WorldWideScience

Sample records for bearing hardware melting

  1. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  2. Hardware-in-loop simulation on hydrostatic thrust bearing worktable pose

    Institute of Scientific and Technical Information of China (English)

    韩桂华; 邵俊鹏; 秦柏; 董玉红

    2008-01-01

    A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.

  3. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  4. Thermal Metamorphic Signature in Melt-Bearing Polymict Breccias from the Steen River Impact Structure, Canada

    Science.gov (United States)

    Walton, E. L.; Dence, M. R.; Herd, C. D. K.

    2015-07-01

    Melt-bearing polymict breccias within drillcore from the Steen River impact structure are described which contain a matrix of clinopyroxene + feldspar + titanite + garnet + oxides formed by recyrstallization of a superheated clastic dust.

  5. Unusual Siderite-Bearing Dendrites in Melt Pockets of the Elga IIE Iron

    Science.gov (United States)

    Teplyakova, S. N.; Artemov, V. V.; Vasiliev, A. L.

    2012-03-01

    The Elga iron contains melt pockets with dedritic texture not only inside Fe,Ni-metal but also inside silicate inclusions (SI). The unusual siderite-bearing melt pockets inside SIs has never been previously observed in any types of meteorites.

  6. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  7. Novel hot-melting hyperbranched poly(ester-amine) bearing self-complementary quadruple hydrogen bonding units

    Institute of Scientific and Technical Information of China (English)

    Yi Peng Qiu; Li Ming Tang; Yu Wang; Shi You Guan

    2008-01-01

    Hyperbranched poly(amine-ester)s bearing serf-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties,which make them suitable as novel hot-melting materials.

  8. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    melt temperature and/or a decrease of viscosity play a more important role in decreasing the stria content. We also demonstrate that the extent of striation is influenced by the crucible materials that causes a change of redox state of the melt, and hence its viscosity. We discuss the effect of other...... factors such as compositional fluctuation of melts and bubbling due to iron reduction on the stria content. During the melting process, striae with a chemical gradient in a more mobile species equilibrate faster than striae caused by a chemical gradient in a less mobile species. The temperature and time...... effects on melt homogeneity at lower temperatures are larger than at higher temperatures....

  9. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    International Nuclear Information System (INIS)

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction

  10. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    Science.gov (United States)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched

  11. Copper partitioning between felsic melt and H2O-CO2 bearing saline fluids

    Science.gov (United States)

    Tattitch, Brian C.; Candela, Philip A.; Piccoli, Philip M.; Bodnar, Robert J.

    2015-01-01

    Analysis of fluid inclusions from porphyry copper deposits reveals that magmatic vapor and brine are vital for the removal of copper from arc magmas and its transport to the site of ore deposition. Experiments in melt-vapor-brine systems allow for investigation of the partitioning of copper between silicate melts and volatile phases at magmatic conditions. The presence of CO2 affects both the pressure at which a melt saturates with respect to volatile phases. Therefore, the partitioning of copper among felsic (rhyolitic) melt, vapor and brine in CO2-bearing experiments was examined to provide insights into copper partitioning and the generation of porphyry copper and related deposits. We present results from experiments performed at 800 °C and 100 MPa in CO2-bearing melt-vapor-brine systems with XCO2v+b = 0.10 and 0.38. The compositions of vapor and brine inclusions, and run-product glasses, were determined during the course of this investigation. Microthermometric measurements of fluid inclusions show an increase in the salinity of the magmatic brine (∼65 to ∼70 wt% NaCleq) and decrease in the salinity of the vapor (∼3.5 to ∼1 wt% NaCleq) as XCO2 is increased from 0.10 to 0.38. The partitioning of copper between brine and vapor (DCub/v ± 2 σ) increases from 25 (±6) at XCO2 = 0.10, to 100 (±30) at XCO2 = 0.38 . The partitioning of copper between vapor and melt (DCuv/m ± 2 σ) decreases from 9.6 (±3.3) at XCO2 = 0.10 , to 2 (±0.8) at XCO2 = 0.38 . These data demonstrate that copper partitioning in sulfur-free, CO2-bearing systems is controlled by the changes in the salinity of the vapor and brine that, in turn, are functions of XCO2 . No change in the apparent equilibrium constants for Cu-Na exchange was observed in Fe-bearing experiments which supports a salinity-dependent model for copper partitioning. An existing model (MVPart) for ore metal partitioning between melt and volatile phases was modified to incorporate partitioning data from CO2

  12. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  13. Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona

    Science.gov (United States)

    Osinski, Gordon R.; Bunch, Ted E.; Flemming, Roberta L.; Buitenhuis, Eric; Wittke, James H.

    2015-12-01

    Our understanding of the impact cratering process continues to evolve and, even at well-known and well-studied structures, there is still much to be learned. Here, we present the results of a study on impact-generated melt phases within ejecta at Barringer Crater, Arizona, one of the first impact craters on Earth to be recognized and arguably the most famous. We report on previously unknown impact melt-bearing breccias that contain dispersed fragments of the projectile as well as impact glasses that contain a high proportion of projectile material - higher than any other glasses previously reported from this site. These glasses are distinctly different from so-called "melt beads" that are found as a lag deposit on the present-day erosion surface and that we also study. It is proposed that the melts in these impact breccias were derived from a more constrained sub-region of the melt zone that was very shallow and that also had a larger projectile contribution. In addition to low- and high-Fe melt beads documented previously, we document Ca-Mg-rich glasses and calcite globules within silicate glass that provide definitive evidence that carbonates underwent melting during the formation of Barringer Crater. We propose that the melting of dolomite produces Ca-Mg-rich melts from which calcite is the dominant liquidus phase. This explains the perhaps surprising finding that despite dolomite being the dominant rock type at many impact sites, including Barringer Crater, calcite is the dominant melt product. When taken together with our estimate for the amount of impact melt products dispersed on, and just below, the present-day erosional surface, it is clear that the amount of melt produced at Barringer Crater is higher than previously estimated and is more consistent with recent numerical modeling studies. This work adds to the growing recognition that sedimentary rocks melt during hypervelocity impact and do not just decompose and/or devolatilize as was previously thought

  14. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    Science.gov (United States)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  15. A study of microstructures in laser melted ball-bearing and turbine blade steels

    International Nuclear Information System (INIS)

    Surface treatments of steels by high power lasers are known to result in high surface hardness and improved resistance to wear and fatigue failures. Thin surface regions of an off-grade AISI-SAE 52100 ball-bearing steel and 12CrMoV turbine blade steel were laser melted by pubed Nd:YAG and Nd:Glass lasers. Microstructural changes that resulted due to laser melting and subsequent rapid solidification were examined by an optical as well as a scanning electron microscope. Compositional variations in the recast regions were studied by using an electron probe microanalyser. Variations in hardness with depth from the laser treated surface were correlated with the observed microstructures. Also the role of Cr/C ratio on the development of these microstructures in the two steels was delineated. These results are discussed. (author). 22 refs., 9 figs., 1 tab

  16. An experimental study of dehydration melting of phengite-bearing eclogite at 1.5-3.0 GPa

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; JIN ZhenMin; ZHANG JunFeng

    2009-01-01

    Dehydration melting experiments were performed on ultrahigh-pressure eclogite from Bixiling in the Dabie orogen at 1.5-3.0 GPa and 800-950℃ using piston cylinder apparatus. The results show that (1)eclogite with ~5% phengite started to melt at T≤800-850℃ and P=1.5-2.0 GPa and produced about 3% granitic melt; (2) the products of dehydration melting of phengite-bearing eclogite vary with temperature and pressure. Fluid released from dehydration of phengite and zoisite leads to partial melting of eclogite and formation of plagioclase reaction rim around kyanite at pressures of 1.5-2.0 GPa and temperatures of 800-850℃; (3) phengite reacted with omphacite and quartz and produced oligoclase,kyanite and melt at elevated temperatures. Oligoclase is the primary reaction product produced by partial melting of phengite in the eclogite; and (4) the dehydration melting of phengite-bearing eclogite at pressures of 1.5-3.0 GPa and temperatures ≥900℃ results in formation of garnets with higher molar fraction of pyrope (37.67 wt.%-45.94 wt.%). Potassium feldspar and jadeite occur at P = 2.4-3.0GPa and T≥900℃, indicating higher pressure and fluid-absent conditions. Our results constrain the solidus for dehydration melting of phengite-bearing eclogite at pressures of 1.5-3.0 GPa. Combining experi- mental results with field observations of partial melting in natural eclogites, we concluded that phengite-bearing eclogites from the Dabie-Sulu orogen were able to partially molten at P= 1.5-2.0 GPa and T= 800-850℃ during exhumation. The ultrahigh-high pressure eclogites would have experienced partial melting in association with metamorphic phase transformation under different fluid conditions.

  17. Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite

    Science.gov (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2015-01-01

    present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus-solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt-melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source-metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi-Koolau basalts in the Hawaiian hot spot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling.

  18. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    Science.gov (United States)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  19. Bear

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?

  20. Crystal-bearing lunar spherules: Impact-melting of the Moon's crust and implications for the origin of meteoritic chondrules

    Science.gov (United States)

    Ruzicka, Alex; Snyder, Gregory A.; Taylor, Lawrence A.

    2000-01-01

    Crystal-bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact-melt-rock (62295) samples can be classified into two types: feldspathic and olivine-rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene-olivine mesostasis; the less common olivine-rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred-olivine texture. Bulk-chemical and mineral-chemical data strongly suggest that feldspathic CLSs formed by impact-melting of mixtures of ferroan anorthosite and Mg-suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine-rich CLSs also formed by impact-melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely-zoned "relict" plagioclase grains that were not entirely melted during CLS formation, thin (?5 ?m thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile-rich (Na-K-P-rich) environment. CLSs were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low-velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact-melt droplets to partially or completely crystallize in free-flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor-fractionation appears to have played a less important role in

  1. Dynamics of iron-bearing borosilicate melts: Effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions

    International Nuclear Information System (INIS)

    The dynamic properties of a series of iron-bearing sodium borosilicate melts have been investigated to determine how structure and composition control viscosity, electrical conductivity and the kinetics of iron redox reactions and, thus, atomic mobility as involved in these different processes. For this purpose, four compositions with 67 mol% SiO2 and B2O3 contents ranging from 0 to 22 mol% have been studied. In addition to viscosity and electrical conductivity, we have determined the kinetics of the iron redox reaction by isothermal iron K-edge XANES and Raman spectroscopy experiments performed as a function of time from 710 to 1570 K. Substitution of sodium for boron at constant SiO2 content first causes transformation of BO3 triangles into BO4 tetrahedra until an excess of sodium induces instead melt depolymerization. These changes in the degree of polymerization and boron coordination lead to a maximum in oxygen diffusivity at around 18 mol% B2O3, and correlatively, to a viscosity minimum. Because this change of trigonal into tetrahedral boron requires charge compensation of B3+ by cations such as Na+ ions, the mobility of Na+ decreases and reduces the rate of oxidation. In addition, the decreasing fraction of Na+ ions and their change from a free to a charge compensating role explain the decreasing redox diffusivities and electrical conductivities of the samples. (authors)

  2. Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules

    International Nuclear Information System (INIS)

    Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently driven by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO2) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single ∼450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest ∼30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass

  3. Experimentally-determined carbon isotope fractionation in and between methane-bearing melt and fluid to upper mantle temperatures and pressures

    Science.gov (United States)

    Mysen, Bjorn

    2016-07-01

    The behavior of melts and fluids is at the core of understanding formation and evolution of the Earth. To advance our understanding of their role, high-pressure/-temperature experiments were employed to determine melt and fluid structure together with carbon isotope partitioning within and between (CH4 +H2O +H2)-saturated aluminosilicate melts and (CH4 +H2O +H2)-fluids. The samples were characterized with vibrational spectroscopy while at temperatures and pressures from 475° to 850 °C and 92 to 1158 MPa, respectively. The solution equilibrium is 2CH4 +Qn = 2 CH3- +H2O +Q n + 1 where the superscript, n, in the Qn-notation describes silicate species where n denotes the number of bridging oxygen. The solution equilibrium affects the carbon isotope fractionation factor between melt and fluid, αmelt/fluid. Moreover, it is significantly temperature-dependent. The αmelt/fluid < 1 with temperatures less than about 1050 °C, and is greater than 1 at higher temperature. Methane-bearing melts can exist in the upper mantle at fO2 ≤fO2 (MW) (Mysen et al., 2011). Reduced (Csbnd H)-species in present-day upper mantle magma, therefore, are likely. During melting and crystallization in this environment, the δ13C of melts increases with temperature at a rate of ∼ 0.6 ‰ /°C. From the simple-system data presented here, at T ≤ 1050°C, melt in equilibrium with a peridotite-(CH4 +H2O +H2)-bearing mantle source will be isotopically lighter than fluid. At higher temperatures, melts will be isotopically heavier. Degassing at T ≤ 1050°C will shift δ13C of degassed magma to more positive values, whereas degassing at T ≥ 1050°C, will reduce the δ13C of the degassed magma.

  4. Fe behavior in iron-bearing phonolitic and pantelleritic melts and its significance for magma dynamics in the volcanic conduits

    Science.gov (United States)

    Borovkov, Nikita; Hess, Kai-Uwe; Fehr, Karl-Thomas; Cimarelli, Corrado; Dingwell, Donald Bruce

    2014-05-01

    The style of volcanic eruptions is determined entirely by dynamics of magma ascent in conduits. Physical properties of a silicate melt, particulary viscosity, are responsible for fragmentation processes, bubble growth and their ascent, which are in their turn related to explosivity of eruptions. Therefore, comprehension of the macroscopic properties of silicate melts is required for adequate conduit modelling. Considering eruptions of Mt. Vesuvius, Italy, we observe that eruption style varies from strombolian to plinean and sub-plinean which is related to the changes of melts viscosity in conduits. At Vesuvius the composition of volcanic deposits (III phase) is mainly phonolitic with 5 - 8 wt. % FeO. Fe changes the valence and coordination depending on oxidation state. The changing of iron coordination causes increasing or decreasing viscosity because of the presence of higher or lower amounts of Fe species coordinated with stronger covalence bonds. Mossbauer spectra of iron-bearing natural pantelleritic and phonolitic glasses were studied to get data on speciation and coordination state of iron. Mössbauer spectroscopy measures hyperfine interactions (isomer shift (IS)) and quadrupole splitting (QS)) at Fe atoms embedded in glass structure, which provide the amount of ferric and ferrous iron and their coordination state depending on Redox conditions. Based on these data, we have considered redox-viscosity relationships and also iron coordination effects on viscosity of both mentioned natural melt compositions. For glasses, due to short range order, the Mössbauer spectra were fitted using mathematical procedures based on functional analysis (extended Voight lineshape included in "Recoil" and "Mosslab" software). Mössbauer spectra are deconvoluted in two sites: ferrous iron (IS=0,79-1,00 mm/s; QS= 1,78-2,25 mm/s) and ferric iron (IS=0,26-0,50 mm/s; QS= 0,75-0,95 mm/s). For both sites we observe that IS and QS gradually decrease towards more oxidized conditions

  5. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes

    Science.gov (United States)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Massonne, Hans-Joachim; Langone, Antonio; Visonà, Dario

    2015-08-01

    Kyanite-bearing migmatitic paragneiss of the lower Greater Himalayan Sequence (GHS) in the Kali Gandaki transect (Central Himalaya) was investigated. In spite of the intense shearing, it was still possible to obtain many fundamental information for understanding the processes active during orogenesis. Using a multidisciplinary approach, including careful meso- and microstructural observations, pseudosection modelling (with PERPLE_X), trace element thermobarometry and in situ monazite U-Th-Pb geochronology, we constrained the pressure-temperature-time-deformation path of the studied rock, located in a structural key position. The migmatitic gneiss has experienced protracted prograde metamorphism after the India-Asia collision (50-55 Ma) from ~ 43 Ma to 28 Ma. During the late phase (36-28 Ma) of this metamorphism, the gneiss underwent high-pressure melting at "near peak" conditions (710-720 °C/1.0-1.1 GPa) leading to kyanite-bearing leucosome formation. In the time span of 25-18 Ma, the rock experienced decompression and cooling associated with pervasive shearing reaching P-T conditions of 650-670 °C and 0.7-0.8 GPa, near the sillimanite-kyanite transition. This time span is somewhat older than previously reported for this event in the study area. During this stage, additional, but very little melt was produced. Taking the migmatitic gneiss as representative of the GHS, these data demonstrate that this unit underwent crustal melting at about 1 GPa in the Eocene-Early Oligocene, well before the widely accepted Miocene decompressional melting related to its extrusion. In general, kyanite-bearing migmatite, as reported here, could be linked to the production of the high-Ca granitic melts found along the Himalayan belt.

  6. Tooling Converts Stock Bearings To Custom Bearings

    Science.gov (United States)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  7. Influence of processing medium on frictional wear properties of ball bearing steel prepared by laser surface melting coupled with bionic principles

    International Nuclear Information System (INIS)

    Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel.

  8. Influence of processing medium on frictional wear properties of ball bearing steel prepared by laser surface melting coupled with bionic principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hong, E-mail: wangct08@mails.jlu.edu.c [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Chengtao [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Faw-Volkswagen Automotive Company Ltd., Changchun 130011 (China); Guo Qingchun [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Brilliance Automobile Engineering Research Institute, Shenyang 110141 (China); Yu Jiaxiang [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Mingxing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190 (China); Liao Xunlong [Technical Management Department, CNNC China Zhongyuan Engineering Corp. Ltd., No 487 Tianlin Road, Shanghai 200233 (China); Zhao Yu [School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Ren Luquan [Key Lab of Terrain Machinery Bionics Engineering, Ministry of Education, Jilin University, Changchun 130025 (China)

    2010-09-03

    Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel.

  9. Effect of double vacuum melting and retained austenite on rolling-element fatigue life of AMS 5749 bearing steel

    Science.gov (United States)

    Parker, R. J.; Hodder, R. S.

    1977-01-01

    AMS 5749 steel combines the tempering, hot hardness, and hardness retention characteristics of AISI M-50 steel with the corrosion and oxidation resistance of AISI 440C stainless steel. The five-ball fatigue tester was used to evaluate the rolling-element fatigue life of AMS 5749. Double vacuum melting (vacuum induction melting plus vacuum arc remelting, VIM-VAR) produced AMS 5749 material with a rolling-element fatigue life at least 14 times that of vacuum induction melting alone. The VIM-VAR AMS 5749 steel balls gave lives from 6 to 12 times greater than VIM-VAR AISI M-50 steel balls. The highest level of retained austenite, 14.6 percent, was significantly detrimental to rolling-element fatigue life relative to the intermediate level of 11.1 percent.

  10. Hardly Hardware

    Science.gov (United States)

    Lott, Debra

    2007-01-01

    In a never-ending search for new and inspirational still-life objects, the author discovered that home improvement retailers make great resources for art teachers. Hardware and building materials are inexpensive and have interesting and variable shapes. She especially liked the dryer-vent coils and the electrical conduit. These items can be…

  11. Geochemical Evidence from the Kohistan Complex for Differentiation of Garnet Granulitic lower Crust in Island Arcs by Dehydration Melting of Amphibole-bearing Plutonics: Implications for the Andesite Model of Continental Crustal Growth

    Science.gov (United States)

    Garrido, C. J.; Bodinier, J.; Burg, J.; Zeilinger, G.; Hussain, S. S.; Dawood, H.; Gervilla, F.

    2005-12-01

    We report a geochemical study of the Jijal and Sarangar complexes constituting the lower crust of the Mesozoic Kohistan paleo-island arc (N. Pakistan). The Jijal complex is composed of basal peridotites topped by a gabbroic section made up of mafic garnet granulite-with minor lenses of garnet hornblendite and granite-grading up section to hornblende gabbronorite. The Sarangar complex is constituted by metagabbro. Sarangar gabbro and Jijal hornblende gabbronorite have melt-like, LREE-enriched REE patterns similar to those of island arc basalts. These rocks and Jijal garnet granulite define altogether negative covariations of LaN, YbN and (La/Sm)N with Eu* (=2xEuN/SmN+GdN; N= chondrite normalized), and positive covariations of (Yb/Gd)N with Eu*. REE modeling indicates that these covariations cannot be accounted for by high-pressure crystal fractionation of hydrous primitive or derivative andesites. They are consistent with formation of garnet granulites as plagioclase-garnet assemblages with variable trapped melt fractions via either high-pressure crystallization of primitive island arc basalts or dehydration melting of hornblende gabbronorite, providing that the amount of segregated or restitic garnet was low (hornblende gabbronorite. Similarly, Jijal garnet-bearing hornblendite lenses were most likely generated by coeval dehydration melting of hornblendites. Furthermore, melting models and geochronological data point to intrusive leucogranites in the overlying Metaplutonic complex as the melts generated by dehydration melting of the plutonic protoliths of Jijal garnet-bearing restites. Consistently with the metamorphic evolution of the Kohistan lower arc crust, dehydration melting occurred at the mature stage of this island arc when shallower hornblende-bearing plutonics were buried to depth exceeding 25-30 km and heated at temperatures above ca. 900 oC. Available experimental data on dehydration melting of amphibolitic sources imply that thickening of oceanic arcs

  12. Hardware malware

    CERN Document Server

    Krieg, Christian

    2013-01-01

    In our digital world, integrated circuits are present in nearly every moment of our daily life. Even when using the coffee machine in the morning, or driving our car to work, we interact with integrated circuits. The increasing spread of information technology in virtually all areas of life in the industrialized world offers a broad range of attack vectors. So far, mainly software-based attacks have been considered and investigated, while hardware-based attacks have attracted comparatively little interest. The design and production process of integrated circuits is mostly decentralized due to

  13. Hardware removal - extremity

    Science.gov (United States)

    Surgeons use hardware such as pins, plates, or screws to help fix a broken bone or to correct an abnormality in ... of pain or other problems related to the hardware, you may have surgery to remove the hardware. ...

  14. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge

    Science.gov (United States)

    Jégo, Sébastien; Dasgupta, Rajdeep

    2013-06-01

    To constrain the sulfur enrichment of arc magma source-regions and the agent of sulfur transport from subducting slab to mantle wedge, here we report experimental measurements of sulfur content at sulfide saturation (SCSS) of slab-derived hydrous partial melts at 2.0 and 3.0 GPa and from 800 to 1050 °C, using Ni-NiO (NNO) and Co-CoO (CCO) external oxygen fugacity (fO2) buffers. A synthetic H2O-saturated MORB with 1 wt.% S (added as pyrite) was used as starting material. All experiments produced pyrrhotite- and fluid-saturated assemblages of silicate glass, clinopyroxene, garnet, quartz, and rutile (plus amphibole at 2 GPa/800 °C and phengite at 3 GPa/850 °C). The silicate partial melt composition evolves from rhyolitic to rhyodacitic compositions with increasing temperature and melting degree in equilibrium with an eclogitic residue, showing substantial decrease in SiO2 and Mg# and increase in FeOT, TiO2 and Na2O. At all temperatures melt sulfur concentrations are very low, with an average of 110 ± 50 ppm S, similar to previous measurements at lower pressures. Melt SCSS appears to be mainly controlled by the melt composition, the activity of water, aH2O and the sulfur fugacity, fS2 (calculated from the composition of pyrrhotite). Mass-balance calculations show that the proportion of bulk sulfur dissolved in the silicate melt is negligible (comparable S speciation in the hydrous fluid phase in fO2 conditions ranging from NNO - 0.5 to CCO - 1.0 at 2 and 3 GPa and 850 to 1050 °C. Under these reducing conditions, the hydrous fluid phase is composed mainly of H2S and H2O, and to a lesser extent of S2 and H2, and S in melt is dissolved almost totally as S2- (i.e., S6+/Stotal ˜ 0). Our study suggests that slab-derived aqueous fluids with reduced sulfur species could be sufficient vectors for the transport of sulfur from the slab to the mantle wedge and only ˜0.3 to 1.5 wt.% of slab fluids are required for the mantle wedge enrichment in sulfur over background mantle

  15. Introduction to Hardware Security

    Directory of Open Access Journals (Sweden)

    Yier Jin

    2015-10-01

    Full Text Available Hardware security has become a hot topic recently with more and more researchers from related research domains joining this area. However, the understanding of hardware security is often mixed with cybersecurity and cryptography, especially cryptographic hardware. For the same reason, the research scope of hardware security has never been clearly defined. To help researchers who have recently joined in this area better understand the challenges and tasks within the hardware security domain and to help both academia and industry investigate countermeasures and solutions to solve hardware security problems, we will introduce the key concepts of hardware security as well as its relations to related research topics in this survey paper. Emerging hardware security topics will also be clearly depicted through which the future trend will be elaborated, making this survey paper a good reference for the continuing research efforts in this area.

  16. Hardware Implementation of AES

    Directory of Open Access Journals (Sweden)

    Aakrati Chaturvedi

    2014-01-01

    Full Text Available The Advanced Encryption Standard algorithm can be efficiently programmed in software and implemented in hardware. Field Programmable Gate Array (FPGA devices are considered as efficient and cost effective solution for hardware. This research is in context to efficient hardware implementation of AES algorithm with language platform as VHDL (Very High Speed Integrated Circuit Hardware Description language. This research is in context to efficient hardware implementation of AES algorithm with 128-192-256 key all in one module with language platform as VHDL (Very High Speed Integrated Circuit Hardware Description language. The software part has been created, processed and simulated through Xilinx ISE 9.2. A compact design approach has been chosen to implement the algorithm with minimal hardware. As for hardware, Spartan 3AN family device (XC3S700A device is used

  17. Hardware removal - extremity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007644.htm Hardware removal - extremity To use the sharing features on this page, please enable JavaScript. Surgeons use hardware such as pins, plates, or screws to help ...

  18. Carbon Solubility in Core Melts in Shallow Magma Ocean Environment and its bearing on Distribution of Carbon between Deep Earth Reservoirs

    Science.gov (United States)

    Dasgupta, R.; Walker, D.

    2007-12-01

    Carbon affects the melting phase relations of mantle rocks [1] and core metal [2], influences the physical properties of molten silicates and metals, and also has significant effect on partitioning of other key elements between various deep Earth phases. But the carbon budget of Earth's deep mantle and core is poorly constrained due to lack of knowledge of behavior of carbon during core formation. In order to determine the storage capacity of dissolved carbon in metallic core melts and to put constraints on partitioning of carbon between silicate mantle and metallic core, we have determined the solubility of carbon in molten core metal at P- T conditions relevant for a shallow magma ocean.Experiments are performed at 2 GPa and to 2500 °C using a piston cylinder apparatus. Pure Fe-rod or a mixture of Fe-5.2%Ni loaded into graphite capsules were used as starting materials. Al coated run products are analyzed by EMP. Carbon concentration of 5.8 ± 0.4 wt.% at 2000 °C, 6.5 ± 0.9 wt.% at 2250 °C, and 7.5 ± 1.2 wt.% at 2500 °C are measured in quenched iron melt saturated with graphite. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to that of pure Fe.We have compared our solubility data and an estimate of the current carbon content of the mantle with the carbon content of core melts and residual mantle silicates respectively, derived from equilibrium batch or fractional segregation of core liquids, to constrain the partition coefficient of carbon between silicate and metallic melts in a magma ocean, DC. Translation of the limits of DC, derived from our solubility data, on calculation of carbon content of the residual silicate shows that the observed mantle concentration of carbon is too low to be matched by the process of shallow magma ocean fractionation of carbon between metal and silicate in a chondritic protoearth. If carbon solubility in liquid Fe does not change strongly as a function of

  19. Open Hardware Business Models

    OpenAIRE

    Edy Ferreira

    2008-01-01

    In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  20. Silicate-salt(sulfate) liquid immiscibility: a study of melt inclusions in minerals of the Mushugai-Khuduk carbonatite-bearing complex ( southern Mongolia )%硅酸盐-盐(硫酸盐)流体不混溶:蒙古南部Mushugai-Khuduk含火成碳酸岩杂岩体矿物中的熔体包裹体研究

    Institute of Scientific and Technical Information of China (English)

    Irina A.Andreeva; Vyacheslav I.Kovalenko; Vladimir B.Naumov

    2007-01-01

    Crystalline and melt inclusions were studied in garnet, diopside, potassium feldspar, and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk, southern Mongolia. Phlogopite, clinopyroxene, albite, potassium feldspar, sphene, wollastonite, magnetite, Ca and Sr sulfates, fluorite, and apatite were identified among the crystalline inclusions.The melt inclusions were homogenized at 1010 ~ 1080℃ and analyzed on an electron microprobe. Silicate, salt, and combined silicatesalt melt inclusions were found. Silicate melts show considerable variations in SiO2 concentration (56 to 66wt% ), high Na2O + K2O(up to 17wt% ), and elevated Zr, F, and Cl contents. In terms of bulk rock chemistry, the silicate melts are alkali syenites. During thermometric experiments, salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO2. These melts are enriched in alkalis, Ba, Sr, P, F, and Cl. The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt (sulfate)liquids.

  1. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  2. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  3. Hardware description languages

    Science.gov (United States)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  4. SOM Hardware-Accelerator

    OpenAIRE

    Rüping, Stefan; Porrmann, Mario; Rückert, Ulrich

    1997-01-01

    Many applications of Selforganizing Feature Maps (SOMs) need a high performance hardware system in order to be efficient. Because of the regular and modular structure of SOMs , a hardware realization is obvious. Based on the idea of a massively parallel system, several chips have been designed, manufactured and tested by the authors. In this paper a high performance system with the latest NBISOM_25 chips is presented. The NBISOM_25 integrated circuit contains 25 processing elements in a 5 by ...

  5. Melting of Ice under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  6. NASA HUNCH Hardware

    Science.gov (United States)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  7. Hardware Objects for Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Thalinger, Christian; Korsholm, Stephan;

    2008-01-01

    Java, as a safe and platform independent language, avoids access to low-level I/O devices or direct memory access. In standard Java, low-level I/O it not a concern; it is handled by the operating system. However, in the embedded domain resources are scarce and a Java virtual machine (JVM) without...... an underlying middleware is an attractive architecture. When running the JVM on bare metal, we need access to I/O devices from Java; therefore we investigate a safe and efficient mechanism to represent I/O devices as first class Java objects, where device registers are represented by object fields. Access...... to those registers is safe as Java’s type system regulates it. The access is also fast as it is directly performed by the bytecodes getfield and putfield. Hardware objects thus provide an object-oriented abstraction of low-level hardware devices. As a proof of concept, we have implemented hardware objects...

  8. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  9. Hardware bitstream sequence recognizer

    OpenAIRE

    Karpin, Oleksandr; Sokil, Volodymyr

    2009-01-01

    This paper describes how to implement in hardware a bistream sequence recognizer using the PSoC Pseudo Random Sequence Generator (PRS) User Module. The PRS can be used in digital communication systems with the serial data interface for automatic preamble detection and extraction, control words selection, etc.

  10. RRFC hardware operation manual

    International Nuclear Information System (INIS)

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  11. DCSP hardware maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Pazmino, M.

    1995-11-01

    This paper discusses the necessary changes to be implemented on the hardware side of the DCSP database. DCSP is currently tracking hardware maintenance costs in six separate databases. The goal is to develop a system that combines all data and works off a single database. Some of the tasks that will be discussed in this paper include adding the capability for report generation, creating a help package and preparing a users guide, testing the executable file, and populating the new database with data taken from the old database. A brief description of the basic process used in developing the system will also be discussed. Conclusions about the future of the database and the delivery of the final product are then addressed, based on research and the desired use of the system.

  12. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  13. Spent fuel assembly hardware

    International Nuclear Information System (INIS)

    When spent nuclear fuel is disposed of in a repository, the waste package will include the spent fuel assembly hardware, the structural portion of the fuel assembly, and the fuel pins. The spent fuel assembly hardware is the subject of this paper. The basic constituent parts of the fuel assembly will be described with particular attention on the materials used in their construction. The results of laboratory analyses performed to determine radionuclide inventories and trace impurities also will be described. Much of this work has been incorporated into a US Department of Energy (DOE) database maintained by Oak Ridge National Laboratory (ORNL). This database is documented in DOE/RW-0184 and can be obtained from Karl Notz at ORNL. The database provides a single source for information regarding wastes that may be sent to the repository

  14. Sterilization of space hardware.

    Science.gov (United States)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  15. Friction coefficients of PTFE bearing liner

    Science.gov (United States)

    Daniels, C. M.

    1979-01-01

    Data discusses frictional characteristics of PTFE (polytetrafluoroethylene) under temperature extremes and in vacuum environment. Tests were also run on reduced scale hardware to determine effects of vacuum. Data is used as reference by designers of aircraft-control system rod-end bearings and for bearings used in polar regions.

  16. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    International Nuclear Information System (INIS)

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  17. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  18. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  19. Open hardware for open science

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  20. Space Hardware Microbial Contamination

    Science.gov (United States)

    Baker, A.; Kern, R.; Wainwright, N.

    Planetary Protection (PP) requirements imposed on unmanned planetary missions require that the spacecraft undergo rigorous bioload reduction prior to launch. The ability to quantitate bioburden on such spacecraft is dependent on developing new analytical methodologies that can be used to identify and trace biological contamination on flight hardware. The focus of new method development is to move forward and to augment the current spore analysis method which was first used on Viking. The ultimate goal of the new techniques is not to increase the cleanliness requirement currently levied on various missions, but instead to better understand the nature of the bioburden through the use of well-characterized standard methods. Subsequently an array of standard techniques is needed to provide various analytical methodologies that can be used to access bioburden, depending upon mission specifications. Since the Viking mission no new methods have been certified for inclusion in the NASA Standard Procedure NPG 5340. The process of transferring a new method from the research and development phase to a standardized laboratory technique suitable for use on space craft will be discussed. A historical overview of the process used to develop and certify the standard assay methods for the Viking mission will be provided. Ongoing challenges to certify new methods include: 1) development of surrogate sampling matrices when spacecraft hardware is not available, 2) a comprehensive laboratory process for standardizing a new method for routine use, and 3) the development of critical pass fail benchmarks for spacecraft using new biomarkers. In addition a proposed process that has been used to develop analytical methods using Limulus Amebocyte Lysate, and Adenosine Triphosphate will be presented.

  1. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  2. Hardware multiplier processor

    Science.gov (United States)

    Pierce, Paul E.

    1986-01-01

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  3. Hardware assisted hypervisor introspection.

    Science.gov (United States)

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system. PMID:27330913

  4. LHCb: Hardware Data Injector

    CERN Multimedia

    Delord, V; Neufeld, N

    2009-01-01

    The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb's raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, ...

  5. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  6. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; Partridge, Harry; Sherman, Aaron; McCabe, Mary

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware

  7. Secure coupling of hardware components

    NARCIS (Netherlands)

    Knobbe, J.W.; Hoepman, J.H.; Joosten, H.J.M.

    2011-01-01

    A method and a system for securing communication between at least a first and a second hardware components of a mobile device is described. The method includes establishing a first shared secret between the first and the second hardware components during an initialization of the mobile device and, f

  8. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...

  9. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... species. Mass spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on...

  10. NDAS Hardware Translation Layer Development

    Science.gov (United States)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  11. Specialized Hardware Architecture for Smartphones

    Directory of Open Access Journals (Sweden)

    Rohit Kumar,

    2014-05-01

    Full Text Available Smartphones provides us the capability of a typical computer with absolute mobility and small form factor. But the hardware, software architecture of smartphone is significantly different from the conventional hardware and software architectures. The feature and architecture of the processors is totally different the traditional processor as these processors are developed to cope-up with fewer energy availability with smartphones or any other ultra portable devices. Key-Words:

  12. Specialized Hardware Architecture for Smartphones

    OpenAIRE

    Rohit Kumar; Lokesh Pawar

    2014-01-01

    Smartphones provides us the capability of a typical computer with absolute mobility and small form factor. But the hardware, software architecture of smartphone is significantly different from the conventional hardware and software architectures. The feature and architecture of the processors is totally different the traditional processor as these processors are developed to cope-up with fewer energy availability with smartphones or any other ultra portable devices. Key-Words:

  13. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  14. Flywheel energy storage with superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  15. Bearing structures

    International Nuclear Information System (INIS)

    A hydrostatic bearing for the lower end of the vertical shaft of a sodium pump comprises a support shell encircling the shaft and a bush located between the shell and shaft. Liquid sodium is fed from the pump outlet to the bush/shaft and bush/shell interfaces to provide hydrostatic support. The bush outer surface and the shell inner surface are of complementary part-spherical shape and the bush floats relative to the shaft so that the bush can align itself with the shaft axis. Monitoring of the relative rotational speed of the bush with respect to the shaft (such rotation being induced by the viscous drag forces present) is also performed for the purposes of detecting abnormal operation of the bearing or partial seizure, at least one magnet is rotatable with the bush, and a magnetic sensor provides an output having a frequency related to the speed of the bush. (author)

  16. Force-Induced Melting and Thermal Melting of a Double-Stranded Biopolymer

    OpenAIRE

    Zhou, Haijun

    2000-01-01

    As a prototype of systems bearing a localization-delocalization transition, the strand-separation (melting) process in a double-stranded biopolymer is studied by a mapping to a quantum-mechanical problem with short-ranged potentials. Both the bounded and the extensive eigenmodes of the corresponding Schrodinger equation are considered and exact expressions for the configurational partition function and free energy are obtained. The force-induced melting is a first order phase transition proce...

  17. Raspberry Pi hardware projects 1

    CERN Document Server

    Robinson, Andrew

    2013-01-01

    Learn how to take full advantage of all of Raspberry Pi's amazing features and functions-and have a blast doing it! Congratulations on becoming a proud owner of a Raspberry Pi, the credit-card-sized computer! If you're ready to dive in and start finding out what this amazing little gizmo is really capable of, this ebook is for you. Taken from the forthcoming Raspberry Pi Projects, Raspberry Pi Hardware Projects 1 contains three cool hardware projects that let you have fun with the Raspberry Pi while developing your Raspberry Pi skills. The authors - PiFace inventor, Andrew Robinson and Rasp

  18. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  19. Commodity hardware and software summary

    Energy Technology Data Exchange (ETDEWEB)

    Wolbers, S.

    1997-04-01

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC`s for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given.

  20. Super resolution volume rendering hardware

    OpenAIRE

    Bosma, Marco; Smit, Jaap; Terwisscha van Scheltinga, Jeroen

    1995-01-01

    The resolution obtained in volume rendering is greatly increased over known methods through the introduction of super resolution techniques which make it possible to enlarge the view o f the dataset without the introduction of unnecessary positional, gradient and opacity errors. In this paper our "Super Resolution" technique will be introduced along with a corresponding hardware design.

  1. Commodity hardware and software summary

    International Nuclear Information System (INIS)

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC's for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given

  2. Hardware Error Detection Using AN-Codes

    OpenAIRE

    Schiffel, Ute

    2011-01-01

    Due to the continuously decreasing feature sizes and the increasing complexity of integrated circuits, commercial off-the-shelf (COTS) hardware is becoming less and less reliable. However, dedicated reliable hardware is expensive and usually slower than commodity hardware. Thus, economic pressure will most likely result in the usage of unreliable COTS hardware in safety-critical systems. The usage of unreliable, COTS hardware in safety-critical systems results in the need for software-imp...

  3. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  4. Modular hardware synthesis using an HDL. [Hardware Description Language

    Science.gov (United States)

    Covington, J. A.; Shiva, S. G.

    1981-01-01

    Although hardware description languages (HDL) are becoming more and more necessary to automated design systems, their application is complicated due to the difficulty in translating the HDL description into an implementable format, nonfamiliarity of hardware designers with high-level language programming, nonuniform design methodologies and the time and costs involved in transfering HDL design software. Digital design language (DDL) suffers from all of the above problems and in addition can only by synthesized on a complete system and not on its subparts, making it unsuitable for synthesis using standard modules or prefabricated chips such as those required in LSI or VLSI circuits. The present paper presents a method by which the DDL translator can be made to generate modular equations that will allow the system to be synthesized as an interconnection of lower-level modules. The method involves the introduction of a new language construct called a Module which provides for the separate translation of all equations bounded by it.

  5. Melting of Pb nanocrystals

    International Nuclear Information System (INIS)

    The size-dependent melting and surface melting of Pb nanocrystals is demonstrated by x-ray powder diffraction in ultrahigh vacuum. Whereas some prior studies have measured the size-dependent melting temperature via the diffraction intensity, it is shown here that crystallite reorientation makes the diffraction intensity an unreliable indicator of melting. Instead of the diffraction intensity, the diffraction peak shape reveals the size-dependent melting via changes in the crystallite size distribution. Measurements showed that the melting temperature varies inversely with the crystallite size and quantitatively favors the liquid-skin melting model over the homogeneous melting model. Surface melting is demonstrated via the reversible growth of a 0.5 nm liquid skin on 50 nm crystallites just below the size-dependent melting temperature. copyright 1998 The American Physical Society

  6. Hardware-Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  7. Generic Hardware Architectures for Sampling and Resampling in Particle Filters

    Directory of Open Access Journals (Sweden)

    Petar M. Djurić

    2005-10-01

    Full Text Available Particle filtering is a statistical signal processing methodology that has recently gained popularity in solving several problems in signal processing and communications. Particle filters (PFs have been shown to outperform traditional filters in important practical scenarios. However their computational complexity and lack of dedicated hardware for real-time processing have adversely affected their use in real-time applications. In this paper, we present generic architectures for the implementation of the most commonly used PF, namely, the sampling importance resampling filter (SIRF. These provide a generic framework for the hardware realization of the SIRF applied to any model. The proposed architectures significantly reduce the memory requirement of the filter in hardware as compared to a straightforward implementation based on the traditional algorithm. We propose two architectures each based on a different resampling mechanism. Further, modifications of these architectures for acceleration of resampling process are presented. We evaluate these schemes based on resource usage and latency. The platform used for the evaluations is the Xilinx Virtex II pro FPGA. The architectures presented here have led to the development of the first hardware (FPGA prototype for the particle filter applied to the bearings-only tracking problem.

  8. Hunting for hardware changes in data centres

    International Nuclear Information System (INIS)

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  9. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  10. ACS air bearing test-bed design

    OpenAIRE

    Glitt, Sascha

    2010-01-01

    This thesis is about the construction and design of a new air bearing test-bed to verify the programmed ACS attitude control algorithm and to validate the ACS MATLAB/SimuLink¬ model of NPSAT1, the second small satellite currently under development at the Naval Postgraduate School Space Systems Academic Group. The software was already verified and validated using a comparable air bearing test-bed. But due to changes in hardware from commercial magnetic torque rods to custom, NPS-built, magneti...

  11. GENI: Grid Hardware and Software

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  12. High exposure hardware removal activity readiness evaluation

    International Nuclear Information System (INIS)

    This document comprises the Readiness Evaluation Plan for the High Exposure Rate Hardware (HERH) Removal Activity planned for the N Basin area at the Hanford Reservation in Richland Washington. This activity will consist of collecting hardware, depositing hardware in stainless-steel fuel element storage baskets, placing baskets in specially fabricated steel grout pipe, and encasing the contents in a high-slump grout

  13. 16 CFR 1509.7 - Hardware.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hardware. 1509.7 Section 1509.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.7 Hardware. (a) The hardware in a non-full-size baby crib shall...

  14. 16 CFR 1508.6 - Hardware.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hardware. 1508.6 Section 1508.6 Commercial... FULL-SIZE BABY CRIBS § 1508.6 Hardware. (a) A crib shall be designed and constructed in a manner that eliminates from any hardware accessible to a child within the crib the possibility of the...

  15. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  16. Travel Software using GPU Hardware

    CERN Document Server

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  17. Hardware complications in scoliosis surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Kaushik; Mohaideen, Ahamed [Department of Orthopaedic Surgery and Musculoskeletal Services, Maimonides Medical Center, Brooklyn, NY (United States); Thomson, Jeffrey D. [Connecticut Children' s Medical Center, Department of Orthopaedics, Hartford, CT (United States); Foley, Christopher L. [Department of Radiology, Connecticut Children' s Medical Center, Hartford, Connecticut (United States)

    2002-07-01

    Background: Scoliosis surgery has undergone a dramatic evolution over the past 20 years with the advent of new surgical techniques and sophisticated instrumentation. Surgeons have realized scoliosis is a complex multiplanar deformity that requires thorough knowledge of spinal anatomy and pathophysiology in order to manage patients afflicted by it. Nonoperative modalities such as bracing and casting still play roles in the treatment of scoliosis; however, it is the operative treatment that has revolutionized the treatment of this deformity that affects millions worldwide. As part of the evolution of scoliosis surgery, newer implants have resulted in improved outcomes with respect to deformity correction, reliability of fixation, and paucity of complications. Each technique and implant has its own set of unique complications, and the surgeon must appreciate these when planning surgery. Materials and methods: Various surgical techniques and types of instrumentation typically used in scoliosis surgery are briefly discussed. Though scoliosis surgery is associated with a wide variety of complications, only those that directly involve the hardware are discussed. The current literature is reviewed and several illustrative cases of patients treated for scoliosis at the Connecticut Children's Medical Center and the Newington Children's Hospital in Connecticut are briefly presented. Conclusion: Spine surgeons and radiologists should be familiar with the different types of instrumentation in the treatment of scoliosis. Furthermore, they should recognize the clinical and roentgenographic signs of hardware failure as part of prompt and effective treatment of such complications. (orig.)

  18. Restoration of bearings

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.; Hanau, H.

    1977-01-01

    Process consisting of grinding raceways to oversize but original quality condition and installing new oversize balls or bearings restores wornout ball and roller bearings to original quality, thereby doubling their operating life. Evaluations reveal process results in restoration of 90% of replaced bearings at less than 50% of new-bearing costs.

  19. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  20. The calibration of radioprotection hardware

    International Nuclear Information System (INIS)

    After having recalled recent recommendations on dose limits on the basis of two radioprotection values (the equivalent and the efficient dose), this document indicates some characteristics of these values, and discusses how they are applied for individual monitoring and for area or ambient monitoring. It presents conventions aimed at simplifying radiation fields. Then, the author gives a precise overview of some general aspects concerning calibration operations: legal requirements, radioprotection hardware controls, calibration loop organisation (calibration definition, general physical values, reference radiation, conversion factors, and metrology), comparison between operational values and the protection value (irradiation geometries, conversion factors with respect to the geometries, comparison between efficient dose and operational values). He finally describes the calibration procedures: dosemeter location, energy response, angular response, flow rate response, uncertainties

  1. Hardware Support for Dynamic Languages

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Karlsson, Sven; Probst, Christian W.

    2011-01-01

    In recent years, dynamic programming languages have enjoyed increasing popularity. For example, JavaScript has become one of the most popular programming languages on the web. As the complexity of web applications is growing, compute-intensive workloads are increasingly handed off to the client...... side. While a lot of effort is put in increasing the performance of web browsers, we aim for multicore systems with dedicated cores to effectively support dynamic languages. We have designed Tinuso, a highly flexible core for experimentation that is optimized for high performance when implemented...... on FPGA. We composed a scalable multicore configuration where we study how hardware support for software speculation can be used to increase the performance of dynamic languages....

  2. NOMAD: hardware and general operations

    International Nuclear Information System (INIS)

    Neutrino Oscillation Magnetic Detector (NOMAD), one of the two neutrino oscillation experiments at the CERN SPS, has been taking date successfully in 1995. During 1995 problems were encountered with the drift chambers that serve as a target for the neutrino interactions and for particle tracking. These problems have now been solved, and the new drift chambers were installed in stages during 1995, with the detector becoming fully operational in August. Additional hardware improvements, such as the construction of a hadronic calorimeter, a forward calorimeter and VME based trigger electronics that allow multiple triggers to be processed have increased the physics capabilities of the detector. NOMAD recorded 1.5 x 107 triggers in the neutrino spills during 1995, corresponding to an estimated 3.0 x 105 charged current neutrino interactions in the target mass, approximately 30% of the neutrino interactions needed to achieve the νμ to ντ oscillation limits originally stated in the NOMAD proposal. (author)

  3. Microwave melting device

    International Nuclear Information System (INIS)

    Low level radioactive wastes (concrete pieces) or materials to be melted such as burnt ashes of wastes are charged into a melting furnace. Then, gyrotron of a microwave generator is oscillated, and generated microwaves of a large power are introduced to a melting furnace by a waveguide. The microwaves are irradiated from an irradiator to a beam converging-type reflecting mirror antenna disposed opposite to the irradiator. Then, an antenna driving portion is operated to rotate and move the antenna in parallel. With such procedures, the microwaves of a large power are converged acutely in a beam-like manner to a predetermined range in the melting furnace, and the converged beams of the microwaves are scanned. This can generate heat from the inner side of the materials to be melted charged to the melting furnace by the induction loss and they are melted. (I.N.)

  4. Maintenance Free Bearings

    OpenAIRE

    S. M. Muzakkir & Harish Hirani

    2015-01-01

    In the present research work the need of a Maintenance Free Bearings (MFB) is established. The paper presents preliminary friction calculations to highlight the ways to achieve maintenance free bearings. The existing technologies of well established maintenance free bearings are described. The hybridization of bearing technologies to achieve low cost maintenance free bearings has been exemplified. Finally a combination of passive magnetic repulsion and hydrodynamics ha...

  5. Origin of melt pockets in mantle xenoliths from southern Patagonia, Argentina

    Science.gov (United States)

    Aliani, Paola; Ntaflos, Theodoros; Bjerg, Ernesto

    2009-12-01

    Peridotite mantle xenoliths collected north of Gobernador Gregores, Patagonia, affected by cryptic and modal metasomatism bear melt pockets of unusually large size. Melt pockets consist of second generation olivine (ol2), clinopyroxene (cpx2) and spinel (sp2) ± relict amphibole (amph) immersed in a yellowish vesicular glass matrix. Amphibole breakdown was responsible for melt pocket generation as suggested by textural evidence and proved by consistent mass-balance calculations: amph → cpx2 + ol2 + sp2 + melt. Composition of calculated amphibole in amphibole-free melt pockets is very similar to that measured in amphibole-bearing melt pockets from the same xenolith, i.e. amphibole was consumed in the melt pocket generation process. In melt pockets devoid of relict amphibole, mass-balance calculations show remarkable differences between the calculated amphibole and the measured amphibole compositions in melt pockets from the same xenolith. The participation of minor proportions of a consumed reactant phase could be a reasonable explanation. In some samples the calculated phase proportion of glass is in excess compared to modal estimations based on backscattered electron images, probably because a portion of the generated melt was able to migrate out of the melt pockets. Compositional inhomogeneity of cpx2 and variable Ti Kd in cpx2 vs. glass in the same melt pocket reflect fast nucleation and growth and disequilibrium crystallisation, respectively. This and the difference between forsterite content in calculated equilibrium olivine and second generation olivine, suggest that mineral equilibrium was inhibited by rapid quenching of melt pockets.

  6. Hardware Trojan Horses in Cryptographic IP Cores

    OpenAIRE

    Bhasin, Shivam; Danger, Jean-Luc; Guilley, Sylvain; Ngo, Xuan Thuy; Sauvage, Laurent

    2013-01-01

    International audience Detecting hardware trojans is a difficult task in general. In this article we study hardware trojan horses insertion and detection in cryptographic intellectual property (IP) blocks. The context is that of a fabless design house that sells IP blocks as GDSII hard macros, and wants to check that final products have not been infected by trojans during the foundry stage. First, we show the efficiency of a medium cost hardware trojans detection method if the placement or...

  7. Automatic generation of hardware/software interfaces

    OpenAIRE

    King, Myron Decker; Dave, Nirav H.; Mithal, Arvind

    2012-01-01

    Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is de...

  8. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential.However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and ...

  9. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile; Beale, R

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential. However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and...

  10. Hardware Implementation of Singular Value Decomposition

    Science.gov (United States)

    Majumder, Swanirbhar; Shaw, Anil Kumar; Sarkar, Subir Kumar

    2016-06-01

    Singular value decomposition (SVD) is a useful decomposition technique which has important role in various engineering fields such as image compression, watermarking, signal processing, and numerous others. SVD does not involve convolution operation, which make it more suitable for hardware implementation, unlike the most popular transforms. This paper reviews the various methods of hardware implementation for SVD computation. This paper also studies the time complexity and hardware complexity in various methods of SVD computation.

  11. Electronic hardware implementations of neutral networks

    Science.gov (United States)

    Thakoor, A. P.; Moopenn, A.; Lambe, John; Khanna, S. K.

    1987-01-01

    This paper examines some of the present work on the development of electronic neural network hardware. In particular, the investigations currently under way at JPL on neural network hardware implementations based on custom VLSI technology, novel thin film materials, and an analog-digital hybrid architecture are reviewed. The availability of such hardware will greatly benefit and enhance the present intense research effort on the potential computational capabilities of highly parallel systems based on neural network models.

  12. Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago

    Science.gov (United States)

    Moine, B. N.; Grégoire, M.; O'Reilly, Suzanne Y.; Delpech, G.; Sheppard, S. M. F.; Lorand, J. P.; Renac, C.; Giret, A.; Cottin, J. Y.

    2004-07-01

    Some mantle-derived Kerguelen harzburgite and dunite xenoliths have bulk-rock and mineral trace element compositions that provide evidence of carbonatitic metasomatism similar to that described in some continental and other oceanic settings. Rare xenoliths contain carbonates that are highly enriched in rare earth elements (REE), interpreted to be quenched, evolved carbonatitic melts. One amphibole-bearing dunite mantle wall-rock containing carbonates in small interstitial pockets (100-500 μm across) has been studied in detail. Mg-bearing calcite (MgO: magnesio-wüstite concentrated near the boundaries of the carbonate pockets. The unusual metasomatic mineral assemblage, together with the microstructural features and chemical composition of carbonates (with trace element contents similar to those of common carbonatite magmas), suggests that the pockets of Mg-bearing calcite represent quenched carbonate melts rather than crystal cumulates from carbonate-rich melts. The associated mafic silicate glass could represent the immiscible silicate fraction of an evolved fluid produced by the dissolution-percolation of the original carbonate melt in the dunitic matrix and subsequent unmixing as the xenoliths ascended to the surface. Clinopyroxene formed during the percolation event and is therefore inferred to be in chemical equilibrium with the carbonate melt. This allowed calculation of clinopyroxene/carbonate melt partition coefficients for a large set of trace elements at relatively low pressure (1 GPa). As a result, a significant pressure control on REE partitioning between carbonate melt and silicate minerals was observed. This study provides further evidence for the occurrence of carbonate melts and demonstrates that these melts can be preserved in hot oceanic uppermost mantle.

  13. An Algebraic Hardware/Software Partitioning Algorithm

    Institute of Scientific and Technical Information of China (English)

    秦胜潮; 何积丰; 裘宗燕; 张乃孝

    2002-01-01

    Hardware and software co-design is a design technique which delivers computer systems comprising hardware and software components. A critical phase of the co-design process is to decompose a program into hardware and software. This paper proposes an algebraic partitioning algorithm whose correctness is verified in program algebra. The authors introduce a program analysis phase before program partitioning and develop a collection of syntax-based splitting rules. The former provides the information for moving operations from software to hardware and reducing the interaction between components, and the latter supports a compositional approach to program partitioning.

  14. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search.......This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...

  15. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Madsen, Jan; Knudsen, Peter Voigt

    1998-01-01

    as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search......This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...

  16. Melt containment member

    Science.gov (United States)

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  17. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  18. HSX hardware, control and diagnostics

    International Nuclear Information System (INIS)

    The HSX Helically Symmetric Stellarator has been operational for the last year, making plasmas at 0.5T using 28 GHz ECH. During this phase of operation, hardware, machine diagnostics, and plasma diagnostics have been continually implemented to improve machine operation and control, and plasma diagnostic capabilities. This paper will provide and overview of the basic machine control concepts, some details of the He glow discharge cleaning methods used to provide density control under plasma operation, and some details of the LabViewR (National Instruments) and SLC interfaced machine control, timing and diagnostics. Low-level machine operation (coil deflection, ground currents, vacuum base pressures and contaminants, etc.), motor generator, Gyrotron, coil cooling and temperature monitoring is also performed using the LabView/SLC combination; more of which is planned for the ensuing months. Diagnostic implementation, from 288 GHz microwave interferometer, diamagnetic loop signals, optical and x-ray diagnostics, probes, etc., are primarily interfaced using LabView A/D, digital and analog I/O, and timing cards controlled by PC computers: all of which save the data to a PC based data storage site. A ten-chord fir Thomson Scattering system and a multichannel ECE system are under construction for operation in the near future, again with primary control and data interface planned for incorporation into the PC based system. A SQL database is currently under implementation to improve overall data searching capabilities and accessibility, and to facilitate data backup and protection. Both MatLabR and IDLR are currently used for data analysis and presentation, which will be maintained through the database implementation. Copyright (2002) Australian National University- Research School of Physical Sciences and Engineering

  19. PEP-II Hardware Reliability

    International Nuclear Information System (INIS)

    Hardware reliability takes on special importance in large accelerator facilities intended to work as factories; i.e., when they are expected to deliver design performance for extended periods of time. The PEP-II B-Factory at SLAC is such a facility. In this paper, we summarize PEP-II reliability statistics from the first four years of production running. The four running periods extended from January 12 through October 31, 2000, from February 4, 2001 through June 30, 2002, from November 15, 2002 through June 30, 2003, and from September 9, 2003 through July 31, 2004. These four periods are designated Runs 1, 2, 3, and 4 in the discussion and tables presented in the paper. The first four runs encompassed 30,359 hours. During this time, PEP-II was delivering luminosity to the BaBar detector 57.9 percent of the time. In addition, 5.3 percent of the time was used for scheduled dedicated machine development work, and 4.5 percent was scheduled off for maintenance, installations, or safety checks. Injection and tuning accounted for 19.9 percent. The remaining 12.4 percent was lost due to malfunctions. During this time period, a total of 9701 malfunctions were reported, but most did not interrupt the running program. The unscheduled down time, a total of 3883 hours, was attributed to 1724 of these malfunctions. Mean Time to Fail (MTTF) and Mean Time to Repair (MTTR) are presented for each of the major subsystems, and long-term availability trends are discussed

  20. Computer hardware description languages - A tutorial

    Science.gov (United States)

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  1. Returned Solar Max hardware degradation study results

    International Nuclear Information System (INIS)

    The Solar Maximum Repair Mission returned with the replaced hardware that had been in low Earth orbit for over four years. The materials of this returned hardware gave the aerospace community an opportunity to study the realtime effects of atomic oxygen, solar radiation, impact particles, charged particle radiation, and molecular contamination. The results of these studies are summarized

  2. Occlusion Culling and Hardware Accelerated Volume Rendering

    OpenAIRE

    Meissner, Michael

    2000-01-01

    Within this dissertation, a set of algorithmic optimizations are developed, enabling significant performance improvements due to a much better utilization of the available bandwidth. Additionally, new architectural concepts circumventing the bottle-necks of currently available general purpose graphics hardware are presented. In the field of polygon rendering, a unique mechanism for hardware supported occlusion queries to cull geometry prior to geometry transformation --- sav...

  3. Relational algebra as formalism for hardware design

    NARCIS (Netherlands)

    Berg, ten A.J.W.M.; Huijs, C.; Krol, Th.

    1993-01-01

    This paper introduces relational algebra as an elegant formalism to describe hardware behaviour. Hardware behaviour is modelled by functions that are represented by sets of tables. Relational algebra, developed for designing large and consistent databases is capable to operate on sets of tables and

  4. Comparative Modal Analysis of Sieve Hardware Designs

    Science.gov (United States)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  5. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...

  6. Thermodynamics of Glass Melting

    Science.gov (United States)

    Conradt, Reinhard

    First, a model based on linear algebra is described by which the thermodynamic properties of industrial multi-component glasses and glass melts can be accurately predicted from their chemical composition. The model is applied to calculate the heat content of glass melts at high temperatures, the standard heat of formation of glasses from the elements, and the vapor pressures of individual oxides above the melt. An E-fiber glass composition is depicted as an example. Second, the role of individual raw materials in the melting process of E-glass is addressed, with a special focus on the decomposition kinetics and energetic situation of alkaline earth carriers. Finally, the heat of the batch-to-melt conversion is calculated. A simplified reaction path model comprising heat turnover, content of residual solid matter, and an approach to batch viscosity is outlined.

  7. Optical Properties of Nanosatellite Hardware

    Science.gov (United States)

    Finckenor, M. M.; Coker, R. F.

    2014-01-01

    Over the last decade, a number of very small satellites have been launched into space. These have been called nanosatellites (generally of a weight between 1 and 10 kg) or picosatellites (weight hardware. Parts that are usually ignored in the thermal analysis of larger spacecraft may contribute significantly to the heat load of a tiny satellite. In addition, many small satellites have commercial-off-the-shelf (COTS) components. To reduce costs, many providers of COTS components do not include the optical and physical parameters necessary for accurate thermal analysis. Marshall Space Flight Center participated in the development and analysis of the Space Missile Defense Command-Operational Nanosatellite Effect (SMDC-ONE) and the Edison Demonstration of Smallsat Networks (EDSN) nanosatellites. These optical property measurements are documented here in hopes that they may benefit future nanosatellite and picosatellite programs and aid thermal analysis to ensure project goals are met, with the understanding that material properties may vary by vendor, batch, manufacturing process, and preflight handling. Where possible, complementary data are provided from ground simulations of the space environment and flight experiments, such as the Materials on International Space Station Experiment (MISSE) series. NASA gives no recommendation, endorsement, or preference, either expressed or implied, concerning materials and vendors used. Solar absorptance was calculated from spectral reflectance measurements made from 250 to 2,800 nm with an AZ Technology Laboratory Portable Spectroreflectometer (LPSR) model 300. ASTM E-903 was the test method used under normal laboratory conditions, and ASTM E-490 was the solar spectral irradiance data used to calculate solar absorptance. Most of the samples were flat, but stray light was minimized as much as possible with either a blackbody or black cloth as sample background. The LPSR has repeatability of approximately +/-1%, where solar

  8. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  9. Applying a Genetic Algorithm to Reconfigurable Hardware

    Science.gov (United States)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  10. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  11. Mobile Melt-Dilute Technology Development Project FY 2005 Test Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sell; Donald Fisher

    2006-01-01

    The adaptation of Melt-Dilute technology to a mobile and deployable platform progressed with the installation of the prototype air-cooled induction furnace and power generator in an ISO cargo container. Process equipment tests were conducted in FY’05 on two fronts: the melt container and its associated hardware and the mobile furnace and generator. Container design was validated through tests at elevated temperature and pressure, under vacuum, and subjected to impact. The Mobile Melt-Dilute (MMD) furnace and power source tests were completed per the plan. The tests provided information necessary to successfully melt and dilute HEU research reactor fuel assemblies.

  12. Programmable hardware for reconfigurable computing systems

    Science.gov (United States)

    Smith, Stephen

    1996-10-01

    In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.

  13. Hardware device binding and mutual authentication

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  14. IDD Archival Hardware Architecture and Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  15. Cooperative communications hardware, channel and PHY

    CERN Document Server

    Dohler, Mischa

    2010-01-01

    Facilitating Cooperation for Wireless Systems Cooperative Communications: Hardware, Channel & PHY focuses on issues pertaining to the PHY layer of wireless communication networks, offering a rigorous taxonomy of this dispersed field, along with a range of application scenarios for cooperative and distributed schemes, demonstrating how these techniques can be employed. The authors discuss hardware, complexity and power consumption issues, which are vital for understanding what can be realized at the PHY layer, showing how wireless channel models differ from more traditional

  16. A High Performance SOFM Hardware-System

    OpenAIRE

    Rüping, Stefan; Porrmann, Mario; Rückert, Ulrich

    1997-01-01

    Many applications of Selforganizing Feature Maps (SOFMs) need a high performance hardware system in order to be efficient. Because of the regular and modular structure of SOFMs, a hardware realization is obvious. Based on the idea of a massively parallel system, several chips have been designed, manufactured and tested by the authors. In this paper a high performance system with the latest NBISOM_25 chips is presented. The NBISOM_25 integrated circuit contains 25 processing elements in a 5 by...

  17. Research of Embedded Hardware Optimization Design Algorithm

    OpenAIRE

    Xuesong Yan

    2012-01-01

    Embedded hardware design is important in real world applications, but with the increase of the hardware scale the traditional methods can not design them well. Cultural Algorithms are a class of computational models derived from observing the cultural evolution process in nature. Aiming at the disadvantages of basic Cultural Algorithms like being trapped easily into a local optimum, this paper improves the basic Cultural Algorithms and proposes a new algorithm to solve the overcomes of the ba...

  18. ASIC life extension through hardware patch interfaces

    OpenAIRE

    Bryksin, Vladyslav Sergeevich

    2009-01-01

    Specialized processor designs and ASICs offer lower power consumption and greater efficiency compared to general purpose processors. However, the drawback of specialized hardware designs is the reduction in the generality of workloads that they are able to handle. An important characteristic of specialized hardware designs is the inability to manage changes in the underlying applications. This thesis describes and analyzes the concept of ASIC patching in the Arsenal design: a mechanism to mit...

  19. Model of interfacial melting

    OpenAIRE

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronoun...

  20. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  1. Bear Spray Safety Program

    Science.gov (United States)

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  2. Optimal Synchronizability of Bearings

    OpenAIRE

    Araújo, N. A. M.; Seybold, H.; Baram, R. M.; Herrmann, H. J.; Andrade, J. S.

    2013-01-01

    Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized (bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal synchronization properties through fine tuning of the local interaction strength as a function of node degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)]. We show that, in analogy...

  3. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  4. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  5. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  6. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager;

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  7. Quantitative hardware prediction modeling for hardware/software co-design

    OpenAIRE

    Meeuws, R.J.

    2012-01-01

    Hardware estimation is an important factor in Hardware/Software Co-design. In this dissertation, we present the Quipu Modeling Approach, a high-level quantitative prediction model for HW/SW Partitioning using statistical methods. Our approach uses linear regression between software complexity metrics and hardware characteristics. The resulting prediction models provide essential information for such Co-design tasks, as identifying resource intensive parts of the application, helping to evalua...

  8. Evolvable Hardware Based Software-Hardware Co-Designing Platform ECDP

    Institute of Scientific and Technical Information of China (English)

    TU Hang; WU Tao-jun; LI Yuan-xiang

    2005-01-01

    Based on the theories of EA (Evolutionary Algorithm) and EHW (Evolvable Hardware), we devise an EHW-based software-hardware co-designing platform ECDP, on which we provided standards for hardware system encoding and evolving operation designing, as well as circuit emulating tools. The major features of this system are: two-layer-encoding of circuit structure, off-line evolving with software emulation and the evolving of genetic program designing. With this system, we implemented the auto-designing of some software-hardware systems, like the random number generator.

  9. VEG-01: Veggie Hardware Verification Testing

    Science.gov (United States)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  10. Tailoring the hardware to your control system

    International Nuclear Information System (INIS)

    In the very early days of computerized accelerator control systems the entire control system, from the operator interface to the front-end data acquisition hardware, was custom designed and built for that one machine. This was expensive, but the resulting product was a control system seamlessly integrated (mostly) with the machine it was to control. Later, the advent of standardized bus systems such as CAMAC, VME, and CANBUS, made it practical and attractive to purchase commercially available data acquisition and control hardware. This greatly simplified the design but required that the control system be tailored to accommodate the features and eccentricities of the available hardware. Today we have standardized control systems (Tango, EPICS, DOOCS) using commercial hardware on standardized busses. With the advent of FPGA technology and programmable automation controllers (PACs and PLCs) it now becomes possible to tailor commercial hardware to the needs of a standardized control system and the target machine. In this paper, we will discuss our experiences with tailoring a commercial industrial I/O system to meet the needs of the EPICS control system and the LANSCE accelerator. We took the National Instruments Compact RIO platform, embedded an EPICS IOC in its processor, and used its FPGA back-plane to create a 'standardized' industrial I/O system (analog in/out, binary in/out, counters, and stepper motors) that meets the specific needs of the LANSCE accelerator. (authors)

  11. Bearing fatigue investigation 3

    Science.gov (United States)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  12. Carbonate melts in the Earth's mantle

    Science.gov (United States)

    Gygi, F.; Caracas, R.; Cohen, R. E.

    2010-12-01

    We perform a molecular dynamics study of the properties of the carbonated silicate melts at realistic thermodynamic conditions of the Earth’s mantle. We employ the Qbox package based on a highly efficient plane wave and pseudopotentials implementation of density-functional theory. We work on three distinct compositions: Mg2SiO4, 16Mg2SiO4+CO2 and 16Mg2SiO4+MgCO3 and study the effect of the carbonization on the melt properties as well as the difference in effects between the CO2 molecule and the CO32- anionic group. We focus on the Earth-relevant isotherm at 3000K. At ambient pressure the silicon is in tetrahedral coordination as SiO4 with no polymerization between the tetrahedra. The C atoms are the most mobile in the system followed by O. The diffusion of the CO2 molecule takes place through intermediate short-lived CO32- states. In agreement with previous studies on pure magnesium silicate melts the polymerization of the tetrahedra is enhanced by pressure; the onset of the five-fold coordination of the silicon atoms occurs after 40 GPa. The thermal dilatation of the CO2-bearing fluid is 17kbars/1000K at ambient pressure and 3000K. The density differences due to the addition of CO2 and of MgCO3 to the Mg2SiO4 melts are small at ambient pressures and 3000K. Most significantly, we find that independent linear CO2 molecules at low pressures change to CO3 groups that are part of the melt structure with increasing pressure.

  13. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  14. Arcturus and the Bears

    Science.gov (United States)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  15. Robot navigation system using intrinsic evolvable hardware

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently there has been great interest in the idea that evolvable system based on the principle of ar tifcial intelligence can be used to continuously and autonomously adapt the behaviour of physically embedded systems such as autonomous mobile robots and intelligent home devices. Meanwhile, we have seen the introduc tion of evolvable hardware(EHW): new integrated electronic circuits that are able to continuously evolve to a dapt the chages in the environment implemented by evolutionary algorithms such as genetic algorithm(GA)and reinforcement learning. This paper concentrates on developing a robotic navigation system whose basic behav iours are obstacle avoidance and light source navigation. The results demonstrate that the intrinsic evolvable hardware system is able to create the stable robotiiuc behaviours as required in the real world instead of the tra ditional hardware systems.

  16. MFTF supervisory control and diagnostics system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Butner, D.N.

    1979-11-12

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication.

  17. Hardware Accelerators for Elliptic Curve Cryptography

    Directory of Open Access Journals (Sweden)

    C. Puttmann

    2008-05-01

    Full Text Available In this paper we explore different hardware accelerators for cryptography based on elliptic curves. Furthermore, we present a hierarchical multiprocessor system-on-chip (MPSoC platform that can be used for fast integration and evaluation of novel hardware accelerators. In respect of two application scenarios the hardware accelerators are coupled at different hierarchy levels of the MPSoC platform. The whole system is implemented in a state of the art 65 nm standard cell technology. Moreover, an FPGA-based rapid prototyping system for fast system verification is presented. Finally, a metric to analyze the resource efficiency by means of chip area, execution time and energy consumption is introduced.

  18. A Hardware Abstraction Layer in Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Korsholm, Stephan; Kalibera, Tomas;

    2011-01-01

    Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform-independent language, delegates access...... to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this article is a proposal...... for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path...

  19. Communication Estimation for Hardware/Software Codesign

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    This paper presents a general high level estimation model of communication throughput for the implementation of a given communication protocol. The model, which is part of a larger model that includes component price, software driver object code size and hardware driver area, is intended to be ge......This paper presents a general high level estimation model of communication throughput for the implementation of a given communication protocol. The model, which is part of a larger model that includes component price, software driver object code size and hardware driver area, is intended...... to be general enough to be able to capture the characteristics of a wide range of communication protocols and yet to be sufficiently detailed as to allow the designer or design tool to efficiently explore tradeoffs between throughput, bus widths, burst/non-burst transfers and data packing strategies. Thus...... model allows for additional (money) cost, software code size and hardware area tradeoffs to be examined...

  20. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  1. Quantitative hardware prediction modeling for hardware/software co-design

    NARCIS (Netherlands)

    Meeuws, R.J.

    2012-01-01

    Hardware estimation is an important factor in Hardware/Software Co-design. In this dissertation, we present the Quipu Modeling Approach, a high-level quantitative prediction model for HW/SW Partitioning using statistical methods. Our approach uses linear regression between software complexity metric

  2. Economic impact of syndesmosis hardware removal.

    Science.gov (United States)

    Lalli, Trapper A J; Matthews, Leslie J; Hanselman, Andrew E; Hubbard, David F; Bramer, Michelle A; Santrock, Robert D

    2015-09-01

    Ankle syndesmosis injuries are commonly seen with 5-10% of sprains and 10% of ankle fractures involving injury to the ankle syndesmosis. Anatomic reduction has been shown to be the most important predictor of clinical outcomes. Optimal surgical management has been a subject of debate in the literature. The method of fixation, number of screws, screw size, and number of cortices are all controversial. Postoperative hardware removal has also been widely debated in the literature. Some surgeons advocate for elective hardware removal prior to resuming full weightbearing. Returning to the operating room for elective hardware removal results in increased cost to the patient, potential for infection or complication(s), and missed work days for the patient. Suture button devices and bioabsorbable screw fixation present other options, but cortical screw fixation remains the gold standard. This retrospective review was designed to evaluate the economic impact of a second operative procedure for elective removal of 3.5mm cortical syndesmosis screws. Two hundred and two patients with ICD-9 code for "open treatment of distal tibiofibular joint (syndesmosis) disruption" were identified. The medical records were reviewed for those who underwent elective syndesmosis hardware removal. The primary outcome measurements included total hospital billing charges and total hospital billing collection. Secondary outcome measurements included average individual patient operative costs and average operating room time. Fifty-six patients were included in the study. Our institution billed a total of $188,271 (USD) and collected $106,284 (55%). The average individual patient operating room cost was $3579. The average operating room time was 67.9 min. To the best of our knowledge, no study has previously provided cost associated with syndesmosis hardware removal. Our study shows elective syndesmosis hardware removal places substantial economic burden on both the patient and the healthcare system

  3. Hardware Accelerated Sequence Alignment with Traceback

    Directory of Open Access Journals (Sweden)

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  4. Human Centered Hardware Modeling and Collaboration

    Science.gov (United States)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  5. Emerging melt quality control solution technologies for aluminium melt

    Institute of Scientific and Technical Information of China (English)

    Arturo Pascual, Jr

    2009-01-01

    The newly developed "MTS 1500" Melt Treatment System is performing the specifically required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing-by automated dosage of the melt treatment agents-the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor "Alspek H", a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specified and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness.This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modification and grain refinement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device "Alspek MQ" to provide foundry men better tools in meeting the increasing quality and tighter specification demand from the industry.

  6. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  7. Microwave Glass Melting Technology

    Czech Academy of Sciences Publication Activity Database

    Hájek, Milan

    Tokyo, 2001, s. 11-14. [Conference on Application of Microwave Energy in Industry. Tokyo (JP), 30.07.2001-03.08.2001] R&D Projects: GA AV ČR IBS4072003 Institutional research plan: CEZ:AV0Z4072921 Keywords : microwave * glass melting technology * application Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. Melting of graphene clusters

    OpenAIRE

    Singh, Sandeep Kumar; Neek-Amal, M.; Peeters, F. M.

    2013-01-01

    Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nano-clusters $C_{N}$ with N=2-55. The minimum energy configurations for different clusters are used as starting configuration for the study of the temperature effects on the bond breaking/rotation in carbon lines (N$

  9. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  10. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  11. Arbitrary Hardware Software Trade-Offs

    NARCIS (Netherlands)

    Middelhoek, Peter F.A.

    1995-01-01

    This paper discusses a novel transformation-based design methodology and its use in the design of complex programmable VLSI systems. During the life-cycle of a complex system, the optimal trade-off between partially implementing in hardware or software is changing. This is due to varying system requ

  12. Image Interpolation With Dedicated Digital Hardware

    Science.gov (United States)

    Hartenstein, R.; Wagner, G.; Simons, D.; Coulson, J.

    1986-01-01

    Algorithm for interpolating two-dimensional image data to change picture-element spacing implemented in dedicated digital hardware for high-speed execution. System interpolates 100 times as fast as generalpurpose computer. Image resampling occurs first along one image axis and then along other, using two interpolation devices implemented in series.

  13. A mathematical approach towards hardware design

    NARCIS (Netherlands)

    Smit, Gerard J.M.; Kuper, Jan; Baaij, Christiaan P.R.; Athanas, P.M.; Becker, J.; Teich, J.; Verbauwhede, I.

    2010-01-01

    Today the hardware for embedded systems is often specified in VHDL. However, VHDL describes the system at a rather low level, which is cumbersome and may lead to design faults in large real life applications. There is a need of higher level abstraction mechanisms. In the embedded systems group of th

  14. The fast Amsterdam multiprocessor (FAMP) system hardware

    CERN Document Server

    Hertzberger, L O; Kieft, G; Kisielewski, B; Van Koningsveld, L; Wiggers, L W

    1981-01-01

    The architecture of a multiprocessor system is described that will be used for online filter and second stage trigger applications. The system is based on the MC68000 microprocessor from Motorola. Emphasis is paid to hardware aspects, in particular the modularity, processor communication and interfacing. (8 refs).

  15. Computer hardware for radiologists: Part I

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM, Picture Archiving and Communication System (PACS, Radiology information system (RIS technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU, the chipset, the random access memory (RAM, the memory modules, bus, storage drives, and ports. The personnel computer (PC has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs. The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  16. Computer hardware for radiologists: Part I.

    Science.gov (United States)

    Indrajit, Ik; Alam, A

    2010-08-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium(®) 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration. PMID:21042437

  17. Computer hardware for radiologists: Part I

    International Nuclear Information System (INIS)

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration

  18. QCE : A Simulator for Quantum Computer Hardware

    NARCIS (Netherlands)

    Michielsen, Kristel; Raedt, Hans De

    2003-01-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.

  19. Microprocessor Design Using Hardware Description Language

    Science.gov (United States)

    Mita, Rosario; Palumbo, Gaetano

    2008-01-01

    The following paper has been conceived to deal with the contents of some lectures aimed at enhancing courses on digital electronic, microelectronic or VLSI systems. Those lectures show how to use a hardware description language (HDL), such as the VHDL, to specify, design and verify a custom microprocessor. The general goal of this work is to teach…

  20. Support for Diagnosis of Custom Computer Hardware

    Science.gov (United States)

    Molock, Dwaine S.

    2008-01-01

    The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units. The software is designed to be used on diverse NASA projects, and can be customized for use with different processors and interfaces. The routines are supported, regardless of the architecture of a processor that one seeks to diagnose. The present version of the software is configured for Coldfire processors on the Subsystem Data Node processor boards of the Solar Dynamics Observatory. There is also support for the software with respect to Mongoose V, RAD750, and PPC405 processors or their equivalents.

  1. Transistor Level Circuit Experiments using Evolvable Hardware

    Science.gov (United States)

    Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.

    2005-01-01

    The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.

  2. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2003-01-01

    advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  3. Digital Hardware Design Teaching: An Alternative Approach

    Science.gov (United States)

    Benkrid, Khaled; Clayton, Thomas

    2012-01-01

    This article presents the design and implementation of a complete review of undergraduate digital hardware design teaching in the School of Engineering at the University of Edinburgh. Four guiding principles have been used in this exercise: learning-outcome driven teaching, deep learning, affordability, and flexibility. This has identified…

  4. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  5. Experimental investigation of mantle melting in the presence of carbonates

    Science.gov (United States)

    Dasgupta, Rajdeep

    High pressure-temperature experiments are performed at pressures of 2 to 10 GPa and temperatures of 900 to 1600 °C to constrain partial melting of carbonate bearing mantle eclogite and peridotite. Eclogite and peridotite in the presence of CO2 is observed to produce carbonatitic melts at their respective solidi for most parts of Earth's upper mantle. The solidus of carbonated eclogite at 3 GPa is observed to vary significantly with bulk Ca/Mg and Na2O content. But the appropriate solidus of carbonated ocean crust remains hotter than the subduction geotherms up to 260 km, indicating subduction of carbon, in the form of magnesite-eclogite, deep into the mantle. Upwelling mantle eclogite, on the other hand, must release carbonatite at depths >350 km. From experiments at 3 GPa, it is found that carbonated eclogite can generate silicate partial melts that can give rise to silica-undersaturated ocean island lavas. Solidus of carbonated peridotite from 3 to 10 GPa indicates that along an oceanic geotherm, the onset of partial melting happens shallower than that of carbonated eclogite, but still as deep as 300-330 km beneath ridges. Extraction of incipient carbonatite from deep mantle implies efficient removal of highly incompatible trace elements, including carbon, from the mantle. This deep melting likely creates a vast mantle residue that is depleted and fractionated in important trace elements and also might explain many geophysical features of Earth's deep upper mantle. Experiments with peridotite of variable carbonate concentrations also indicate that increasing CO2, unlike H2O, does not cause the isobaric solidus of carbonated peridotite to decrease. Using a new method of iterative sandwich experiments, the detailed composition of near-solidus melt from carbonated peridotite is determined at 6.6 GPa. Near-solidus melt of peridotite + CO2 at a depth of ˜200 km is Fe-Na bearing magnesio-dolomitic carbonatite. Transition from near-solidus carbonatite to carbonated

  6. A fully superconducting bearing system for flywheel applications

    Science.gov (United States)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  7. Management recommendations: Bear River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Bear River Migratory Bird Refuge, by a land use specialist. Recommendations, time frame and additional...

  8. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  9. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  10. My Little Teddy Bear

    Institute of Scientific and Technical Information of China (English)

    钱佳楠

    2005-01-01

    @@ As Valentine's Day came closer,every shop was full of colourful gifts such as cookies in the shape of heart, chocolates,Teddy Bears and so on.When I step into a shop on February 14th,I felt most lonely as I was alone.With mv eves fixed on a lovely Teddy Bear, I wished that someone could send me this stuffed toy.

  11. Experimental and calculation-theoretical justifications of design of hydrostatic bearings of MCP in reactor facility with HLMC

    International Nuclear Information System (INIS)

    Experimental and calculation and theoretical justification of normal operation of hydrostatic bearings (HSB) is conducted. The consideration is given to the procedures of calculation and recommendations on developing optimal designs of plain bearings in main circulation pumps working with high-temperature lead melt coolant for reactor circuit conditions. It is shown that chosen variants of HSB design after hydrothermal and tribotechnical investigations provide necessary characteristics of HSB on high-temperature lead melt

  12. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  13. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  14. Campus Information Network Hardware System Design%Campus Information Network Hardware System Design

    Institute of Scientific and Technical Information of China (English)

    刘正勇

    2011-01-01

    The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system structure design and the network export

  15. Melting of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Haberland, H. [Freiburg Univ., Facultat fur Physik (Germany)

    2001-07-01

    An experiment is described which allows to measure the caloric curve of size selected sodium cluster ions. This allows to determine rather easily the melting temperatures, and latent heats in the size range between 55 and 340 atoms per cluster. A more detailed analysis is necessary to show that the cluster Na{sub 147}{sup +} has a negative microcanonical heat capacity, and how to determine the entropy of the cluster from the data. (authors)

  16. Orthopyroxene survival in deep carbonatite melts: implications for kimberlites

    Science.gov (United States)

    Stone, Rebecca S.; Luth, Robert W.

    2016-07-01

    Kimberlites are rare diamond-bearing volcanic rocks that originate as melts in the Earth's mantle. The original composition of kimberlitic melt is poorly constrained because of mantle and crustal contamination, exsolution of volatiles during ascent, and pervasive alteration during and after emplacement. One recent model (Russell et al. in Nature 481(7381):352-356, 2012. doi: 10.1038/nature10740) proposes that kimberlite melts are initially carbonatitic and evolve to kimberlite during ascent through continuous assimilation of orthopyroxene and exsolution of CO2. In high-temperature, high-pressure experiments designed to test this model, assimilation of orthopyroxene commences between 2.5 and 3.5 GPa by a reaction in which orthopyroxene reacts with the melt to form olivine, clinopyroxene, and CO2. No assimilation occurs at 3.5 GPa and above. We propose that the clinopyroxene produced in this reaction can react with the melt at lower pressure in a second reaction that produces olivine, calcite, and CO2, which would explain the absence of clinopyroxene phenocrysts in kimberlites. These experiments do not confirm that assimilation of orthopyroxene for the entirety of kimberlite ascent takes place, but rather two reactions at lower pressures (<3.5 GPa) cause assimilation of orthopyroxene and then clinopyroxene, evolving carbonatitic melts to kimberlite and causing CO2 exsolution that drives rapid ascent.

  17. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  18. Hardware and software status of QCDOC

    CERN Document Server

    Boyle, P A; Christ, N H; Clark, M; Cohen, S D; Cristian, C; Dong, Z; Gara, A; Joó, B; Jung, C; Kim, C; Levkova, L; Liao, X; Liu, G; Mawhinney, Robert D; Ohta, S; Petrov, K V; Wettig, T; Yamaguchi, A

    2003-01-01

    QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.

  19. Reconfigurable hardware for an augmented reality application

    Science.gov (United States)

    Toledo Moreo, F. Javier; Martinez Alvarez, J. Javier; Garrigos Guerrero, F. Javier; Ferrandez Vicente, J. Manuel

    2005-06-01

    An FPGA-based approach is proposed to build an augmented reality system in order to aid people affected by a visual disorder known as tunnel vision. The aim is to increase the user's knowledge of his environment by superimposing on his own view useful information obtained with image processing. Two different alternatives have been explored to perform the required image processing: a specific purpose algorithm to extract edge detection information, and a cellular neural network with the suitable template. Their implementations in reconfigurable hardware pursue to take advantage of the performance and flexibility that show modern FPGAs. This paper describes the hardware implementation of both the Canny algorithm and the cellular neural network, and the overall system architecture. Results of the implementations and examples of the system functionality are presented.

  20. Multi-engine packet classification hardware accelerator

    OpenAIRE

    Kennedy, Alan; Liu, Zhen; Wang, Xiaojun; Liu, Bin

    2009-01-01

    As line rates increase, the task of designing high performance architectures with reduced power consumption for the processing of router traffic remains important. In this paper, we present a multi-engine packet classification hardware accelerator, which gives increased performance and reduced power consumption. It follows the basic idea of decision-tree based packet classification algorithms, such as HiCuts and HyperCuts, in which the hyperspace represented by the ruleset is recursively divi...

  1. Medical Image Processing with Graphics Hardware

    OpenAIRE

    Enders, Frank

    2009-01-01

    The advancements in medical imaging over the past decades have been remarkable and so is the relevance for today's medical procedures. The various imaging techniques have significantly improved both diagnosis and treatment. New insights have been gained and new therapy approaches have been developed. However, these advancements come at high costs. The required hardware and infrastructure are getting increasingly expensive. The enormous amount of data, generated by the scanners, needs to be st...

  2. Computer hardware for radiologists: Part I

    OpenAIRE

    Indrajit I; Alam A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware...

  3. Power Consumption in Smartphones (Hardware Behaviourism

    Directory of Open Access Journals (Sweden)

    Abdelmotalib Ahmed Mohamed

    2012-05-01

    Full Text Available Power consumption is a critical concern for battery driven mobile devices such as Smartphone, batteries are limited in size and therefore capacity. This implies that managing energy well is paramount in such devices. Significant work has been devoted to improving it through better software and Hardware. In this paper, we cover studies that measured power in the energy consuming entities of a Smartphones such as wireless air interfaces, display, CPU and others.

  4. Power Consumption in Smartphones (Hardware Behaviourism)

    OpenAIRE

    Abdelmotalib Ahmed Mohamed; Wu Zhibo

    2012-01-01

    Power consumption is a critical concern for battery driven mobile devices such as Smartphone, batteries are limited in size and therefore capacity. This implies that managing energy well is paramount in such devices. Significant work has been devoted to improving it through better software and Hardware. In this paper, we cover studies that measured power in the energy consuming entities of a Smartphones such as wireless air interfaces, display, CPU and others.

  5. Compressive Sensing Image Sensors-Hardware Implementation

    OpenAIRE

    Shahram Shirani; M. Jamal Deen; Mohammadreza Dadkhah

    2013-01-01

    The compressive sensing (CS) paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementa...

  6. Evaluating IP security on lightweight hardware

    OpenAIRE

    Khurri, Andrey

    2011-01-01

    TCP/IP communications stack is being increasingly used to interconnect mobile phones, PDAs, sensor motes and other wireless embedded devices. Although the core functionality of communications protocols has been successfully adopted to lightweight hardware from the traditional Internet and desktop computers, suitability of strong security mechanisms on such devices remains questionable. Insufficient processor, memory and battery resources, as well as constraints of wireless communications limi...

  7. Hardware Accelerated Sequence Alignment with Traceback

    OpenAIRE

    Scott Lloyd; Snell, Quinn O

    2009-01-01

    Biological sequence alignment is an essential tool used in molecular biology and biomedical applications. The growing volume of genetic data and the complexity of sequence alignment present a challenge in obtaining alignment results in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is pres...

  8. PERFORMANCE ANALYSIS OF HARDWARE TROJAN DETECTION METHODS

    OpenAIRE

    Ehsan, Sharifi; Kamal, Mohammadiasl; Mehrdad, Havasi; Amir, Yazdani

    2015-01-01

    Due to the increasing use of information and communication technologies in most aspects of life, security of the information has drawn the attention of governments and industry as well as the researchers. In this regard, structural attacks on the functions of a chip are called hardware Trojans, and are capable of rendering ineffective the security protecting our systems and data. This method represents a big challenge for cyber-security as it is nearly impossible to detect with any currently ...

  9. Acceleration of Astrophysical Simulations with Special Hardware

    OpenAIRE

    Marcus Martinez, Guillermo Anibal

    2011-01-01

    This work presents the raceSPH and raceGRAV accelerator libraries, designed to interface astrophysical simulations with special-purpose hardware. The raceSPH focuses on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approximating force interactions in fluid dynamics. Accelerators used range from vectorizing units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in ...

  10. QCE: A Simulator for Quantum Computer Hardware

    OpenAIRE

    Michielsen, Kristel; De Raedt, Hans

    2003-01-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about qu...

  11. Particle Transport Simulation on Heterogeneous Hardware

    CERN Document Server

    CERN. Geneva

    2014-01-01

    CPUs and GPGPUs. About the speaker Vladimir Koylazov is CTO and founder of Chaos Software and one of the original developers of the V-Ray raytracing software. Passionate about 3D graphics and programming, Vlado is the driving force behind Chaos Group's software solutions. He participated in the implementation of algorithms for accurate light simulations and support for different hardware platforms, including CPU and GPGPU, as well as distributed calculat...

  12. Growing a Software Language for Hardware Design

    OpenAIRE

    Auerbach, Joshua; Bacon, David F.; Cheng, Perry; Fink, Stephen J.; Rabbah, Rodric; Shukla, Sunil

    2015-01-01

    The Liquid Metal project at IBM Research aimed to design and implement a new programming language called Lime to address some of the challenges posed by heterogeneous systems. Lime is a Java-compatible programming language with features designed to facilitate high level synthesis to hardware (FPGAs). This article reviews the language design from the outset, and highlights some of the earliest design decisions. We also describe how these decisions were revised recently to accommodate important...

  13. Melt spinning study

    Science.gov (United States)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    Containerless processing of materials provides an excellent opportunity to study nucleation phenomena and produce unique materials, primarily through the formation of metastable phases and deep undercoolings. Deep undercoolings can be readily achieved in falling drops of molten material. Extended solute solubilities and greatly refined microstructures can also be obtained in containerless processing experiments. The Drop Tube Facility at Marshall Space Flight Center has played an important role in enhancing that area of research. Previous experiments performed in the Drop Tube with refractory metals has shown very interesting microstructural changes associated with deep undercoolings. It is apparent also that the microstructure of the deep undercooled species may be changing due to the release of the latent heat of fusion during recalescence. For scientific purposes, it is important to be able to differentiate between the microstructures of the two types of metallic species. A review of the literature shows that although significant advances have been made with respect to the engineering aspects of rapid solidification phenomena, there is still much to be learned in terms of understanding the basic phenomena. The two major ways in which rapid solidification processing provides improved structures and hence improved properties are: (1) production of refined structures such as fine dendrites and eutectics, and (2) production of new alloy compositions, microstructures, and phases through extended solid solubility, new phase reaction sequences, and the formation of metallic-glass microstructures. The objective of this work has been to determine the optimal methodology required to extract this excess energy without affecting the thermo-physical parameters of the under-cooled melt. In normal containerless processing experiments recalescence occurs as the melt returns toward the melting point in order to solidify. A new type of experiment is sought in which the resultant

  14. Trends in computer hardware and software.

    Science.gov (United States)

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware. PMID:8470690

  15. Instrument hardware and software upgrades at IPNS

    International Nuclear Information System (INIS)

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started

  16. Software error masking effect on hardware faults

    International Nuclear Information System (INIS)

    Based on the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), in this work, a simulation model for fault injection is developed to estimate the dependability of the digital system in operational phase. We investigated the software masking effect on hardware faults through the single bit-flip and stuck-at-x fault injection into the internal registers of the processor and memory cells. The fault location reaches all registers and memory cells. Fault distribution over locations is randomly chosen based on a uniform probability distribution. Using this model, we have predicted the reliability and masking effect of an application software in a digital system-Interposing Logic System (ILS) in a nuclear power plant. We have considered four the software operational profiles. From the results it was found that the software masking effect on hardware faults should be properly considered for predicting the system dependability accurately in operation phase. It is because the masking effect was formed to have different values according to the operational profile

  17. "Greenbook Algorithms and Hardware Needs Analysis"

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Oehmen, Chris S.; Baxter, Douglas J.

    2007-01-09

    "This document describes the algorithms, and hardware balance requirements needed to enable the solution of real scientific problems in the DOE core mission areas of environmental and subsurface chemistry, computational and systems biology, and climate science. The MSCF scientific drivers have been outlined in the Greenbook, which is available online at http://mscf.emsl.pnl.gov/docs/greenbook_for_web.pdf . Historically, the primary science driver has been the chemical and the molecular dynamics of the biological science area, whereas the remaining applications in the biological and environmental systems science areas have been occupying a smaller segment of the available hardware resources. To go from science drivers to hardware balance requirements, the major applications were identified. Major applications on the MSCF resources are low- to high-accuracy electronic structure methods, molecular dynamics, regional climate modeling, subsurface transport, and computational biology. The algorithms of these applications were analyzed to identify the computational kernels in both sequential and parallel execution. This analysis shows that a balanced architecture is needed with respect to processor speed, peak flop rate, peak integer operation rate, and memory hierarchy, interprocessor communication, and disk access and storage. A single architecture can satisfy the needs of all of the science areas, although some areas may take greater advantage of certain aspects of the architecture. "

  18. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  19. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  20. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  1. Blood Pump Bearing System

    Science.gov (United States)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  2. Modular gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  3. Kinetics of iron oxidation in silicate melts

    International Nuclear Information System (INIS)

    High-temperature XANES experiments at the Fe K-edge have been used to study the kinetics of iron oxidation in a supercooled melt of Fe-bearing pyroxene composition. These experiments, made just above the glass transition between 600 and 700 deg C, show that variations in relative abundances of ferric and ferrous iron can be determined in situ at such temperatures. The kinetics of iron oxidation do not vary much with temperature down to the glass transition. This suggests that rate-limiting factor in this process is not oxygen diffusion, which is coupled to relaxation of the silicate network, but diffusion of network modifying cations along with a counter flux of electrons. To give a firmer basis to redox determinations made from XANES spectroscopy, the redox state of a series of a samples was first determined from wet chemical, Moessbauer spectroscopy and electron microprobe analyses. (authors)

  4. A Comparative Study on Hardware Platforms for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thang Vu Chien

    2012-01-01

    Full Text Available Recently, Wireless Sensor Networks (WSNs attract a great deal of research attention, and are envisioned to support a variety of applications, including building monitoring, environment control, wild-life habitat monitoring, forest fire detection, industry automation, military, security, and health-care. Over the years, we have seen a variety of hardware platforms for WSNs to facilitate developing WSN applications. In this paper, we provide a comprehensive review of existing hardware platforms for WSNs. We first present the hardware architecture of a wireless sensor node. We then survey the major hardware platforms for WSNs and present a comparison of these hardware platforms. Finally we present some recommendations from the perspectives of hardware platform developers and hardware platform users. The authors hope that making information about existing hardware platforms will assist researchers working in this area to appreciate the diversity of platforms available to them and to help them select the most appropriate platform for their purposes.

  5. Development of Flexible Bearing

    Directory of Open Access Journals (Sweden)

    K.S.Mohanraj

    2014-06-01

    Full Text Available Elastomeric base isolation systems are proven to be effective in reducing seismic forces transmitted to buildings. However, due to their cost, the use of these devices is currently limited to large and expensive buildings. A fiber reinforced elastomeric isolator utilizes fiber fabric, such as carbon fiber, glass fibre, and etc. as the reinforcement material instead of solid steel plates. The fibre fabric reinforcement is extensible in tension and has no flexural rigidity. Elastomers normally used in the isolator are natural rubber; neoprene, butyl rubber and nit rile rubber etc. These devices were fabricated by binding alternating layers of rubber and fibre mesh. The fibre mesh is used to increase the vertical stiffness of the bearings while maintaining low lateral stiffness. Characterizing the behaviour of a fibre reinforced bearing “shape factor” of the bearing, Poisson’s ratio of the elastomeric material and flexibility of the reinforcing sheets and investigate the effect of reinforcement flexibility on compressive behaviour of elastomeric bearings with different geometrical and material properties. Bonding with fibre reinforcements can increase the stiffness of elastic layers only when the elastic layer is compressed.

  6. Open Source Hardware for DIY Environmental Sensing

    Science.gov (United States)

    Aufdenkampe, A. K.; Hicks, S. D.; Damiano, S. G.; Montgomery, D. S.

    2014-12-01

    The Arduino open source electronics platform has been very popular within the DIY (Do It Yourself) community for several years, and it is now providing environmental science researchers with an inexpensive alternative to commercial data logging and transmission hardware. Here we present the designs for our latest series of custom Arduino-based dataloggers, which include wireless communication options like self-meshing radio networks and cellular phone modules. The main Arduino board uses a custom interface board to connect to various research-grade sensors to take readings of turbidity, dissolved oxygen, water depth and conductivity, soil moisture, solar radiation, and other parameters. Sensors with SDI-12 communications can be directly interfaced to the logger using our open Arduino-SDI-12 software library (https://github.com/StroudCenter/Arduino-SDI-12). Different deployment options are shown, like rugged enclosures to house the loggers and rigs for mounting the sensors in both fresh water and marine environments. After the data has been collected and transmitted by the logger, the data is received by a mySQL-PHP stack running on a web server that can be accessed from anywhere in the world. Once there, the data can be visualized on web pages or served though REST requests and Water One Flow (WOF) services. Since one of the main benefits of using open source hardware is the easy collaboration between users, we are introducing a new web platform for discussion and sharing of ideas and plans for hardware and software designs used with DIY environmental sensors and data loggers.

  7. Computer hardware for radiologists: Part 2

    International Nuclear Information System (INIS)

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future

  8. Computer hardware for radiologists: Part 2

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU, chipset, random access memory (RAM, and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ′ever increasing′ digital future.

  9. Computer hardware for radiologists: Part 2.

    Science.gov (United States)

    Indrajit, Ik; Alam, A

    2010-11-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future. PMID:21423895

  10. Hardware Virtualization towards a Proficient Computing Environment

    Directory of Open Access Journals (Sweden)

    Shweta Agrawal

    2013-06-01

    Full Text Available In the recent few years Server Virtualization and Green Information Technology have become very popular and are fast becoming the norm in organizations of all disciplines and sizes. Today, different methods of energy savings are in use and in great demand. One of the newest methods in the IT to control the pollution of the environment and the greenhouse effect is Green IT that is directly connected with the Virtualization of Hardware Resources.Virtualization is the presentation of an environment to one layer in an information technology stack that abstracts or represents a lower layer. It makes it possible for the IT professional to run a number of machines on a single physical machine.In this study we elicit the concept of Hardware Virtualization. We illustrate the procedure of Hardware Virtualization using a real-world example and then we emulate a virtualized infrastructure to contrast against the physical infrastructure on the basis of CPU utilization. We have used the VMware Workstation 7.1.0 as a software tool for virtualization and AVG PC Tune Up 2011 to present the difference in CPU utilization before and after virtualization.This paper helps to identify the main reasons for the growing need for data centre virtualization. The results in this paper show that a virtualized infrastructure can potentially increase the CPU utilization by a significant margin, thereby suggesting an efficient and faster way of resource utilization, saving processing time, reducing the cost incurred in building separate physical servers and furthermore reducing the power consumption.

  11. Inner Loop Optimizations in Mapping Single Threaded Programs to Hardware

    OpenAIRE

    Desai, Madhav

    2014-01-01

    In the context of mapping high-level algorithms to hardware, we consider the basic problem of generating an efficient hardware implementation of a single threaded program, in particular, that of an inner loop. We describe a control-flow mechanism which provides dynamic loop-pipelining capability in hardware, so that multiple iterations of an arbitrary inner loop can be made simultaneously active in the generated hardware, We study the impact of this loop-pipelining scheme in conjunction with ...

  12. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  13. Holographic meson melting

    International Nuclear Information System (INIS)

    The plasma phase at high temperatures of a strongly coupled gauge theory can be holographically modelled by an AdS black hole. Matter in the fundamental representation and in the quenched approximation is introduced through embedding D7-branes in the AdS-Schwarzschild background. Low spin mesons correspond to the fluctuations of the D7-brane world volume. As is well known by now, there are two different kinds of embeddings, either reaching down to the black hole horizon or staying outside of it. In the latter case the fluctuations of the D7-brane world volume represent stable low spin mesons. In the plasma phase we do not expect mesons to be stable but to melt at sufficiently high temperature. We model the late stages of this meson melting by the quasinormal modes of D7-brane fluctuations for the embeddings that do reach down to the horizon. The inverse of the imaginary part of the quasinormal frequency gives the typical relaxation time back to equilibrium of the meson perturbation in the hot plasma. We briefly comment on the possible application of our model to quarkonium suppression

  14. Improving web server efficiency on commodity hardware

    OpenAIRE

    Beltrán Querol, Vicenç

    2008-01-01

    El ràpid creixement de la Web requereix una gran quantitat de recursos computacionals que han de ser utilitzats eficientment. Avui en dia, els servidors basats en hardware estendard son les plataformes preferides per executar els servidors web, ja que són les plataformes amb millor relació rendiment/cost. El treball presentat en aquesta tesi esta dirigit a millorar la eficàcia en la gestió de recursos dels servidors web actuals. Per assolir els objectius d'aquesta tesis s'ha caracteritzat e...

  15. INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS

    International Nuclear Information System (INIS)

    The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers

  16. Hardware Design of a Smart Meter

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko

    2014-09-01

    Full Text Available Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and eliminating human errors due to manual readings which would ultimately reduce labour costs, diagnosis and instantaneous fault detection. This allows for predictive maintenance resulting in a more efficient and reliable distribution network.

  17. Orbiter CIU/IUS communications hardware evaluation

    Science.gov (United States)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  18. Fast Gridding on Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard;

    2007-01-01

    far most time consuming of the three steps (Table 1). Modern graphics cards (GPUs) can be utilised as a fast parallel processor provided that algorithms are reformulated in a parallel solution. The purpose of this work is to test the hypothesis, that a non-cartesian reconstruction can be efficiently...... implemented on graphics hardware giving a significant speedup compared to CPU based alternatives. We present a novel GPU implementation of the convolution step that overcomes the problems of memory bandwidth that has limited the speed of previous GPU gridding algorithms [2]....

  19. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  20. SuperCDMS Cold Hardware Design

    International Nuclear Information System (INIS)

    We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.

  1. A building block for hardware belief networks.

    Science.gov (United States)

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-01-01

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models. PMID:27443521

  2. Reporting for LHC hardware commissioning campaigns

    CERN Document Server

    Magerl, Wolfgang

    2014-01-01

    The LHC will be qualified for the restart of physics operation during a Hardware Commissioning Campaign, in which up to 10000 tests will have to be tracked and analysed on more than 1700 circuits. The AccTesting framework orchestrates this campaign according to a planning defined by LHC operators and system experts. Using a reporting tool like JasperReports will allow the AccTesting Framework to expose concise and accurate information to system experts and coordination committees about the executed tests and test plans.

  3. Flexure Bearing Reduces Startup Friction

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  4. Partial melting of garnet lherzolite with water and carbon dioxide at 3 GPa using a new melt extraction technique: implications for intraplate magmatism

    Science.gov (United States)

    Baasner, Amrei; Médard, Etienne; Laporte, Didier; Hoffer, Géraldine

    2016-05-01

    The origin and source rocks of alkali-rich and SiO2-undersatured magmas in the Earth's upper mantle are still under debate. The garnet signature in rare earth element patterns of such magmas suggests a garnet-bearing source rock, which could be garnet lherzolite or garnet pyroxenite. Partial melting experiments were performed at 2.8 GPa and 1345-1445 °C in a piston-cylinder using mixtures of natural lherzolite with either 0.4 wt% H2O and 0.4 wt% CO2 or 0.7 wt% H2O and 0.7 wt% CO2. Different designs of AuPd capsules were used for melt extraction. The most successful design included a pentagonally shaped disc placed in the top part of the capsule for sufficient melt extraction. The degrees of partial melting range from 0.2 to 0.04 and decrease with decreasing temperature and volatile content. All samples contain olivine and orthopyroxene. The amounts of garnet and clinopyroxene decrease with increasing degree of partial melting until both minerals disappear from the residue. Depending on the capsule design, the melts quenched to a mixture of quench crystals and residual glass or to glass, allowing measurement of the volatile concentrations by Raman spectroscopy. The compositions of the partial melts range from basalts through picrobasalts to foidites. Compared to literature data for melting of dry lherzolites, the presence of H2O and CO2 reduces the SiO2 concentration and increases the MgO concentration of partial melts, but it has no observable effect on the enrichment of Na2O in the partial melts. The partial melts have compositions similar to natural melilitites from intraplate settings, which shows that SiO2-undersaturated intraplate magmas can be generated by melting of garnet lherzolite in the Earth's upper mantle in the presence of H2O and CO2.

  5. Space Telecommunications Radio Systems (STRS) Hardware Architecture Standard: Release 1.0 Hardware Section

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen

    2008-01-01

    This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  6. Safe to Fly: Certifying COTS Hardware for Spaceflight

    Science.gov (United States)

    Fichuk, Jessica L.

    2011-01-01

    Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.

  7. Unifying Approach to Software and Hardware Design for Scientific Calculations

    OpenAIRE

    Litvinov, G. L.; Maslov, V. P.; Rodionov, A. Ya.

    1999-01-01

    A unifying approach to software and hardware design generated by ideas of Idempotent Mathematics is discussed. The so-called idempotent correspondence principle for algorithms, programs and hardware units is described. A software project based on this approach is presented. Key words: universal algorithms, idempotent calculus, software design, hardware design, object oriented programming

  8. The Cryptographic Strength of Tamper-Proof Hardware

    OpenAIRE

    Nilges, Tobias

    2015-01-01

    Tamper-proof hardware has found its way into our everyday life in various forms, be it SIM cards, credit cards or passports. Usually, a cryptographic key is embedded in these hardware tokens that allows the execution of simple cryptographic operations, such as encryption or digital signing. The inherent security guarantees of tamper-proof hardware, however, allow more complex and diverse applications.

  9. A Short Historical Survey of Functional Hardware Languages

    OpenAIRE

    Gang Chen

    2012-01-01

    Functional programming languages offer a high degree of abstractions and clean semantics, which are desirable for hardware descriptions. This short historical survey is about functional languages specifically created for hardware design and verification. It also includes those hardware languages or formalisms which are strongly influenced by functional programming style.

  10. Arc Magma Genesis from Melting of Mélange Diapirs

    Science.gov (United States)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.

    2015-12-01

    Alkaline basalts occur in many subduction-related volcanic settings, including the Sunda, Izu-Bonin, Honshu, Aeolian, and Aleutian arcs, yet their origin continues to be debated. Recent studies have suggested that buoyant material (mélange) from the slab-wedge interface may rise into the hot corner of the mantle wedge as low-density plumes or diapirs, where it will melt or induce mantle melting due to dehydration. High-pressure mélange rocks represent a mixture of mafic, ultramafic, and sedimentary components, and are often dominated by chlorite. Mélange rocks are also enriched in accessory phases such as monazite, zircon, and rutile, which host a variety of trace elements. We present results from experimental melting of chlorite-rich mélange material at mantle wedge conditions that reproduce many of the compositional features of subduction-related lavas. Piston cylinder experiments were performed at conditions appropriate for mantle wedge diapirs (1030-1280 °C, 1.5-2.5 GPa) using natural mélange rocks from Syros, Greece. Experimental melts derived from omphacite-epidote-phengite bearing chlorite schists range in composition from basaltic trachyandesites to trachydacites to more alkaline melt compositions (50.7-60.73 wt% SiO2, 7.48-12.93 wt% Na2O+K2O). All of the experimental melts are characterized by high alumina contents (16.79-21.36 wt% Al2O3). Minerals coexisting with these melts include clinopyroxene, amphibole (at lower T) or olivine (at higher T), garnet (at higher P), ilmenite and/or rutile, and zircon. Trace element patterns in our experimentally produced melts are similar to those from arc volcanoes worldwide. Experimental melts are enriched in large ion lithophile elements (Cs, Rb, Ba, K, Pb, Sr) and depleted in high field strength elements (Nb, Ta, and Ti). Zirconium and Hf are enriched relative to the rare earth elements (REE), which show flat to heavy REE depleted patterns depending on the presence of residual garnet. Thorium is fractionated

  11. CASIS Fact Sheet: Hardware and Facilities

    Science.gov (United States)

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  12. Introduction to Hardware Security and Trust

    CERN Document Server

    Wang, Cliff

    2012-01-01

    The emergence of a globalized, horizontal semiconductor business model raises a set of concerns involving the security and trust of the information systems on which modern society is increasingly reliant for mission-critical functionality. Hardware-oriented security and trust issues span a broad range including threats related to the malicious insertion of Trojan circuits designed, e.g.,to act as a ‘kill switch’ to disable a chip, to integrated circuit (IC) piracy,and to attacks designed to extract encryption keys and IP from a chip. This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade.  Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems.  This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of,and trust in, modern society�...

  13. ARM assembly language with hardware experiments

    CERN Document Server

    Elahi, Ata

    2015-01-01

    This book provides a hands-on approach to learning ARM assembly language with the use of a TI microcontroller. The book starts with an introduction to computer architecture and then discusses number systems and digital logic. The text covers ARM Assembly Language, ARM Cortex Architecture and its components, and Hardware Experiments using TILM3S1968. Written for those interested in learning embedded programming using an ARM Microcontroller. ·         Introduces number systems and signal transmission methods   ·         Reviews logic gates, registers, multiplexers, decoders and memory   ·         Provides an overview and examples of ARM instruction set   ·         Uses using Keil development tools for writing and debugging ARM assembly language Programs   ·         Hardware experiments using a Mbed NXP LPC1768 microcontroller; including General Purpose Input/Output (GPIO) configuration, real time clock configuration, binary input to 7-segment display, creating ...

  14. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  15. Fast image processing on parallel hardware

    International Nuclear Information System (INIS)

    Current digital imaging modalities in the medical field incorporate parallel hardware which is heavily used in the stage of image formation like the CT/MR image reconstruction or in the DSA real time subtraction. In order to image post-processing as efficient as image acquisition, new software approaches have to be found which take full advantage of the parallel hardware architecture. This paper describes the implementation of two-dimensional median filter which can serve as an example for the development of such an algorithm. The algorithm is analyzed by viewing it as a complete parallel sort of the k pixel values in the chosen window which leads to a generalization to rank order operators and other closely related filters reported in literature. A section about the theoretical base of the algorithm gives hints for how to characterize operations suitable for implementations on pipeline processors and the way to find the appropriate algorithms. Finally some results that computation time and usefulness of medial filtering in radiographic imaging are given

  16. MULTIPLE MELTING IN NYLON 1010

    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung

    1983-01-01

    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  17. Melting behavior of yttrium orthovanadate

    International Nuclear Information System (INIS)

    When YVO4 melts at 18100C, it decomposes to form YVO3, a black semi-conducting compound. Between about 15000C and its melting point, YVO4 also reacts to form Y8V2O17 plus V2O5. The melt actually consists of a ternary system whose composition changes with time. Reoxidation of YVO3 to YVO4 can be accomplished below the melting point by annealing in oxygen. The difficulty in obtaining high-quality optical crystals of YVO4 by Czrochralski growth is thus explained. (U.S.)

  18. Hardware-Software Co-Simulation for SOC Functional Verification

    Institute of Scientific and Technical Information of China (English)

    YAN Ying-jian; LIU Ming-ye

    2005-01-01

    A hardware-software co-simulation method for system on chip (SOC) design is discussed. It is based on an instruction set simulator (ISS) and an event-driven hardware simulator, and a bus interface model that is described in C language provides the interface between the two. The bus interface model and the ISS are linked into a singleton program the software simulator, which communicate with the hardware simulator through Windows sockets. The implementation of the bus interface model and the synchronization between hardware and software simulator are discussed in detail. Co-simulation control of the hardware simulator is also discussed.

  19. Hardware development process for Human Research facility applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  20. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  1. Effects of Huangqi and bear bile on recurrent parotitis in children: a new clinical approach*

    OpenAIRE

    Ruan, Wen-hua; Huang, Mei-Li; He, Xiao-lei; Feng ZHANG; Tao, Hai-biao

    2013-01-01

    Objective: To evaluate the pharmacological effects of traditional Chinese medicine, bear bile capsule and Huangqi granule, on recurrent parotitis in children. Methods: In this prospective, controlled, and randomized study, a total of 151 young children were divided into three groups: Group A included massaging the children’s parotid region and melting vitamin C in their mouth daily; Group B included swallowing bear bile capsule and Huangqi granule daily; and Group C included massages and vita...

  2. Reliability for fluid bearings design

    OpenAIRE

    DIOP, Khadim; CHARKI, Abdérafi; CHAMPMARTIN, Stéphane; AMBARI, Abdelhak

    2013-01-01

    This paper presents a new methodology for evaluating the failure probability of fluid bearings which are sensitive components for the design of machine rotors, mechatronic systems and high precision metrology. The static and dynamic behavior of a fluid bearing depends on several parameters, such as external load, bearing dimensions, supply pressure, quality of the machined surfaces, fluid properties, etc. In this paper, the characteristics of a simple geometry thrust bearing are calculated an...

  3. Reliability of a hydrostatic bearing

    OpenAIRE

    CHARKI, Abderafi; DIOP, Khadim; CHAMPMARTIN, Stéphane; AMBARI, Abdelhak

    2013-01-01

    This paper presents a methodology for evaluating the failure probability of fluid bearings, which are sensitive components for the design of machine rotors, mechatronic systems, and high precision metrology. The static and dynamic behavior of a fluid bearing depends on several parameters, such as external load, bearing dimensions, supply pressure, quality of the machined surfaces, fluid properties, etc. In this paper, the characteristics of a simple geometry hydrostatic bearing are calculated...

  4. Households' Interest-bearing Assets

    OpenAIRE

    Ellis Connolly; Fiona Fleming; Jarkko Jääskelä

    2012-01-01

    Households invest around two-fifths of their financial assets in interest-bearing assets. These assets are predominantly held directly in deposits and also via superannuation and other investment funds. Deposits have grown strongly in recent years, although there has been no growth in interest-bearing securities. Compared with other advanced economies, interest-bearing assets represent a relatively small share of financial assets. For the household sector as a whole, interest-bearing assets a...

  5. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  6. Centrifugally decoupling touchdown bearings

    Science.gov (United States)

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  7. Government Risk-Bearing

    CERN Document Server

    1993-01-01

    The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...

  8. Rotating plug bearing and seal

    Science.gov (United States)

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  9. Rotating plug bearing and seal

    International Nuclear Information System (INIS)

    Disclosed is a bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing. 19 claims, 3 figures

  10. ANSWER: A bear paw.

    OpenAIRE

    Ian BICKLE

    2012-01-01

    (Refer to page 186)Answer: Bear Paw sign of Xanthogranulomatous PyelonephritisThe contrast enhanced (portal venous phase)CT of the abdomen showed a global enlargement of the right kidney. There are multiplelow attenuation areas in the renal parenchyma, in a ‘hydronephrotic type manner’, but with no true hydronephrosis. This is due to a renal calculus lying in a contracted pelvis with dilated calyces that contain inflammatory debris. A rim of normal renal tissue enhancesperipherally. The appea...

  11. Locating hardware faults in a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  12. Protection of Accelerator Hardware: RF systems

    CERN Document Server

    Kim, S-H

    2016-01-01

    The radio-frequency (RF) system is the key element that generates electric fields for beam acceleration. To keep the system reliable, a highly sophisticated protection scheme is required, which also should be designed to ensure a good balance between beam availability and machine safety. Since RF systems are complex, incorporating high-voltage and high-power equipment, a good portion of machine downtime typically comes from RF systems. Equipment and component damage in RF systems results in long and expensive repairs. Protection of RF system hardware is one of the oldest machine protection concepts, dealing with the protection of individual high-power RF equipment from breakdowns. As beam power increases in modern accelerators, the protection of accelerating structures from beam-induced faults also becomes a critical aspect of protection schemes. In this article, an overview of the RF system is given, and selected topics of failure mechanisms and examples of protection requirements are introduced.

  13. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa

    2008-04-01

    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  14. Current conveyors variants, applications and hardware implementations

    CERN Document Server

    Senani, Raj; Singh, A K

    2015-01-01

    This book serves as a single-source reference to Current Conveyors and their use in modern Analog Circuit Design. The authors describe the various types of current conveyors discovered over the past 45 years, details of all currently available, off-the-shelf integrated circuit current conveyors, and implementations of current conveyors using other, off-the-shelf IC building blocks. Coverage includes prominent bipolar/CMOS/Bi-CMOS architectures of current conveyors, as well as all varieties of starting from third generation current conveyors to universal current conveyors, their implementations and applications. •Describes all commercially available off-the-shelf IC current conveyors, as well as hardware implementations of current conveyors using other off-the-shelf ICs; • Describes numerous variants of current conveyors evolved over the past forty five years; • Describes a number of Bipolar/CMOS/Bi-CMOS architectures of current conveyors, along with their characteristic features; • Includes a comprehe...

  15. Compressive Sensing Image Sensors-Hardware Implementation

    Directory of Open Access Journals (Sweden)

    Shahram Shirani

    2013-04-01

    Full Text Available The compressive sensing (CS paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementations of CS encoding in optical and electrical domains is presented. Considering the recent advances in CMOS (complementary metal–oxide–semiconductor technologies and the feasibility of performing on-chip signal processing, important practical issues in the implementation of CS in CMOS sensors are emphasized. In addition, the CS coding for video capture is discussed.

  16. Compressive sensing image sensors-hardware implementation.

    Science.gov (United States)

    Dadkhah, Mohammadreza; Deen, M Jamal; Shirani, Shahram

    2013-01-01

    The compressive sensing (CS) paradigm uses simultaneous sensing and compression to provide an efficient image acquisition technique. The main advantages of the CS method include high resolution imaging using low resolution sensor arrays and faster image acquisition. Since the imaging philosophy in CS imagers is different from conventional imaging systems, new physical structures have been developed for cameras that use the CS technique. In this paper, a review of different hardware implementations of CS encoding in optical and electrical domains is presented. Considering the recent advances in CMOS (complementary metal-oxide-semiconductor) technologies and the feasibility of performing on-chip signal processing, important practical issues in the implementation of CS in CMOS sensors are emphasized. In addition, the CS coding for video capture is discussed. PMID:23584123

  17. EPICS: Allen-Bradley hardware reference manual

    International Nuclear Information System (INIS)

    This manual covers the following hardware: Allen-Bradley 6008 -- SV VMEbus I/O scanner; Allen-Bradley universal I/O chassis 1771-A1B, -A2B, -A3B, and -A4B; Allen-Bradley power supply module 1771-P4S; Allen-Bradley 1771-ASB remote I/O adapter module; Allen-Bradley 1771-IFE analog input module; Allen-Bradley 1771-OFE analog output module; Allen-Bradley 1771-IG(D) TTL input module; Allen-Bradley 1771-OG(d) TTL output; Allen-Bradley 1771-IQ DC selectable input module; Allen-Bradley 1771-OW contact output module; Allen-Bradley 1771-IBD DC (10--30V) input module; Allen-Bradley 1771-OBD DC (10--60V) output module; Allen-Bradley 1771-IXE thermocouple/millivolt input module; and the Allen-Bradley 2705 RediPANEL push button module

  18. Perspectives in Simulation Hardware and Software Architecture

    Directory of Open Access Journals (Sweden)

    W.O. Grierson

    1985-10-01

    Full Text Available Historically, analog and hybrid computer systems have provided effective real-time solutions for the simulation of large dynamic systems. In the mid 1970s, ADI concluded that these systems were no longer adequate to meet the demands of larger, more complex models and the demand for greater simulation accuracy. The decision was to design an all-digital system to satisfy these growing requirements (see Gilbert and Howe, (1978. This all-digital approach was called the SYSTEM 10. The SYSTEM 10 has been effective in solving time-critical simulation problems and in replacing the previous approach of utilizing hybrid computers. Recent advances in 100 K emitter coupled logic (ECL now make it possible to support a new generation of equipment that expands modeling capabilities to serve simulation needs. The hardware and software concepts of this system, called the SYSTEM 100, are the subject of this paper.

  19. Latest results and hardware activities from BESIII

    International Nuclear Information System (INIS)

    The BESIII spectrometer is hosted at the BEPCII e+e− collider of the IHEP, Beijing. Since July 2008, it has collected the largest data sample available in the world at the energies of the J/ψ, ψ(2S), ψ(3770) and ψ(4040) resonances; data taking at high luminosities will go on for years. In this work I will describe the experiment peculiarities, showing in particular some of the most recent results involving light hadron spectroscopy, charmonium spectra and transitions, and charm physics. I will also describe in details those contributions coming from the Italian component of the Collaboration, focusing on those hardware projects (Zero Degree Detector, ZDD, and cylindrical GEMs, CGEM) the Italian BESIII researchers have devoted most of their efforts to.

  20. FPGA based control system hardware for microtron

    International Nuclear Information System (INIS)

    Up-gradation of control systems for various subsystems of Indus-1 is taken up. Control system for Microtron is one of them. The newly made control system is based on a distributed supervisory control system scheme. Each of the subsystems of the Microtron is supervised by FPGA based dedicated controller named as Equipment Control Modules (ECM). The ECMs provide all the needed functionalities like monitoring of status, interlocks, the readbacks of parameters, switching ON/OFF and providing references of required shape to the subsystems. Various interlocks information from all over the field is collected in a central Interlock Information Distribution module, which in-turn sends the interlock signals to the ECMs over the interlock bus. Each ECM inputs the interlocks, isolates and reads them. Actions on interlock failure are governed by equations implemented locally for any subsystem on the respective ECM interlock card. The interlock information from each module is also sent to operators' console or workstation. All the ECMs are connected over RS485 link for communication with the work stations. Custom protocol is designed for communication between the work station and the ECMs. With the prototype protocol the work station can update the system information at more than 1 Hz rate. The new scheme will help in reducing cable load, increase in flexibility of hardware to accommodate future requirements through expansion, maintainability due to modular design and synchronization of reading of the system to an external event or a read-clock. The FPGA based controller will be helpful in increasing the functional requirements and configurability of the design. The paper describes the scheme, the hardware, custom protocol, lab results etc. at length. (author)

  1. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...... straw combustion are characterised by a large fraction of KCl and a smaller fraction of K-, Ca-, Al-silicates and quartz. The salt part of these ashes melt in the temperature range from 600-750°C, whereas the silicate part predominantly melts between 1000 and 1200°C. Increasing salt (KCl) content...... in the ashes lead to increased melt fractions in the temperature range 600-750°C.b) Bottom ashes from straw combustion consist purely of silicates, with varying ratios of the quite refractory Al-silicates and quartz to the less refractory K- and Ca-silicates. Bottom ashes melt in the temperature range 800...

  2. Anti-backlash gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  3. Timing of Formation of a Wassonite-bearing Chondrule

    Science.gov (United States)

    Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.

    2014-01-01

    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.

  4. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  5. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    Science.gov (United States)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  6. Bearings only naval tracking

    Energy Technology Data Exchange (ETDEWEB)

    Barth, M.J.

    1984-11-01

    Two commonly used Extended Kalman Filter tracking algorithms utilize the Relative Cartesian and Modified Polar coordinate systems. This report compares the two algorithms by exercising a destroyer-Submarine (DD/SS) computer simulation. A simple engagement geometry is employed which encompasses the major DD/SS options available. Error statistics are developed by Monte Carlo methods. Results are presented which show that the circular error depends upon the diagonal values of the error covariance matrix. The results also support (but do not establish) that the optimum DD manuevuer is that which minimizes the range while maximizing the bearing rate. 4 refs., 5 figs., 4 tabs.

  7. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid

  8. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time with a...... hardware area constraint and the problem of minimizing hardware area with a system execution time constraint. The target architecture consists of a single microprocessor and a single hardware chip (ASIC, FPGA, etc.) which are connected by a communication channel. The algorithm incorporates a realistic...... communication model and thus attempts to minimize communication overhead. The time-complexity of the algorithm is O(n2·𝒜) and the space-complexity is O(n·𝒜) where 𝒜 is the total area of the hardware chip and n the number of code fragments which may be placed in either hardware or software...

  9. GSTAMIDS ground-penetrating radar: hardware description

    Science.gov (United States)

    Sower, Gary D.; Eberly, John; Christy, Ed

    2001-10-01

    The Ground Standoff Mine Detection System (GSTAMIDS) is now in the Engineering, Manufacturing and Development (EMD) Block 0 phase for USA CECOM. The Mine Detection Subsystem (MDS) presently utilizes three different sensor technologies to detect buried anti-tank (AT) land mines; Ground Penetrating Radar (GPR), Pulsed Magnetic Induction (PMI), and passive infrared (IR). The GSTAMIDS hardware and software architectures are designed so that other technologies can readily be incorporated when and if they prove viable. Each sensor suite is designed to detect the buried mines and to discriminate against various clutter and background objects. Sensor data fusion of the outputs of the individual sensor suites then enhances the detection probability while reducing the false alarm rate from clutter objects. The metal detector is an essential tool for buried mine detection, as metal land mines still account for a large percentage of land mines. Technologies such as nuclear quadrupole resonance (NQR or QR) are presently being developed to detect or confirm the presence of explosive material in buried land mines, particularly the so-called plastic mines; unfortunately, the radio frequency signals required cannot penetrate into a metal land mine. The limitation of the metal detector is not in detection of the metal mines, but in the additional detection of metal clutter. A metal detector has been developed using singular value decomposition (SVD) extraction techniques to discriminate the mines from the clutter, thereby greatly reducing false alarm rates. This mine detector is designed to characterize the impulse response function of the metal objects, based on a parametric three-pole model of the response, and to use pattern recognition to determine the match of the responses to known mines. In addition to discrimination against clutter, the system can also generally tell one mine type from another. This paper describes the PMI sensor suite hardware and its physical incorporation

  10. Two dimensional superfluidity and melting

    International Nuclear Information System (INIS)

    The author reviews the equilibrium theory of superfluidity and XY magnetism, due in large part to the seminal work of Kosterlitz and Thouless. A dynamic generalization of this theory, with application to third sound in helium films is discussed. The statistical mechanics of two-dimensional melting on both smooth and periodic substrates, is discussed. The dynamic version of the theory is sketched. A theory of melting dynamics is particularly important in interpreting of the experiments on melting and crystallization described earlier. Finally the theory as it applies to anisotropic media including layered materials like smectics, cholesterics, and Rayleigh-Benard convection cells, is discussed. (Auth.)

  11. Glass melting phenomena, their ordering and melting space utilisation

    Czech Academy of Sciences Publication Activity Database

    Němec, Lubomír; Jebavá, Marcela; Dyrčíková, Petra

    2013-01-01

    Roč. 57, č. 4 (2013), s. 275-284. ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * space utilization * melt flow * phenomena ordering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.434, year: 2013 http://www.ceramics-silikaty.cz/2013/2013_04_275.htm

  12. Exercise Countermeasure Hardware Evolution on ISS: The First Decade.

    Science.gov (United States)

    Korth, Deborah W

    2015-12-01

    The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases

  13. Hardware-Friendly Learning Algorithms for Neural Networks: An Overview

    OpenAIRE

    Moerland, Perry; Fiesler, Emile

    1996-01-01

    The hardware implementation of artificial neural networks and their learning algorithms is a fascinating area of research with far-reaching applications. However, the mapping from an ideal mathematical model to compact and reliable hardware is far from evident. This paper presents an overview of various methods that simplify the hardware implementation of neural network models. Adaptations that are proper to specific learning rules or network architectures are discussed. These range from the ...

  14. Downlink MIMO HCNs with Residual Transceiver Hardware Impairments

    OpenAIRE

    Papazafeiropoulos, Anastasios; Ratnarajah, Tharm

    2016-01-01

    A major limitation of heterogeneous cellular networks (HCNs) is the neglect of the additive residual transceiver hardware impairments (ARTHIs). The assumption of perfect hardware is quite strong and results in misleading conclusions. This paper models a general multiple-input multiple-output (MIMO) HCN with cell association by incorporating the RTHIs. We derive the coverage probability and shed light on the impact of the ARTHIs, when various transmission methods are applied. As the hardware q...

  15. Hardware Virtualization Support In INTEL, AMD And IBM Power Processors

    OpenAIRE

    Kamanashis Biswas

    2009-01-01

    At present, the mostly used and developed mechanism is hardware virtualization which provides a common platform to run multiple operating systems and applications in independent partitions. More precisely, it is all about resource virtualization as the term ‘hardware virtualization’ is emphasized. In this paper, the aim is to find out the advantages and limitations of current virtualization techniques, analyze their cost and performance and also depict which forthcoming hardware virtualizatio...

  16. Hardware Virtualization Support In INTEL, AMD And IBM Power Processors

    OpenAIRE

    Biswas, Kamanashis; Islam, Md. Ashraful

    2009-01-01

    At present, the mostly used and developed mechanism is hardware virtualization which provides a common platform to run multiple operating systems and applications in independent partitions. More precisely, it is all about resource virtualization as the term hardware virtualization is emphasized. In this paper, the aim is to find out the advantages and limitations of current virtualization techniques, analyze their cost and performance and also depict which forthcoming hardware virtualization ...

  17. Hardware/Software Co-design using Primitive Interface

    OpenAIRE

    Navin Chourasia; Puran Gaur

    2011-01-01

    Most engineering designs can be viewed as systems, i.e., as collections of several components whose combined operation provides useful services. Components can be heterogeneous in nature and their interaction may be regulated by some simple or complex means. Interface between Hardware & Software plays a very important role in co-design of the embedded system. Hardware/software co-design means meeting system-level objectives by exploiting the synergism of hardware and software through their co...

  18. Resource Optimized Stereo Matching in Reconfigurable Hardware for Autonomous Systems

    OpenAIRE

    Ekstrand, Fredrik

    2011-01-01

    There is a need for compact, high-speed, and low-power vision systems for enabling real-time mobile autonomous applications. The best approach to achieve this is to implement the bulk of the application in hardware. Reconfigurable hardware meet these requirements without the limitation of fixed functionality that accompanies application-specific circuits. Resource constraints of reconfigurable hardware calls for optimized implementations i terms of resource usage with maintained performance. ...

  19. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  20. Hardware/Software Co-design using Primitive Interface

    Directory of Open Access Journals (Sweden)

    Navin Chourasia

    2011-08-01

    Full Text Available Most engineering designs can be viewed as systems, i.e., as collections of several components whose combined operation provides useful services. Components can be heterogeneous in nature and their interaction may be regulated by some simple or complex means. Interface between Hardware & Software plays a very important role in co-design of the embedded system. Hardware/software co-design means meeting system-level objectives by exploiting the synergism of hardware and software through their concurrent design. This paper shows how hardware & software interfaces can be implemented using primitive interface design

  1. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Science.gov (United States)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  2. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  3. Superconducting bearings in flywheels

    International Nuclear Information System (INIS)

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.)

  4. Live HDR video streaming on commodity hardware

    Science.gov (United States)

    McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan

    2015-09-01

    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.

  5. Magnetic qubits as hardware for quantum computers

    International Nuclear Information System (INIS)

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state Sz = ± S. In each case the temperature of operation must be low compared to the energy gap, Δ, between the states vertical bar-0> and vertical bar-1>. The gap Δ in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  6. Nanorobot Hardware Architecture for Medical Defense

    Directory of Open Access Journals (Sweden)

    Luiz C. Kretly

    2008-05-01

    Full Text Available This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.

  7. Implementation of a veto processing hardware

    International Nuclear Information System (INIS)

    This paper describes the implementation of a piece of general purpose events veto processing hardware, in the form of a custom integrated circuit and a minimum of additional components, for use with pixel-type detectors, in particular those requiring the technique of time-walk correction and multi-trigger association. This work was carried out as a part of the design study for a gamma-ray imager experiment such as the one proposed for the integral spacecraft mission. The design can handle up to 3072 detector elements, grouped into 24 separate detector modules (consisting of up to 128 detector elements each) in addition to a veto shield detector module. The system will be capable of handling a maximum average detector trigger rate of 10 000 triggers/s and veto shield trigger rate of 70 000 triggers/s without saturating the system. Analysis of an operational model of the gamma-ray imager under study results in 1400 valid events s where on average there are 1.75 triggers per event. This will result in data reduction factor of 4. The IC can also perform triggers to events associations thus, further reducing the workload on the rest of the experiment's central data processing system. This study shows that a single ASIC solution is viable using for example a XILINX IC, three 8 k x 8 SRAMs and a single 512 k x 1 bit serial ROM. (orig.)

  8. A Hardware Track Finder for ATLAS Trigger

    CERN Document Server

    Volpi, G; The ATLAS collaboration; Andreazza, A; Citterio, M; Favareto, A; Liberali, V; Meroni, C; Riva, M; Sabatini, F; Stabile, A; Annovi, A; Beretta, M; Castegnaro, A; Bevacqua, V; Crescioli, F; Francesco, C; Dell'Orso, M; Giannetti, P; Magalotti, D; Piendibene, M; Roda, C; Sacco, I; Tripiccione, R; Fabbri, L; Franchini, M; Giorgi, F; Giannuzzi, F; Lasagni, F; Sbarra, C; Valentinetti, S; Villa, M; Zoccoli, A; Lanza, A; Negri, A; Vercesi, V; Bogdan, M; Boveia, A; Canelli, F; Cheng, Y; Dunford, M; Li, H L; Kapliy, A; Kim, Y K; Melachrinos, C; Shochet, M; Tang, F; Tang, J; Tuggle, J; Tompkins, L; Webster, J; Atkinson, M; Cavaliere, V; Chang, P; Kasten, M; McCarn, A; Neubauer, M; Hoff, J; Liu, T; Okumura, Y; Olsen, J; Penning, B; Todri, A; Wu, J; Drake, G; Proudfoot, J; Zhang, J; Blair, R; Anderson, J; Auerbach, B; Blazey, G; Kimura, N; Yorita, K; Sakurai, Y; Mitani, T; Iizawa, T

    2012-01-01

    The existing three level ATLAS trigger system is deployed to reduce the event rate from the bunch crossing rate of 40 MHz to ~400 Hz for permanent storage at the LHC design luminosity of 10^34 cm^-2 s^-1. When the LHC reaches beyond the design luminosity, the load on the Level-2 trigger system will significantly increase due to both the need for more sophisticated algorithms to suppress background and the larger event sizes. The Fast TracKer (FTK) is a custom electronics system that will operate at the full Level-1 accepted rate of 100 KHz and provide high quality tracks at the beginning of processing in the Level-2 trigger, by performing track reconstruction in hardware with massive parallelism of associative memories and FPGAs. The performance in important physics areas including b-tagging, tau-tagging and lepton isolation will be demonstrated with the ATLAS MC simulation at different LHC luminosities. The system design will be overviewed. The latest R&amp;amp;D progress of individual components...

  9. Open Hardware For CERN's Accelerator Control Systems

    CERN Document Server

    van der Bij, E; Ayass, M; Boccardi, A; Cattin, M; Gil Soriano, C; Gousiou, E; Iglesias Gonsálvez, S; Penacoba Fernandez, G; Serrano, J; Voumard, N; Wlostowski, T

    2011-01-01

    The accelerator control systems at CERN will be renovated and many electronics modules will be redesigned as the modules they will replace cannot be bought anymore or use obsolete components. The modules used in the control systems are diverse: analog and digital I/O, level converters and repeaters, serial links and timing modules. Overall around 120 modules are supported that are used in systems such as beam instrumentation, cryogenics and power converters. Only a small percentage of the currently used modules are commercially available, while most of them had been specifically designed at CERN. The new developments are based on VITA and PCI-SIG standards such as FMC (FPGA Mezzanine Card), PCI Express and VME64x using transition modules. As system-on-chip interconnect, the public domain Wishbone specification is used. For the renovation, it is considered imperative to have for each board access to the full hardware design and its firmware so that problems could quickly be resolved by CERN engineers or its ...

  10. Hardware upgrade for A2 data acquisition

    International Nuclear Information System (INIS)

    The A2 Collaboration uses an energy tagged photon beam which is produced via bremsstrahlung off the MAMI electron beam. The detector system consists of Crystal Ball and TAPS and covers almost the whole solid angle. A frozen-spin polarized target allows to perform high precision measurements of polarization observables in meson photo-production. During the last summer, a major upgrade of the data acquisition system was performed, both on the hardware and the software side. The goal of this upgrade was increased reliability of the system and an improvement in the data rate to disk. By doubling the number of readout CPUs and employing special VME crates with a split backplane, the number of bus accesses per readout cycle and crate was cut by a factor of two, giving almost a factor of two gain in the readout rate. In the course of the upgrade, we also switched most of the detector control system to using the distributed control system EPICS. For the upgraded control system, some new tools were developed to make full use of the capabilities of this decentralised slow control and monitoring system. The poster presents some of the major contributions to this project.

  11. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  12. METAL MELTS – NANOSTRUCTURED SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2015-05-01

    Full Text Available On the basis of thermodynamic analysis it is shown that metal melts are the nanostructured systems which consist of phases and atoms nanocrystals. Nanocrystalsmake 97% ofthemeltvolume.

  13. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  14. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  15. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  16. Fish of Bear Lake, Utah

    OpenAIRE

    Palacios, Patsy; Luecke, Chris; Robinson, Justin

    2007-01-01

    There are 13 species of fish found in the waters of Bear Lake. Of those 13, 4 are endemic (found only in Bear Lake). The 4 endemics species are Bonneville cisco, Bonneville whitefish, Bear Lake whitefish, and Bear Lake sculpin. Five of the remaining 9 fish species are native to the region, and 4 are exotic introductions. These native fishes are the Bonneville cutthroat trout, Utah sucker, redside shiner, speckled dace and Utah chub. The exotic fishes are lake trout, common carp, yellow p...

  17. Dynamic Analysis of Engine Bearings

    Directory of Open Access Journals (Sweden)

    H. Hirani

    1999-01-01

    Full Text Available This paper presents a simple methodology to evaluate the stiffness and damping coefficients of an engine bearing over a load cycle. A rapid technique is used to determine the shaft ‘limit cycle’ under engine dynamic loads. The proposed theoretical model is based on short and long bearing approximations. The results obtained by present approximation are compared with those obtained by numerical method. The influence of thermal effects on the stiffness and damping coefficients is predicted by using a simplified thermal analysis. In order to illustrate the application of the proposed scheme, one engine main bearing and a connecting rod bearing are analysed.

  18. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu

    2006-01-18

    The process of continuous galvanizing of rolled sheet steel includes immersion into a bath of molten zinc/aluminum alloy. The steel strip is dipped in the molten bath through a series of driving motors and rollers which control the speed and tension of the strip, with the ability to modify both the amount of coating applied to the steel as well as the thickness and width of the sheet being galvanized. There are three rolls used to guide the steel strip through the molten metal bath. The rolls that operate in the molten Zn/Al are subject to a severely corrosive environment and require frequent changing. The performance of this equipment, the metallic hardware submerged in the molten Zn/Al bath, is the focus of this research. The primary objective of this research is to extend the performance life of the metallic hardware components of molten Zn/Al pot hardware by an order of magnitude. Typical galvanizing operations experience downtimes on the order of every two weeks to change the metallic hardware submerged in the molten metal bath. This is an expensive process for industry which takes upwards of 3 days for a complete turn around to resume normal operation. Each roll bridle consists of a sink, stabilizer, and corrector roll with accompanying bearing components. The cost of the bridle rig with all components is as much as $25,000 dollars just for materials. These inefficiencies are of concern to the steel coating companies and serve as a potential market for many materials suppliers. This research effort served as a bridge between the market potential and industry need to provide an objective analytical and mechanistic approach to the problem of wear and corrosion of molten metal bath hardware in a continuous sheet galvanizing line. The approach of the investigators was to provide a means of testing and analysis that was both expeditious and cost effective. The consortium of researchers from West Virginia University and Oak Ridge National Laboratory developed

  19. Core melt stabilization in nuclear power plants. Implementations in new builds and retrofitting in existing plants

    International Nuclear Information System (INIS)

    In the event of a severe accident with core melting in a nuclear power plant, a prerequisite to avoid late containment failure is the stabilization and cooling of the molten core debris. While in newly built Generation III+ nuclear power plants, the design already includes dedicated core melt stabilization measures and systems, core melt mitigation in existing plants is restricted by the already present design features and plant layout. However, also here limited modifications and improvements are possible. In this paper, first the general design requirements for core melt stabilization are outlined. Then the actual implementation of a core melt stabilization system in current Generation III+ nuclear power plants is described, specifically for the AREVA EPR™ reactor and the ATMEA1 reactor. Both solutions combine an initial phase of melt collection in the reactor pit after reactor pressure vessel failure and a later phase with corium spreading and cooling in a lateral core catcher. The paper explains why for these pressurized water reactor plants AREVA utilizes an ex-vessel melt stabilization concept with a dry pit and not in-vessel melt retention with outside reactor pressure vessel flooding. The methodology that is applied to deterministically validate the proper design and functioning of this core melt stabilization system is described. Next, key features of various concepts applicable for the retrofitting of ex-vessel core melt stabilization systems to existing plants are discussed and examples of currently investigated solutions for both boiling and pressurized water reactors are given. The practical applicability of such concepts depends on the specifics of the reactor design, the intended safety targets, and on how well the system fits into the integrated approach for safety improvements. It is emphasized that a core catcher is not a solitary hardware system, but must be designed such that it integrates well into the general plant safety concept and works

  20. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  1. Autosizing Control Panel for Needle Bearing

    OpenAIRE

    Prof.A.R.Wadhekar,; Ms Jyoti R. Rajput

    2016-01-01

    A needle roller bearing is a bearing which uses small cylindrical rollers. Bearings are used to reduce friction of any rotating surface. Needle bearings have a large surface in contact with the bearing outer surfaces as compared to ball bearings. There is less added clearance(Diameter of the shaft and the diameter of the bearing are different) so they are much compact. The structure consists of a needle cage which contains the needle rollersthemselves and an outer race (The housin...

  2. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  3. The hardware and software support for the MRSP.

    Science.gov (United States)

    Teuber, D.

    The Muenster Redshift Project (MRSP) described by Horstmann (1988) and Schuecker (1988) relies on an arrangement of hardware and software which is referred to as the Astronomical Data Analysis System. In this paper the hardware is briefly introduced and the support software GAME is discussed.

  4. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware...

  5. Hardware and software for image acquisition in nuclear medicine

    International Nuclear Information System (INIS)

    A system for image acquisition and processing in nuclear medicine is presented, including the hardware and software referring to acquisition. The hardware is consisted of an analog-digital conversion card, developed in wire-wape. Its function is digitate the analogic signs provided by gamma camera. The acquisitions are made in list or frame mode. (C.G.C.)

  6. Developing a Decision Support System: The Software and Hardware Tools.

    Science.gov (United States)

    Clark, Phillip M.

    1989-01-01

    Describes some of the available software and hardware tools that can be used to develop a decision support system implemented on microcomputers. Activities that should be supported by software are discussed, including data entry, data coding, finding and combining data, and data compatibility. Hardware considerations include speed, storage…

  7. Teaching Robotics Software with the Open Hardware Mobile Manipulator

    Science.gov (United States)

    Vona, M.; Shekar, N. H.

    2013-01-01

    The "open hardware mobile manipulator" (OHMM) is a new open platform with a unique combination of features for teaching robotics software and algorithms. On-board low- and high-level processors support real-time embedded programming and motor control, as well as higher-level coding with contemporary libraries. Full hardware designs and…

  8. A Practical Introduction to HardwareSoftware Codesign

    CERN Document Server

    Schaumont, Patrick R

    2013-01-01

    This textbook provides an introduction to embedded systems design, with emphasis on integration of custom hardware components with software. The key problem addressed in the book is the following: how can an embedded systems designer strike a balance between flexibility and efficiency? The book describes how combining hardware design with software design leads to a solution to this important computer engineering problem. The book covers four topics in hardware/software codesign: fundamentals, the design space of custom architectures, the hardware/software interface and application examples. The book comes with an associated design environment that helps the reader to perform experiments in hardware/software codesign. Each chapter also includes exercises and further reading suggestions. Improvements in this second edition include labs and examples using modern FPGA environments from Xilinx and Altera, which make the material applicable to a greater number of courses where these tools are already in use.  Mo...

  9. Hardware efficient monitoring of input/output signals

    Science.gov (United States)

    Driscoll, Kevin R. (Inventor); Hall, Brendan (Inventor); Paulitsch, Michael (Inventor)

    2012-01-01

    A communication device comprises first and second circuits to implement a plurality of ports via which the communicative device is operable to communicate over a plurality of communication channels. For each of the plurality of ports, the communication device comprises: command hardware that includes a first transmitter to transmit data over a respective one of the plurality of channels and a first receiver to receive data from the respective one of the plurality of channels; and monitor hardware that includes a second receiver coupled to the first transmitter and a third receiver coupled to the respective one of the plurality of channels. The first circuit comprises the command hardware for a first subset of the plurality of ports. The second circuit comprises the monitor hardware for the first subset of the plurality of ports and the command hardware for a second subset of the plurality of ports.

  10. Advanced Programming Platform for efficient use of Data Parallel Hardware

    CERN Document Server

    Cabellos, Luis

    2012-01-01

    Graphics processing units (GPU) had evolved from a specialized hardware capable to render high quality graphics in games to a commodity hardware for effective processing blocks of data in a parallel schema. This evolution is particularly interesting for scientific groups, which traditionally use mainly CPU as a work horse, and now can profit of the arrival of GPU hardware to HPC clusters. This new GPU hardware promises a boost in peak performance, but it is not trivial to use. In this article a programming platform designed to promote a direct use of this specialized hardware is presented. This platform includes a visual editor of parallel data flows and it is oriented to the execution in distributed clusters with GPUs. Examples of application in two characteristic problems, Fast Fourier Transform and Image Compression, are also shown.

  11. Melt eruptions during molten corium concrete interactions

    Science.gov (United States)

    Robb, Kevin Richard

    The melt eruption phenomenon could occur during severe accidents at existing light water nuclear reactors. A postulated beyond-design basis accident includes the melting and relocation of the reactor core onto the concrete basemat of containment. The continually heated melt can reach high temperatures and thermally attack the underlying concrete, MCCI. As the melt cools, a crust forms on the upper surface of the melt pool. Melt eruptions occur when gases from the decomposing concrete passes through channels in the crust ejecting melt onto the upper surface of the crust. The impact of melt eruptions on the coolability of the melt is important when estimating the probability and timing of containment failure. This work focuses on understanding and modeling the melt eruption phenomenon. A model has been developed to predict the amount of melt ejected during melt eruptions. This entrainment model has been verified against an experimental database developed as part of this work. Several phenomena have been identified and modeled which may predict the creation and closure of eruptions sites. The models have been integrated into a MCCI systems code. The new melt eruption model predicted reasonable rates of melt ejection and the number and diameter of eruption sites for a sample simulation of a postulated reactor scale MCCI. Results from the new melt eruption model suggest an ex-vessel core melt under flooded conditions could readily quench.

  12. Superconducting bearings for flywheel applications

    OpenAIRE

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings in flywheels.

  13. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  14. What about the Javan Bear?

    NARCIS (Netherlands)

    Jentink, F.A.

    1898-01-01

    The other day I read in a dutch popular periodical a paper dealing with the different species of Bears and their geographical distribution. To my great surprise the Malayan Bear was mentioned from Java: the locality Java being quite new to me I wrote to the author of that paper and asked him some in

  15. Hardware Development Process for Human Research Facility Applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  16. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  17. Fire safety of rubber bearings

    International Nuclear Information System (INIS)

    The objective of the study is to experimentally evaluate the fire resistance of the natural-rubber bearings to be incorporated into a Fast Reactor (FBR) under study. Four experiments were performed to look at the effect of bearing diameters and heating conditions on the performance. The full-scale specimen sustained the design-basis load for more than 3.5 hours under 'standard fire.' Medium-size bearings showed resistance for 2-4 hours, according to heating temperatures. The paper also summarizes the methods and the results of simulation analyses of rubber bearings subjected to load/temperature conditions under fire. The vertical deformation of the bearings can be calculated very well, using the temperature profiles obtained from testing. However, the heat transfer analyses did not give good results, especially in the cases/portions where heat was generated due to rubber combustion. (author)

  18. Nova as embedded operating system for cuban hardware Nova como sistema operativo embebido para hardware cubano

    Directory of Open Access Journals (Sweden)

    Mijail Hurtado Fedorovich

    2012-05-01

    Full Text Available This paper presents the results of the construction a an embedded operating system based on Nova, which provides the needed features to create the Cuban Thin Client, using as hardware component the Computer on a CID 300/9 Board designed by the Central Institute for Digital Research, obtaining the first version of Nova for the Advance RISC Machine  computer architecture and the first base operating system, stable and for general purposes for the CID 300/9. A state of the art of the currently most used embedded operating systems, the solution's structure, the methods and tools used for its development are presented. Este trabajo expone los resultados de construir un sistema operativo embebido basado en Nova, el cual brinda las funcionalidades necesarias para crear el Cliente Ligero Cubano, utilizando como componente de hardware, la Computadora en una Tarjeta CID 300/9 diseñada por el Instituto Central de Investigación Digital. Obteniéndose la primera versión de Nova para la arquitectura de computadora Advanced RISC Machine y el primer sistema operativo base, estable y de propósito general para la CID 300/9. Se expone un estado del arte de los sistemas operativos embebidos más utilizados actualmente; la estructura de la solución, los métodos y herramientas empleados para obtenerla.

  19. Nova como sistema operativo embebido para hardware cubano Nova as embedded operating system for cuban hardware

    Directory of Open Access Journals (Sweden)

    José Ernesto Torres Sánchez

    2012-05-01

    Full Text Available Este trabajo expone los resultados de construir un sistema operativo embebido basado en Nova, el cual brinda las funcionalidades necesarias para crear el Cliente Ligero Cubano, utilizando como componente de hardware, la Computadora en una Tarjeta CID 300/9 diseñada por el Instituto Central de Investigación Digital. Obteniéndose la primera versión de Nova para la arquitectura de computadora Advanced RISC Machine y el primer sistema operativo base, estable y de propósito general para la CID 300/9. Se expone un estado del arte de los sistemas operativos embebidos más utilizados actualmente; la estructura de la solución, los métodos y herramientas empleados para obtenerla.This paper presents the results of the construction a an embedded operating system based on Nova, which provides the needed features to create the Cuban Thin Client, using as hardware component the Computer on a CID 300/9 Board designed by the Central Institute for Digital Research, obtaining the first version of Nova for the Advance RISC Machine  computer architecture and the first base operating system, stable and for general purposes for the CID 300/9. A state of the art of the currently most used embedded operating systems, the solution's structure, the methods and tools used for its development are presented.

  20. Melting in temperature sensitive suspensions

    Science.gov (United States)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  1. Transport properties of silicate melts

    Science.gov (United States)

    Ni, Huaiwei; Hui, Hejiu; Steinle-Neumann, Gerd

    2015-09-01

    A quantitative description of the transport properties, diffusivity, viscosity, electrical, and thermal conductivity, of silicate melts is essential for understanding melting-related petrologic and geodynamic processes. We here provide a systematic overview on the current knowledge of these properties from experiments and molecular dynamics simulations, their dependence on pressure, temperature, and composition, atomistic processes underlying them, and physical models to describe their variations. We further establish phenomenological and physical links between diffusivity, viscosity, and electrical conductivity that are based on structural rearrangement in the melt. Neutral molecules and network-modifying cations with low electric field strength display intrinsic diffusivity, which is controlled by the intrinsic properties (size and valence) of the species. By contrast, oxygen and network formers with high field strength show extrinsic diffusivity, which is more sensitive to extrinsic parameters including temperature (T), pressure (P), and melt composition (X). Similar T-P-X dependence of diffusivity and electrical conductivity and their quantitative relation reveal the role of intrinsically diffusing species in electrical transport, while viscosity is tied to the extrinsically diffusing species in a similar way. However, the differences in the structural role and mobility of various atomic species diminish with increasing temperature and/or pressure: all transport processes are increasingly coupled, eventually converging to a uniform rate and mechanism. Accurate comprehension of interatomic interactions and melt structure is vital to fully accounting for the compositional dependence of transport properties, and simple polymerization parameters such as nonbridging oxygen per tetrahedrally coordinated cation are inadequate.

  2. The Art of Space Flight Exercise Hardware: Design and Implementation

    Science.gov (United States)

    Beyene, Nahom M.

    2004-01-01

    The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware

  3. Hybrid Superconducting Magnetic Bearing (HSMB) for high-load devices

    International Nuclear Information System (INIS)

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  4. Thermodynamics of freezing and melting.

    Science.gov (United States)

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  5. Comparison of Life Theories for Rolling-Element Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Peters, Steven M.

    1995-01-01

    Nearly five decades have passed since G. Lundberg and A. Palmgren published their life theory in 1947 and 1952 and it was adopted as an ANSI/ABMA and ISO standard in 1950 and 1953. Subsequently, many variations and deviations from their life theory have been proposed, the most recent being that of E. Ioannides and T.A. Harris in 1985. This paper presents a critical analysis comparing the results of different life theories and discussing their implications in the design and analysis of rolling-element bearings. Variations in the stress-life relation and in the critical stress related to bearing life are discussed using stress fields obtained from three-dimensional, finite-element analysis of a ball in a nonconforming race under varying load. The results showed that for a ninth power stress-life exponent the Lundberg-Palmgren theory best predicts life as exhibited by most air-melted bearing steels. For a 12th power relation reflected by modern bearing steels, a Zaretsky-modified Weibull equation is superior. The assumption of a fatigue-limiting stress distorts the stress-life exponent and overpredicts life.

  6. Hardware Implementation of a Bilateral Subtraction Filter

    Science.gov (United States)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for

  7. Hardware Implementation of Serially Concatenated PPM Decoder

    Science.gov (United States)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in

  8. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, J.; Stirling, I.; Kistler, L.; Salamzade, R.; Ersmark, E.; Fulton, T.; Stiller, M.; Green, R.; Shapiro, B.

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear...

  9. Challenges in Melt Furnace Tests

    Science.gov (United States)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  10. Skull melting of synthetic minerals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.D.; Hull, D.E.; Herrick, C.C.

    1977-12-01

    Direct high-frequency induction melting of dielectric materials in a water-cooled cage has been developed in the LASL synthetic minerals program. Molten material is contained in a skull, i.e., sintered shell, of its own composition so the traditional problems associated with refractory melt contamination are essentially eliminated. Preliminary analyses of power input, cage design, and coil geometry are discussed. Initial experimental results on the preparation of polycrystalline ingots, single crystals, and glasses are presented along with possible applications of this technique.

  11. Reconfigurable Hardware Objects for Image Processing on FPGAs

    Czech Academy of Sciences Publication Activity Database

    Kloub, Jan; Honzík, Petr; Daněk, Martin

    Vienna: Institute of Electrical and Electronics Engineers, 2010, s. 121-122. ISBN 978-1-4244-6610-8. [Proceedings of the 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems. Vienna (AT), 14.04.2010-16.04.2010] R&D Projects: GA MŠk 7H09005 Institutional research plan: CEZ:AV0Z10750506 Keywords : Image Processing * Reconfiguration * Hardware Object * FPGA Subject RIV: JC - Computer Hardware ; Software http://library.utia.cas.cz/separaty/2010/ZS/kloub-reconfigurable hardware objects for image processing on fpgas.pdf

  12. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  13. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows the...... importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  14. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  15. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  16. Bears, Big and Little. Young Discovery Library Series.

    Science.gov (United States)

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  17. eBear: An Expressive Bear-Like Robot

    OpenAIRE

    Zhang, Xiao; Mollahosseini, Ali; B., Amir H. Kargar; Boucher, Evan; Voyles, Richard M.; Nielsen, Rodney; Mahoor, Mohammd H.

    2015-01-01

    This paper presents an anthropomorphic robotic bear for the exploration of human-robot interaction including verbal and non-verbal communications. This robot is implemented with a hybrid face composed of a mechanical faceplate with 10 DOFs and an LCD-display-equipped mouth. The facial emotions of the bear are designed based on the description of the Facial Action Coding System as well as some animal-like gestures described by Darwin. The mouth movements are realized by synthesizing emotions w...

  18. Lithium hydride near melting point

    International Nuclear Information System (INIS)

    The mechanical stability of LiH crystal is studied in this paper. The instability temperature Te is found to lie above the observed melting point, in accord with computer simulation results of other materials. Several other features of LiH both in the solid and molten states are also discussed. (author). 22 refs, 4 figs

  19. Hardware Virtualization Support In INTEL, AMD And IBM Power Processors

    CERN Document Server

    Biswas, Kamanashis

    2009-01-01

    At present, the mostly used and developed mechanism is hardware virtualization which provides a common platform to run multiple operating systems and applications in independent partitions. More precisely, it is all about resource virtualization as the term hardware virtualization is emphasized. In this paper, the aim is to find out the advantages and limitations of current virtualization techniques, analyze their cost and performance and also depict which forthcoming hardware virtualization techniques will able to provide efficient solutions for multiprocessor operating systems. This is done by making a methodical literature survey and statistical analysis of the benchmark reports provided by SPEC (Standard Performance Evaluation Corporation) and TPC (Transaction processing Performance Council). Finally, this paper presents the current aspects of hardware virtualization which will help the IT managers of the large organizations to take effective decision while choosing server with virtualization support. Aga...

  20. Hardware device to physical structure binding and authentication

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  1. Scientific Computing Using Consumer Video-Gaming Hardware Devices

    CERN Document Server

    Volkema, Glenn

    2016-01-01

    Commodity video-gaming hardware (consoles, graphics cards, tablets, etc.) performance has been advancing at a rapid pace owing to strong consumer demand and stiff market competition. Gaming hardware devices are currently amongst the most powerful and cost-effective computational technologies available in quantity. In this article, we evaluate a sample of current generation video-gaming hardware devices for scientific computing and compare their performance with specialized supercomputing general purpose graphics processing units (GPGPUs). We use the OpenCL SHOC benchmark suite, which is a measure of the performance of compute hardware on various different scientific application kernels, and also a popular public distributed computing application, Einstein@Home in the field of gravitational physics for the purposes of this evaluation.

  2. Hardware Transactional Memory Optimization Guidelines, Applied to Ordered Maps

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal; Probst, Christian W.; Karlsson, Sven

    2015-01-01

    synchronization method scales well. Recently, hardware transactional memory was introduced, which allows threads to use transactions instead of locks. So far, applying hardware transactional memory has shown mixed results. We believe this is because transactions are different from locks, and using them...... efficiently requires reasoning about those differences. In this paper we present 5 guidelines for applying hardware transactional memory efficiently, and apply the guidelines to BT-trees, a concurrent ordered map. Evaluating BT-trees on standard benchmarks shows that they are up to 5.3 times faster than...... traditional maps using hardware transactional memory, and up to 3.9 times faster than state of the art concurrent ordered maps....

  3. Hardware problems encountered in solar heating and cooling systems

    Science.gov (United States)

    Cash, M.

    1978-01-01

    Numerous problems in the design, production, installation, and operation of solar energy systems are discussed. Described are hardware problems, which range from simple to obscure and complex, and their resolution.

  4. OpenMM: A Hardware Independent Framework for Molecular Simulations

    OpenAIRE

    Eastman, Peter; Pande, Vijay S.

    2010-01-01

    The wide diversity of computer architectures today requires a new approach to software development. OpenMM is a framework for molecular mechanics simulations, allowing a single program to run efficiently on a variety of hardware platforms.

  5. New Model and Algorithm for Hardware/Software Partitioning

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Wu; Thambipillai Srikanthan; Guang-Wei Zou

    2008-01-01

    This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of hardware area but also optimizes the execution time. The computational model is extended so that all possible types of communications can be taken into account for the HW/SW partitioning. Also, a new dynamic programming algorithm is proposed on the basis of the computational model, in which source data, rather than speedup in previous work, of basic scheduling blocks are directly utilized to calculate the optimal solution. The proposed algorithm runs in O(n. A) for n code fragments and the available hardware area A. Simulation results show that the proposed algorithm solves the HW/SW partitioning without increase in running time, compared with the algorithm cited in the literature.

  6. A Unified, Hardware-Fitted, Cross-GPU Performance Model

    OpenAIRE

    Stevens, James; Klöckner, Andreas

    2016-01-01

    We present a mechanism to symbolically gather performance-relevant operation counts from numerically-oriented subprograms (`kernels') expressed in the Loopy programming system, and apply these counts in a simple, linear model of kernel run time. We use a series of `performance-instructive' kernels to fit the parameters of a unified model to the performance characteristics of GPU hardware from multiple hardware generations and vendors. We evaluate the predictive power of the model on a broad a...

  7. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    Science.gov (United States)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  8. Mitigating Hardware Cyber-Security Risks in Error Correcting Decoders

    OpenAIRE

    Hemati, Saied

    2015-01-01

    This paper investigates hardware cyber-security risks associated with channel decoders, which are commonly acquired as a black box in semiconductor industry. It is shown that channel decoders are potentially attractive targets for hardware cyber-security attacks and can be easily embedded with malicious blocks. Several attack scenarios are considered in this work and suitable methods for mitigating the risks are proposed. These methods are based on randomizing the inputs of the channel decode...

  9. Hardware Evolution of Closed-Loop Controller Designs

    Science.gov (United States)

    Gwaltney, David; Ferguson, Ian

    2002-01-01

    Poster presentation will outline on-going efforts at NASA, MSFC to employ various Evolvable Hardware experimental platforms in the evolution of digital and analog circuitry for application to automatic control. Included will be information concerning the application of commercially available hardware and software along with the use of the JPL developed FPTA2 integrated circuit and supporting JPL developed software. Results to date will be presented.

  10. Smartphone’s Hardware Architectures and Their Issues

    Directory of Open Access Journals (Sweden)

    Rohit Kumar,

    2014-05-01

    Full Text Available Smart phones provides us the capability of a typical computer with absolute mobility and small form factor. But the hardware architecture of smart phone is significantly different from the conventional hardware architectures. The feature and architecture of the processors is totally different the traditional processor as these processors are developed to cope-up with fewer energy availability with smart phones or any other ultra portable devices.

  11. SNL/NM weapon hardware characterization process development report

    Energy Technology Data Exchange (ETDEWEB)

    Graff, E.W.; Chambers, W.B.

    1995-01-01

    This report describes the process used by Sandia National Laboratories, New Mexico to characterize weapon hardware for disposition. The report describes the following basic steps: (1) the drawing search process and primary hazard identification; (2) the development of Disassembly Procedures (DPs), including demilitarization and sanitization requirements; (3) the generation of a ``disposal tree``; (4) generating RCRA waste disposal information; and (5) documenting the information. Additional data gathered during the characterization process supporting hardware grouping and recycle efforts is also discussed.

  12. Computer generated holography using parallel commodity graphics hardware

    OpenAIRE

    Ahrenberg, Lukas; Benzie, Philip; Magnor, Marcus; Watson, John

    2006-01-01

    This paper presents a novel method for using programmable graphics hardware to generate fringe patterns for SLM-based holographic displays. The algorithm is designed to take the programming constraints imposed by the graphics hardware pipeline model into consideration, and scales linearly with the number of object points. In contrast to previous methods we do not have to use the Fresnel approximation. The technique can also be used on several graphics processors in p...

  13. Top Down Approach: SIMULINK Mixed Hardware / Software Design

    OpenAIRE

    Youssef Atat; Mostafa Rizk

    2012-01-01

    System-level design methodologies have been introduced as a solution to handle the design complexity of mixed Hardware / Software systems. In this paper we describe a system-level design flow starting from Simulink specification, focusing on concurrent hardware and software design and verification at four different abstraction levels: System Simulink model, Transaction Simulink model, Macro architecture, and micro architecture. We used the MP3 CodeC application, to validate our approach and m...

  14. A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation

    OpenAIRE

    Samuel Charbouillot; Annie Pérez; Daniele Fronte

    2008-01-01

    We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware implementation of a general purpose cellular automaton (CA) entirely programmable. The heart of this structure is a PE array with reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based on...

  15. Efficiently rendering large volume data using texture mapping hardware

    OpenAIRE

    Tong, X; Tang, Z.; Tsang, WW; Wang, WP

    1999-01-01

    Volume rendering with texture mapping hardware is a fast volume rendering method available on high-end workstations. However, limited texture memory often prevents the method from being used to render large volume data efficiently. In this paper, we propose a new approach to fast rendering of large volume data with texture mapping hardware. Based on a new volume-loading pipeline, the volume data is preprocessed in such a way that only the volume data that contains object voxels are loaded int...

  16. Advances in Metered Dose Inhaler Technology: Hardware Development

    OpenAIRE

    Stein, Stephen W.; Sheth, Poonam; Hodson, P. David; Myrdal, Paul B.

    2013-01-01

    Pressurized metered dose inhalers (MDIs) were first introduced in the 1950s and they are currently widely prescribed as portable systems to treat pulmonary conditions. MDIs consist of a formulation containing dissolved or suspended drug and hardware needed to contain the formulation and enable efficient and consistent dose delivery to the patient. The device hardware includes a canister that is appropriately sized to contain sufficient formulation for the required number of doses, a metering ...

  17. Top Down Approach: SIMULINK Mixed Hardware / Software Design

    Directory of Open Access Journals (Sweden)

    Youssef Atat

    2012-05-01

    Full Text Available System-level design methodologies have been introduced as a solution to handle the design complexity of mixed Hardware / Software systems. In this paper we describe a system-level design flow starting from Simulink specification, focusing on concurrent hardware and software design and verification at four different abstraction levels: System Simulink model, Transaction Simulink model, Macro architecture, and micro architecture. We used the MP3 CodeC application, to validate our approach and methodology.

  18. Smartphone’s Hardware Architectures and Their Issues

    OpenAIRE

    Rohit Kumar; Lokesh Pawar

    2014-01-01

    Smart phones provides us the capability of a typical computer with absolute mobility and small form factor. But the hardware architecture of smart phone is significantly different from the conventional hardware architectures. The feature and architecture of the processors is totally different the traditional processor as these processors are developed to cope-up with fewer energy availability with smart phones or any other ultra portable devices.

  19. Power aware early design stage hardware software co-optimization

    OpenAIRE

    Sarkar, Souradip; Heirman, Wim; Carlson, Trevor; Eeckhout, Lieven

    2012-01-01

    Co-optimizing hardware and software can lead to substantial performance and energy benefits, and is becoming an increasingly important design paradigm. In scientific computing, power constraints increasingly necessitate the return to specialized chips such as Intel’s MIC or IBM’s Blue-Gene architectures. To enable hardware/software co-design in early stages of the design cycle, we propose a simulation infrastructure methodology by combining high-abstraction performance simulation using Sniper...

  20. A Formal Method for Hardware/Software Co-Design

    OpenAIRE

    Ketil Stoelen; Max Fuchs

    2016-01-01

    This paper presents a formal method supporting hardware/software co-design with respect to specification and verification. We introduce three different specification formats. Two of these are intended for the specification of asynchronous software; the third is more suited for digital hardware applications. All three formats are based on the assumption/commitment paradigm. We introduce a refinement relation and formulate verification rules for the parallel composition of specifications. We ap...

  1. Quantifying the Value of Open Source Hard-ware Development

    OpenAIRE

    Pearce, Joshua M.

    2015-01-01

    With the maturation of digital manufacturing technologies like 3-D printing, a new paradigm is emerging of distributed manufacturing in both scientific equipment and consumer goods. Hardware released under free licenses is known as free and open source hardware (FOSH). The availability of these FOSH designs has a large value to those with access to digital manufacturing methods and particularly for scientists with needs for highly-customized low-volume production products. I...

  2. Using software and hardware neural networks in a Higgs search

    International Nuclear Information System (INIS)

    The present investigation uses information from computer simulations to train neural networks to identify decays of heavy Higgs particles (mH>>mZ). Results are presented both for software and hardware analog neural networks. The hardware tests include the Intel ETANN and the CLNN32/CLNS64 (experimental, research prototype developed at Bellcore) chip-set implemented in VME-modules. The processing and learning times for the networks are discussed. ((orig.))

  3. Readout logic and its hardware implementation in the DIRAC experiment

    International Nuclear Information System (INIS)

    Readout logic and architecture of the readout hardware of the experiment DIRAC at CERN are described. The data collection system is configured from dedicated and commercial readout branches running in a parallel hardware-controlled mode. Readout process is controlled by trigger processors which may decide to reject an event during its acquisition. The system design provides a small dead time resulting in a sufficiently high rate capability

  4. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  5. Assuring Quality and Reliability in Complex Avionics Systems hardware & Software

    Directory of Open Access Journals (Sweden)

    V. Haridas

    1997-01-01

    Full Text Available It is conventional wisdom in defence systems that electronic brains are where much of the present and future weapons system capability is developed. Electronic hardware advances, particularly in microprocessor, allow highly complex and sophisticated software to provide high degree of system autonomy and customisation to mission at hand. Since modern military systems are so much dependent on the proper functioning of electronics, the quality and reliability of electronic hardware and software have a profound impact on defensive capability and readiness. At the hardware level, due to the advances in microelectronics, functional capabilities of today's systems have increased. The advances in the hardware field have an impact on software also. Now a days, it is possible to incorporate more and more system functions through software, rather than going for a pure hardware solution. On the other hand complexities the systems are increasing, working energy levels of the systems are decreasing and the areas of reliability and quality assurance are becoming more and more wide. This paper covers major failure modes in microelectronic devices. The various techniques used to improve component and system reliability are described. The recent trends in expanding the scope of traditional quality assurance techniques are also discussed, considering both hardware and software.

  6. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  7. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  8. Failure analysis of superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit; Campbell, A M; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-06-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behavio0008.

  9. Failure analysis of superconducting bearings

    International Nuclear Information System (INIS)

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour

  10. A Self-Sensing Active Magnetic Bearing Based on a Direct Current Measurement Approach

    OpenAIRE

    Du Rand, Carel P.; George van Schoor; Niemann, Andries C.

    2013-01-01

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance the...

  11. Designing Rolling-Element Bearings

    Science.gov (United States)

    Moore, James D., Jr.

    2007-01-01

    Bearing Analysis Tool (BAT) is a computer program for designing rolling-element bearings for cryogenic turbomachines. BAT provides a graphical user interface (GUI) that guides the entry of data to develop mathematical models of bearings. The GUI breaks model data into logical subsets that are entered through logic-driven input screens. The software generates a threedimensional graphical model of a bearing as the data are entered. Most dataentry errors become immediately obvious in the graphical model. BAT provides for storage of all the data on a shaft/bearing system, enabling the creation of a library of proven designs. Data from the library can be transferred to subsequent projects by use of simple cut-and-paste routines. BAT includes a library of temperature- dependent cryogenic bearing-material properties for use in the mathematical models. BAT implements algorithms that (1) enable the user to select combinations of design and/or operating-condition parameters, and then (2) automatically optimize the design by performing trade studies over all of the parameter combinations. This feature enables optimization over a large trade space in a fraction of the time taken when using prior bearingmodel software.

  12. An Occurrence of H2 in Silicate Melt Inclusions in Quartz from Granite of Jiajika Granitic Pegmatite Deposit, China

    Science.gov (United States)

    Li, J.; Chou, I.-M.

    2014-06-01

    Laser Raman spectroscopic analyses of silicate melt inclusions in quartz, from granite of Jiajika Li-bearing pegmatite deposit in China, revealed the existence of H_2 in the vapor phase with unknown mechanisms for the formation and retention of H_2.

  13. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  14. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    Science.gov (United States)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  15. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...

  16. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    Science.gov (United States)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  17. Review of Maxillofacial Hardware Complications and Indications for Salvage.

    Science.gov (United States)

    Hernandez Rosa, Jonatan; Villanueva, Nathaniel L; Sanati-Mehrizy, Paymon; Factor, Stephanie H; Taub, Peter J

    2016-06-01

    From 2002 to 2006, more than 117,000 facial fractures were recorded in the U.S. National Trauma Database. These fractures are commonly treated with open reduction and internal fixation. While in place, the hardware facilitates successful bony union. However, when postoperative complications occur, the plates may require removal before bony union. Indications for salvage versus removal of the maxillofacial hardware are not well defined. A literature review was performed to identify instances when hardware may be salvaged. Articles considered for inclusion were found in the PubMed and Web of Science databases in August 2014 with the keywords maxillofacial trauma AND hardware complications OR indications for hardware removal. Included studies looked at human patients with only facial trauma and miniplate fixation, and presented data on complications and/or hardware removal. Fifteen articles were included. None were clinical trials. Complication data were presented by patient, fractures, and/or plate without consistency. The data described 1,075 fractures, 2,961 patients, and 2,592 plates, nonexclusive. Complication rates varied from 6 to 8% by fracture and 6 to 13% by patient. When their data were combined, 50% of complications were treated with plate removal; this was consistent across the mandible, midface, and upper face. All complications caused by loosening, nonunion, broken hardware, and severe/prolonged pain were treated with removal. Some complications caused by exposures, deformities, and infections were treated with salvage. Exposed plates were treated with flaps, plates with deformities were treated with secondary procedures including hardware revision, and hardware infections were treated with antibiotics alone or in conjunction with soft-tissue debridement and/or tooth extraction. Well-designed clinical trials evaluating hardware removal versus salvage are lacking. Some postoperative complications caused by exposure, deformity, and/or infection may be

  18. Vitrification of sulphate bearing high level waste (HLW)

    International Nuclear Information System (INIS)

    The Indian strategy for the management of spent fuel is based on Reprocessing-Conditioning- Recycle (RCR) option. Reprocessing of spent fuel by the PUREX process leads to the generation of high-level radioactive liquid waste. Strategy for the management of high-level waste in India involves: a) Immobilization of HLW in borosilicate matrices b) Interim storage of vitrified HLW for a period of about 50 years c) Ultimate disposal of vitrified HLW in deep geological repository Borosilicate matrices have found wide acceptance for immobilization of high level wastes. Suitable glass compositions within the borosilicate family have been formulated and characterized for sulphate bearing high-level radioactive waste. Presence of sulphate in HLW, generated earlier, is on account of ferrous sulphamate as a reducing agent, added during partitioning stage of reprocessing. Solubility of sulphur in the form of sodium sulphate is very less (<1% wt) in normally deployed borosilicate melts for vitrification of HLW. The soluble alkali sulphate gets phase separated in the glass melt and its presence is not desirable since this phase is enriched with radio Cs and has high solubility in water. In addition, volatility of sulphates during glass formation is another area of concern. Attempts to address this problem were made and alternative glass forming systems based on lead and barium borosilicate systems were studied for immobilization of this sulphate bearing waste. (author)

  19. Space biology initiative program definition review. Trade study 5: Modification of existing hardware (COTS) versus new hardware build cost analysis

    Science.gov (United States)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. An SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial to determine the potential advantages in modifying commercial off-the-shelf (COTS) hardware for some SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition trade study analysis must be adjusted in scope and schedule to be complete for the SBI Definition (Non-Advocate) Review. The relative costs of modifying existing commercial off-the-shelf (COTS) hardware is compared to fabricating new hardware. An historical basis for new build versus modifying COTS to meet current NMI specifications for manned space flight hardware is surveyed and identified. Selected SBI hardware are identified as potential candidates for off-the-shelf modification and statistical estimates on the relative cost of modifying COTS versus new build are provided.

  20. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer...... as the temperature approaches the bulk melting point. The more close-packed Al(111) surface shows a much weaker disordering below the melting temperature....

  1. Bear reintroduction: Lessons and challenges

    Science.gov (United States)

    Clark, Joseph D.; Huber, Djuro; Servheen, Christopher

    2002-01-01

    Reintroduction is defined as an attempt to establish a species in an area that was once part of its historical range, but from which it has been extirpated or become extinct. Historically, one of the most successful programs was the reintroduction of 254 American black bears (Ursus americanus) from Minnesota to the Interior Highlands of Arkansas in the 1960s; that population has grown to >2,500 today. More recent efforts have involved fewer but better monitored animals and have sometimes employed techniques to improve site fidelity and survival. In Pennsylvania, for example, pregnant female American black bears were successfully translocated from winter dens, the premise being that the adult females would be less likely to return because of the presence of young cubs. That winter-release technique was compared to summer trapping and release in Tennessee; winter releases resulted in greater survival and reduced post-release movements. Homing has not been a problem for small numbers of brown bears (Ursus arctos) reintroduced to the Cabinet-Yaak ecosystem in Montana and Idaho and to the mountains of Austria and France. Reintroduction success appears to be correlated with translocation distance and is greater for subadults and females. As with any small population, reintroduced bear populations are susceptible to environmental variation and stochastic demographic and genetic processes. Although managers have focused on these biological barriers, sociopolitical impediments to bear reintroduction are more difficult to overcome. Poor public acceptance and understanding of bears are the main reasons some reintroduction programs have been derailed. Consequently, the public should be involved in the reintroduction process from the outset; overcoming negative public perceptions about bear reintroduction will be our greatest challenge.

  2. Asymmetric Melting and Freezing Kinetics in Silicon.

    OpenAIRE

    Aziz, Michael; Tsao, Jeff Y.; Thompson, Michael O.; Peercy, Paul S.

    1986-01-01

    We report measurements of the melting velocity of amorphous Si relative to that of (100) crystalline Si. These measurements permit the first severe experimental test of theories describing highly nonequilibrium freezing and melting. The results indicate that freezing in Si is inherently slower than melting; this asymmetry can be interpreted in terms of an entropy-related reduction in the freezing rate.

  3. 49 CFR 229.69 - Side bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  4. 36 CFR 13.1236 - Bear orientation.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  5. Accessory and opaque minerals in impact melt rocks of the Boltysh structure, Ukraine

    Science.gov (United States)

    Gurov, E. P.; Shekhunova, S. B.; Permyakov, V. V.

    2015-06-01

    Electron microprobe analyses of accessory and opaque minerals from the impact melt rocks of the Boltysh structure, in the central part of the Ukrainian Shield, are presented in this report. Our study establishes a variety of minerals represented by native metals, alloys, oxides, sulfides, phosphates, and silicates, formed during several stages of cooling and solidification of the thick impact melt sheet. Baddeleyite was determined to be the earliest high-temperature mineral to occur in the impact melt rocks. Iron and titanium oxides crystallized earlier or simultaneously with the microliths of orthopyroxene and feldspars. High concentrations of TiO2, Al2O3, and Cr2O3 were identified in some hematite varieties. Cu- and Ni-bearing pyrrhotites occur in impact melt rocks with a glassy matrix. Native metals—copper, platinum, and silver—were likely formed due to the hydrothermal alteration of the upper unit of the impact melt sheet. Zircon is the only accessory mineral found in impact melt rocks that is preserved from the basement granites of the Boltysh structure.

  6. Multijet investigations with tin melt

    International Nuclear Information System (INIS)

    In the experiments which are described in this paper, several jets or chains of drops by hot tin melt were side by side brought into a container filled with water, so that the melt formed a plane in the water. By the ignition of an underwater bridgewire explosion an interaction was triggered at that jet, which was nearest to the explosion centre. Under suitable conditions this interaction leaped over to neighbouring jets and reached even the most distant jet, when not stopped before. The propagation could be recorded by a high speed camera. The records showed, that the interactions propagated in special directions and the velocity of the propagation was in a range of 2 to 8 m/s. The position of the drops and their distance to each other is very important for the propagation. By separating the single melt jets with fixed copper plats, it could be showed, that hydrodynamic effects are not responsible for the propagation of the interactions. Shock waves, resulting from the interaction cycles, are the cause for the propagation of the interactions. (orig.)

  7. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  8. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  9. Color science demonstration kit from open source hardware and software

    Science.gov (United States)

    Zollers, Michael W.

    2014-09-01

    Color science is perhaps the most universally tangible discipline within the optical sciences for people of all ages. Excepting a small and relatively well-understood minority, we can see that the world around us consists of a multitude of colors; yet, describing the "what", "why", and "how" of these colors is not an easy task, especially without some sort of equally colorful visual aids. While static displays (e.g., poster boards, etc.) serve their purpose, there is a growing trend, aided by the recent permeation of small interactive devices into our society, for interactive and immersive learning. However, for the uninitiated, designing software and hardware for this purpose may not be within the purview of all optical scientists and engineers. Enter open source. Open source "anything" are those tools and designs -- hardware or software -- that are available and free to use, often without any restrictive licensing. Open source software may be familiar to some, but the open source hardware movement is relatively new. These are electronic circuit board designs that are provided for free and can be implemented in physical hardware by anyone. This movement has led to the availability of some relatively inexpensive, but quite capable, computing power for the creation of small devices. This paper will showcase the design and implementation of the software and hardware that was used to create an interactive demonstration kit for color. Its purpose is to introduce and demonstrate the concepts of color spectra, additive color, color rendering, and metamers.

  10. GOSH! A roadmap for open-source science hardware

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The goal of the Gathering for Open Science Hardware (GOSH! 2016), held from 2 to 5 March 2016 at IdeaSquare, was to lay the foundations of the open-source hardware for science movement.   The participants in the GOSH! 2016 meeting gathered in IdeaSquare. (Image: GOSH Community) “Despite advances in technology, many scientific innovations are held back because of a lack of affordable and customisable hardware,” says François Grey, a professor at the University of Geneva and coordinator of Citizen Cyberlab – a partnership between CERN, the UN Institute for Training and Research and the University of Geneva – which co-organised the GOSH! 2016 workshop. “This scarcity of accessible science hardware is particularly obstructive for citizen science groups and humanitarian organisations that don’t have the same economic means as a well-funded institution.” Instead, open sourcing science hardware co...

  11. OS friendly microprocessor architecture: Hardware level computer security

    Science.gov (United States)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  12. Higher-Level Hardware Synthesis of the KASUMI Algorithm

    Institute of Scientific and Technical Information of China (English)

    Issam W. Damaj

    2007-01-01

    Programmable Logic Devices (PLDs) continue to grow in size and currently contain several millions of gates.At the same time, research effort is going into higher-level hardware synthesis methodologies for reconfigurable computing that can exploit PLD technology.In this paper, we explore the effectiveness and extend one such formal methodology in the design of massively parallel algorithms.We take a step-wise refinement approach to the development of correct reconfigurable hardware circuits from formal specifications.A functional programming notation is used for specifying algorithms and for reasoning about them.The specifications are realised through the use of a combination of function decomposition strategies, data refinement techniques, and off-the-shelf refinements based upon higher-order functions.The off-the-shelf refinements are inspired by the operators of Communicating Sequential Processes (CSP) and map easily to programs in Handel-C (a hardware description language).The Handel-C descriptions are directly compiled into reconfigurable hardware.The practical realisation of this methodology is evidenced by a case studying the third generation mobile communication security algorithms.The investigated algorithm is the KASUMI block cipher.In this paper, we obtain several hardware implementations with different performance characteristics by applying different refinements to the algorithm.The developed designs are compiled and tested under Celoxica's RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA.Performance analysis and evaluation of these implementations are included.

  13. Future Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Chang, Jun-Dong

    2014-01-01

    One of the most important issues in the modern total hip arthroplasty (THA) is the bearing surface. Extensive research on bearing surfaces is being conducted to seek an ideal bearing surface for THA. The ideal bearing surface for THA should have superior wear characteristics and should be durable, bio-inert, cost-effective, and easy to implant. However, bearing surfaces that are currently being implemented do not completely fulfill these requirements, especially for young individuals for whom...

  14. Density of iron-nickel melts

    International Nuclear Information System (INIS)

    Iron-nickel melt density is studied in the wide ranges of concentrations and temperatures using the penetrating gamma radiation method. Mean coordination numbers and interatomic distances have been calculated. Attainment of equilibrium state from the point of view of the melt composition and microvolume structure requires, depending on melting condition, rather long time in some cases, up to several hours. Concentration dependences of density, mean coordination numbers and interatomic distances indicate complex, heterogeneous microstructure of the Fe-Ni melts. In equilibrium the level of heterogeneity as well as the short-range order structure significantly depend on melt composition

  15. 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117. ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  17. Melting by temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, B.; Okazaki, Iwao; Ishikiriyama, Kazuhiko; Boller, A. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry]|[Oak Ridge National Lab., TN (United States)

    1997-09-01

    Well-crystallized macromolecules melt irreversibly due to the need of molecular nucleation, while small molecules melt reversibly as long as crystal nuclei are present to assist crystallization. Furthermore, imperfect crystals of low-molar-mass polymers may have a sufficiently small region of metastability between crystallization and melting to show a reversing heat-flow component due to melting of poor crystals followed by crystallization of imperfect crystals which have insufficient time to perfect before the modulation switches to heating and melts the imperfect crystals. Many metals, in turn. melt sharply and reversibly as long as nuclei remain after melting for subsequent crystallization during the cooling cycle. Their analysis is complicated, however, due to thermal conductivity limitations of the calorimeters. Polymers of sufficiently high molar mass, finally, show a small amount of reversible. local melting that may be linked to partial melting of individual molecules. Experiments by temperature-modulated calorimetry and model calculations are presented. The samples measured included poly(ethylene terephthalate)s, poly(ethylene oxide)s, and indium. Two unsolved problems that arose from this research involve the origin of a high, seemingly stable, reversible heat capacity of polymers in the melting region, and a smoothing of melting and crystallization into a close-to-elliptical Lissajous figure in a heat-flow versus sample-temperature plot.

  18. Hardware/Software Co-Design for Spike Based Recognition

    CERN Document Server

    Ghani, Arfan; Maguire, Liam; Harkin, Jim

    2008-01-01

    The practical applications based on recurrent spiking neurons are limited due to their non-trivial learning algorithms. The temporal nature of spiking neurons is more favorable for hardware implementation where signals can be represented in binary form and communication can be done through the use of spikes. This work investigates the potential of recurrent spiking neurons implementations on reconfigurable platforms and their applicability in temporal based applications. A theoretical framework of reservoir computing is investigated for hardware/software implementation. In this framework, only readout neurons are trained which overcomes the burden of training at the network level. These recurrent neural networks are termed as microcircuits which are viewed as basic computational units in cortical computation. This paper investigates the potential of recurrent neural reservoirs and presents a novel hardware/software strategy for their implementation on FPGAs. The design is implemented and the functionality is ...

  19. Hardware Accelerated Compression of LIDAR Data Using FPGA Devices

    Directory of Open Access Journals (Sweden)

    Franc Novak

    2013-05-01

    Full Text Available Airborne Light Detection and Ranging (LIDAR has become a mainstream technology for terrain data acquisition and mapping. High sampling density of LIDAR enables the acquisition of high details of the terrain, but on the other hand, it results in a vast amount of gathered data, which requires huge storage space as well as substantial processing effort. The data are usually stored in the LAS format which has become the de facto standard for LIDAR data storage and exchange. In the paper, a hardware accelerated compression of LIDAR data is presented. The compression and decompression of LIDAR data is performed by a dedicated FPGA-based circuit and interfaced to the computer via a PCI-E general bus. The hardware compressor consists of three modules: LIDAR data predictor, variable length coder, and arithmetic coder. Hardware compression is considerably faster than software compression, while it also alleviates the processor load.

  20. Mapping of topological quantum circuits to physical hardware.

    Science.gov (United States)

    Paler, Alexandru; Devitt, Simon J; Nemoto, Kae; Polian, Ilia

    2014-01-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit. PMID:24722360

  1. Hardware Architecture Study for NASA's Space Software Defined Radios

    Science.gov (United States)

    Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John

    2008-01-01

    This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  2. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  3. Mapping of Topological Quantum Circuits to Physical Hardware

    Science.gov (United States)

    Paler, Alexandru; Devitt, Simon J.; Nemoto, Kae; Polian, Ilia

    2014-04-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit.

  4. Bringing the power of dynamic languages to hardware control systems

    CERN Document Server

    Caicedo, J M; Neufeld, N

    2009-01-01

    Hardware control systems are normally programmed using high-performance languages like C or C++ and increasingly also Java. All these languages are strongly typed and compiled which brings usually good performance but at the cost of a longer development and testing cycle and the need for more programming expertise. Dynamic languages which were long thought to be too slow and not powerful enough for control purposes are, thanks to modern powerful computers and advanced implementation techniques, fast enough for many of these tasks. We present examples from the LHCb Experiment Control System (ECS), which is based on a commercial SCADA software. We have successfully used Python to integrate hardware devices into the ECS. We present the necessary lightweight middle-ware we have developed, including examples for controlling hardware and software devices. We also discuss the development cycle, tools used and compare the effort to traditional solutions.

  5. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-05-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally implementing chaotic systems. Subsequently, some techniques to eliminate such defects, including the ultimately adopted scheme are listed and explained in detail. Moreover, the thesis describes original work on the design of an encryption system to encrypt MPEG-2 video streams. Information about the MPEG-2 standard that fits this design context is presented. Then, the security of the proposed system is exhaustively analyzed and the performance is compared with other reported systems, showing superiority in performance and security. The thesis focuses more on the hardware and the circuit aspect of the system’s design. The system is realized on Xilinx Vetrix-4 FPGA with hardware parameters and throughput performance surpassing conventional encryption systems.

  6. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  7. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  8. Development of Enhanced Avionics Flight Hardware Selection Process

    Science.gov (United States)

    Smith, K.; Watson, G. L.

    2003-01-01

    The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

  9. Scalable Digital Hardware for a Trapped Ion Quantum Computer

    CERN Document Server

    Mount, Emily; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-01-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for trapping and cooling the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  10. Scalable digital hardware for a trapped ion quantum computer

    Science.gov (United States)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2015-09-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  11. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found.

  12. Long term coolability of a core melt

    International Nuclear Information System (INIS)

    One of the problems which must be solved in severe accidents is the melt concrete interaction which occurs when the core debris penetrates the lower vessel head and contacts the basement. To prevent these consequences a core catcher concept is considered to be integrated into a new PWR design based on the standard German PWR. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on the process of water inlet from the bottom through the melt. In order to identify the dominant processes of flooding the melt from the bottom experiments in laboratory scale have been carried out. To get more detailed information on the very important process of water penetration into the melt, a simulant experiment has been conducted using a transparent plastic melt with the typical viscosity behaviour of an oxidic corium melt and a temperature allowing evaporation of water. (orig.(DG)

  13. Rapid Energy Estimation for Hardware-Software Codesign Using FPGAs

    Directory of Open Access Journals (Sweden)

    Viktor K. Prasanna

    2006-09-01

    Full Text Available By allowing parts of the applications to be executed either on soft processors (as software programs or on customized hardware peripherals attached to the processors, FPGAs have made traditional energy estimation techniques inefficient for evaluating various design tradeoffs. In this paper, we propose a high-level simulation-based two-step rapid energy estimation technique for hardware-software codesign using FPGAs. In the first step, a high-level hardware-software cosimulation technique is applied to simulate both the hardware and software components of the target application. High-level simulation results of both software programs running on the processors and the customized hardware peripherals are gathered during the cosimulation process. In the second step, the high-level simulation results of the customized hardware peripherals are used to estimate the switching activities of their corresponding register-transfer/gate level (“low-level” implementations. We use this information to employ an instruction-level energy estimation technique and a domain-specific energy performance modeling technique to estimate the energy dissipation of the complete application. A Matlab/Simulink-based implementation of our approach and two numerical computation applications show that the proposed energy estimation technique can achieve more than 6000x speedup over low-level simulation-based techniques while sacrificing less than 10% estimation accuracy. Compared with the measured results, our experimental results show that the proposed technique achieves an average estimation error of less than 12%.

  14. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  15. Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    Science.gov (United States)

    Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael

    2003-01-01

    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.

  16. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  17. USING SUBTHRESHOLD SRAM TO DESIGN LOW-POWER CRYPTO HARDWARE

    Directory of Open Access Journals (Sweden)

    Adnan Abdul-Aziz Gutub

    2011-01-01

    Full Text Available Cryptography and Security hardware architecture designing is in essential need for efficient power utilization which is achieved earlier by giving a range of trade- off between speed and power consumption. This paper presents the initiative of considering subthreshold SRAM memory modules to gain ultra-low-power capable systems. The paper presents improving existing crypto security architectures to reconfigurable domain-specific SRAM memory designs. It is found that reliability is still a problem not solved; however, we start this paper idea to design flexible crypto hardware to gain the performance as well as the reduced power consumption.

  18. Grey Energy and Environmental Impacts of ICT Hardware

    OpenAIRE

    Hischier, Roland; Coroama, Vlad C; Schien, Daniel; Ahmadi Achachlouei, Mohammad

    2015-01-01

    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated...

  19. Integrated circuit authentication hardware Trojans and counterfeit detection

    CERN Document Server

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  20. Computer organization and design the hardware/software interface

    CERN Document Server

    Hennessy, John L

    1994-01-01

    Computer Organization and Design: The Hardware/Software Interface presents the interaction between hardware and software at a variety of levels, which offers a framework for understanding the fundamentals of computing. This book focuses on the concepts that are the basis for computers.Organized into nine chapters, this book begins with an overview of the computer revolution. This text then explains the concepts and algorithms used in modern computer arithmetic. Other chapters consider the abstractions and concepts in memory hierarchies by starting with the simplest possible cache. This book di

  1. Resource Management for the Heterogeneous Arrays of Hardware Accelerators

    Czech Academy of Sciences Publication Activity Database

    Pohl, Zdeněk; Tichý, Milan

    Chania: IEEE, 2011, s. 486-489. ISBN 978-0-7695-4529-5. [FPL 2011 International Conference on Field Programmable Logic and Applications (21th). Chania (GR), 05.09.2011-07.09.2011] R&D Projects: GA MŠk 7H09005 Institutional research plan: CEZ:AV0Z10750506 Keywords : resource management * FPGA * embedded systems * hardware acceleration * power management * scalability Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2011/ZS/pohl-resource management for the heterogeneous arrays of hardware accelerators.pdf

  2. Appcessory Economics: Enabling loosely coupled hardware / software innovation

    OpenAIRE

    Holtman, Koen

    2012-01-01

    An appcessory (app + accessory) is a smart phone accessory that is combined with a specially written app to perform a useful function. An example is a toy helicopter controlled by a smart phone app: the full value proposition involves both new hardware outside the phone and new software running inside the phone. Like the smart phone itself and like a PC, the appcessory hardware is a platform: it has the property that it becomes even more valuable if innovative new software is written for it. ...

  3. Automating an EXAFS facility: hardware and software considerations

    International Nuclear Information System (INIS)

    The basic design considerations for computer hardware and software, applicable not only to laboratory EXAFS facilities, but also to synchrotron installations, are reviewed. Uniformity and standardization of both hardware configurations and program packages for data collection and analysis are heavily emphasized. Specific recommendations are made with respect to choice of computers, peripherals, and interfaces, and guidelines for the development of software packages are set forth. A description of two working computer-interfaced EXAFS facilities is presented which can serve as prototypes for future developments. 3 figures

  4. Multicore Hardware-Software Design and Verification Techniques

    CERN Document Server

    Hsiung, Pao-Ann; Lin, Chao-Sheng

    2011-01-01

    The surge of multicore processors coming into the market and on users' desktops has made parallel computing the focus of attention once again. This time, however, it is led by the industry, which ensures that multicore computing is here to stay. Nevertheless, there is still so much research work to be done in multicore hardware-software designs before consumer applications can leverage the benefits of this new paradigm. This e-book is being put forward as a platform for immediate collection of state-of-the-art technologies in both hardware and software designs for multicore computing. With the

  5. Hardware/Software Co-design of Communication Protocols

    OpenAIRE

    Fischer, Stefan; Wytrebowicz, Jacek; Budkowski, Stan

    1996-01-01

    An important aspect in providing high performance distributed systems such as multimedia systems is the combined use of hardware and software in the end systems. System design techniques should allow hardware/software co-design to integrate both means of implementation. In this paper, we show how the standardized formal language Estelle can be used to facilitate co-design. The system will first be designed in Estelle. At the point in time of final decision on which parts to implement in softw...

  6. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta

    Science.gov (United States)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.

    2011-01-01

    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  7. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages

    Science.gov (United States)

    Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.; Heinrich, Christoph A.

    2007-04-01

    The partitioning of As and Au between rhyolite melt and low-salinity vapor (2 wt% NaCl eq.) in a melt-vapor-Au metal ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 120 MPa and f=NNO. The S-bearing runs have calculated values for the fugacities of H 2S, SO 2 and S 2 of logfS=1.1, logf=-1.5, and logf=-3.0. The ratio of H 2S to SO 2 is on the order of 400. The experiments constrain the effect of S on the partitioning behavior of As and Au at magmatic conditions. Calculated average Nernst-type partition coefficients (±1 σ) for As between vapor and melt, DAsv/m, are 1.0 ± 0.1 and 2.5 ± 0.3 in the S-free and S-bearing assemblages, respectively. These results suggest that sulfur has a small, but statistically meaningful, effect on the mass transfer of As between silicate melt and low-salinity vapor at the experimental conditions. Efficiencies of removal, calculated following Candela and Holland (1986), suggest that the S-free and S-bearing low-salinity vapor can scavenge approximately 41% and 63% As from water-saturated rhyolite melt, respectively, during devolatilization assuming that As is partitioned into magnetite and pyrrhotite during second boiling. The S-free data are consistent with the presence of arsenous acid, As(OH) 3 in the vapor phase. However, the S-bearing data suggest the presence of both arsenous acid and a As-S complex in S-bearing magmatic vapor. Apparent equilibrium constants, logKAs'(±1σ), describing the partitioning of As between melt and vapor are -1.3 (0.1) and -1.1 (0.1) for the S-free and S-bearing runs, respectively. The increase in the value of KAs' with the addition of S suggests a role for S in complexing and scavenging As from the melt during degassing. The calculated vapor/melt partition coefficients (±1 σ) for Au between vapor and melt, DAuv/m, in S-free and S-bearing assemblages are 15 ± 2.5 and 12 ± 0.3, respectively. Efficiencies of removal ( Candela and Holland, 1986) for the S-free melt, calculated

  8. Petrogenesis and geochemistry of kyanite-bearing pegmatites in the Buncombe Pegmatite District, North Carolina

    OpenAIRE

    Wood, Keith Yates

    1996-01-01

    Kyanite is generally considered to be a product of metamorphism. This study investigates a set of kyanite-bearing pegmatites that represent a case in which kyanite crystallized directly from melt. The pegmatites intrude spinel orthopyroxene hornblendite in the Buncombe Pegmatite District in the Eastern Blue Ridge of North Carolina. One site was studied in detail and survey studies of two other occurrences were made. The pegmatites contain quartz, large euhedral crystals of ...

  9. Melt decontamination of aluminum waste by electric arc melting

    International Nuclear Information System (INIS)

    In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at the Korea Atomic Energy Research Institute (KAERI) has been under way. Hundreds of tons of metallic wastes are expected from the D and D of these facilities Therefore, prompt countermeasures should be taken to deal with the amount of wastes generated by dismantling the retired nuclear facilities. Most of the dismantled material is slightly contaminated. A recycle or volume reduction of the metallic wastes can be considered as one of the waste management options under the circumstances of the absence of a waste disposal site in Korea and the capacity limitation of the temporary waste storage facility at KAERI. The results of the XRD analysis showed that the surrogate nuclides move into the slag, which can be easily separated from the melt, and then they combine with the aluminum oxide to form a more stable compound. The distribution ratio of cobalt in the ingot was more than 40% according to the types of fluxes. A removal efficiency of more than 98% for the cesium and strontium from the ingot could be achieved due to their transportation from the ingot to the slag and the dust phase. Therefore, it can be expected that a greater part of the aluminum wastes generated from the retired research reactors can be recycled or their volumes reduced for a disposal by a melting

  10. Melt decontamination of aluminum waste by electric arc melting

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wang Kyu; Song, Pyung Seob; Jung, Chong Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Min, Byung Youn [Chungnam National University, Taejeon (Korea, Republic of)

    2005-11-15

    In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at the Korea Atomic Energy Research Institute (KAERI) has been under way. Hundreds of tons of metallic wastes are expected from the D and D of these facilities Therefore, prompt countermeasures should be taken to deal with the amount of wastes generated by dismantling the retired nuclear facilities. Most of the dismantled material is slightly contaminated. A recycle or volume reduction of the metallic wastes can be considered as one of the waste management options under the circumstances of the absence of a waste disposal site in Korea and the capacity limitation of the temporary waste storage facility at KAERI. The results of the XRD analysis showed that the surrogate nuclides move into the slag, which can be easily separated from the melt, and then they combine with the aluminum oxide to form a more stable compound. The distribution ratio of cobalt in the ingot was more than 40% according to the types of fluxes. A removal efficiency of more than 98% for the cesium and strontium from the ingot could be achieved due to their transportation from the ingot to the slag and the dust phase. Therefore, it can be expected that a greater part of the aluminum wastes generated from the retired research reactors can be recycled or their volumes reduced for a disposal by a melting.

  11. Trends in Controllable Oil Film Bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing .......e., as tilting-pad bearings, multirecess journal bearings and plain bearings.......This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing...... the rotational speed ranges by improving damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing startup torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable bearings can act as...

  12. Copolymer Melts in Disordered Media

    OpenAIRE

    Stepanow, S.; Dobrynin, A.; Vilgis, T.; Binder, K.

    1996-01-01

    We have considered a symmetric AB block copolymer melt in a gel matrix with preferential adsorption of A monomers on the gel. Near the point of the microphase separation transition such a system can be described by the random field Landau-Brazovskii model, where randomness is built into the system during the polymerization of the gel matrix. By using the technique of the 2-nd Legendre transform, the phase diagram of the system is calculated. We found that preferential adsorption of the copoly...

  13. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  14. 49 CFR 238.105 - Train electronic hardware and software safety.

    Science.gov (United States)

    2010-10-01

    ... all hardware and software components and their interfaces; and comprehensive hardware and software... 49 Transportation 4 2010-10-01 2010-10-01 false Train electronic hardware and software safety. 238... and General Requirements § 238.105 Train electronic hardware and software safety. The requirements...

  15. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    Directory of Open Access Journals (Sweden)

    Jarosław KACZOR

    2014-06-01

    Full Text Available Durability deep groove ball bearings depends on factors (called attributes design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bearings to work three-bearing shafts, including elasticity and resilience three-bearing shafts.

  16. Non-Newtonian effects in silicate liquids and crystal bearing melts

    OpenAIRE

    Cordonnier, Benoit

    2009-01-01

    High-silica volcanic systems are considered to be the most devastating. Their highly viscous properties create a high pressurised non- fluent system which consequently relaxes the stress mostly by exploding through the brittle regime. Even if an explosion is avoided and the magma fl ows, it often generates lava domes at the top of the volcano; which, patiently, accumulate magmas that will rush down the slopes once the yield stress is crossed. Thus, such volcanoes have an explosive na...

  17. Evaluation of In-House versus Contract Computer Hardware Maintenance

    International Nuclear Information System (INIS)

    The issue of In-House versus Contract Computer Hardware Maintenance is one which every organization who uses computers must resolve. This report discusses the advantages and disadvantages of both approaches to computer maintenance, the costs involved (based on the current AGNS computer inventory), and the AGNS maintenance experience to date. A recommendation on an appropriate approach for AGNS is made

  18. Foundations of digital signal processing theory, algorithms and hardware design

    CERN Document Server

    Gaydecki, Patrick

    2005-01-01

    An excellent introductory text, this book covers the basic theoretical, algorithmic and real-time aspects of digital signal processing (DSP). Detailed information is provided on off-line, real-time and DSP programming and the reader is effortlessly guided through advanced topics such as DSP hardware design, FIR and IIR filter design and difference equation manipulation.

  19. CT image reconstruction system based on hardware implementation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hamilton P. da [Faculdade Tecnologica Internacional de Curitiba, PR (Brazil); Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil); Hormaza, Joel M. [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias; Lopes, Ricardo T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2009-07-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  20. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    International Nuclear Information System (INIS)

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  1. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  2. Hardware-in-the-loop testing of marine control system

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2006-10-01

    Full Text Available Hardware-in-the-Loop (HIL testing is proposed as a new methodology for verification and certification of marine control systems. Formalizing such testing necessitates the development of a vocabulary and set of definitions. This paper treats these issues by constructing a framework suitable for industrial HIL test applications and certification of marine systems.

  3. Remote Laboratory Hardware Modules Based on Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Darko Fudurić

    2007-08-01

    Full Text Available Networked embedded microcontrollers integrated into remote laboratory are proposed. Hardware and software architecture responsible for functioning of the laboratory is discussed. Compatibility with existing networks is mandatory, so common TCP/IP stack layer is introduced. Open remote laboratory, based on embedded systems is accessible from anywhere on the Internet.. It is suitable for practical

  4. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance d

  5. TreeBASIS Feature Descriptor and Its Hardware Implementation

    Directory of Open Access Journals (Sweden)

    Spencer Fowers

    2014-01-01

    Full Text Available This paper presents a novel feature descriptor called TreeBASIS that provides improvements in descriptor size, computation time, matching speed, and accuracy. This new descriptor uses a binary vocabulary tree that is computed using basis dictionary images and a test set of feature region images. To facilitate real-time implementation, a feature region image is binary quantized and the resulting quantized vector is passed into the BASIS vocabulary tree. A Hamming distance is then computed between the feature region image and the effectively descriptive basis dictionary image at a node to determine the branch taken and the path the feature region image takes is saved as a descriptor. The TreeBASIS feature descriptor is an excellent candidate for hardware implementation because of its reduced descriptor size and the fact that descriptors can be created and features matched without the use of floating point operations. The TreeBASIS descriptor is more computationally and space efficient than other descriptors such as BASIS, SIFT, and SURF. Moreover, it can be computed entirely in hardware without the support of a CPU for additional software-based computations. Experimental results and a hardware implementation show that the TreeBASIS descriptor compares well with other descriptors for frame-to-frame homography computation while requiring fewer hardware resources.

  6. Chip-Multiprocessor Hardware Locks for Safety-Critical Java

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    2013-01-01

    and may void a task set's schedulability. In this paper we present a hardware locking mechanism to reduce the synchronization overhead. The solution is implemented for the chip-multiprocessor version of the Java Optimized Processor in the context of safety-critical Java. The implementation is compared...

  7. Use of Heritage Hardware on MPCV Exploration Flight Test One

    Science.gov (United States)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  8. Hardware Implementation of Web Based Arabic Optical Character Recognition Units

    Directory of Open Access Journals (Sweden)

    Osama Al-Khaleel

    2014-05-01

    Full Text Available Optical character recognition (OCR is an important application in the field of pattern recognition. It extracts text from an image document and saves it in an editable form. Examples where OCR is used include library digitization and text searching in scanned documents. Web based applications are main tools for data processing over the net. However, implementing such applications in dedicated hardware systems would increase performance and reliability by many folds over software implementation. In this paper, we present a detailed hardware implementation of the features extraction and character matching units of an Arabic optical character recognition (AOCR system. The hardware implementation of each of these two units is described in VerilogHDL and functionally tested using ISim from Xilinx. Furthermore, each implementation is synthesized using Xilinx ISE 13.1 targeting Xilinx Spartan6 FPGA family. Experimental results show significant speed up in the hardware implementations over software ones. We further, explore the possibility of accessing these systems over the Web. Thus, they are beneficial to wider range of people.

  9. Analog Hardware Description Language and Its Relations to VHDL

    OpenAIRE

    Popelek, J.; K. Vlcek

    1996-01-01

    Primary motivations for analogue hardware description language (VHDL-A) is to support the modelling of physical systems. The VHDL-A must therefore allow to model the physical conservation laws, such as the energy conservation law, which states that energy can neither be created nor destroyed, but it can only change its form.

  10. Hiding State in CλaSH Hardware Descriptions

    NARCIS (Netherlands)

    Gerards, Marco; Baaij, Christiaan; Kuper, Jan; Kooijman, Matthijs

    2010-01-01

    Synchronous hardware can be modelled as a mapping from input and state to output and a new state, such mappings are referred to as transition functions. It is natural to use a functional language to implement transition functions. The CaSH compiler is capable of translating transition functions to V

  11. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  12. Characterization of activated metals in spent fuel hardware

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory (PNL), for the U.S. Department of Energy (DOE), has been investigating the activation of spent fuel hardware in order to properly account for it in the federal waste management system. The paper presents a description and status of the program and tentative conclusions

  13. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  14. Towards automated construction of dependable software/hardware systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakhnis, A.; Yakhnis, V. [Pioneer Technologies & Rockwell Science Center, Albuquerque, NM (United States)

    1997-11-01

    This report contains viewgraphs on the automated construction of dependable computer architecture systems. The outline of this report is: examples of software/hardware systems; dependable systems; partial delivery of dependability; proposed approach; removing obstacles; advantages of the approach; criteria for success; current progress of the approach; and references.

  15. Graph based communication analysis for hardware/software codesign

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1999-01-01

    In this paper we present a coarse grain CDFG (Control/Data Flow Graph) model suitable for hardware/software partitioning of single processes and demonstrate how it is necessary to perform various transformations on the graph structure before partitioning in order to achieve a structure that allows...

  16. Hardware availability calculations and results of the IFMIF accelerator facility

    International Nuclear Information System (INIS)

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design

  17. The 1986/87 Classroom Computer Learning Hardware Buyers' Guide.

    Science.gov (United States)

    Classroom Computer Learning, 1986

    1986-01-01

    Provides information on selected computer peripherals which seem most appropriate for education in terms of availability, price, and application. Hardware includes modems, local area networks, printers, graphics tables (as well as touch tablets and alternate keyboards), and joysticks. Each item listed includes company, computer capability, price,…

  18. Analog Hardware Description Language and Its Relations to VHDL

    Directory of Open Access Journals (Sweden)

    J. Popelek

    1996-09-01

    Full Text Available Primary motivations for analogue hardware description language (VHDL-A is to support the modelling of physical systems. The VHDL-A must therefore allow to model the physical conservation laws, such as the energy conservation law, which states that energy can neither be created nor destroyed, but it can only change its form.

  19. Measuring Auroral and Arctic Ozone Using Student Made Hardware

    Science.gov (United States)

    Pina, M.

    2015-12-01

    This project is twofold to test the feasibility of student made hardware and teach students more about atmospheric instrumentation by providing students with education and materials, instructing them in design and building of hardware, and testing the hardware against commercial models in terms of weight, cost, and features. The Gaseous Compounds team of the University of Houston Undergraduate Student Instrument Project (USIP) selected the parts and the students of the team are assembling the payload. The payload will launch on a latex balloon in Houston and Fairbanks, Alaska. The instrument will gather data on the concentration of certain gases in the atmosphere as well as a meteorological profile of the atmosphere. The students plan to have the instrument collect and transmit data on carbon monoxide, nitric oxide, nitrogen dioxide, and ozone, as well as temperature, humidity, and barometric pressure. The data will also be stored on an SD card as a backup in case transmission fails. These payloads will fly at night and day to get an accurate vertical profile of the atmosphere and these results will be tested against the results of commercial hardware with the same capabilities.

  20. Chip-Multiprocessor Hardware Locks for Safety-Critical Java

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    may void a task set's schedulability. In this paper we present a hardware locking mechanism to reduce the synchronization overhead. The solution is implemented for the chip-multiprocessor version of the Java Optimized Processor in the context of safety-critical Java. The implementation is compared to...

  1. Hardware in Loop Simulation for Missile Guidance and Control Systems

    Directory of Open Access Journals (Sweden)

    S. K. Chaudhuri

    1997-07-01

    Full Text Available The purpose of the guidance law is to determine appropriate missile flight path dynamics to achieve mission objective in an efficient manner based on navigation information. Today, guided missiles which are aerodynamically unstable or non-linear in all or part of the flight envelopes need control systems for stability as well as for steering. Many classical guidance and control laws have been used for tactical missiles with varying degrees of performance, complexity and seeker/sensor requirements. Increased accuracy requirements and more dynamic tactics of modern warfare demand improvement of performance which is a trade-off between sophisticated hardware and more sophisticated software. To avoid increase in cost by hardware sophistication, today's trend is to exploit new theoretical methods and low cost high speed microprocessor techniques. Missile test flights are very expensive. The missile system with its sophisticated software and hardware is not reusable after a test launch. Hardware-in-loop Simulation (HILS facilities and methodology form a well integrated system aimed at transforming a preliminary guidance and control system design to flight software and hardware with trajectory right from lift-off till its impact. Various guidance and control law studies pertaining to gathering basket and stability margins, pre-flight, post-flight analyses and validation of support systems have been carried out using this methodology. Nearly full spectrum of dynamically accurate six-degrees-of-freedom (6-DOF model of missile systems has been realised in the HILS scenario. The HILS facility allows interconnection of missile hardware in flight configuration. Pre-flight HILS results have matched fairly well with actual flight trial results. It was possible to detect many hidden defects in the onboard guidance and control software as well as in hardware during HILS. Deficiencies in model, like tail-wag-dog (TWD, flexibility, seeker dynamics and defects in

  2. Probing depth dependencies of melt emplacement on time dependent quantities in a continental rift scenario with melting and melt extraction

    Science.gov (United States)

    Wallner, Herbert; Schmeling, Harro

    2014-05-01

    Since some years seismological observations provide increasing evidence of a discontinuity near the mid of older mantle lithosphere. Explanation may be a melt infiltration front (MIF) as upper margin of an evolving network of veins. These are formed by crystallized melt supplied by episodic melting events in the asthenosphere. To test this concept geodynamically we performed numerical modelling applying melting, extraction of melt and emplacement in a viscous matrix. Thereupon, we were faced to the problem defining an intrusion level for the melt. Findings of prior studies led to the need of movable, process dependent boundaries of the emplacement zone additionally making the process probably more self-consistent. Here we present a preliminary study exploring several empirical attempts to relate time dependent states to an upward moving boundary for intrusion. Modeled physics is based on thermo-mechanics of visco-plastic flow. The equations of conservation of mass, momentum and energy are solved for a multi component (crust-mantle) and two phase (melt-matrix) system. Rheology is temperature-, pressure-, and stress-dependent. In consideration of depletion and enrichment melting and solidification are controlled by a simplified linear binary solid solution model. The Compaction Boussinesq Approximation and the high Prandtl number approximation are used, elasticity is neglected and geometry is restricted to 2D. Approximation is done with the Finite Difference Method with markers in an Eulerian formulation (FDCON). Model guiding scenario is a extending thick lithosphere associated to by updoming asthenosphere probably additionally heated by a plume nearby. As the P-T conditions in the asthenosphere are near the solidus caused changes may increase melting and generate partial melt. Against conventional expectations on permeability at lithosphere-asthenosphere boundary (LAB) depth a fast melt transport into and sometimes through the lithosphere often is observed. The

  3. Dynamical meson melting in holography

    International Nuclear Information System (INIS)

    We discuss mesons in thermalizing gluon backgrounds in the N=2 supersymmetric QCD using the gravity dual. We numerically compute the dynamics of a probe D7-brane in the Vaidya-AdS geometry that corresponds to a D3-brane background thermalizing from zero to finite temperatures by energy injection. In static backgrounds, it has been known that there are two kinds of brane embeddings where the brane intersects the black hole or not. They correspond to the phases with melted or stable mesons. In our dynamical setup, we obtain three cases depending on final temperatures and injection time scales. The brane stays outside of the black hole horizon when the final temperature is low, while it intersects the horizon and settles down to the static equilibrium state when the final temperature is high. Between these two cases, we find the overeager case where the brane dynamically intersects the horizon although the final temperature is not high enough for a static brane to intersect the horizon. The interpretation of this phenomenon in the dual field theory is meson melting due to non-thermal effects caused by rapid energy injection. In addition, we comment on the late time evolution of the brane and a possibility of its reconnection

  4. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  5. Melting a Sample within TEMPUS

    Science.gov (United States)

    2003-01-01

    One of the final runs of the TEMPUS experiment shows heating of a sample on STS-94, July 15, 1997, MET:14/11:01 (approximate) and the flows on the surface. At the point this image was taken, the sample was in the process of melting. The surface of the sample is begirning to flow, looking like the motion of plate tectonics on the surface of a planet. During this mission, TEMPUS was able to run than 120 melting cycles with zirconium, with a maximum temperature of 2,000 degrees C, and was able to undercool by 340 degrees -- the highest temperature and largest undercooling ever achieved in space. The TEMPUS investigators also have provided the first measurements of viscosity of palladium-silicon alloys in the undercooled liquid alloy which are not possible on Earth. TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station.(176KB JPEG, 1350 x 1516 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300193.html.

  6. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Science.gov (United States)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  7. Journal and Wave Bearing Impedance Calculation Software

    Science.gov (United States)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  8. Mobile bearing and fixed bearing total knee arthroplasty

    Science.gov (United States)

    Dolfin, Marco; Saccia, Francesco

    2016-01-01

    The mobile bearing (MB) concept in total knee arthroplasty (TKA) was developed as an alternative to fixed bearing (FB) implants in order to reduce wear and improve range of motion (ROM), especially focused on younger patients. Unfortunately, its theoretical advantages are still controversial. In this paper we exhibit a review of the more recent literature available comparing FB and MB designs in biomechanical and clinical aspects, including observational studies, clinical trials, national and international registries analyses, randomized controlled trials, meta-analyses and Cochrane reviews. Except for some minor aspects, none of the studies published so far has reported a significant improvement related to MBs regarding patient satisfaction, clinical, functional and radiological outcome or medium and long-term survivorship. Thus the presumed superiority of MBs over FBs appears largely inconsistent. The routine use of MB is not currently supported by adequate evidences; implant choice should be therefore made on the basis of other factors, including cost and surgeon experience. PMID:27162777

  9. Superconducting-electromagnetic hybrid bearing using YBCO bulk locks for passive axial levitation

    International Nuclear Information System (INIS)

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90 deg. from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance. (author)

  10. Transient melting of an ESR electrode

    Science.gov (United States)

    Kharicha, A.; Karimi-Sibaki, E.; Bohacek, J.; Wu, M.; Ludwig, A.

    2016-07-01

    Melting parameters of ESR process such as melt rate and immersion depth of electrode are of great importance. In this paper, a dynamic mesh based simulation framework is proposed to model melt rate and shape of electrode during the ESR process. Coupling interactions between turbulent flow, temperature, and electromagnetic fields are fully considered. The model is computationally efficient, and enables us to directly calculate melting parameters. Furthermore, dynamic change of electrode shape by melting can be captured. It is necessary to control the feeding velocity of electrode due to melting instabilities in the ESR process. As such, a numerical control is implemented based on the immersion depth of electrode to achieve the steady state in the simulation. Furthermore, the modeling result is evaluated against an experiment.

  11. RHEOLOGY FEATURE OF SIMPLE METAL MELT

    Institute of Scientific and Technical Information of China (English)

    C.J. Sun; H.R. Geng; Y.S. Shen; X.Y. Teng; Z.X. Yang

    2007-01-01

    The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80, alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20, alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.

  12. Snow Melting and Freezing on Older Townhouses

    DEFF Research Database (Denmark)

    Nielsen, Anker; Claesson, Johan

    2011-01-01

    The snowy winter of 2009/2010 in Scandinavia prompted many newspaper articles on icicles falling from buildings and the risk this presented for people walking below. The problem starts with snow melting on the roof due to heat loss from the building. Melt water runs down the roof and some...... of it will freeze on the overhang. The rest of the water will either run off or freeze in gutters and downpipes or turn into icicles. This paper describes use of a model for the melting and freezing of snow on roofs. Important parameters are roof length, overhang length, heat resistance of roof and overhang......, outdoor and indoor temperature, snow thickness and thermal conductivity. If the snow thickness is above a specific limit value – the snow melting limit- some of the snow will melt. Another interesting limit value is the dripping limit. All the melt water will freeze on the overhang, if the snow thickness...

  13. Structural relaxation of metallic glass forming melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fragility of superheated melts, M, for 13 kinds of metallic alloys has been evaluated from the data of the dynamic viscosity above their liquidus temperatures. The authors find that the glass forming ability of metallic melts depends on the fragility of superheated melts rather than on the value of viscosity. In the present work the value of fragility is less than 1 for good glass-forming melts but more than 1 for the other melts. The variation rate of atomic coordination number with temperature indicates clearly the relaxation rate of molten structures. The fragility of superheated melts is found in good agreement with the variation rate of the atomic coordination number with temperature.

  14. New hardware support transactional memory and parallel debugging in multicore processors

    OpenAIRE

    Orosa Nogueira, Lois

    2013-01-01

    This thesis contributes to the area of hardware support for parallel programming by introducing new hardware elements in multicore processors, with the aim of improving the performance and optimize new tools, abstractions and applications related with parallel programming, such as transactional memory and data race detectors. Specifically, we configure a hardware transactional memory system with signatures as part of the hardware support, and we develop a new hardware filter for reducing the...

  15. Effects of bearing deadbands on bearing loads and rotor stability

    Science.gov (United States)

    1984-01-01

    A generic model of a turbopump, simplified to bring out these effects is examined. This model demonstrates that bearing deadbands which are of the same order of magnitude or larger than the center-of-mass offset of a rotor due to mass imbalances cause significantly different dynamic behavior than would be expected of a linear, dynamical system. This fundamentally nonlinear behavior yields altered stability characteristics and altered bearing loading tendencies. It is shown that side forces can enhance system stability in the small, i.e., as long as the mass imbalance does not exceed some thresholds value or as long as no large, impulsive disturbances cause the motion to depart significantly from the region of stability. Limit cycles are investigated in this report and techniques for determining these limit cycles are developed. These limit cycles are the major source of bearing loading and appear in both synchronous and nonsynchronous forms. The synchronous limit cycles are driven by rotor imbalances. The nonsynchronous limit cycles (also called subsynchronous whirls) are self-excited and are the sources of instability.

  16. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  17. Melt-induced weakening of the lithosphere: theory and geodynamic implications

    Science.gov (United States)

    Gerya, T.

    2015-12-01

    Melt-induced weakening can play critical role for enabling lithospheric deformation in the areas of intense mantle-derived magmatism, such as mid-ocean ridges, rift zones and hot spots. It implies significant reduction in the long-term brittle strength of the deforming lithosphere subjected to frequent melt percolation episodes. Such weakening corresponds to conditions when shear stress reaches the tensile yield strength of rocks at nearly equal melt and lithostatic pressures. The dominant features of melt transport in this regime are planar, sharply localized zones (dykes) in which melt is transported though the lithosphere from the source region. Mechanical energy dissipation balance shows that the long-term effective strength of the melt-weakened lithosphere is a strain-averaged rather than a time-averaged quantity. Its magnitude is mainly defined by the ratio between melt pressure and lithostatic pressure along dykes during short dyke emplacement episodes, which control most of the lithospheric deformation and mechanical energy dissipation. We quantified the range of expected values of the lithospheric strength by performing 2D numerical hydro-mechanical experiments on melt-bearing rock deformation as well as seismo-mechanical experiments on long-term lithospheric deformation assisted by frequent short-term dyke propagation episodes. These numerical experiments showed that the long-term lithospheric strength in the areas of intense magmatism can be as low as few MPa and is critically dependent on the availability of melt for enabling frequent episodes of dyke propagation through the lithosphere. Short-lived viscous-plastic deformation is localized along propagating weak dykes whereas bulk of the lithosphere only deforms elastically and is subjected to large deviatoric stresses. The experiments suggest that it is not the high strength of the elastically deforming strong lithospheric blocks but the low strength of visco-plastically deforming dykes that define the

  18. Are Entangled Polymer Melts Different From Solutions?

    OpenAIRE

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.; Skov, Anne Ladegaard; Almdal, Kristoffer; Hassager, Ole

    2012-01-01

    The possible existence of a qualitative difference on extensional steady state viscosity between polymer melts and polymer solutions is still an open question. Recent experiments [1-4] showed the extensional viscosity of both polymer melts and solutions decayed as a function of strain rate with an exponent of -0.5. When the strain rate became higher than the order of inverse Rouse time, the polymer solutions showed an upturn [1, 4]. However, in the same regime for polymer melts, the experimen...

  19. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Resul...... for LDPE up to 7 Hencky strain units show a maximum in the transient elongational viscosity followed by a steady stress. Also results for monodisperse PS fractions will be shown and discussed....

  20. Frictional melting of peridotite and seismic slip

    OpenAIRE

    Del Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Di Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Han, R.; Department of Earth and Environmental Sciences, Korea University, Seoul South Korea; Hirose, T.; Kochi Institute for Core Sample Research, JAMSTEC, Kochi, Japan.; Nielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Shimamoto, T.; Department of Earth and Planetary Systems Science Graduate School of Science Hiroshima University, Higashi-Hiroshima Japan; Cavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia

    2009-01-01

    The evolution of the frictional strength along a fault at seismic slip rates (about 1 m/s) is a key factor controlling earthquake mechanics. At mantle depths, friction-induced melting and melt lubrication may influence earthquake slip and seismological data. We report on laboratory experiments designed to investigate dynamic fault strength and frictional melting processes in mantle rocks. We performed 20 experiments with Balmuccia peridotite in a high-velocity rotary shear appa...