melt S-isotope fractionation effects in magmatic systems. Isothermal decompression experiments were conducted in internally heated pressure vessels (IHPV). Volatile-bearing (~3 to ~8 wt% H2O, 140 to 2700 ppm S, 0 to 1000 ppm Cl) andesitic and basaltic glasses were synthesized at ~1040°C, ~500 MPa and log(fO2) = QFM to QFM+4 (QFM: quartz-magnetite-fayalite buffer). The decompression experiments were carried out at T = 1030 to 1200°C and similar fO2. Pressure (P) was released continuously from ~400 MPa to 150, 100 or 70 MPa with rates (r) ranging from 0.001 to 0.2 MPa/s. The samples were either rapidly quenched after decompression or annealed for various times (tA) at final conditions (1 to 72 h) before quenching. The volatile-bearing starting glasses and the partially degassed experimental glasses were analyzed by electron microprobe (e.g. Cl-, S-content), IR-spectroscopy (H2O content) and SIMS (δ34S). The gas-melt isotope fractionation factors (αg-m) were estimated following Holloway and Blank [2] and utilizing mass balance calculations. The results show that αg-m remains constant within error over the investigated range of r and tA, reflecting fluid-melt equilibrium fractionation of S isotopes for given T and fO2. Data obtained for oxidizing conditions (~QFM+4) are in agreement with observations in arc magmas [3] and close to what is predicted by previous theoretical and experimental data [4; 5; 6]; e.g. a α(SO2 gas - SO42

  4. Government Risk-Bearing

    CERN Document Server

    1993-01-01

    The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...

  5. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  6. Centrifugally decoupling touchdown bearings

    Science.gov (United States)

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  7. Magnetic bearing and motor

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  8. Rotating plug bearing and seal

    International Nuclear Information System (INIS)

    Disclosed is a bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing. 19 claims, 3 figures

  9. Rotating plug bearing and seal

    Science.gov (United States)

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  10. Electrical Conductivity of Cryolite Melts

    Science.gov (United States)

    Fellner, P.; Grjotheim, K.; Kvande, H.

    1985-11-01

    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  11. Exercise Countermeasure Hardware Evolution on ISS: The First Decade.

    Science.gov (United States)

    Korth, Deborah W

    2015-12-01

    The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases

  12. Resource Optimized Stereo Matching in Reconfigurable Hardware for Autonomous Systems

    OpenAIRE

    Ekstrand, Fredrik

    2011-01-01

    There is a need for compact, high-speed, and low-power vision systems for enabling real-time mobile autonomous applications. The best approach to achieve this is to implement the bulk of the application in hardware. Reconfigurable hardware meet these requirements without the limitation of fixed functionality that accompanies application-specific circuits. Resource constraints of reconfigurable hardware calls for optimized implementations i terms of resource usage with maintained performance. ...

  13. Exercise Countermeasure Hardware Evolution on ISS: The First Decade.

    Science.gov (United States)

    Korth, Deborah W

    2015-12-01

    The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases

  14. Downlink MIMO HCNs with Residual Transceiver Hardware Impairments

    OpenAIRE

    Papazafeiropoulos, Anastasios; Ratnarajah, Tharm

    2016-01-01

    A major limitation of heterogeneous cellular networks (HCNs) is the neglect of the additive residual transceiver hardware impairments (ARTHIs). The assumption of perfect hardware is quite strong and results in misleading conclusions. This paper models a general multiple-input multiple-output (MIMO) HCN with cell association by incorporating the RTHIs. We derive the coverage probability and shed light on the impact of the ARTHIs, when various transmission methods are applied. As the hardware q...

  15. GSTAMIDS ground-penetrating radar: hardware description

    Science.gov (United States)

    Sower, Gary D.; Eberly, John; Christy, Ed

    2001-10-01

    The Ground Standoff Mine Detection System (GSTAMIDS) is now in the Engineering, Manufacturing and Development (EMD) Block 0 phase for USA CECOM. The Mine Detection Subsystem (MDS) presently utilizes three different sensor technologies to detect buried anti-tank (AT) land mines; Ground Penetrating Radar (GPR), Pulsed Magnetic Induction (PMI), and passive infrared (IR). The GSTAMIDS hardware and software architectures are designed so that other technologies can readily be incorporated when and if they prove viable. Each sensor suite is designed to detect the buried mines and to discriminate against various clutter and background objects. Sensor data fusion of the outputs of the individual sensor suites then enhances the detection probability while reducing the false alarm rate from clutter objects. The metal detector is an essential tool for buried mine detection, as metal land mines still account for a large percentage of land mines. Technologies such as nuclear quadrupole resonance (NQR or QR) are presently being developed to detect or confirm the presence of explosive material in buried land mines, particularly the so-called plastic mines; unfortunately, the radio frequency signals required cannot penetrate into a metal land mine. The limitation of the metal detector is not in detection of the metal mines, but in the additional detection of metal clutter. A metal detector has been developed using singular value decomposition (SVD) extraction techniques to discriminate the mines from the clutter, thereby greatly reducing false alarm rates. This mine detector is designed to characterize the impulse response function of the metal objects, based on a parametric three-pole model of the response, and to use pattern recognition to determine the match of the responses to known mines. In addition to discrimination against clutter, the system can also generally tell one mine type from another. This paper describes the PMI sensor suite hardware and its physical incorporation

  16. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  17. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  18. Hardware/Software Co-design using Primitive Interface

    Directory of Open Access Journals (Sweden)

    Navin Chourasia

    2011-08-01

    Full Text Available Most engineering designs can be viewed as systems, i.e., as collections of several components whose combined operation provides useful services. Components can be heterogeneous in nature and their interaction may be regulated by some simple or complex means. Interface between Hardware & Software plays a very important role in co-design of the embedded system. Hardware/software co-design means meeting system-level objectives by exploiting the synergism of hardware and software through their concurrent design. This paper shows how hardware & software interfaces can be implemented using primitive interface design

  19. Timing of Formation of a Wassonite-bearing Chondrule

    Science.gov (United States)

    Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.

    2014-01-01

    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.

  20. Nanorobot Hardware Architecture for Medical Defense

    Directory of Open Access Journals (Sweden)

    Luiz C. Kretly

    2008-05-01

    Full Text Available This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.

  1. Magnetic qubits as hardware for quantum computers

    International Nuclear Information System (INIS)

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state Sz = ± S. In each case the temperature of operation must be low compared to the energy gap, Δ, between the states vertical bar-0> and vertical bar-1>. The gap Δ in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  2. Hardware upgrade for A2 data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Ostrick, Michael; Gradl, Wolfgang; Otte, Peter-Bernd; Neiser, Andreas; Steffen, Oliver; Wolfes, Martin; Koerner, Tito [Institut fuer Kernphysik, Mainz (Germany); Collaboration: A2-Collaboration

    2014-07-01

    The A2 Collaboration uses an energy tagged photon beam which is produced via bremsstrahlung off the MAMI electron beam. The detector system consists of Crystal Ball and TAPS and covers almost the whole solid angle. A frozen-spin polarized target allows to perform high precision measurements of polarization observables in meson photo-production. During the last summer, a major upgrade of the data acquisition system was performed, both on the hardware and the software side. The goal of this upgrade was increased reliability of the system and an improvement in the data rate to disk. By doubling the number of readout CPUs and employing special VME crates with a split backplane, the number of bus accesses per readout cycle and crate was cut by a factor of two, giving almost a factor of two gain in the readout rate. In the course of the upgrade, we also switched most of the detector control system to using the distributed control system EPICS. For the upgraded control system, some new tools were developed to make full use of the capabilities of this decentralised slow control and monitoring system. The poster presents some of the major contributions to this project.

  3. Live HDR video streaming on commodity hardware

    Science.gov (United States)

    McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan

    2015-09-01

    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.

  4. Implementation of a veto processing hardware

    International Nuclear Information System (INIS)

    This paper describes the implementation of a piece of general purpose events veto processing hardware, in the form of a custom integrated circuit and a minimum of additional components, for use with pixel-type detectors, in particular those requiring the technique of time-walk correction and multi-trigger association. This work was carried out as a part of the design study for a gamma-ray imager experiment such as the one proposed for the integral spacecraft mission. The design can handle up to 3072 detector elements, grouped into 24 separate detector modules (consisting of up to 128 detector elements each) in addition to a veto shield detector module. The system will be capable of handling a maximum average detector trigger rate of 10 000 triggers/s and veto shield trigger rate of 70 000 triggers/s without saturating the system. Analysis of an operational model of the gamma-ray imager under study results in 1400 valid events s where on average there are 1.75 triggers per event. This will result in data reduction factor of 4. The IC can also perform triggers to events associations thus, further reducing the workload on the rest of the experiment's central data processing system. This study shows that a single ASIC solution is viable using for example a XILINX IC, three 8 k x 8 SRAMs and a single 512 k x 1 bit serial ROM. (orig.)

  5. Open Hardware For CERN's Accelerator Control Systems

    CERN Document Server

    van der Bij, E; Ayass, M; Boccardi, A; Cattin, M; Gil Soriano, C; Gousiou, E; Iglesias Gonsálvez, S; Penacoba Fernandez, G; Serrano, J; Voumard, N; Wlostowski, T

    2011-01-01

    The accelerator control systems at CERN will be renovated and many electronics modules will be redesigned as the modules they will replace cannot be bought anymore or use obsolete components. The modules used in the control systems are diverse: analog and digital I/O, level converters and repeaters, serial links and timing modules. Overall around 120 modules are supported that are used in systems such as beam instrumentation, cryogenics and power converters. Only a small percentage of the currently used modules are commercially available, while most of them had been specifically designed at CERN. The new developments are based on VITA and PCI-SIG standards such as FMC (FPGA Mezzanine Card), PCI Express and VME64x using transition modules. As system-on-chip interconnect, the public domain Wishbone specification is used. For the renovation, it is considered imperative to have for each board access to the full hardware design and its firmware so that problems could quickly be resolved by CERN engineers or its ...

  6. Damping Bearings In High-Speed Turbomachines

    Science.gov (United States)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  7. Effect of Bearing Cleaning on Long Term Bearing Life

    Science.gov (United States)

    Jett, Tim; Thom, R. L.

    1999-01-01

    For many years chlorofluorocarbon (CFC) based solvents, such as CFC-113 and 1,1,1, trichloroethane (TCA), were used as bearing cleaning solvents for space mechanism bearings. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change requiring the use of ODC-free cleaners for precision bearing cleaning. With this change the question arises; what effect if any do these new cleaners have on long term bearing life? The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0 x 10(exp -6) torr) at a temperature of 90 C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing, the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition, the bearings were visually examined and analyzed using an optical microscope.

  8. Ultrasound and clinical evaluation of soft-tissue versus hardware biceps tenodesis: is hardware tenodesis worth the cost?

    Science.gov (United States)

    Elkousy, Hussein; Romero, Jose A; Edwards, T Bradley; Gartsman, Gary M; O'Connor, Daniel P

    2014-02-01

    This study assesses the failure rate of soft-tissue versus hardware fixation of biceps tenodesis by ultrasound to determine if the expense of a hardware tenodesis technique is warranted. Seventy-two patients that underwent arthroscopic biceps tenodesis over a 3-year period were evaluated using postoperative ultrasonography and clinical examination. The tenodesis technique employed was either a soft-tissue technique with sutures or an interference screw technique using hardware based on surgeon preference. Patient age was 57.9 years on average with ultrasound and clinical examination done at an average of 9.3 months postoperatively. Thirty-one patients had a hardware technique and 41 a soft-tissue technique. Overall, 67.7% of biceps tenodesis done with hardware were intact, compared with 75.6% for the soft-tissue technique by ultrasound (P = .46). Clinical evaluation indicated that 80.7% of hardware techniques and 78% of soft-tissue techniques were intact. Average material cost to the hospital for the hardware technique was $514.32, compared with $32.05 for the soft-tissue technique. Biceps tenodesis success, as determined by clinical deformity and ultrasound, was not improved using hardware as compared to soft-tissue techniques. Soft-tissue techniques are equally efficacious and more cost effective than hardware techniques.

  9. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  10. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  11. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  12. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  13. FPGA BASED HARDWARE KEY FOR TEMPORAL ENCRYPTION

    Directory of Open Access Journals (Sweden)

    B. Lakshmi

    2010-09-01

    Full Text Available In this paper, a novel encryption scheme with time based key technique on an FPGA is presented. Time based key technique ensures right key to be entered at right time and hence, vulnerability of encryption through brute force attack is eliminated. Presently available encryption systems, suffer from Brute force attack and in such a case, the time taken for breaking a code depends on the system used for cryptanalysis. The proposed scheme provides an effective method in which the time is taken as the second dimension of the key so that the same system can defend against brute force attack more vigorously. In the proposed scheme, the key is rotated continuously and four bits are drawn from the key with their concatenated value representing the delay the system has to wait. This forms the time based key concept. Also the key based function selection from a pool of functions enhances the confusion and diffusion to defend against linear and differential attacks while the time factor inclusion makes the brute force attack nearly impossible. In the proposed scheme, the key scheduler is implemented on FPGA that generates the right key at right time intervals which is then connected to a NIOS – II processor (a virtual microcontroller which is brought out from Altera FPGA that communicates with the keys to the personal computer through JTAG (Joint Test Action Group communication and the computer is used to perform encryption (or decryption. In this case the FPGA serves as hardware key (dongle for data encryption (or decryption.

  14. Bearings only naval tracking

    Energy Technology Data Exchange (ETDEWEB)

    Barth, M.J.

    1984-11-01

    Two commonly used Extended Kalman Filter tracking algorithms utilize the Relative Cartesian and Modified Polar coordinate systems. This report compares the two algorithms by exercising a destroyer-Submarine (DD/SS) computer simulation. A simple engagement geometry is employed which encompasses the major DD/SS options available. Error statistics are developed by Monte Carlo methods. Results are presented which show that the circular error depends upon the diagonal values of the error covariance matrix. The results also support (but do not establish) that the optimum DD manuevuer is that which minimizes the range while maximizing the bearing rate. 4 refs., 5 figs., 4 tabs.

  15. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  16. Developing a Decision Support System: The Software and Hardware Tools.

    Science.gov (United States)

    Clark, Phillip M.

    1989-01-01

    Describes some of the available software and hardware tools that can be used to develop a decision support system implemented on microcomputers. Activities that should be supported by software are discussed, including data entry, data coding, finding and combining data, and data compatibility. Hardware considerations include speed, storage…

  17. The hardware and software support for the MRSP.

    Science.gov (United States)

    Teuber, D.

    The Muenster Redshift Project (MRSP) described by Horstmann (1988) and Schuecker (1988) relies on an arrangement of hardware and software which is referred to as the Astronomical Data Analysis System. In this paper the hardware is briefly introduced and the support software GAME is discussed.

  18. Teaching Robotics Software with the Open Hardware Mobile Manipulator

    Science.gov (United States)

    Vona, M.; Shekar, N. H.

    2013-01-01

    The "open hardware mobile manipulator" (OHMM) is a new open platform with a unique combination of features for teaching robotics software and algorithms. On-board low- and high-level processors support real-time embedded programming and motor control, as well as higher-level coding with contemporary libraries. Full hardware designs and…

  19. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2015-01-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms-1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in

  20. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  1. A Practical Introduction to HardwareSoftware Codesign

    CERN Document Server

    Schaumont, Patrick R

    2013-01-01

    This textbook provides an introduction to embedded systems design, with emphasis on integration of custom hardware components with software. The key problem addressed in the book is the following: how can an embedded systems designer strike a balance between flexibility and efficiency? The book describes how combining hardware design with software design leads to a solution to this important computer engineering problem. The book covers four topics in hardware/software codesign: fundamentals, the design space of custom architectures, the hardware/software interface and application examples. The book comes with an associated design environment that helps the reader to perform experiments in hardware/software codesign. Each chapter also includes exercises and further reading suggestions. Improvements in this second edition include labs and examples using modern FPGA environments from Xilinx and Altera, which make the material applicable to a greater number of courses where these tools are already in use.  Mo...

  2. Advanced Programming Platform for efficient use of Data Parallel Hardware

    CERN Document Server

    Cabellos, Luis

    2012-01-01

    Graphics processing units (GPU) had evolved from a specialized hardware capable to render high quality graphics in games to a commodity hardware for effective processing blocks of data in a parallel schema. This evolution is particularly interesting for scientific groups, which traditionally use mainly CPU as a work horse, and now can profit of the arrival of GPU hardware to HPC clusters. This new GPU hardware promises a boost in peak performance, but it is not trivial to use. In this article a programming platform designed to promote a direct use of this specialized hardware is presented. This platform includes a visual editor of parallel data flows and it is oriented to the execution in distributed clusters with GPUs. Examples of application in two characteristic problems, Fast Fourier Transform and Image Compression, are also shown.

  3. Hardware efficient monitoring of input/output signals

    Science.gov (United States)

    Driscoll, Kevin R. (Inventor); Hall, Brendan (Inventor); Paulitsch, Michael (Inventor)

    2012-01-01

    A communication device comprises first and second circuits to implement a plurality of ports via which the communicative device is operable to communicate over a plurality of communication channels. For each of the plurality of ports, the communication device comprises: command hardware that includes a first transmitter to transmit data over a respective one of the plurality of channels and a first receiver to receive data from the respective one of the plurality of channels; and monitor hardware that includes a second receiver coupled to the first transmitter and a third receiver coupled to the respective one of the plurality of channels. The first circuit comprises the command hardware for a first subset of the plurality of ports. The second circuit comprises the monitor hardware for the first subset of the plurality of ports and the command hardware for a second subset of the plurality of ports.

  4. Nanoprecipitation in bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, A.T.W. [SKF University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Rivera-Diaz-del-Castillo, P.E.J., E-mail: pejr2@cam.ac.uk [SKF University Technology Centre, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2011-11-15

    {theta}-phase is the main hardening species in bearing steels and appears in both martensitically and bainitically hardened microstructures. This work presents a survey of the microstrucural features accompanying nanoprecipitation in bearing steels. Nanoprecipitate structures formed in 1C-1.5Cr wt.% with additions of Cr, Mn, Mo, Si and Ni are studied. The work is combined with thermodynamic calculations and neural networks to predict the expected matrix composition, and whether this will transform martensitically or bainitically. Martensite tetragonality, composition and the amount of retained austenite are related to hardness and the type of nanoprecipitate structures in martensitic grades. The {theta}-phase volume fraction, the duration of the bainite to austenite transformation and the amount of retained austenite are related to hardness and a detailed quantitative description of the precipitate nanostructures. Such description includes compositional studies using energy-dispersive spectroscopy, which shows that nanoprecipitate formation takes place under paraequilibrium. Special attention is devoted to a novel two-step bainite tempering process which shows maximum hardness; we prove that this is the most effective process for incorporating solute into the precipitates, which are finer than those resulting from one-step banitic transformation processes.

  5. An experimental study of tin partition between melt and aqueous fluid in F/CI-coexisting magma

    Institute of Scientific and Technical Information of China (English)

    HU XiaoYan; BI XianWu; SHANG LinBo; HU RuiZhong; CAI GuoSheng; CHEN YouWei

    2009-01-01

    In order to investigate the formation mechanism of tin ores associated with F-bearing granite, an experimental study of tin partition between F-bearing granitic melt and coexisting HCI-bearing aqueous fluid was conducted at 850"C and 100MPa with fo2 approaching NNO. Geochemical behavior of tin was traced by changes in starting solid materials with different alumina saturation index ASl, in F content and in starting fluids of various HCl concentrations. The results show that DSn increases with ASl of melt and peraluminous melt is favorable for tin partition into aqueous fluid in the F/Cl-coexisting system. Aqueous fluid of higher HCl concentrations is advantageous for enrichment of tin. Furthermore,chlorine contents in glass run products correlate positively with F and CI contents in the magma. In the F/Cl-coexisting system, granitic melts with high F contents (>~-1 wt%) could extract and enrich tin in the melt which can serve as a reservoir for the formation of tin ores. However, the partition coefficient of tin would increase significantly when F contents in the melt were below 1 wt%. Therefore, the decrease of F contents is favorable to the partition of tin into aqueous fluid with high HCI contents, thus promoting deposition of hydrothermal tin ores.

  6. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  7. Nova as embedded operating system for cuban hardware Nova como sistema operativo embebido para hardware cubano

    Directory of Open Access Journals (Sweden)

    Mijail Hurtado Fedorovich

    2012-05-01

    Full Text Available This paper presents the results of the construction a an embedded operating system based on Nova, which provides the needed features to create the Cuban Thin Client, using as hardware component the Computer on a CID 300/9 Board designed by the Central Institute for Digital Research, obtaining the first version of Nova for the Advance RISC Machine  computer architecture and the first base operating system, stable and for general purposes for the CID 300/9. A state of the art of the currently most used embedded operating systems, the solution's structure, the methods and tools used for its development are presented. Este trabajo expone los resultados de construir un sistema operativo embebido basado en Nova, el cual brinda las funcionalidades necesarias para crear el Cliente Ligero Cubano, utilizando como componente de hardware, la Computadora en una Tarjeta CID 300/9 diseñada por el Instituto Central de Investigación Digital. Obteniéndose la primera versión de Nova para la arquitectura de computadora Advanced RISC Machine y el primer sistema operativo base, estable y de propósito general para la CID 300/9. Se expone un estado del arte de los sistemas operativos embebidos más utilizados actualmente; la estructura de la solución, los métodos y herramientas empleados para obtenerla.

  8. Nova como sistema operativo embebido para hardware cubano Nova as embedded operating system for cuban hardware

    Directory of Open Access Journals (Sweden)

    José Ernesto Torres Sánchez

    2012-05-01

    Full Text Available Este trabajo expone los resultados de construir un sistema operativo embebido basado en Nova, el cual brinda las funcionalidades necesarias para crear el Cliente Ligero Cubano, utilizando como componente de hardware, la Computadora en una Tarjeta CID 300/9 diseñada por el Instituto Central de Investigación Digital. Obteniéndose la primera versión de Nova para la arquitectura de computadora Advanced RISC Machine y el primer sistema operativo base, estable y de propósito general para la CID 300/9. Se expone un estado del arte de los sistemas operativos embebidos más utilizados actualmente; la estructura de la solución, los métodos y herramientas empleados para obtenerla.This paper presents the results of the construction a an embedded operating system based on Nova, which provides the needed features to create the Cuban Thin Client, using as hardware component the Computer on a CID 300/9 Board designed by the Central Institute for Digital Research, obtaining the first version of Nova for the Advance RISC Machine  computer architecture and the first base operating system, stable and for general purposes for the CID 300/9. A state of the art of the currently most used embedded operating systems, the solution's structure, the methods and tools used for its development are presented.

  9. The Art of Space Flight Exercise Hardware: Design and Implementation

    Science.gov (United States)

    Beyene, Nahom M.

    2004-01-01

    The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware

  10. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  11. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  12. Dynamic Analysis of Engine Bearings

    Directory of Open Access Journals (Sweden)

    H. Hirani

    1999-01-01

    Full Text Available This paper presents a simple methodology to evaluate the stiffness and damping coefficients of an engine bearing over a load cycle. A rapid technique is used to determine the shaft ‘limit cycle’ under engine dynamic loads. The proposed theoretical model is based on short and long bearing approximations. The results obtained by present approximation are compared with those obtained by numerical method. The influence of thermal effects on the stiffness and damping coefficients is predicted by using a simplified thermal analysis. In order to illustrate the application of the proposed scheme, one engine main bearing and a connecting rod bearing are analysed.

  13. Fish of Bear Lake, Utah

    OpenAIRE

    Palacios, Patsy; Luecke, Chris; Robinson, Justin

    2007-01-01

    There are 13 species of fish found in the waters of Bear Lake. Of those 13, 4 are endemic (found only in Bear Lake). The 4 endemics species are Bonneville cisco, Bonneville whitefish, Bear Lake whitefish, and Bear Lake sculpin. Five of the remaining 9 fish species are native to the region, and 4 are exotic introductions. These native fishes are the Bonneville cutthroat trout, Utah sucker, redside shiner, speckled dace and Utah chub. The exotic fishes are lake trout, common carp, yellow p...

  14. Thermodynamics of freezing and melting.

    Science.gov (United States)

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  15. Targeting multiple heterogeneous hardware platforms with OpenCL

    Science.gov (United States)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  16. Challenges in Melt Furnace Tests

    Science.gov (United States)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  17. Skull melting of synthetic minerals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.D.; Hull, D.E.; Herrick, C.C.

    1977-12-01

    Direct high-frequency induction melting of dielectric materials in a water-cooled cage has been developed in the LASL synthetic minerals program. Molten material is contained in a skull, i.e., sintered shell, of its own composition so the traditional problems associated with refractory melt contamination are essentially eliminated. Preliminary analyses of power input, cage design, and coil geometry are discussed. Initial experimental results on the preparation of polycrystalline ingots, single crystals, and glasses are presented along with possible applications of this technique.

  18. Autosizing Control Panel for Needle Bearing

    OpenAIRE

    Prof.A.R.Wadhekar,; Ms Jyoti R. Rajput

    2016-01-01

    A needle roller bearing is a bearing which uses small cylindrical rollers. Bearings are used to reduce friction of any rotating surface. Needle bearings have a large surface in contact with the bearing outer surfaces as compared to ball bearings. There is less added clearance(Diameter of the shaft and the diameter of the bearing are different) so they are much compact. The structure consists of a needle cage which contains the needle rollersthemselves and an outer race (The housin...

  19. Methods of increasing the rate of tin evaporation from iron-based melts

    Energy Technology Data Exchange (ETDEWEB)

    Savov, L.

    2000-07-01

    The low evaporation rate is a main obstacle to the large scale application of vacuum refining of steel scrap melts with respect to tin. In this paper several possibilities of increasing the evaporation rate of tin have been investigated. Iron-based melts containing 0.3 to 0.6 mass% Sn were treated in a laboratory-scale vacuum induction melting furnace at a pressure of 10 Pa. It was confirmed that detinning is enhanced by increasing the sulphur content of liquid iron. This effect is explained by the evaporation of volatile SnS. The kinetics of SnS evaporation is discussed. (2) Evaporation of volatile SnO from steel melts containing less than 0.024mass% oxygen was not confirmed. (3) The highest evaporation rate of tin in elemental state is observed from high-silicon iron melts. The most favourable conditions occur at approximately 22 mass% Si in the iron melt. This fact is discussed in terms of the thermodynamics of the liquid Fe-Si-Sn system. (4) New process schemes of tinplate scrap recycling are considered. It is suggested to use tinplate scrap as iron-bearing material for the production of ferro-silicon alloys. The recycling of tinplate scrap in the ferro-silicon production has potential benefits over its recycling in steelmaking. (5) It is demonstrated that the condensate gathered during vacuum refining of tinplate scrap melts can be reprocessed in the non-ferrous industry to obtain pure tin. (author)

  20. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  1. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows the...... importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  2. Hardware Synchronization for Embedded Multi-Core Processors

    DEFF Research Database (Denmark)

    Stoif, Christian; Schoeberl, Martin; Liccardi, Benito;

    2011-01-01

    , establishing coherence and consistency for different types of shared memory by hardware means. Also support for point-to-point synchronization between the processor cores is realized implementing different hardware barriers. The practical examinations focus on the logical first step from single- to dual......-core systems, using an FPGA-development board with two hard PowerPC processor cores. Best- and worst-case results, together with intensive benchmarking of all synchronization primitives implemented, show the expected superiority of the hardware solutions. It is also shown that dual-ported memory outperforms...

  3. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  4. Hardware Implementation of Serially Concatenated PPM Decoder

    Science.gov (United States)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in

  5. Hardware Implementation of a Bilateral Subtraction Filter

    Science.gov (United States)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for

  6. Superconducting bearings for flywheel applications

    OpenAIRE

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings in flywheels.

  7. High-Performance Ball Bearing

    Science.gov (United States)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  8. What about the Javan Bear?

    NARCIS (Netherlands)

    Jentink, F.A.

    1898-01-01

    The other day I read in a dutch popular periodical a paper dealing with the different species of Bears and their geographical distribution. To my great surprise the Malayan Bear was mentioned from Java: the locality Java being quite new to me I wrote to the author of that paper and asked him some in

  9. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  10. OpenMM: A Hardware Independent Framework for Molecular Simulations

    OpenAIRE

    Eastman, Peter; Pande, Vijay S.

    2010-01-01

    The wide diversity of computer architectures today requires a new approach to software development. OpenMM is a framework for molecular mechanics simulations, allowing a single program to run efficiently on a variety of hardware platforms.

  11. Hardware problems encountered in solar heating and cooling systems

    Science.gov (United States)

    Cash, M.

    1978-01-01

    Numerous problems in the design, production, installation, and operation of solar energy systems are discussed. Described are hardware problems, which range from simple to obscure and complex, and their resolution.

  12. Hardware Transactional Memory Optimization Guidelines, Applied to Ordered Maps

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal; Probst, Christian W.; Karlsson, Sven

    2015-01-01

    synchronization method scales well. Recently, hardware transactional memory was introduced, which allows threads to use transactions instead of locks. So far, applying hardware transactional memory has shown mixed results. We believe this is because transactions are different from locks, and using them...... efficiently requires reasoning about those differences. In this paper we present 5 guidelines for applying hardware transactional memory efficiently, and apply the guidelines to BT-trees, a concurrent ordered map. Evaluating BT-trees on standard benchmarks shows that they are up to 5.3 times faster than...... traditional maps using hardware transactional memory, and up to 3.9 times faster than state of the art concurrent ordered maps....

  13. Hardware device to physical structure binding and authentication

    Science.gov (United States)

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  14. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware...... specifications of common sensors reveals, however, that other equally important culprits exist, such as the reception and processing energy. Hence, there is a need for a more complete hardware abstraction of a sensor node to reduce effectively the total energy consumption of the network by designing energy...... platforms, the use of relays may decrease up to 4.5 times the total energy consumption when the protocol and the hardware are carefully matched. We conclude that: 1) the energy budget for a communication protocol varies significantly on different sensor platforms; and 2) the protocols can be judiciously...

  15. Hardware Virtualization Support In INTEL, AMD And IBM Power Processors

    CERN Document Server

    Biswas, Kamanashis

    2009-01-01

    At present, the mostly used and developed mechanism is hardware virtualization which provides a common platform to run multiple operating systems and applications in independent partitions. More precisely, it is all about resource virtualization as the term hardware virtualization is emphasized. In this paper, the aim is to find out the advantages and limitations of current virtualization techniques, analyze their cost and performance and also depict which forthcoming hardware virtualization techniques will able to provide efficient solutions for multiprocessor operating systems. This is done by making a methodical literature survey and statistical analysis of the benchmark reports provided by SPEC (Standard Performance Evaluation Corporation) and TPC (Transaction processing Performance Council). Finally, this paper presents the current aspects of hardware virtualization which will help the IT managers of the large organizations to take effective decision while choosing server with virtualization support. Aga...

  16. New Model and Algorithm for Hardware/Software Partitioning

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Wu; Thambipillai Srikanthan; Guang-Wei Zou

    2008-01-01

    This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of hardware area but also optimizes the execution time. The computational model is extended so that all possible types of communications can be taken into account for the HW/SW partitioning. Also, a new dynamic programming algorithm is proposed on the basis of the computational model, in which source data, rather than speedup in previous work, of basic scheduling blocks are directly utilized to calculate the optimal solution. The proposed algorithm runs in O(n. A) for n code fragments and the available hardware area A. Simulation results show that the proposed algorithm solves the HW/SW partitioning without increase in running time, compared with the algorithm cited in the literature.

  17. Hardware Implementation Of Line Clipping A lgorithm By Using FPGA

    Directory of Open Access Journals (Sweden)

    Amar Dawod

    2013-04-01

    Full Text Available The computer graphics system performance is increasing faster than any other computing application. Algorithms for line clipping against convex polygons and lines have been studied for a long time and many research papers have been published so far. In spite of the latest graphical hardware development and significant increase of performance the clipping is still a bottleneck of any graphical system. So its implementation in hardware is essential for real time applications. In this paper clipping operation is discussed and a hardware implementation of the line clipping algorithm is presented and finally formulated and tested using Field Programmable Gate Arrays (FPGA. The designed hardware unit consists of two parts : the first is positional code generator unit and the second is the clipping unit. Finally it is worth mentioning that the  designed unit is capable of clipping (232524 line segments per second.       

  18. Scientific Computing Using Consumer Video-Gaming Hardware Devices

    CERN Document Server

    Volkema, Glenn

    2016-01-01

    Commodity video-gaming hardware (consoles, graphics cards, tablets, etc.) performance has been advancing at a rapid pace owing to strong consumer demand and stiff market competition. Gaming hardware devices are currently amongst the most powerful and cost-effective computational technologies available in quantity. In this article, we evaluate a sample of current generation video-gaming hardware devices for scientific computing and compare their performance with specialized supercomputing general purpose graphics processing units (GPGPUs). We use the OpenCL SHOC benchmark suite, which is a measure of the performance of compute hardware on various different scientific application kernels, and also a popular public distributed computing application, Einstein@Home in the field of gravitational physics for the purposes of this evaluation.

  19. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  20. Hybrid Superconducting Magnetic Bearing (HSMB) for high-load devices

    International Nuclear Information System (INIS)

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  1. Geophagy by yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.; Green, G.I.; Swalley, R.

    1999-01-01

    We documented 12 sites in the Yellowstone ecosystem where grizzly bears (Ursus arctos horribilis) had purposefully consumed soil (an activity known as geophagy). We also documented soil in numerous grizzly bear feces. Geophagy primarily occurred at sites barren of vegetation where surficial geology had been modified by geothermal activity. There was no evidence of ungulate use at most sites. Purposeful consumption of soil by bears peaked first from March to May and again from August to October, synchronous with peaks in consumption of ungulate meat and mushrooms. Geophageous soils were distinguished from ungulate mineral licks and soils in general by exceptionally high concentrations of potassium (K) and high concentrations of magnesium (Mg) and sulphur (S). Our results do not support the hypotheses that bears were consuming soil to detoxify secondary compounds in grazed foliage, as postulated for primates, or to supplement dietary sodium, as known for ungulates. Our results suggest that grizzly bears could have been consuming soil as an anti-diarrheal.

  2. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  3. Top Down Approach: SIMULINK Mixed Hardware / Software Design

    Directory of Open Access Journals (Sweden)

    Youssef Atat

    2012-05-01

    Full Text Available System-level design methodologies have been introduced as a solution to handle the design complexity of mixed Hardware / Software systems. In this paper we describe a system-level design flow starting from Simulink specification, focusing on concurrent hardware and software design and verification at four different abstraction levels: System Simulink model, Transaction Simulink model, Macro architecture, and micro architecture. We used the MP3 CodeC application, to validate our approach and methodology.

  4. Using software and hardware neural networks in a Higgs search

    International Nuclear Information System (INIS)

    The present investigation uses information from computer simulations to train neural networks to identify decays of heavy Higgs particles (mH>>mZ). Results are presented both for software and hardware analog neural networks. The hardware tests include the Intel ETANN and the CLNN32/CLNS64 (experimental, research prototype developed at Bellcore) chip-set implemented in VME-modules. The processing and learning times for the networks are discussed. ((orig.))

  5. Advances in Metered Dose Inhaler Technology: Hardware Development

    OpenAIRE

    Stein, Stephen W.; Sheth, Poonam; Hodson, P. David; Myrdal, Paul B.

    2013-01-01

    Pressurized metered dose inhalers (MDIs) were first introduced in the 1950s and they are currently widely prescribed as portable systems to treat pulmonary conditions. MDIs consist of a formulation containing dissolved or suspended drug and hardware needed to contain the formulation and enable efficient and consistent dose delivery to the patient. The device hardware includes a canister that is appropriately sized to contain sufficient formulation for the required number of doses, a metering ...

  6. Mitigating Hardware Cyber-Security Risks in Error Correcting Decoders

    OpenAIRE

    Hemati, Saied

    2015-01-01

    This paper investigates hardware cyber-security risks associated with channel decoders, which are commonly acquired as a black box in semiconductor industry. It is shown that channel decoders are potentially attractive targets for hardware cyber-security attacks and can be easily embedded with malicious blocks. Several attack scenarios are considered in this work and suitable methods for mitigating the risks are proposed. These methods are based on randomizing the inputs of the channel decode...

  7. Computer generated holography using parallel commodity graphics hardware

    OpenAIRE

    Ahrenberg, Lukas; Benzie, Philip; Magnor, Marcus; Watson, John

    2006-01-01

    This paper presents a novel method for using programmable graphics hardware to generate fringe patterns for SLM-based holographic displays. The algorithm is designed to take the programming constraints imposed by the graphics hardware pipeline model into consideration, and scales linearly with the number of object points. In contrast to previous methods we do not have to use the Fresnel approximation. The technique can also be used on several graphics processors in p...

  8. Hardware Evolution of Closed-Loop Controller Designs

    Science.gov (United States)

    Gwaltney, David; Ferguson, Ian

    2002-01-01

    Poster presentation will outline on-going efforts at NASA, MSFC to employ various Evolvable Hardware experimental platforms in the evolution of digital and analog circuitry for application to automatic control. Included will be information concerning the application of commercially available hardware and software along with the use of the JPL developed FPTA2 integrated circuit and supporting JPL developed software. Results to date will be presented.

  9. SNL/NM weapon hardware characterization process development report

    Energy Technology Data Exchange (ETDEWEB)

    Graff, E.W.; Chambers, W.B.

    1995-01-01

    This report describes the process used by Sandia National Laboratories, New Mexico to characterize weapon hardware for disposition. The report describes the following basic steps: (1) the drawing search process and primary hazard identification; (2) the development of Disassembly Procedures (DPs), including demilitarization and sanitization requirements; (3) the generation of a ``disposal tree``; (4) generating RCRA waste disposal information; and (5) documenting the information. Additional data gathered during the characterization process supporting hardware grouping and recycle efforts is also discussed.

  10. Smartphone’s Hardware Architectures and Their Issues

    OpenAIRE

    Rohit Kumar; Lokesh Pawar

    2014-01-01

    Smart phones provides us the capability of a typical computer with absolute mobility and small form factor. But the hardware architecture of smart phone is significantly different from the conventional hardware architectures. The feature and architecture of the processors is totally different the traditional processor as these processors are developed to cope-up with fewer energy availability with smart phones or any other ultra portable devices.

  11. Top Down Approach: SIMULINK Mixed Hardware / Software Design

    OpenAIRE

    Youssef Atat; Mostafa Rizk

    2012-01-01

    System-level design methodologies have been introduced as a solution to handle the design complexity of mixed Hardware / Software systems. In this paper we describe a system-level design flow starting from Simulink specification, focusing on concurrent hardware and software design and verification at four different abstraction levels: System Simulink model, Transaction Simulink model, Macro architecture, and micro architecture. We used the MP3 CodeC application, to validate our approach and m...

  12. A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation

    OpenAIRE

    Samuel Charbouillot; Annie Pérez; Daniele Fronte

    2008-01-01

    We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware implementation of a general purpose cellular automaton (CA) entirely programmable. The heart of this structure is a PE array with reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based on...

  13. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    Science.gov (United States)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  14. Assuring Quality and Reliability in Complex Avionics Systems hardware & Software

    Directory of Open Access Journals (Sweden)

    V. Haridas

    1997-01-01

    Full Text Available It is conventional wisdom in defence systems that electronic brains are where much of the present and future weapons system capability is developed. Electronic hardware advances, particularly in microprocessor, allow highly complex and sophisticated software to provide high degree of system autonomy and customisation to mission at hand. Since modern military systems are so much dependent on the proper functioning of electronics, the quality and reliability of electronic hardware and software have a profound impact on defensive capability and readiness. At the hardware level, due to the advances in microelectronics, functional capabilities of today's systems have increased. The advances in the hardware field have an impact on software also. Now a days, it is possible to incorporate more and more system functions through software, rather than going for a pure hardware solution. On the other hand complexities the systems are increasing, working energy levels of the systems are decreasing and the areas of reliability and quality assurance are becoming more and more wide. This paper covers major failure modes in microelectronic devices. The various techniques used to improve component and system reliability are described. The recent trends in expanding the scope of traditional quality assurance techniques are also discussed, considering both hardware and software.

  15. On the use of inexact, pruned hardware in atmospheric modelling.

    Science.gov (United States)

    Düben, Peter D; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V; Palmer, T N

    2014-06-28

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

  16. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  17. Comparison of Life Theories for Rolling-Element Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Peters, Steven M.

    1995-01-01

    Nearly five decades have passed since G. Lundberg and A. Palmgren published their life theory in 1947 and 1952 and it was adopted as an ANSI/ABMA and ISO standard in 1950 and 1953. Subsequently, many variations and deviations from their life theory have been proposed, the most recent being that of E. Ioannides and T.A. Harris in 1985. This paper presents a critical analysis comparing the results of different life theories and discussing their implications in the design and analysis of rolling-element bearings. Variations in the stress-life relation and in the critical stress related to bearing life are discussed using stress fields obtained from three-dimensional, finite-element analysis of a ball in a nonconforming race under varying load. The results showed that for a ninth power stress-life exponent the Lundberg-Palmgren theory best predicts life as exhibited by most air-melted bearing steels. For a 12th power relation reflected by modern bearing steels, a Zaretsky-modified Weibull equation is superior. The assumption of a fatigue-limiting stress distorts the stress-life exponent and overpredicts life.

  18. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  19. An Enhanced Hardware Description Language Implementation for Improved Design-Space Exploration in High-Energy Physics Hardware Design

    CERN Document Server

    Mücke, M; Jacobsson, R

    2007-01-01

    Detectors in High-Energy Physics (HEP) have increased tremendously in accuracy, speed and integration. Consequently HEP experiments are confronted with an immense amount of data to be read out, processed and stored. Originally low-level processing has been accomplished in hardware, while more elaborate algorithms have been executed on large computing farms. Field-Programmable Gate Arrays (FPGAs) meet HEP's need for ever higher real-time processing performance by providing programmable yet fast digital logic resources. With the fast move from HEP Digital Signal Processing (DSPing) applications into the domain of FPGAs, related design tools are crucial to realise the potential performance gains. This work reviews Hardware Description Languages (HDLs) in respect to the special needs present in the HEP digital hardware design process. It is especially concerned with the question, how features outside the scope of mainstream digital hardware design can be implemented efficiently into HDLs. It will argue that funct...

  20. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, J.; Stirling, I.; Kistler, L.; Salamzade, R.; Ersmark, E.; Fulton, T.; Stiller, M.; Green, R.; Shapiro, B.

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear...

  1. Review of Maxillofacial Hardware Complications and Indications for Salvage.

    Science.gov (United States)

    Hernandez Rosa, Jonatan; Villanueva, Nathaniel L; Sanati-Mehrizy, Paymon; Factor, Stephanie H; Taub, Peter J

    2016-06-01

    From 2002 to 2006, more than 117,000 facial fractures were recorded in the U.S. National Trauma Database. These fractures are commonly treated with open reduction and internal fixation. While in place, the hardware facilitates successful bony union. However, when postoperative complications occur, the plates may require removal before bony union. Indications for salvage versus removal of the maxillofacial hardware are not well defined. A literature review was performed to identify instances when hardware may be salvaged. Articles considered for inclusion were found in the PubMed and Web of Science databases in August 2014 with the keywords maxillofacial trauma AND hardware complications OR indications for hardware removal. Included studies looked at human patients with only facial trauma and miniplate fixation, and presented data on complications and/or hardware removal. Fifteen articles were included. None were clinical trials. Complication data were presented by patient, fractures, and/or plate without consistency. The data described 1,075 fractures, 2,961 patients, and 2,592 plates, nonexclusive. Complication rates varied from 6 to 8% by fracture and 6 to 13% by patient. When their data were combined, 50% of complications were treated with plate removal; this was consistent across the mandible, midface, and upper face. All complications caused by loosening, nonunion, broken hardware, and severe/prolonged pain were treated with removal. Some complications caused by exposures, deformities, and infections were treated with salvage. Exposed plates were treated with flaps, plates with deformities were treated with secondary procedures including hardware revision, and hardware infections were treated with antibiotics alone or in conjunction with soft-tissue debridement and/or tooth extraction. Well-designed clinical trials evaluating hardware removal versus salvage are lacking. Some postoperative complications caused by exposure, deformity, and/or infection may be

  2. Review of Maxillofacial Hardware Complications and Indications for Salvage.

    Science.gov (United States)

    Hernandez Rosa, Jonatan; Villanueva, Nathaniel L; Sanati-Mehrizy, Paymon; Factor, Stephanie H; Taub, Peter J

    2016-06-01

    From 2002 to 2006, more than 117,000 facial fractures were recorded in the U.S. National Trauma Database. These fractures are commonly treated with open reduction and internal fixation. While in place, the hardware facilitates successful bony union. However, when postoperative complications occur, the plates may require removal before bony union. Indications for salvage versus removal of the maxillofacial hardware are not well defined. A literature review was performed to identify instances when hardware may be salvaged. Articles considered for inclusion were found in the PubMed and Web of Science databases in August 2014 with the keywords maxillofacial trauma AND hardware complications OR indications for hardware removal. Included studies looked at human patients with only facial trauma and miniplate fixation, and presented data on complications and/or hardware removal. Fifteen articles were included. None were clinical trials. Complication data were presented by patient, fractures, and/or plate without consistency. The data described 1,075 fractures, 2,961 patients, and 2,592 plates, nonexclusive. Complication rates varied from 6 to 8% by fracture and 6 to 13% by patient. When their data were combined, 50% of complications were treated with plate removal; this was consistent across the mandible, midface, and upper face. All complications caused by loosening, nonunion, broken hardware, and severe/prolonged pain were treated with removal. Some complications caused by exposures, deformities, and infections were treated with salvage. Exposed plates were treated with flaps, plates with deformities were treated with secondary procedures including hardware revision, and hardware infections were treated with antibiotics alone or in conjunction with soft-tissue debridement and/or tooth extraction. Well-designed clinical trials evaluating hardware removal versus salvage are lacking. Some postoperative complications caused by exposure, deformity, and/or infection may be

  3. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    Science.gov (United States)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  4. Space biology initiative program definition review. Trade study 5: Modification of existing hardware (COTS) versus new hardware build cost analysis

    Science.gov (United States)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. An SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial to determine the potential advantages in modifying commercial off-the-shelf (COTS) hardware for some SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition trade study analysis must be adjusted in scope and schedule to be complete for the SBI Definition (Non-Advocate) Review. The relative costs of modifying existing commercial off-the-shelf (COTS) hardware is compared to fabricating new hardware. An historical basis for new build versus modifying COTS to meet current NMI specifications for manned space flight hardware is surveyed and identified. Selected SBI hardware are identified as potential candidates for off-the-shelf modification and statistical estimates on the relative cost of modifying COTS versus new build are provided.

  5. Eastern slopes grizzly bear project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  6. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  7. Bears, Big and Little. Young Discovery Library Series.

    Science.gov (United States)

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  8. Asymmetric Melting and Freezing Kinetics in Silicon.

    OpenAIRE

    Aziz, Michael; Tsao, Jeff Y.; Thompson, Michael O.; Peercy, Paul S.

    1986-01-01

    We report measurements of the melting velocity of amorphous Si relative to that of (100) crystalline Si. These measurements permit the first severe experimental test of theories describing highly nonequilibrium freezing and melting. The results indicate that freezing in Si is inherently slower than melting; this asymmetry can be interpreted in terms of an entropy-related reduction in the freezing rate.

  9. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  10. FPGA-Based Digital Current Switching Power Amplifiers Used in Magnetic Bearing Systems

    Science.gov (United States)

    Wang, Yin; Zhang, Kai; Dong, Jinping

    For a traditional two-level current switching power amplifier (PA) used in a magnetic bearing system, its current ripple is obvious. To increase its current ripple performance, three-level amplifiers are designed and their current control is generally based on analog and logical circuits. So the required hardware is complex and a performance increase from the hardware adjustment is difficult. To solve this problem, a FPGA-based digital current switching power amplifier (DCSPA) was designed. Its current ripple was obviously smaller than a two-level amplifier and its control circuit was much simpler than a tri-level amplifier with an analog control circuit. Because of the field-programmable capability of a FPGA chip used, different control algorithms including complex nonlinear algorithms could be easily implemented in the amplifier and their effects could be compared with the same hardware.

  11. Hadron melting and QCD thermodynamics

    OpenAIRE

    Jakovac, A.

    2013-01-01

    We study in this paper mechanisms of hadron melting based on the spectral representation of hadronic quantum channels, and examine the hadron width dependence of the pressure. The findings are applied to a statistical hadron model of QCD thermodynamics, where hadron masses are distributed by the Hagedorn model and a uniform mechanism for producing hadron widths is assumed. According to this model the hadron - quark gluon plasma transition occurs at $T\\approx 200$-250 MeV, the numerically obse...

  12. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    in the ashes lead to increased melt fractions in the temperature range 600-750°C.b) Bottom ashes from straw combustion consist purely of silicates, with varying ratios of the quite refractory Al-silicates and quartz to the less refractory K- and Ca-silicates. Bottom ashes melt in the temperature range 800......-1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...

  13. Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada

    Science.gov (United States)

    Dressler, B. O.; Schuraytz, B. C.; Crabtree, D.

    1997-01-01

    The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C.

  14. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  15. A Passive Magnetic Bearing Flywheel

    Science.gov (United States)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  16. Bear study, Karluk Lake, 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Based on observations, 117 bears were estimated to live in the Karluk Lake area. The estimate was lower than estimates from 1952, and 1954-1955. Annual loss to...

  17. Myrmecophagy by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    2001-01-01

    I used data collected during a study of radio-marked grizzly bears (Ursus arctos horribilis) in the Yellowstone region from 1977 to 1992 to investigate myrmecophagy by this population. Although generally not an important source of energy for the bears (averaging 8 mm long) nested in logs over small ants (6 mm long) nested under stones. Optimal conditions for consumption of ants occurred on the warmest sites with ample substrate suitable for ant nests. For ants in mounds, this occurred at low elevations at non-forested sites. For ants in logs, this occurred at low elevations or on southerly aspects where there was abundant, large-diameter, well-decomposed woody debris under an open forest canopy. Grizzly bears selected moderately decomposed logs 4a??5 dm in diameter at midpoint. Ants will likely become a more important food for Yellowstone's grizzly bears as currently important foods decline, owing to disease and warming of the regional climate.

  18. Color science demonstration kit from open source hardware and software

    Science.gov (United States)

    Zollers, Michael W.

    2014-09-01

    Color science is perhaps the most universally tangible discipline within the optical sciences for people of all ages. Excepting a small and relatively well-understood minority, we can see that the world around us consists of a multitude of colors; yet, describing the "what", "why", and "how" of these colors is not an easy task, especially without some sort of equally colorful visual aids. While static displays (e.g., poster boards, etc.) serve their purpose, there is a growing trend, aided by the recent permeation of small interactive devices into our society, for interactive and immersive learning. However, for the uninitiated, designing software and hardware for this purpose may not be within the purview of all optical scientists and engineers. Enter open source. Open source "anything" are those tools and designs -- hardware or software -- that are available and free to use, often without any restrictive licensing. Open source software may be familiar to some, but the open source hardware movement is relatively new. These are electronic circuit board designs that are provided for free and can be implemented in physical hardware by anyone. This movement has led to the availability of some relatively inexpensive, but quite capable, computing power for the creation of small devices. This paper will showcase the design and implementation of the software and hardware that was used to create an interactive demonstration kit for color. Its purpose is to introduce and demonstrate the concepts of color spectra, additive color, color rendering, and metamers.

  19. GOSH! A roadmap for open-source science hardware

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The goal of the Gathering for Open Science Hardware (GOSH! 2016), held from 2 to 5 March 2016 at IdeaSquare, was to lay the foundations of the open-source hardware for science movement.   The participants in the GOSH! 2016 meeting gathered in IdeaSquare. (Image: GOSH Community) “Despite advances in technology, many scientific innovations are held back because of a lack of affordable and customisable hardware,” says François Grey, a professor at the University of Geneva and coordinator of Citizen Cyberlab – a partnership between CERN, the UN Institute for Training and Research and the University of Geneva – which co-organised the GOSH! 2016 workshop. “This scarcity of accessible science hardware is particularly obstructive for citizen science groups and humanitarian organisations that don’t have the same economic means as a well-funded institution.” Instead, open sourcing science hardware co...

  20. OS friendly microprocessor architecture: Hardware level computer security

    Science.gov (United States)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  1. Higher-Level Hardware Synthesis of the KASUMI Algorithm

    Institute of Scientific and Technical Information of China (English)

    Issam W. Damaj

    2007-01-01

    Programmable Logic Devices (PLDs) continue to grow in size and currently contain several millions of gates.At the same time, research effort is going into higher-level hardware synthesis methodologies for reconfigurable computing that can exploit PLD technology.In this paper, we explore the effectiveness and extend one such formal methodology in the design of massively parallel algorithms.We take a step-wise refinement approach to the development of correct reconfigurable hardware circuits from formal specifications.A functional programming notation is used for specifying algorithms and for reasoning about them.The specifications are realised through the use of a combination of function decomposition strategies, data refinement techniques, and off-the-shelf refinements based upon higher-order functions.The off-the-shelf refinements are inspired by the operators of Communicating Sequential Processes (CSP) and map easily to programs in Handel-C (a hardware description language).The Handel-C descriptions are directly compiled into reconfigurable hardware.The practical realisation of this methodology is evidenced by a case studying the third generation mobile communication security algorithms.The investigated algorithm is the KASUMI block cipher.In this paper, we obtain several hardware implementations with different performance characteristics by applying different refinements to the algorithm.The developed designs are compiled and tested under Celoxica's RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA.Performance analysis and evaluation of these implementations are included.

  2. Postflight hardware evaluation 360T025 (RSRM-25, STS-46)

    Science.gov (United States)

    Morgan, Ferral

    1993-03-01

    The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T025 (STS-46) Redesign Solid Rocket Motor (RSRM) flight set is presented. All observed hardware conditions were documented on PFOR's and are included in Appendices A through C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. Along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-60687), a summary of the 360T025 hardware evaluation is provided. The as-flown hardware configuration is documented in TWR-60470. Disassembly evaluation photograph numbers are logged in TWA-1986. The 360T025 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 16 Mar. 1993. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.

  3. Final postflight hardware evaluation report RSRM-28 (STS-53)

    Science.gov (United States)

    Starrett, William David, Jr.

    1993-11-01

    The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the RSRM-28 (STS-53) RSRM flight set is presented. All observed hardware conditions were documented on PFOR's and are included in Appendices A through C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64215), represents a summary of the RSRM-28 hardware evaluation. The as-flown hardware configuration is documented in TWR-63638. Disassembly evaluation photograph numbers are logged in TWA-1989. The RSRM-28 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on July 15, 1993. Additional time was required to perform the evaluation of the stiffener rings per special issue 4.1.5.2 because of the washout schedule. The release of this report was after completion of all special issues per program management direction. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable team and tracked through the PFAR system.

  4. Postflight hardware evaluation 360T026 (RSRM-26, STS-47)

    Science.gov (United States)

    Nielson, Greg

    1993-05-01

    The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T026 (STS-47) Redesigned Solid Rocket Motor (RSRM) flight set is provided. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64203), represents a summary of the 360T026 hardware evaluation. The as-flown hardware configuration is documented in TWR-60472. Disassembly evaluation photograph numbers are logged in TWA-1987. The 360T026 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 12 April 1993. Detailed evaluations were performed in accordance with the Clearfield Postflight Engineering Evaluation Plan (PEEP), TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.

  5. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    Science.gov (United States)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  6. Failure analysis of superconducting bearings

    International Nuclear Information System (INIS)

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour

  7. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  8. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...

  9. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found.

  10. Hardware Accelerated Compression of LIDAR Data Using FPGA Devices

    Directory of Open Access Journals (Sweden)

    Franc Novak

    2013-05-01

    Full Text Available Airborne Light Detection and Ranging (LIDAR has become a mainstream technology for terrain data acquisition and mapping. High sampling density of LIDAR enables the acquisition of high details of the terrain, but on the other hand, it results in a vast amount of gathered data, which requires huge storage space as well as substantial processing effort. The data are usually stored in the LAS format which has become the de facto standard for LIDAR data storage and exchange. In the paper, a hardware accelerated compression of LIDAR data is presented. The compression and decompression of LIDAR data is performed by a dedicated FPGA-based circuit and interfaced to the computer via a PCI-E general bus. The hardware compressor consists of three modules: LIDAR data predictor, variable length coder, and arithmetic coder. Hardware compression is considerably faster than software compression, while it also alleviates the processor load.

  11. Scalable Digital Hardware for a Trapped Ion Quantum Computer

    CERN Document Server

    Mount, Emily; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-01-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for trapping and cooling the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  12. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-05-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally implementing chaotic systems. Subsequently, some techniques to eliminate such defects, including the ultimately adopted scheme are listed and explained in detail. Moreover, the thesis describes original work on the design of an encryption system to encrypt MPEG-2 video streams. Information about the MPEG-2 standard that fits this design context is presented. Then, the security of the proposed system is exhaustively analyzed and the performance is compared with other reported systems, showing superiority in performance and security. The thesis focuses more on the hardware and the circuit aspect of the system’s design. The system is realized on Xilinx Vetrix-4 FPGA with hardware parameters and throughput performance surpassing conventional encryption systems.

  13. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  14. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  15. Hardware/Software Co-Design for Spike Based Recognition

    CERN Document Server

    Ghani, Arfan; Maguire, Liam; Harkin, Jim

    2008-01-01

    The practical applications based on recurrent spiking neurons are limited due to their non-trivial learning algorithms. The temporal nature of spiking neurons is more favorable for hardware implementation where signals can be represented in binary form and communication can be done through the use of spikes. This work investigates the potential of recurrent spiking neurons implementations on reconfigurable platforms and their applicability in temporal based applications. A theoretical framework of reservoir computing is investigated for hardware/software implementation. In this framework, only readout neurons are trained which overcomes the burden of training at the network level. These recurrent neural networks are termed as microcircuits which are viewed as basic computational units in cortical computation. This paper investigates the potential of recurrent neural reservoirs and presents a novel hardware/software strategy for their implementation on FPGAs. The design is implemented and the functionality is ...

  16. Combining high productivity with high performance on commodity hardware

    DEFF Research Database (Denmark)

    Skovhede, Kenneth

    The current advances in the natural sciences are increasingly dependent on the available in computer power. At the same time, the increase in computer power is no longer based on faster cores, but on multiple cores and specialized hardware. As most scientific software is written for sequential...... processing, the increase in hardware performance cannot be utilized. Most existing scientific software is written in low-level languages such as C or FORTRAN, making it difficult to rewrite these to work in parallel. As the brief CELL-BE processor history showed, writing solutions that are tied...... to a particular hardware platform, is a risky investment. To make this problem worse, the scientists that have the required field expertise to write the algorithms are not formally trained programmers. This usually leads to scientists writing buggy, inefficient and hard to maintain programs. Occasionally...

  17. Mapping of topological quantum circuits to physical hardware.

    Science.gov (United States)

    Paler, Alexandru; Devitt, Simon J; Nemoto, Kae; Polian, Ilia

    2014-01-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit. PMID:24722360

  18. Bringing the power of dynamic languages to hardware control systems

    CERN Document Server

    Caicedo, J M; Neufeld, N

    2009-01-01

    Hardware control systems are normally programmed using high-performance languages like C or C++ and increasingly also Java. All these languages are strongly typed and compiled which brings usually good performance but at the cost of a longer development and testing cycle and the need for more programming expertise. Dynamic languages which were long thought to be too slow and not powerful enough for control purposes are, thanks to modern powerful computers and advanced implementation techniques, fast enough for many of these tasks. We present examples from the LHCb Experiment Control System (ECS), which is based on a commercial SCADA software. We have successfully used Python to integrate hardware devices into the ECS. We present the necessary lightweight middle-ware we have developed, including examples for controlling hardware and software devices. We also discuss the development cycle, tools used and compare the effort to traditional solutions.

  19. Mapping of Topological Quantum Circuits to Physical Hardware

    Science.gov (United States)

    Paler, Alexandru; Devitt, Simon J.; Nemoto, Kae; Polian, Ilia

    2014-04-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit.

  20. Hardware Architecture Study for NASA's Space Software Defined Radios

    Science.gov (United States)

    Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John

    2008-01-01

    This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  1. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  2. Final postflight hardware evaluation report RSRM-32 (STS-57)

    Science.gov (United States)

    Nielson, Greg

    1993-11-01

    This document is the final report for the postflight assessment of the RSRM-32 (STS-57) flight set. This report presents the disassembly evaluations performed at the Thiokol facilities in Utah and is a continuation of the evaluations performed at KSC (TWR-64239). The PEEP for this assessment is outlined in TWR-50051, Revision B. The PEEP defines the requirements for evaluating RSRM hardware. Special hardware issues pertaining to this flight set requiring additional or modified assessment are outlined in TWR-64237. All observed hardware conditions were documented on PFOR's which are included in Appendix A. Observations were compared against limits defined in the PEEP. Any observation that was categorized as reportable or had no defined limits was documented on a preliminary PFAR by the assessment engineers. Preliminary PFAR's were reviewed by the Thiokol SPAT Executive Board to determine if elevation to PFAR's was required.

  3. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection

    Science.gov (United States)

    Safonov, O.; Butvina, V.

    2009-04-01

    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high

  4. On Issues of Precision for Hardware-based Volume Visualization

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E C

    2003-04-11

    This paper discusses issues with the limited precision of hardware-based volume visualization. We will describe the compositing OVER operator and how fixed-point arithmetic affects it. We propose two techniques to improve the precision of fixed-point compositing and the accuracy of hardware-based volume visualization. The first technique is to perform dithering of color and alpha values. The second technique we call exponent-factoring, and captures significantly more numeric resolution than dithering, but can only produce monochromatic images.

  5. Efficient FPGA Hardware Reuse in a Multiplierless Decimation Chain

    Directory of Open Access Journals (Sweden)

    Guillermo A. Jaquenod

    2014-01-01

    Full Text Available In digital communications, an usual reception chain requires many stages of digital signal processing for filtering and sample rate reduction. For satellite on board applications, this need is hardly constrained by the very limited hardware resources available in space qualified FPGAs. This short paper focuses on the implementation of a dual chain of 14 stages of cascaded half band filters plus 2 : 1 decimators for complex signals (in-phase and quadrature with minimal hardware resources, using a small portion of an UT6325 Aeroflex FPGA, as a part of a receiver designed for a low data rate command and telemetry channel.

  6. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  7. Integrated circuit authentication hardware Trojans and counterfeit detection

    CERN Document Server

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  8. USING SUBTHRESHOLD SRAM TO DESIGN LOW-POWER CRYPTO HARDWARE

    Directory of Open Access Journals (Sweden)

    Adnan Abdul-Aziz Gutub

    2011-01-01

    Full Text Available Cryptography and Security hardware architecture designing is in essential need for efficient power utilization which is achieved earlier by giving a range of trade- off between speed and power consumption. This paper presents the initiative of considering subthreshold SRAM memory modules to gain ultra-low-power capable systems. The paper presents improving existing crypto security architectures to reconfigurable domain-specific SRAM memory designs. It is found that reliability is still a problem not solved; however, we start this paper idea to design flexible crypto hardware to gain the performance as well as the reduced power consumption.

  9. Computer organization and design the hardware/software interface

    CERN Document Server

    Hennessy, John L

    1994-01-01

    Computer Organization and Design: The Hardware/Software Interface presents the interaction between hardware and software at a variety of levels, which offers a framework for understanding the fundamentals of computing. This book focuses on the concepts that are the basis for computers.Organized into nine chapters, this book begins with an overview of the computer revolution. This text then explains the concepts and algorithms used in modern computer arithmetic. Other chapters consider the abstractions and concepts in memory hierarchies by starting with the simplest possible cache. This book di

  10. Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    Science.gov (United States)

    Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael

    2003-01-01

    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.

  11. Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack

    Science.gov (United States)

    Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn

    2009-01-01

    HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.

  12. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  13. Appcessory Economics: Enabling loosely coupled hardware / software innovation

    OpenAIRE

    Holtman, Koen

    2012-01-01

    An appcessory (app + accessory) is a smart phone accessory that is combined with a specially written app to perform a useful function. An example is a toy helicopter controlled by a smart phone app: the full value proposition involves both new hardware outside the phone and new software running inside the phone. Like the smart phone itself and like a PC, the appcessory hardware is a platform: it has the property that it becomes even more valuable if innovative new software is written for it. ...

  14. Grey Energy and Environmental Impacts of ICT Hardware

    OpenAIRE

    Hischier, Roland; Coroama, Vlad C.; Schien, Daniel; Ahmadi Achachlouei, Mohammad

    2015-01-01

    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated...

  15. Realizable Hardware-Based Method for Digital Modulation Classification

    Institute of Scientific and Technical Information of China (English)

    HAN Li; WAN Jin-bo

    2005-01-01

    A new method suited for hardware implementation is developed to classify 8 different digital modulation types with raised cosine base-band impulse without knowing the carrier frequency and symbol timing. The normalized histogram of stagnation points for instantaneous parameters is used to recognize both ideal rectangular and raised cosine base-band digital signals. Carrier frequency estimation is used to enhance the recognition rate of phase-modulated signals. In the condition of 10 dB signal noise ratio (SNR), the recognizing rate is over 80 %. The new algorithm is suited for hardware implementation.

  16. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta

    Science.gov (United States)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.

    2011-01-01

    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  17. 49 CFR 229.69 - Side bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  18. 36 CFR 13.1236 - Bear orientation.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  19. Copolymer Melts in Disordered Media

    OpenAIRE

    Stepanow, S.; Dobrynin, A.; Vilgis, T.; Binder, K.

    1996-01-01

    We have considered a symmetric AB block copolymer melt in a gel matrix with preferential adsorption of A monomers on the gel. Near the point of the microphase separation transition such a system can be described by the random field Landau-Brazovskii model, where randomness is built into the system during the polymerization of the gel matrix. By using the technique of the 2-nd Legendre transform, the phase diagram of the system is calculated. We found that preferential adsorption of the copoly...

  20. Postflight hardware evaluation 360T021 (RSRM-21, STS-45), revision A

    Science.gov (United States)

    Maccauly, Linda E.

    1992-12-01

    The Final Postflight Hardware Evaluation Report 360T021 (RSRM-21, STS-45) is included. All observed hardware conditions were documented on Postflight Observation Reports (PFOR's) and included in Appendices A through E. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report represents a summary of the 360T021 hardware evaluation.

  1. Properties of large-scale melt-processed YBCO samples

    Science.gov (United States)

    Gauss, S.; Elschner, S.; Bestgen, H.

    Magnetic bearings and superconducting permanent magnets are some of the first possible applications of bulk high Tc superconductors. Large samples were prepared by a new melt process starting from reacted YBCO 123 and 211 powders. The addition of PtO 2 to the mixture led to reduced 211 inclusion size and better homogeneity. Simultaneously the density of microcracks dividing the a- b basal plane was reduced. For testing the overall magnetic properties of these samples magnetization and levitation force measurements were performed. In comparison to samples without PtO 2 addition a strong increase in the magnetization M and the repulsion force from a magnet were observed. The maximum in the field dependence of M increased to more than 1000 G. According to the time dependence of the trapped field after a field cooling experiment an acceptable flux creep at 77 K for a long-term application was achieved.

  2. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  3. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  4. Future Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Chang, Jun-Dong

    2014-01-01

    One of the most important issues in the modern total hip arthroplasty (THA) is the bearing surface. Extensive research on bearing surfaces is being conducted to seek an ideal bearing surface for THA. The ideal bearing surface for THA should have superior wear characteristics and should be durable, bio-inert, cost-effective, and easy to implant. However, bearing surfaces that are currently being implemented do not completely fulfill these requirements, especially for young individuals for whom...

  5. Autosizing Control Panel for Needle Bearing

    Directory of Open Access Journals (Sweden)

    Prof.A.R.Wadhekar,

    2016-02-01

    Full Text Available A needle roller bearing is a bearing which uses small cylindrical rollers. Bearings are used to reduce friction of any rotating surface. Needle bearings have a large surface in contact with the bearing outer surfaces as compared to ball bearings. There is less added clearance(Diameter of the shaft and the diameter of the bearing are different so they are much compact. The structure consists of a needle cage which contains the needle rollersthemselves and an outer race (The housing itself. Radial bearings are cylindrical and they use rollers parallel to the axis of the shaft. Radial pattern of needle are being used by thrust needles. Complement bearings have solid inner as well as outer rings and rib-guided cylindrical rollers. The bearings have the largest number of rolling elements and also have extremely high radial load carrying capacity and are suitable for compact designs.Needle roller bearings have relatively small diameter cylindrical rolling elements whose length is much larger than their diameter. As compared to other types of rolling bearings, needle roller bearings possess a small cross-sectional height and significant load-bearing capacity and rigidity relative to their volume. Also, because the inertial force acting on them is limited, needle bearings are an ideal choice for applications with oscillating motion. These bearings also work well in compact and lightweight machine designs and they serve as a ready replacement for sliding bearings. Needle bearings features are great rigidity, smaller cross-section, higher loadcarrying capacity, and has lower inertia forces that facilitate to size and weight reductions in machinery. Needle bearings are designed to stand in oscillation, performwell under any conditions, and interchange with the sliding of bearings.

  6. CT image reconstruction system based on hardware implementation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hamilton P. da [Faculdade Tecnologica Internacional de Curitiba, PR (Brazil); Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil); Hormaza, Joel M. [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias; Lopes, Ricardo T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2009-07-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  7. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  8. Towards automated construction of dependable software/hardware systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakhnis, A.; Yakhnis, V. [Pioneer Technologies & Rockwell Science Center, Albuquerque, NM (United States)

    1997-11-01

    This report contains viewgraphs on the automated construction of dependable computer architecture systems. The outline of this report is: examples of software/hardware systems; dependable systems; partial delivery of dependability; proposed approach; removing obstacles; advantages of the approach; criteria for success; current progress of the approach; and references.

  9. Graph based communication analysis for hardware/software codesign

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1999-01-01

    In this paper we present a coarse grain CDFG (Control/Data Flow Graph) model suitable for hardware/software partitioning of single processes and demonstrate how it is necessary to perform various transformations on the graph structure before partitioning in order to achieve a structure that allows...

  10. Use of Heritage Hardware on MPCV Exploration Flight Test One

    Science.gov (United States)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  11. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance d

  12. Foundations of digital signal processing theory, algorithms and hardware design

    CERN Document Server

    Gaydecki, Patrick

    2005-01-01

    An excellent introductory text, this book covers the basic theoretical, algorithmic and real-time aspects of digital signal processing (DSP). Detailed information is provided on off-line, real-time and DSP programming and the reader is effortlessly guided through advanced topics such as DSP hardware design, FIR and IIR filter design and difference equation manipulation.

  13. Measuring Auroral and Arctic Ozone Using Student Made Hardware

    Science.gov (United States)

    Pina, M.

    2015-12-01

    This project is twofold to test the feasibility of student made hardware and teach students more about atmospheric instrumentation by providing students with education and materials, instructing them in design and building of hardware, and testing the hardware against commercial models in terms of weight, cost, and features. The Gaseous Compounds team of the University of Houston Undergraduate Student Instrument Project (USIP) selected the parts and the students of the team are assembling the payload. The payload will launch on a latex balloon in Houston and Fairbanks, Alaska. The instrument will gather data on the concentration of certain gases in the atmosphere as well as a meteorological profile of the atmosphere. The students plan to have the instrument collect and transmit data on carbon monoxide, nitric oxide, nitrogen dioxide, and ozone, as well as temperature, humidity, and barometric pressure. The data will also be stored on an SD card as a backup in case transmission fails. These payloads will fly at night and day to get an accurate vertical profile of the atmosphere and these results will be tested against the results of commercial hardware with the same capabilities.

  14. Chip-Multiprocessor Hardware Locks for Safety-Critical Java

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    2013-01-01

    and may void a task set's schedulability. In this paper we present a hardware locking mechanism to reduce the synchronization overhead. The solution is implemented for the chip-multiprocessor version of the Java Optimized Processor in the context of safety-critical Java. The implementation is compared...

  15. Hardware availability calculations and results of the IFMIF accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne [Commissariat à l’Energie Atomique, Saclay (France); Weber, Moisés; Podadera, Ivan [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Grespan, Francesco; Fagotti, Enrico [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design.

  16. Analog Hardware Description Language and Its Relations to VHDL

    OpenAIRE

    Popelek, J.; K. Vlcek

    1996-01-01

    Primary motivations for analogue hardware description language (VHDL-A) is to support the modelling of physical systems. The VHDL-A must therefore allow to model the physical conservation laws, such as the energy conservation law, which states that energy can neither be created nor destroyed, but it can only change its form.

  17. Hiding State in CλaSH Hardware Descriptions

    NARCIS (Netherlands)

    Gerards, Marco; Baaij, Christiaan; Kuper, Jan; Kooijman, Matthijs

    2010-01-01

    Synchronous hardware can be modelled as a mapping from input and state to output and a new state, such mappings are referred to as transition functions. It is natural to use a functional language to implement transition functions. The CaSH compiler is capable of translating transition functions to V

  18. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    International Nuclear Information System (INIS)

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  19. Cache-based memory copy hardware accelerator for multicore systems

    NARCIS (Netherlands)

    Duarte, F.; Wong, S.

    2010-01-01

    In this paper, we present a new architecture of the cache-based memory copy hardware accelerator in a multicore system supporting message passing. The accelerator is able to accelerate memory data movements, in particular memory copies. We perform an analytical analysis based on open-queuing theory

  20. Evaluation of In-House versus Contract Computer Hardware Maintenance

    International Nuclear Information System (INIS)

    The issue of In-House versus Contract Computer Hardware Maintenance is one which every organization who uses computers must resolve. This report discusses the advantages and disadvantages of both approaches to computer maintenance, the costs involved (based on the current AGNS computer inventory), and the AGNS maintenance experience to date. A recommendation on an appropriate approach for AGNS is made

  1. Characterization of activated metals in spent fuel hardware

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory (PNL), for the U.S. Department of Energy (DOE), has been investigating the activation of spent fuel hardware in order to properly account for it in the federal waste management system. The paper presents a description and status of the program and tentative conclusions

  2. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  3. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  4. Hardware in Loop Simulation for Missile Guidance and Control Systems

    Directory of Open Access Journals (Sweden)

    S. K. Chaudhuri

    1997-07-01

    Full Text Available The purpose of the guidance law is to determine appropriate missile flight path dynamics to achieve mission objective in an efficient manner based on navigation information. Today, guided missiles which are aerodynamically unstable or non-linear in all or part of the flight envelopes need control systems for stability as well as for steering. Many classical guidance and control laws have been used for tactical missiles with varying degrees of performance, complexity and seeker/sensor requirements. Increased accuracy requirements and more dynamic tactics of modern warfare demand improvement of performance which is a trade-off between sophisticated hardware and more sophisticated software. To avoid increase in cost by hardware sophistication, today's trend is to exploit new theoretical methods and low cost high speed microprocessor techniques. Missile test flights are very expensive. The missile system with its sophisticated software and hardware is not reusable after a test launch. Hardware-in-loop Simulation (HILS facilities and methodology form a well integrated system aimed at transforming a preliminary guidance and control system design to flight software and hardware with trajectory right from lift-off till its impact. Various guidance and control law studies pertaining to gathering basket and stability margins, pre-flight, post-flight analyses and validation of support systems have been carried out using this methodology. Nearly full spectrum of dynamically accurate six-degrees-of-freedom (6-DOF model of missile systems has been realised in the HILS scenario. The HILS facility allows interconnection of missile hardware in flight configuration. Pre-flight HILS results have matched fairly well with actual flight trial results. It was possible to detect many hidden defects in the onboard guidance and control software as well as in hardware during HILS. Deficiencies in model, like tail-wag-dog (TWD, flexibility, seeker dynamics and defects in

  5. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  6. Melting a Sample within TEMPUS

    Science.gov (United States)

    2003-01-01

    One of the final runs of the TEMPUS experiment shows heating of a sample on STS-94, July 15, 1997, MET:14/11:01 (approximate) and the flows on the surface. At the point this image was taken, the sample was in the process of melting. The surface of the sample is begirning to flow, looking like the motion of plate tectonics on the surface of a planet. During this mission, TEMPUS was able to run than 120 melting cycles with zirconium, with a maximum temperature of 2,000 degrees C, and was able to undercool by 340 degrees -- the highest temperature and largest undercooling ever achieved in space. The TEMPUS investigators also have provided the first measurements of viscosity of palladium-silicon alloys in the undercooled liquid alloy which are not possible on Earth. TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station.(176KB JPEG, 1350 x 1516 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300193.html.

  7. Dynamical meson melting in holography

    International Nuclear Information System (INIS)

    We discuss mesons in thermalizing gluon backgrounds in the N=2 supersymmetric QCD using the gravity dual. We numerically compute the dynamics of a probe D7-brane in the Vaidya-AdS geometry that corresponds to a D3-brane background thermalizing from zero to finite temperatures by energy injection. In static backgrounds, it has been known that there are two kinds of brane embeddings where the brane intersects the black hole or not. They correspond to the phases with melted or stable mesons. In our dynamical setup, we obtain three cases depending on final temperatures and injection time scales. The brane stays outside of the black hole horizon when the final temperature is low, while it intersects the horizon and settles down to the static equilibrium state when the final temperature is high. Between these two cases, we find the overeager case where the brane dynamically intersects the horizon although the final temperature is not high enough for a static brane to intersect the horizon. The interpretation of this phenomenon in the dual field theory is meson melting due to non-thermal effects caused by rapid energy injection. In addition, we comment on the late time evolution of the brane and a possibility of its reconnection

  8. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  9. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  10. Double melting in polytetrafluoroethylene {gamma}-irradiated above its melting point

    Energy Technology Data Exchange (ETDEWEB)

    Serov, S.A., E-mail: servo@nifhi.ru [Karpov Institute of Physical Chemistry, Vorontsovo Pole Street 10, Moscow 105064 (Russian Federation); Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A. [Karpov Institute of Physical Chemistry, Vorontsovo Pole Street 10, Moscow 105064 (Russian Federation)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer PTFE irradiation leads to formation of double melting peaks in DSC curves. Black-Right-Pointing-Pointer This is connected to dual crystalline morphology typical for PTFE. Black-Right-Pointing-Pointer Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  11. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages

    Science.gov (United States)

    Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.; Heinrich, Christoph A.

    2007-04-01

    The partitioning of As and Au between rhyolite melt and low-salinity vapor (2 wt% NaCl eq.) in a melt-vapor-Au metal ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 120 MPa and f=NNO. The S-bearing runs have calculated values for the fugacities of H 2S, SO 2 and S 2 of logfS=1.1, logf=-1.5, and logf=-3.0. The ratio of H 2S to SO 2 is on the order of 400. The experiments constrain the effect of S on the partitioning behavior of As and Au at magmatic conditions. Calculated average Nernst-type partition coefficients (±1 σ) for As between vapor and melt, DAsv/m, are 1.0 ± 0.1 and 2.5 ± 0.3 in the S-free and S-bearing assemblages, respectively. These results suggest that sulfur has a small, but statistically meaningful, effect on the mass transfer of As between silicate melt and low-salinity vapor at the experimental conditions. Efficiencies of removal, calculated following Candela and Holland (1986), suggest that the S-free and S-bearing low-salinity vapor can scavenge approximately 41% and 63% As from water-saturated rhyolite melt, respectively, during devolatilization assuming that As is partitioned into magnetite and pyrrhotite during second boiling. The S-free data are consistent with the presence of arsenous acid, As(OH) 3 in the vapor phase. However, the S-bearing data suggest the presence of both arsenous acid and a As-S complex in S-bearing magmatic vapor. Apparent equilibrium constants, logKAs'(±1σ), describing the partitioning of As between melt and vapor are -1.3 (0.1) and -1.1 (0.1) for the S-free and S-bearing runs, respectively. The increase in the value of KAs' with the addition of S suggests a role for S in complexing and scavenging As from the melt during degassing. The calculated vapor/melt partition coefficients (±1 σ) for Au between vapor and melt, DAuv/m, in S-free and S-bearing assemblages are 15 ± 2.5 and 12 ± 0.3, respectively. Efficiencies of removal ( Candela and Holland, 1986) for the S-free melt, calculated

  12. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Science.gov (United States)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  13. FHAST: FPGA-Based Acceleration of Bowtie in Hardware.

    Science.gov (United States)

    Fernandez, Edward B; Villarreal, Jason; Lonardi, Stefano; Najjar, Walid A

    2015-01-01

    While the sequencing capability of modern instruments continues to increase exponentially, the computational problem of mapping short sequenced reads to a reference genome still constitutes a bottleneck in the analysis pipeline. A variety of mapping tools (e.g., Bowtie, BWA) is available for general-purpose computer architectures. These tools can take many hours or even days to deliver mapping results, depending on the number of input reads, the size of the reference genome and the number of allowed mismatches or insertion/deletions, making the mapping problem an ideal candidate for hardware acceleration. In this paper, we present FHAST (FPGA hardware accelerated sequence-matching tool), a drop-in replacement for Bowtie that uses a hardware design based on field programmable gate arrays (FPGA). Our architecture masks memory latency by executing multiple concurrent hardware threads accessing memory simultaneously. FHAST is composed by multiple parallel engines to exploit the parallelism available to us on an FPGA. We have implemented and tested FHAST on the Convey HC-1 and later ported on the Convey HC-2ex, taking advantage of the large memory bandwidth available to these systems and the shared memory image between hardware and software. A preliminary version of FHAST running on the Convey HC-1 achieved up to 70x speedup compared to Bowtie (single-threaded). An improved version of FHAST running on the Convey HC-2ex FPGAs achieved up to 12x fold speed gain compared to Bowtie running eight threads on an eight-core conventional architecture, while maintaining almost identical mapping accuracy. FHAST is a drop-in replacement for Bowtie, so it can be incorporated in any analysis pipeline that uses Bowtie (e.g., TopHat).

  14. New hardware support transactional memory and parallel debugging in multicore processors

    OpenAIRE

    Orosa Nogueira, Lois

    2013-01-01

    This thesis contributes to the area of hardware support for parallel programming by introducing new hardware elements in multicore processors, with the aim of improving the performance and optimize new tools, abstractions and applications related with parallel programming, such as transactional memory and data race detectors. Specifically, we configure a hardware transactional memory system with signatures as part of the hardware support, and we develop a new hardware filter for reducing the...

  15. Transient melting of an ESR electrode

    Science.gov (United States)

    Kharicha, A.; Karimi-Sibaki, E.; Bohacek, J.; Wu, M.; Ludwig, A.

    2016-07-01

    Melting parameters of ESR process such as melt rate and immersion depth of electrode are of great importance. In this paper, a dynamic mesh based simulation framework is proposed to model melt rate and shape of electrode during the ESR process. Coupling interactions between turbulent flow, temperature, and electromagnetic fields are fully considered. The model is computationally efficient, and enables us to directly calculate melting parameters. Furthermore, dynamic change of electrode shape by melting can be captured. It is necessary to control the feeding velocity of electrode due to melting instabilities in the ESR process. As such, a numerical control is implemented based on the immersion depth of electrode to achieve the steady state in the simulation. Furthermore, the modeling result is evaluated against an experiment.

  16. RHEOLOGY FEATURE OF SIMPLE METAL MELT

    Institute of Scientific and Technical Information of China (English)

    C.J. Sun; H.R. Geng; Y.S. Shen; X.Y. Teng; Z.X. Yang

    2007-01-01

    The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80, alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20, alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.

  17. Structural relaxation of metallic glass forming melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fragility of superheated melts, M, for 13 kinds of metallic alloys has been evaluated from the data of the dynamic viscosity above their liquidus temperatures. The authors find that the glass forming ability of metallic melts depends on the fragility of superheated melts rather than on the value of viscosity. In the present work the value of fragility is less than 1 for good glass-forming melts but more than 1 for the other melts. The variation rate of atomic coordination number with temperature indicates clearly the relaxation rate of molten structures. The fragility of superheated melts is found in good agreement with the variation rate of the atomic coordination number with temperature.

  18. The Bear That Isn't a Bear

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Koalas aren't bears.They belong to the same family as kangaroos.Animals of this family are called pouch animals.That's because the mother carries her baby around in a pouch in the front of her stomach.lt's like a built-in papoose basket, only it's in the front instead of the back.

  19. Are Entangled Polymer Melts Different From Solutions?

    OpenAIRE

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.; Skov, Anne Ladegaard; Almdal, Kristoffer; Hassager, Ole

    2012-01-01

    The possible existence of a qualitative difference on extensional steady state viscosity between polymer melts and polymer solutions is still an open question. Recent experiments [1-4] showed the extensional viscosity of both polymer melts and solutions decayed as a function of strain rate with an exponent of -0.5. When the strain rate became higher than the order of inverse Rouse time, the polymer solutions showed an upturn [1, 4]. However, in the same regime for polymer melts, the experimen...

  20. CV and CM chondrite impact melts

    Science.gov (United States)

    Lunning, Nicole G.; Corrigan, Catherine M.; McSween, Harry Y.; Tenner, Travis J.; Kita, Noriko T.; Bodnar, Robert J.

    2016-09-01

    Volatile-rich and typically oxidized carbonaceous chondrites, such as CV and CM chondrites, potentially respond to impacts differently than do other chondritic materials. Understanding impact melting of carbonaceous chondrites has been hampered by the dearth of recognized impact melt samples. In this study we identify five carbonaceous chondrite impact melt clasts in three host meteorites: a CV3red chondrite, a CV3oxA chondrite, and a regolithic howardite. The impact melt clasts in these meteorites respectively formed from CV3red chondrite, CV3oxA chondrite, and CM chondrite protoliths. We identified these impact melt clasts and interpreted their precursors based on their texture, mineral chemistry, silicate bulk elemental composition, and in the case of the CM chondrite impact melt clast, in situ measurement of oxygen three-isotope signatures in olivine. These impact melts typically contain euhedral-subhedral olivine microphenocrysts, sometimes with relict cores, in glassy groundmasses. Based on petrography and Raman spectroscopy, four of the impact melt clasts exhibit evidence for volatile loss: these melt clasts either contain vesicles or are depleted in H2O relative to their precursors. Volatile loss (i.e., H2O) may have reduced the redox state of the CM chondrite impact melt clast. The clasts that formed from the more oxidized precursors (CV3oxA and CM chondrites) exhibit phase and bulk silicate elemental compositions consistent with higher intrinsic oxygen fugacities relative to the clast that formed from a more reduced precursor (CV3red chondrite). The mineral chemistries and assemblages of the CV and CM chondrite impact melt clasts identified here provide a template for recognizing carbonaceous chondrite impact melts on the surfaces of asteroids.

  1. Frictional melting of peridotite and seismic slip

    OpenAIRE

    Del Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Di Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Han, R.; Department of Earth and Environmental Sciences, Korea University, Seoul South Korea; Hirose, T.; Kochi Institute for Core Sample Research, JAMSTEC, Kochi, Japan.; Nielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Shimamoto, T.; Department of Earth and Planetary Systems Science Graduate School of Science Hiroshima University, Higashi-Hiroshima Japan; Cavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia

    2009-01-01

    The evolution of the frictional strength along a fault at seismic slip rates (about 1 m/s) is a key factor controlling earthquake mechanics. At mantle depths, friction-induced melting and melt lubrication may influence earthquake slip and seismological data. We report on laboratory experiments designed to investigate dynamic fault strength and frictional melting processes in mantle rocks. We performed 20 experiments with Balmuccia peridotite in a high-velocity rotary shear appa...

  2. Melt-induced weakening of the lithosphere: theory and geodynamic implications

    Science.gov (United States)

    Gerya, T.

    2015-12-01

    Melt-induced weakening can play critical role for enabling lithospheric deformation in the areas of intense mantle-derived magmatism, such as mid-ocean ridges, rift zones and hot spots. It implies significant reduction in the long-term brittle strength of the deforming lithosphere subjected to frequent melt percolation episodes. Such weakening corresponds to conditions when shear stress reaches the tensile yield strength of rocks at nearly equal melt and lithostatic pressures. The dominant features of melt transport in this regime are planar, sharply localized zones (dykes) in which melt is transported though the lithosphere from the source region. Mechanical energy dissipation balance shows that the long-term effective strength of the melt-weakened lithosphere is a strain-averaged rather than a time-averaged quantity. Its magnitude is mainly defined by the ratio between melt pressure and lithostatic pressure along dykes during short dyke emplacement episodes, which control most of the lithospheric deformation and mechanical energy dissipation. We quantified the range of expected values of the lithospheric strength by performing 2D numerical hydro-mechanical experiments on melt-bearing rock deformation as well as seismo-mechanical experiments on long-term lithospheric deformation assisted by frequent short-term dyke propagation episodes. These numerical experiments showed that the long-term lithospheric strength in the areas of intense magmatism can be as low as few MPa and is critically dependent on the availability of melt for enabling frequent episodes of dyke propagation through the lithosphere. Short-lived viscous-plastic deformation is localized along propagating weak dykes whereas bulk of the lithosphere only deforms elastically and is subjected to large deviatoric stresses. The experiments suggest that it is not the high strength of the elastically deforming strong lithospheric blocks but the low strength of visco-plastically deforming dykes that define the

  3. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations

    Science.gov (United States)

    Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.; Sanchez-Valle, Carmen

    2012-07-01

    Andesite melts were equilibrated with an H-O-S-bearing volatile phase to determine the partition coefficients for S and Cl as a function of melt composition and oxygen fugacity. The experiments were conducted in rapid-quench MHC vessel assemblies at 200 MPa and 1000 °C, and over a range of imposed fO2 between NNO-1.2 and NNO+1.8. High fluid/melt mass ratios (∼15) were employed, allowing precise and accurate partition coefficients to be obtained by mass balance calculations. Chlorine exhibits Henrian behavior at ClO-0.5 activities typical for arc magmas, with D Cl volatile/melt = 1.36 ± 0.06 (1σ) below 0.2 wt.% Cl in the melt; at higher ClO-0.5 activities, D Cl volatile/melt increases linearly to 2.11 ± 0.02 at 1 wt.% Cl in the melt. In the volatile phase: FeCl2 ∼ NaCl > KCl ∼ HCl. The determination of cation exchange coefficients for major cations yielded: K K,Na volatile/melt = 1.23 ± 0.10 (1σ) and ∗K Fe,Na volatile/melt = D Fe volatile/melt / D Na volatile/melt = 1.08 ± 0.16 (1σ). Under these conditions, the concentration of HCl in the vapor is negatively correlated with the (Na + K)/(Al + Fe3+) ratio in the melt. Reduced sulfur (S2-) appears to obey Henry's law in andesite melt-volatile system at fH2S below pyrrhotite saturation. The partition coefficient for S at fO2 = NNO-0.5 correlates negatively with the FeO concentration in the melt, changing from 254 ± 25 at 4.0 wt.% FeO to 88 ± 6 at 7.5 wt.% FeO. Pyrrhotite saturation is reached when approximately 3.2 mol% S is present in the volatile phase at fO2 = NNO-0.5. At the sulfide/sulfate transition, the partition coefficient of S drops from 171 ± 23 to 21 ± 1 at a constant FeO content of ∼6 wt.% in the melt. At fO2 = NNO+1.8, anhydrite saturation is reached at ∼3.3 mol% S present in the volatile phase. Aqueous volatiles exsolving from intermediate to mafic magmas can efficiently extract S, and effect its transfer to sites of magmatic-hydrothermal ore deposit formation.

  4. Non-Newtonian effects in silicate liquids and crystal bearing melts

    OpenAIRE

    Cordonnier, Benoit

    2009-01-01

    High-silica volcanic systems are considered to be the most devastating. Their highly viscous properties create a high pressurised non- fluent system which consequently relaxes the stress mostly by exploding through the brittle regime. Even if an explosion is avoided and the magma fl ows, it often generates lava domes at the top of the volcano; which, patiently, accumulate magmas that will rush down the slopes once the yield stress is crossed. Thus, such volcanoes have an explosive na...

  5. Low Melt Height Solidification of Superalloys

    Science.gov (United States)

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan

    2016-06-01

    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  6. Solute Redistribution in Directional Melting Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.

  7. Intra-cratonic melting as a result of delamination of mantle lithosphere - insight from numerical modelling

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.; Gerya, T.; Hobbs, B. E.

    2012-12-01

    It is becoming increasingly apparent that intense deformation, metamorphism and metasomatism occur within continental cratonic blocks far removed form subducting margins Such changes may occur intra-cratonically arising from lithospheric thickening and the development of gravitational instabilities, but mostly occur at the boundary of cratonic blocks. The contact of two cratons is characterized by rheological lateral variations within mantle-lithosphere and overlying crust. Tectonic stresses acting on craton/craton boundaries may lead to thinning or thickening due to delamination of the mantle lithosphere. This is reflected in tectonic deformation, topography evolution, melting and crustal metamorphism. To understand the controls on these processes a number of 2D, coupled petrological thermo-mechanical numerical experiments has been performed to test the response of a laterally weakened zone to a compressional regime. The results indicate that the presence of water-bearing minerals in the lithosphere and lower crust is essential to initiate melting, which in the later stages may expand to dry melting of crust and mantle. In the case of anhydrous crust and lithosphere, no melting occurs. Thus a variety of instabilities, melting behaviour and topographic responses occurs at the base of the lithosphere as well as intensive faulting and buckling in the crust dependent on the strength and "water" content of the lithosphere.

  8. Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada.

    Science.gov (United States)

    Chen, Wei; Kamenetsky, Vadim S; Simonetti, Antonio

    2013-01-01

    The Earth's sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic carbonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids. Here we report a detailed chemical investigation of melt inclusions associated with intrusive (plutonic) calcite-rich carbonatites from the ~120 Ma carbonatite complex of Oka (Canada). Melt inclusions are hosted by magnetite (Fe3O4), which crystallizes through a significant period of carbonatite melt solidification. Our results indicate mineral assemblages within the melt inclusions that are consistent with those documented in natrocarbonatite lavas. We propose therefore that derivation of alkali-enriched parental carbonatite melts has been more prevalent than that preserved in the geological record. PMID:24173270

  9. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

  10. The correct "ball bearings" data.

    Science.gov (United States)

    Caroni, C

    2002-12-01

    The famous data on fatigue failure times of ball bearings have been quoted incorrectly from Lieblein and Zelen's original paper. The correct data include censored values, as well as non-fatigue failures that must be handled appropriately. They could be described by a mixture of Weibull distributions, corresponding to different modes of failure.

  11. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    Directory of Open Access Journals (Sweden)

    Jarosław KACZOR

    2014-06-01

    Full Text Available Durability deep groove ball bearings depends on factors (called attributes design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bearings to work three-bearing shafts, including elasticity and resilience three-bearing shafts.

  12. Superconducting-electromagnetic hybrid bearing using YBCO bulk locks for passive axial levitation

    International Nuclear Information System (INIS)

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90 deg. from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance. (author)

  13. Superconducting-electromagnetic hybrid bearing using YBCO bulk locks for passive axial levitation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolsky, R. [Instituto de Fisica, UFRJ, Cx. P. 68528, Rio de Janeiro 21945-970 (Brazil). E-mail: nicolsky at if.ufrj.br; Andrade, R. de Jr. [DEE/EE/UFRJ, Cx. P. 68515, Rio de Janeiro 21945-970 (Brazil); Ripper, A.; Stephan, R.M. [PEM/COPPE/UFRJ, Cx. P. 68504, Rio de Janeiro 21945-970 (Brazil); David, D.F.B.; Santisteban, J.A. [Engenharia/UFF, Rua Passo da Patria 156, Niteroi 24210-240 (Brazil); Gawalek, W.; Habisreuther, T.; Strasser, T. [Institut fuer Physikalische Hoch Technologie (IPHT), Helmhotzweg 4, D07743, Jena (Germany)

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90 deg. from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance. (author)

  14. Hardware Design of the Energy Efficient Fall Detection Device

    Science.gov (United States)

    Skorodumovs, A.; Avots, E.; Hofmanis, J.; Korāts, G.

    2016-04-01

    Health issues for elderly people may lead to different injuries obtained during simple activities of daily living. Potentially the most dangerous are unintentional falls that may be critical or even lethal to some patients due to the heavy injury risk. In the project "Wireless Sensor Systems in Telecare Application for Elderly People", we have developed a robust fall detection algorithm for a wearable wireless sensor. To optimise the algorithm for hardware performance and test it in field, we have designed an accelerometer based wireless fall detector. Our main considerations were: a) functionality - so that the algorithm can be applied to the chosen hardware, and b) power efficiency - so that it can run for a very long time. We have picked and tested the parts, built a prototype, optimised the firmware for lowest consumption, tested the performance and measured the consumption parameters. In this paper, we discuss our design choices and present the results of our work.

  15. Web tools to monitor and debug DAQ hardware

    International Nuclear Information System (INIS)

    A web-based toolkit to monitor and diagnose data acquisition hardware has been developed. It allows for remote testing, monitoring, and control of VxWorks data acquisition computers and associated instrumentation using the HTTP protocol and a web browser. This solution provides concurrent and platform independent access, supplementary to the standard single-user rlogin mechanism. The toolkit is based on a specialized web server, and allows remote access and execution of select system commands and tasks, execution of test procedures, and provides remote monitoring of computer system resources and connected hardware. Various DAQ components such as multiplexers, digital I/O boards, analog to digital converters, or current sources can be accessed and diagnosed remotely in a uniform and well-organized manner. Additionally, the toolkit application supports user authentication and is able to enforce specified access restrictions

  16. Memristor Crossbar-based Hardware Implementation of IDS Method

    CERN Document Server

    Merrikh-Bayat, Farnood; Rohani, Ali

    2010-01-01

    Ink Drop Spread (IDS) is the engine of Active Learning Method (ALM), which is the methodology of soft computing. IDS, as a pattern-based processing unit, extracts useful information from a system subjected to modeling. In spite of its excellent potential in solving problems such as classification and modeling compared to other soft computing tools, finding its simple and fast hardware implementation is still a challenge. This paper describes a new hardware implementation of IDS method based on the memristor crossbar structure. In addition of simplicity, being completely real-time, having low latency and the ability to continue working after the occurrence of power breakdown are some of the advantages of our proposed circuit.

  17. Summary of multi-core hardware and programming model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.

    2008-05-01

    This report summarizes our investigations into multi-core processors and programming models for parallel scientific applications. The motivation for this study was to better understand the landscape of multi-core hardware, future trends, and the implications on system software for capability supercomputers. The results of this study are being used as input into the design of a new open-source light-weight kernel operating system being targeted at future capability supercomputers made up of multi-core processors. A goal of this effort is to create an agile system that is able to adapt to and efficiently support whatever multi-core hardware and programming models gain acceptance by the community.

  18. Fabrication of light weight radioisotope heater unit hardware components

    Science.gov (United States)

    McNeil, Dennis C.

    1996-03-01

    The Light Weight Radioisotope Heater Unit (LWRHU) is planned to be used on the National Aeronautics and Space Administration (NASA) Cassini Mission, to provide localized thermal energy as strategic locations on the spacecraft. These one watt heater units will support the operation of many on-board instruments that require a specific temperature range to function properly. The system incorporates a fuel pellet encapsulated in a vented metallic clad fabricated from platinum-30% rhodium (Pt-30%Rh) tubing, sheet and foil materials. To complete the package, the clad assemblies are placed inside a combination of graphite components. This report describes the techniques employed by Mound related to the fabrication and sub assembly processes of the LWRHU clad hardware components. Included are details concerning configuration control systems, material procurement and certification, hardware fabrication specifics, and special processes that are utilized.

  19. Hardware Software co-simulation for Image Processing Applications

    Directory of Open Access Journals (Sweden)

    A.C.Suthar

    2012-03-01

    Full Text Available We proposed the concept of hardware software co-simulation for image processing using Xilinx system generator. Recent advances in synthesis tools for SIMULINK suggest a feasible high-level approach to algorithm implementation for embedded DSP systems. An efficient FPGA based hardware design for enhancement of color and grey scale images in image and video processing. The top model - based visual development process of SIMULINK facilitates host side simulation and validation, as well as synthesis of target specific code, furthermore, legacy code written in MATLAB or ANCI C can be reuse in custom blocks. However, the code generated for DSP platforms is often not very efficient. We are implemented the Image processing applications on FPGA it can be easily design

  20. Fast and Reliable Mouse Picking Using Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Hanli Zhao

    2009-01-01

    Full Text Available Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications. High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small number of objects (or sub-objects are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing real-time rendering systems.

  1. Computer organization and design the hardware/software interface

    CERN Document Server

    Patterson, David A

    2013-01-01

    The 5th edition of Computer Organization and Design moves forward into the post-PC era with new examples, exercises, and material highlighting the emergence of mobile computing and the cloud. This generational change is emphasized and explored with updated content featuring tablet computers, cloud infrastructure, and the ARM (mobile computing devices) and x86 (cloud computing) architectures. Because an understanding of modern hardware is essential to achieving good performance and energy efficiency, this edition adds a new concrete example, "Going Faster," used throughout the text to demonstrate extremely effective optimization techniques. Also new to this edition is discussion of the "Eight Great Ideas" of computer architecture. As with previous editions, a MIPS processor is the core used to present the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies and I/O. Optimization techniques featured throughout the text. It covers parallelism in depth with...

  2. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  3. Treatment, packaging, and storage of bundle scrap hardware

    International Nuclear Information System (INIS)

    A study was performed to identify and evaluate the various technical options for treatment, packaging and storing the bundle scrap hardware that results from rod consolidation. The three general scenarios addressed were keeping the treated scrap in the pool, moving it to on-site dry storage, or immediate disposal. The study concluded that practical alternatives existed for all three cases. Use of novel scrap packaging techniques achieved an overall net consolidation ratio of two. The most economical concept was found to be using advanced technology in the pool storage scenario with dry storage schemes a close second. The project also provides information on scrap characterization and provides tools to assist in classifying the scrap hardware

  4. Hardware/software co-verification platform for EOS design

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full verifications. This paper introduces our design of Hardware/Software co-verification platform for EOS design. The hardware platform contains a microprocessor board and an FPGA (Field Programmable Gate Array)-based verification board, and the corresponding software includes test benches running in FPGAs, controlling programs for the microprocessor and a console program with GUI (Graphical User Interface) interface for configuration, management and supervision. The design is cost-effective and has been successfully employed to verify several IP (Intellectual Property) blocks of our EOS chip. Moreover, it is flexible and can be applied as a general-purpose verification platform.

  5. A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation

    Directory of Open Access Journals (Sweden)

    Samuel Charbouillot

    2008-01-01

    Full Text Available We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware implementation of a general purpose cellular automaton (CA entirely programmable. The heart of this structure is a PE array with reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based on a 2D Ising spin lattice presenting random series of disordered spin configurations. The main idea of ISEA is to use this disorder to encrypt data. Efficiency of ISEA and PHCA implementation results are given.

  6. Object oriented hardware-software test bench for OMTF diagnosis

    Science.gov (United States)

    Drabik, Pawel; Pozniak, Krzysztof T.; Bunkowski, Karol; Zawistowski, Krystian; Byszuk, Adrian; Bluj, Michał; Doroba, Krzysztof; Górski, Maciej; Kalinowski, Artur; Kierzkowski, Krzysztof; Konecki, Marcin; Królikowski, Jan; Oklinski, Wojciech; Olszewski, Michał; Skala, Aleksander; Zabołotny, Wojciech M.

    2015-09-01

    In this paper the object oriented hardware-software model and its sample implementation of diagnostics for the Overlap Muon Track Finder trigger for the CMS experiment in CERN is described. It presents realization of test-bench for control and diagnosis class of multichannel, distributed measurement systems based on FPGA chips. The test-bench fulfills requirements for system's rapid changes, configurability and efficiency. This ability is very significant and desirable by expanded electronic systems. The solution described is a software model based on a method of address space management called the Component Internal Interface (CII). Establishment of stable link between hardware and software, as a purpose of designed and realized programming environment, is presented. The test-bench implementation and example of OMTF algorithm test is presented.

  7. Function Interface Models for Hardware Compilation: Types, Signatures, Protocols

    CERN Document Server

    Ghica, Dan R

    2009-01-01

    The problem of synthesis of gate-level descriptions of digital circuits from behavioural specifications written in higher-level programming languages (hardware compilation) has been studied for a long time yet a definitive solution has not been forthcoming. The argument of this essay is mainly methodological, bringing a perspective that is informed by recent developments in programming-language theory. We argue that one of the major obstacles in the way of hardware compilation becoming a useful and mature technology is the lack of a well defined function interface model, i.e. a canonical way in which functions communicate with arguments. We discuss the consequences of this problem and propose a solution based on new developments in programming language theory. We conclude by presenting a prototype implementation and some examples illustrating our principles.

  8. A benchmark initiative on mantle convection with melting and melt segregation

    Science.gov (United States)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  9. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  10. "Frictional processes" in carbonate-bearing rocks at seismic deformation conditions

    Science.gov (United States)

    Di Toro, G.; Spagnuolo, E.; Violay, M.; Rempe, M.; Smith, S. A. F.; Nielsen, S. B.; Fondriest, M.; Plumper, O.

    2015-12-01

    Moderate to large earthquakes often rupture and propagate along faults in carbonate-bearing rocks (dolostones, limestones, marbles, etc.). Compared to silicate-bearing rocks, which melt, weaken and wear when sheared at seismic slip rates (ca. 1 m/s), carbonate-bearing rocks do not melt, the minimum friction coefficient can be much lower (down to 5% of static friction) and the wear rate is negligible at seismic slip rates. In cohesive carbonate-bearing rocks, experiments simulating seismic deformation conditions and stopped at slip initiation (solid lubricant) at asperity contacts. With progressive slip and bulk temperature increase, nanograins accommodate large strain rates (ca. 104 s-1) by grain boundary sliding as suggested by several authors. The presence of a microporous fabric boosts pore-controlled diffusive process propelled by CO2 gas exhaust due to decarbonation. Enhanced pore-controlled diffusive processes allow (1) efficient mass transfer during grain boundary sliding and (2) sintering of the nanograins into a foam-like slip surface at the end of the experiment.

  11. Spectrum Sensor Hardware Implementation Based on Cyclostationary Feature Detector

    OpenAIRE

    Jussi Ryynänen; Aarno Pärssinen; Sami Kallioinen; Marko Kosunen; Vesa Turunen

    2011-01-01

    Cognitive radios utilize spectrum sensors to provide information about the surrounding radio environment. This enables cognitive radios to communicate at the same frequency bands with existing (primary) radio systems, and thereby improve the utilization of spectral resources. Furthermore, the spectrum sensor must be able to guarantee that the cognitive radio devices do not interfere with the primary system transmissions. This paper describes a hardware implementation of a spectrum sensor base...

  12. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2011-12-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  13. Introduction to hardware for nuclear medicine data systems

    International Nuclear Information System (INIS)

    Hardware included in a computer-based data system for nuclear medicine imaging studies is discussed. The report is written for the newcomer to computer collection and analysis. Emphasis is placed on the effect of the various portions of the system on the final application in the nuclear medicine clinic. While an attempt is made to familiarize the user with some of the terms he will encounter, no attempt is made to make him a computer expert. 1 figure, 2 tables

  14. Hardware Approach for Real Time Machine Stereo Vision

    OpenAIRE

    Michael Tornow; Jens Kaszubiak; Thomas Schindler; Robert W. Kuhn; Bernd Michaelis

    2006-01-01

    Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processi...

  15. IDEAS and App Development Internship in Hardware and Software Design

    Science.gov (United States)

    Alrayes, Rabab D.

    2016-01-01

    In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.

  16. Acute Infections After Fracture Repair: Management With Hardware in Place

    OpenAIRE

    Rightmire, Eric; Zurakowski, David; Vrahas, Mark

    2008-01-01

    Managing infections in fractures treated with open reduction and internal fixation is an ongoing dilemma. Little published data exist to support the current practice of treating these infections with retained hardware, irrigation, débridement, and antibiotic suppression. We evaluated the effectiveness of this approach. We identified potential subjects from a central trauma database and selected them based on chart review and specific inclusion and exclusion criteria. We divided the patients i...

  17. Sorting and hardware assisted rendering for volume visualization

    Energy Technology Data Exchange (ETDEWEB)

    Stein, C.; Becker, B.; Max, N.

    1994-03-01

    We present some techniques for volume rendering unstructured data. Interpolation between vertex colors and opacities is performed using hardware assisted texture mapping, and color is integrated for use with a volume rendering system. We also present an O(n{sup 2}) method for sorting n arbitrarily shaped convex polyhedra prior to visualization. It generalizes the Newell, Newell and Sancha sort for polygons to 3-D volume elements.

  18. Robot Trotting with Segmented Legs in Simulation and Hardware.

    OpenAIRE

    Spröwitz, Alexander; Tuleu, Alexandre; Vespignani, Massimo; Ajallooeian, Mostafa; Badri, Emilie

    2012-01-01

    This research is focusing on the implementation, testing, and analysis of quadrupedal, bio-inspired robot locomotion. Our tool of research is a light-weight, quadruped robot of the size of a house cat, both in simulation and hardware. We are currently following the idea of testing bio-inspired blue-prints such as leg-segmentation, directional leg compliance (bio-mechanical), and central pattern generators (bioinspired neuro-control) for their feasibility, and advantages against more tradition...

  19. TERRAE: A framework for adaptive hardware concurrent systems

    OpenAIRE

    Lesau, Victor Gusev

    2012-01-01

    Dynamic Partial Reconfiguration (DPR) of Field Programmable Gate Arrays (FPGAs) is a technology that enables the development of embedded systems with hot swappable logic on the FPGA fabric. The advantage is that hardware logic can be swapped in and out “on-the-fly” while the rest of the system is operational. Since DPR is relatively new, tool support is still evolving. This thesis introduces new FPGA architectural tools and Linux OS modifications that aid in supporting DPR on FPGAs for concur...

  20. An Online Learning Algorithm for Neuromorphic Hardware Implementation

    OpenAIRE

    Thakur, Chetan Singh; Wang, Runchun; Afshar, Saeed; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2015-01-01

    We propose a sign-based online learning (SOL) algorithm for a neuromorphic hardware framework called Trainable Analogue Block (TAB). The TAB framework utilises the principles of neural population coding, implying that it encodes the input stimulus using a large pool of nonlinear neurons. The SOL algorithm is a simple weight update rule that employs the sign of the hidden layer activation and the sign of the output error, which is the difference between the target output and the predicted outp...

  1. Specification of photonic circuits using Quantum Hardware Description Language

    OpenAIRE

    Tezak, Nikolas; Niederberger, Armand; Pavlichin, Dmitri S.; Sarma, Gopal; Mabuchi, Hideo

    2011-01-01

    Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC Hardware Description Language (VHDL), we demonstrate a computer-aided schematic capture workflow for modeling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optic...

  2. An extrinsic function-level evolvable hardware approach

    OpenAIRE

    Kalganova, T

    2000-01-01

    The function level evolvable hardware approach to synthesize the combinational multiple-valued and binary logic functions is proposed in first time. The new representation of logic gate in extrinsic EHW allows us to describe behaviour of any multi-input multi-output logic function. The circuit is represented in the form of connections and functionalities of a rectangular array of building blocks. Each building block can implement primitive logic function or any multi-input multi-output log...

  3. Subway Train Braking System: A Fuzzy Based Hardware Approach

    Directory of Open Access Journals (Sweden)

    Mamun B.I. Reaz

    2011-01-01

    Full Text Available Problem statement: Automated subway train-braking system require perfection, efficiency and fast response. In order to cope with this concerns, an appropriate algorithm need to be developed which need to be implemented in hardware for faster response. Approach: In this research, the FPGA realization of fuzzy based subway train braking system has been presented on an Alter FLEX10K device to provide an accurate and increased speed of convergence of the network. The fuzzy based subway train braking system is comprised of fusilier, inference, rule selector and defuzzifier modules. Sixteen rules are identified for the rule selector module. After determining the membership functions and its fuzzy variables, the Max-Min Composition method and Madman-Min implication operator are used for the inference module and the Centre of Gravity method is used for the defuzzification module. Each module is modeled individually using behavioral VHDL. The layers are then connected using structural VHDL. Two 8-bit and one 8-bit unsigned digital signals are used for input and output respectively. Six ROMs are defined in order to decrease the chances of processing and increasing the throughput of the system. Results: Functional simulations were commenced to verify the functionality of the individual modules and the system as well. We have validated the hardware implementation of the proposed approach through comparison, verification and analysis. The design has utilized 2372 units of LC with a system frequency of 139.8MHz. Conclusion: In this research, the FPGA realization of fuzzy brake system of subway train has been successfully implemented with minimum usage of logic cells. The validation study with C model shows that the hardware model is appropriate and the hardware approach shows faster and accurate response with full automatic control.

  4. Hardware architectures for Successive Cancellation Decoding of Polar Codes

    OpenAIRE

    Leroux, Camille; Tal, Ido; Vardy, Alexander; Gross, Warren J.

    2010-01-01

    The recently-discovered polar codes are widely seen as a major breakthrough in coding theory. These codes achieve the capacity of many important channels under successive cancellation decoding. Motivated by the rapid progress in the theory of polar codes, we pro pose a family of architectures for efficient hardware implementation of successive cancellation decoders. We show that such decoders can be implemented with O(n) processing elements and O(n) memory elements, while providing constant t...

  5. Collaborative Evolution Strategies on Evolvable Hardware Networked Elements

    OpenAIRE

    Vázquez Antolín, Javier; López, Blanca; Valverde Alcalá, Juan; Torre Arnanz, Eduardo de la; Riesgo Alcaide, Teresa

    2014-01-01

    Dynamic and Partial Reconfiguration allows systems to change some parts of their hardware at run time. This feature favours the inclusion of evolutionary strategies to provide optimised solutions to the same problem so that they can be mixed and compared in a way that only the best ones prevail. At the same time, distributed intelligence permits systems to work in a collaborative way to jointly improve their global capabilities. This work presents a combination of both approaches where hardwa...

  6. An Implementation of Membrane Computing Using Reconfigurable Hardware

    OpenAIRE

    Van, Nguyen; David Kearney; Gianpaolo Gioiosa

    2012-01-01

    Because of their inherent large-scale parallelism, membrane computing models can be fully exploited only through the use of a parallel computing platform. We have fully implemented such a computing platform based on reconfigurable hardware that is intended to support the efficient execution of membrane computing models. This computing platform is the first of its type to implement parallelism at both the system and region levels. In this paper, we describe how our computing platform implement...

  7. SOFTWARE AND HARDWARE SYSTEMS FOR SOUNDING METEOR TRAILS

    Directory of Open Access Journals (Sweden)

    Lebedeva, A.A.

    2016-06-01

    Full Text Available The article describes the basic physical principles of meteor radio. A block diagram of hardware and software for sensing meteor trails. The principles of software-defined radio system lies at the heart of the complex. The paper presents a functional diagram of a digital oscillator, as well as software description with an example of the received data. This complex allows eliminating a number of shortcomings meteor radio, as well as increasing its range and security.

  8. Technology Corner: Dating of Electronic Hardware for Prior Art Investigations

    OpenAIRE

    Sellam Ismail

    2012-01-01

    In many legal matters, specifically patent litigation, determining and authenticating the date of computer hardware or other electronic products or components is often key to establishing the item as legitimate evidence of prior art. Such evidence can be used to buttress claims of technologies available or of events transpiring by or at a particular date.In 1945, the Electronics Industry Association published a standard, EIA 476-A, standardized in the reference Source and Date Code Marking (E...

  9. Journal and Wave Bearing Impedance Calculation Software

    Science.gov (United States)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  10. In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices

    CERN Document Server

    de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo

    2015-01-01

    Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...

  11. Stability of foams in silicate melts

    Science.gov (United States)

    Proussevitch, Alexander A.; Sahagian, Dork L.; Kutolin, Vladislav A.

    1993-12-01

    Bubble coalescence and the spontaneous disruption of high-porosity foams in silicate melts are the result of physical expulsion of interpore melt (syneresis) leading to bubble coalescence, and diffusive gas exchange between bubbles. Melt expulsion can be achieved either along films between pairs of bubbles, or along Plateau borders which represent the contacts between 3 or more bubbles. Theoretical evaluation of these mechanisms is confirmed by experimental results, enabling us to quantify the relevant parameters and determine stable bubble size and critical film thickness in a foam as a function of melt viscosity, surface tension, and time. Foam stability is controlled primarily by melt viscosity and time. Melt transport leading to coalescence of bubbles proceeds along inter-bubble films for smaller bubbles, and along Plateau borders for larger bubbles. Thus the average bubble size accelerates with time. In silicate melts, the diffusive gas expulsion out of a region of foam is effective only for water (and even then, only at small length scales), as the diffusion of CO 2 is negligible. The results of our analyses are applicable to studies of vesicularity of lavas, melt degassing, and eruption mechanisms.

  12. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...

  13. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  14. Melt dumping in string stabilized ribbon growth

    Science.gov (United States)

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  15. Snow Melting and Freezing on Older Townhouses

    DEFF Research Database (Denmark)

    Nielsen, Anker; Claesson, Johan

    2011-01-01

    The snowy winter of 2009/2010 in Scandinavia prompted many newspaper articles on icicles falling from buildings and the risk this presented for people walking below. The problem starts with snow melting on the roof due to heat loss from the building. Melt water runs down the roof and some of it w...

  16. Summer Melts Immigrant Students' College Plans

    Science.gov (United States)

    Naranjo, Melissa M.; Pang, Valerie Ooka; Alvarado, Jose Luis

    2016-01-01

    Many college-intending students find themselves dealing with the undermatch and summer melt phenomena. Undermatch refers to the situation where academically-successful high-school graduates choose not to go to any college or to go to a local community college not commensurate with their academic achievements. Summer melt describes how students may…

  17. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis

    Science.gov (United States)

    Zhang, Guibin; Niu, Yaoling; Song, Shuguang; Zhang, Lifei; Tian, Zuolin; Christy, Andrew G.; Han, Lei

    2015-06-01

    We have studied trace element behavior and timing of decompression melting of UHP rocks during exhumation recorded in the magmatic products, i.e., the melt phase (leucosomes), cumulate (garnetite) and residue (amphibolitized eclogite) from a single outcrop in the south Dulan area, North Qaidam UHPM belt, NW China. Two distinct episodes of partial melting are recognized. First, Grt-free tonalitic-trondhjemitic leucosome melts with higher silica crystallized at 424.0 ± 2.7 Ma. Garnets grew in the leucosome melt but fractionated out to form garnetite cumulates along with Ti-rich phases (rutile and titanite), strengthening the adakitic signature of the leucosome. Later Grt-bearing leucosome melts with an age of 412.4 ± 2.9 Ma cross-cut boudins and layers of amphibolitized eclogite. Geochemical investigation of bulk-rocks and in situ minerals verifies the genetic relationship between the amphibolitized eclogite and the tonalitic-trondhjemitic melts. Zircons from the amphibolitized eclogite have older (> 700 Ma) protolith ages, with subsequent eclogite-facies metamorphism, retrograde granulite-facies overprinting and partial melting. Phase modeling and Zr-in-rutile thermometry calculations in combination with zircon geochronology reveal the evolution P-T-t path for the exhumation and the partial melting of the deeply subducted continental crust at the North Qaidam subduction zone in the Early Paleozoic.

  18. Hardware implementation of on -chip learning using re configurable FPGAS

    International Nuclear Information System (INIS)

    The multilayer perceptron (MLP) is a neural network model that is being widely applied in the solving of diverse problems. A supervised training is necessary before the use of the neural network.A highly popular learning algorithm called back-propagation is used to train this neural network model. Once trained, the MLP can be used to solve classification problems. An interesting method to increase the performance of the model is by using hardware implementations. The hardware can do the arithmetical operations much faster than software. In this paper, a design and implementation of the sequential mode (stochastic mode) of backpropagation algorithm with on-chip learning using field programmable gate arrays (FPGA) is presented, a pipelined adaptation of the on-line back propagation algorithm (BP) is shown.The hardware implementation of forward stage, backward stage and update weight of backpropagation algorithm is also presented. This implementation is based on a SIMD parallel architecture of the forward propagation the diagnosis of the multi-purpose research reactor of Egypt accidents is used to test the proposed system

  19. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  20. Secure Hardware Performance Analysis in Virtualized Cloud Environment

    Directory of Open Access Journals (Sweden)

    Chee-Heng Tan

    2013-01-01

    Full Text Available The main obstacle in mass adoption of cloud computing for database operations is the data security issue. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to real data for diagnostic and remediation purposes. The proposed mechanisms utilized TPC-H benchmark to achieve 2 objectives. First, the underlying hardware performance and consistency is supervised via a control system, which is constructed using a combination of TPC-H queries, linear regression, and machine learning techniques. Second, linear programming techniques are employed to provide input to the algorithms that construct stress-testing scenarios in the virtual machine, using the combination of TPC-H queries. These stress-testing scenarios serve 2 purposes. They provide the boundary resource threshold verification to the first control system, so that periodic training of the synthetic data sets for performance evaluation is not constrained by hardware inadequacy, particularly when the resources in the virtual machine are scaled up or down which results in the change of the utilization threshold. Secondly, they provide a platform for response time verification on critical transactions, so that the expected Quality of Service (QoS from these transactions is assured.