WorldWideScience

Sample records for bearing element couples

  1. Finite Element Harmonic Solution of the Coupled Rotor-bearing System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fluid-solid interaction problems have been studied q uite extensively in the past years. Rotor-bearing system is a typical example. Fluid field is changed under the exciting of rotor vibration. On the same ti me, a net force caused by fluid pressure exerts on rotor, which will change roto r vibration. So, the fluid-solid coupled analysis method must be used. Traditionally, numerical difference method was used to solve fluid problems. The coupled fluid-solid equation could not be set up based on the me...

  2. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  3. Precision instrumentation for rolling element bearing characterization

    Science.gov (United States)

    Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  4. High performance rolling element bearing

    Science.gov (United States)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  5. Rolling element bearing diagnostics—A tutorial

    Science.gov (United States)

    Randall, Robert B.; Antoni, Jérôme

    2011-02-01

    This tutorial is intended to guide the reader in the diagnostic analysis of acceleration signals from rolling element bearings, in particular in the presence of strong masking signals from other machine components such as gears. Rather than being a review of all the current literature on bearing diagnostics, its purpose is to explain the background for a very powerful procedure which is successful in the majority of cases. The latter contention is illustrated by the application to a number of very different case histories, from very low speed to very high speed machines. The specific characteristics of rolling element bearing signals are explained in great detail, in particular the fact that they are not periodic, but stochastic, a fact which allows them to be separated from deterministic signals such as from gears. They can be modelled as cyclostationary for some purposes, but are in fact not strictly cyclostationary (at least for localised defects) so the term pseudo-cyclostationary has been coined. An appendix on cyclostationarity is included. A number of techniques are described for the separation, of which the discrete/random separation (DRS) method is usually most efficient. This sometimes requires the effects of small speed fluctuations to be removed in advance, which can be achieved by order tracking, and so this topic is also amplified in an appendix. Signals from localised faults in bearings are impulsive, at least at the source, so techniques are described to identify the frequency bands in which this impulsivity is most marked, using spectral kurtosis. For very high speed bearings, the impulse responses elicited by the sharp impacts in the bearings may have a comparable length to their separation, and the minimum entropy deconvolution technique may be found useful to remove the smearing effects of the (unknown) transmission path. The final diagnosis is based on "envelope analysis" of the optimally filtered signal, but despite the fact that this

  6. Vibration transmission through rolling element bearings. I - Bearing stiffness formulation. II - System studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1990-01-01

    How vibratory motion can be transmitted from the rotating shaft to the casing and other connecting structures in rotating mechanical equipment is addressed here by developing a new mathematical model of precision rolling element bearings. A new grating stiffness matrix is proposed in order to demonstrate a coupling between the shaft bending motion and the flexural motion of the casing plate. It is shown that the translational bearing stiffness coefficients currently used in rotor dynamic models are a small subset of the proposed matrix. The theory is validated by examples, and the proposed bearing formulation is then extended to demonstrate its superiority over existing models in vibration transmission analyses. It is shown that the model can easily be incorporated into analytical or numerical models typically used for dynamic analyses.

  7. APPLICATION OF SUB-ELEMENT AND MICRO-ELEMENT IN BEM WITH ROLLER BEARING LOAD

    Institute of Scientific and Technical Information of China (English)

    Shu Xuedao; Xing Xidong

    2004-01-01

    Aiming at the discontinuous traction on contact elements of roller bearing, new concepts of sub- and micro-element are put forward. In the sub-element and micro-element, traction influence coefficient has been modified, which is calculated by the former boundary element method (BEM) with roller bearing load. Hence, three-dimensional distribution of load on roller bearing is calculated accurately. In practice, it has been proved that this method has higher calculation accuracy. An effective numerical method is offered for analyzing load characteristics of roller bearing to improve service longevity of roller bearing and operation efficiency of rolling mill.

  8. Lubricant replacement in rolling element bearings for weapon surety devices

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, R.; Dugger, M.T.; Varga, K.S. [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-05-01

    Stronglink switches are a weapon surety device that is critical to the nuclear safety theme in modem nuclear weapons. These stronglink switches use rolling element bearings which contain a lubricant consisting of low molecular weight polytetrafluoroethylene (PTFE) fragments. Ozone-depleting solvents are used in both the manufacture and application of this lubricant. An alternate bearing lubrication for stronglink switches is needed that will provide long-term chemical stability, low migration and consistent performance. Candidates that were evaluated include bearings with sputtered MoS{sub 2} on the races and retainers, bearings with TiC-coated balls, and bearings with Si{sub 3}N{sub 4} balls and steel races. These candidates were compared to the lubricants currently used which are bearings lubricated with PTFE fragments of low molecular weight in a fluorocarbon solvent. The candidates were also compared to bearings lubricated with a diester oil which is representative of bearing lubricants used in industrial applications. Evaluation consisted of cycling preloaded bearings and subjecting them to 23 gRMS random vibration. All of the candidates are viable substitutes for low load application where bearing preload is approximately 1 pound. For high load applications where the bearing preload is approximately 10 pounds, bearings with sputtered MoS{sub 2} on the races and retainers appear to be the best substitutes. Bearings with TiC-coated balls also appear to be a viable candidate but these bearings did not perform as well as the sputtered MoS{sub 2}.

  9. Contact fatigue in rolling-element bearings

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available to that encountered along the pitch-line of gear teeth \\[1\\]. In the early stages of damage, pure rolling forms a highly polished surface, as shown in the case of a bearing cup from a large thrust (a) (b) Fig. 1. Schematic... the inner ring of a thrust bearing \\[5\\]. Extensive surface damage, probably resulting from the action of solid particles entrapped in the lubricating fluid, is clearly noticeable, as is the through- crack emanating from...

  10. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. New detection method for rolling element and bearing defects

    Science.gov (United States)

    Burchill, R. F.; Frarey, J. L.

    1972-01-01

    Instrument for detecting defects in rolling elements of bearings is described. Detection depends on rate at which rolling elements impact defect and establishes envelope amplitude of ball resonant frequency. Block diagram of instrument is provided and results obtained in conducting tests are reported.

  12. Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis

    Science.gov (United States)

    Li, Yifan; Liang, Xihui; Zuo, Ming J.

    2017-02-01

    This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.

  13. Finite Element Analysis of 6300 Deep Groove Ball Bearing

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; YANG Guang-hui

    2013-01-01

    Rolling bearing is widely used in mechanical support, its general components are the inner ring, outer ring, the ball, retainer etc.. Now many companies in developed countries and university in the rolling bearing as the research object, and has made great progress in design theory, the experiment method and production technology etc. We will use the finite element ANSYS to establish the model of deep groove ball bearing. Through the contact analysis, we can get the contact stress between the rings and balls, strain, contact state, penetration, sliding distance and the friction stress distribution. These values are compared to the theoretical values with Hertz theory, and they have better consistency, provide the good theoretical basis for the optimization design of rolling bearings.

  14. Vibration transmission through rolling element bearings. Part III: Geared rotor system studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1991-11-01

    This paper extends the proposed bearing matrix formulation of Parts I and II to analyze the overall dynamics of a geared rotor system which includes a spur gear pair, shafts, rolling element bearing, a prime mover and a load (attached to the geared rotor system through flexible torsional couplings), a rigid or flexible casing, and compliant or massive mounts. Linear time-invariant, discrete dynamic models of a generic geared rotor system with proportional viscous damping are developed, by using lumped parameter and dynamic finite element techniques, which are then used to predict the vibration transmissibility through bearings and mounts, casing vibration motion, and dynamic response of the internal rotating system. Each rotating shaft is modeled as an Euler beam in the lumped parameter model and as a Timoshenko beam in the dynamic finite element model, but the gyroscopic moment is not included. Eigensolution and forced harmonic response studies due to rotating mass unbalance or kinematic transmission error excitation for the following example cases are obtained by using the formulation, and the results are compared with those of simple models currently available in the literature and/or experiment: case I, a single-stage rotor system with flexibly mounted rigid casing consisting of two bearings as a special case of the geared rotor system; case II, a spur gear pair drive supported by four bearings installed in a flexibly mounted rigid casing; and case III, an experimental set-up consisting of a high-precision gear and pinion, and four identical rolling element bearings contained in a flexible casing mounted rigidly on a massive foundation. Analytical predictions show that the theory is indeed capable of predicting bearing and mount moment transmissibilities in addition to the force transmissibilities. Also, flexural vibrations of the casing plate are predicted well as the theory is in good agreement with measurements made on case III; such predictions are not

  15. Quantitative Diagnosis of Fault Severity Trend of Rolling Element Bearings

    Institute of Scientific and Technical Information of China (English)

    CUI Lingli; MA Chunqing; ZHANG Feibin; WANG Huaqing

    2015-01-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  16. Autoregressive modelling for rolling element bearing fault diagnosis

    Science.gov (United States)

    Al-Bugharbee, H.; Trendafilova, I.

    2015-07-01

    In this study, time series analysis and pattern recognition analysis are used effectively for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the use of a linear AR model applied to the signals after they are stationarized. The obtained coefficients of the AR model are further used to form pattern vectors which are in turn subjected to pattern recognition for differentiating among different faults and different fault sizes. This study explores the behavior of the AR coefficients and their changes with the introduction and the growth of different faults. The idea is to gain more understanding about the process of AR modelling for roller element bearing signatures and the relation of the coefficients to the vibratory behavior of the bearings and their condition.

  17. Comparison of Life Theories for Rolling-Element Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Peters, Steven M.

    1995-01-01

    Nearly five decades have passed since G. Lundberg and A. Palmgren published their life theory in 1947 and 1952 and it was adopted as an ANSI/ABMA and ISO standard in 1950 and 1953. Subsequently, many variations and deviations from their life theory have been proposed, the most recent being that of E. Ioannides and T.A. Harris in 1985. This paper presents a critical analysis comparing the results of different life theories and discussing their implications in the design and analysis of rolling-element bearings. Variations in the stress-life relation and in the critical stress related to bearing life are discussed using stress fields obtained from three-dimensional, finite-element analysis of a ball in a nonconforming race under varying load. The results showed that for a ninth power stress-life exponent the Lundberg-Palmgren theory best predicts life as exhibited by most air-melted bearing steels. For a 12th power relation reflected by modern bearing steels, a Zaretsky-modified Weibull equation is superior. The assumption of a fatigue-limiting stress distorts the stress-life exponent and overpredicts life.

  18. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    Changhe Zhou; Xin Zhao; Liren Liu

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1′8 dynamic optical couplings are presented.

  19. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1×8 dynamic optical couplings are presented.

  20. Development of high-speed rolling-element bearings. A historical and technical perspective

    Science.gov (United States)

    Zaretsky, E. V.

    1982-01-01

    Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.

  1. Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings

    Science.gov (United States)

    Pennacchi, Paolo; Vania, Andrea; Chatterton, Steven

    2012-07-01

    Misalignment is one of the most common sources of trouble of rotating machinery when rigid couplings connect the shafts. Ideal alignment of the shafts is difficult to be obtained and rotors may present angular and/or parallel misalignment (defined also as radial misalignment or offset). During a complete shaft revolution, a periodical change of the bearings load occurs in hyperstatic shaft-lines, if coupling misalignment between the shafts is excessive. If the rotating machine is equipped with fluid-film journal bearings, the change of the loads on the bearing causes also the variation of their instantaneous dynamic characteristics, i.e. damping and stiffness, and the complete system cannot be considered any longer as linear. Despite misalignment is often observed in the practice, there are relatively few studies about this phenomenon in literature and their results are sometimes conflicting. The authors aim at modeling accurately this phenomenon, for the first time in this paper, and giving pertinent diagnostic information. The proposed method is suitable for every type of shaft-line supported by journal bearings. A finite element model is used for the hyperstatic shaft-line, while bearing characteristics are calculated by integrating Reynolds equation as a function of the instantaneous load acting on the bearings, caused also by the coupling misalignment. The results obtained by applying the proposed method are shown by means of the simulation, in the time domain, of the dynamical response of a hyperstatic shaft-line. Nonlinear effects are highlighted and the spectral components of the system response are analyzed, in order to give diagnostic information about the signature of this type of fault.

  2. FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS

    Directory of Open Access Journals (Sweden)

    URDEA Mihaela

    2015-06-01

    Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.

  3. Nonlinearly Coupled Superconducting Lumped Element Resonators

    Science.gov (United States)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  4. Determination a static limiting load curves for slewing bearing with application of the finite element methods

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2013-02-01

    Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper

  5. Tribological thin films on steel rolling element bearing surfaces

    Science.gov (United States)

    Evans, Ryan David

    Tribological thin films are of interest to designers and end-users of friction management and load transmission components such as steel rolling element bearings. This study sought to reveal new information about the properties and formation of such films, spanning the scope of their technical evolution from natural oxide films, to antiwear films from lubricant additives, and finally engineered nanocomposite metal carbide/amorphous hydrocarbon (MC/a-C:H) films. Transmission electron microscopy (TEM) was performed on the near-surface material (depth gear oil additives. Site-specific thinning of cross-section cone surface sections for TEM analyses was conducted using the focused ion beam milling technique. Two types of oxide surface films were characterized for the cones tested in mineral oil only, each one corresponding to a different lubrication severity. Continuous and adherent antiwear films were found on the cone surfaces tested with lubricant additives, and their composition depended on the lubrication conditions. A sharp interface separated the antiwear film and base steel. Various TEM analytical techniques were used to study the segregation of elements throughout the film volume. The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend sensitively on reactive magnetron sputtering deposition process conditions. TaC/a-C:H film growth was studied as a function of three deposition parameters in designed experiments: acetylene flow rate, applied d.c. bias voltage, and substrate carousel rotation rate. Empirical models were developed for the following film characteristics to identify process-property trend relationships: Ta/C atomic ratio, hydrogen content, film thickness. TaC crystallite size, Raman spectrum, compressive stress, hardness, and elastic modules. TEM measurements revealed the film base structure consisted of equiaxed cubic B1-TaC crystallites (< 5 nm) suspended in an a-C:H matrix. At the nanometer-scale, the

  6. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  7. Dynamic Finite Element Analysis of Mobile Bearing Type Knee Prosthesis under Deep Flexional Motion

    Directory of Open Access Journals (Sweden)

    Mohd Afzan Mohd Anuar

    2014-01-01

    Full Text Available The primary objective of this study is to distinguish between mobile bearing and fixed bearing posterior stabilized knee prostheses in the mechanics performance using the finite element simulation. Quantifying the relative mechanics attributes and survivorship between the mobile bearing and the fixed bearing prosthesis remains in investigation among researchers. In the present study, 3-dimensional computational model of a clinically used mobile bearing PS type knee prosthesis was utilized to develop a finite element and dynamic simulation model. Combination of displacement and force driven knee motion was adapted to simulate a flexion motion from 0° to 135° with neutral, 10°, and 20° internal tibial rotation to represent deep knee bending. Introduction of the secondary moving articulation in the mobile bearing knee prosthesis has been found to maintain relatively low shear stress during deep knee motion with tibial rotation.

  8. An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design

    Science.gov (United States)

    Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.

    2003-01-01

    A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.

  9. Vibration transmission through rolling element bearings. III - Geared rotor system studies

    Science.gov (United States)

    Lim, T. C.; Singh, R.

    1991-01-01

    The bearing matrix formulations proposed by Lim and Singh (1990) are extended to analyze the overall dynamics of a geared rotor system which includes a spur gear pair, shafts, rolling-element bearings, a motor, a load, a casing, and flexible or rigid mounts. For this purpose, discrete vibration models are developed and used to predict vibration transmission through the bearings and to investigate the effects of the bearing, casing, and mount dynamics on the dynamic characteristics of the internal rotating system. Analytical predictions show that the theory is capable of predicting the bearing and mount moment transmissibilities in addition to the force transmissibilities. The predicted flexural vibrations of the casing plate are in good agreement with measurements conducted on an experimental set-up that consisted of a high-precision beam and pinion, and four identical rolling element bearings contained in a flexible casing mounted rigidly on a massive foundation.

  10. DETERMINATION OF STATIC LIMITING LOAD CURVES FOR SLEWING BEARING WITH APPLICATION OF THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2013-03-01

    Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. The methods of modelling the rolling elements in the slewing bearing, in which balls have been replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper.

  11. Rolling Element Bearing Fault Diagnosis Based on Multiscale General Fractal Features

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2015-01-01

    Full Text Available Nonlinear characteristics are ubiquitous in the vibration signals produced by rolling element bearings. Fractal dimensions are effective tools to illustrate nonlinearity. This paper proposes a new approach based on Multiscale General Fractal Dimensions (MGFDs to realize fault diagnosis of rolling element bearings, which are robust to the effects of variation in operating conditions. The vibration signals of bearing are analyzed to extract the general fractal dimensions in multiscales, which are in turn utilized to construct a feature space to identify fault pattern. Finally, bearing faults are revealed by pattern recognition. Case studies are carried out to evaluate the validity and accuracy of the approach. It is verified that this approach is effective for fault diagnosis of rolling element bearings under various operating conditions via experiment and data analysis.

  12. Health Assessment and Fault Classification of Roller Element Bearings

    Science.gov (United States)

    2012-07-01

    and is outfitted with mounting holes for accelerometers in positions of interest. As can be seen in figure 1, the rig is a complete drivetrain ...this study, the belts, gearbox, and magnetic load were removed from the drivetrain to reduce the noise from vibrations not related to the bearings

  13. Bear

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?

  14. COUPLING OF ASSUMED STRESS FINITE ELEMENT AND BOUNDARY ELEMENT METHODS WITH STRESS-TRACTION EQUILIBRIUM

    Institute of Scientific and Technical Information of China (English)

    GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah

    2004-01-01

    In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.

  15. A Novel Approach of Impulsive Signal Extraction for Early Fault Detection of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Hu Aijun

    2017-01-01

    Full Text Available The fault signals of rolling element bearing are often characterized by the presence of periodic impulses, which are modulated high-frequency harmonic components. The features of early fault in rolling bearing are very weak, which are often masked by background noise. The impulsiveness of the vibration signal has affected the identification of characteristic frequency for the early fault detection of the bearing. In this paper, a novel approach based on morphological operators is presented for impulsive signal extraction of early fault in rolling element bearing. The combination Top-Hat (CTH is proposed to extract the impulsive signal and enhance the impulsiveness of the bearing fault signal, and the envelope analysis is applied to reveal the fault-related signatures. The impulsive extraction performance of the proposed CTH is compared with that of finite impulse response filter (FIR by analyzing the simulated bearing fault signals, and the result indicates that the CTH is more effective in extracting impulsive signals. The method is evaluated using real fault signals from defective bearings with early rolling element fault and early fault located on the outer race. The results show that the proposed method is able to enhance the impulsiveness of early bearing fault signals.

  16. Rolling Element Bearing Diagnostics by Combination of Envelope Analysis and Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rolling element-bearing diagnostics has been studied over the last thirty years, and envelope analysis is widely recognized as being the best approach for detection and diagnosis of rolling element bearing incipient failure. But one of the on-going difficulties with envelope technique is to determine the best frequency band to envelop. Here, wavelet transform technique is introduced into envelope analysis to solve the problem by capturing bearing defects-sensory scales (i.e. frequency bands). A modulated Gaussian function is chosen to be the analytical wavelet because it coincides well with bearing defect-induced vibration signal patterns. Vibration signals measured from railway bearing tests were studied by the proposed method. Cases of bearings with single and multiple defects on inner and outer race under different testing conditions are presented. Experimental results showed that the proposed method allowed a more accurate local description and separation of transient signal part, which were caused by impacts between defects and the mating surfaces in the bearing. The combination method provides an effective signal detection technique for rolling element-bearing diagnostics.

  17. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    Science.gov (United States)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  18. Vibration Analysis of deep groove ball bearing using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mr. Shaha Rohit D

    2015-05-01

    Full Text Available Rolling element bearing is essential part of machinery. The rolling bearing, with outer ring fixed, is a multi body mechanical system with rolling elements that transmit motion and load from the inner raceway to the outer raceway. The rolling bearings dynamical behaviour analysis is an important condition to determine the machine vibration response. Modern trend of Dynamic analysis is useful in early prediction. Dynamic analysis has become a very powerful tool for the betterment of the actual performance of the system. The methodology for prediction and validation of dynamic characteristics of bearing rotor system vibration is studied. ANSYS software is the promising tools for the modelling. The result obtained from FEA are validated with experimental results.

  19. COMPOSITE STRENGTHENING SOLUTIONS FOR REINFORCED CONCRETE LOAD BEARING ELEMENTS

    Directory of Open Access Journals (Sweden)

    Nicolae ȚĂRANU

    2015-11-01

    Full Text Available The results of a complex research and development program relating to the use of fiber reinforced polymeric composite strengthening solutions carried out at the Faculty of Civil Engineering and Building Services Iasi, are presented in this paper. The program has included the conceiving of the structural rehabilitation systems, the detailing and experimental testing of some solutions applied to reinforced concrete beams, slabs and columns (with circular and square cross-section. An efficient use of the component materials to improve the structural performance of the studied reinforced concrete element has been the main target of the research program. The main benefits resulted from the research program refer to the increase of the load capacities, the improvement of the structural response of all strengthened elements and a better control of the failure modes.

  20. STABILITY ANALYSIS OF THREE LOBE HYDRODYNAMIC JOURNAL BEARING: COUPLE STRESS FLUID EFFECTS

    Directory of Open Access Journals (Sweden)

    N.P.Mehta

    2010-10-01

    Full Text Available The effects of couple stress fluid, when added to a Newtonian base, are studied by deriving a generalized form of the Reynolds equation. A couple stress parameter ‘l’ has been used to indicate the length of the long chain molecule being added. Finite element method has been used to solve the generalized Reynolds equation for each lobe to obtain the respective pressure distributions. Stable equilibrium conditions in terms of eccentricity ratios and the attitude angles have been obtained for the vertical load condition. The journal has been perturbed from this equilibrium condition to give the stiffness and the damping coefficients. It has been observed that slight variation of the coupe stress parameter ‘l’ has great influence on the dynamic characteristics, i.e. the stiffness and the dampingcoefficients. The threshold speed and the critical mass of the journal, obtained as a solution to the linearized equations of motion, are used to demonstrate the increased stability of the journal bearing system.

  1. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  2. Fault Early Diagnosis of Rolling Element Bearings Combining Wavelet Filtering and Degree of Cyclostationarity Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fu-chang; CHEN Jin; HE Jun; BI Guo; LI Fu-cai; ZHANG Gui-cai

    2005-01-01

    The vibration signals of rolling element bearing are produced by a combination of periodic and random processes due to the machine's rotation cycle and interaction with the real world. The combination of such components can give rise to signals, which have periodically time-varying ensemble statistical and are best considered as cyclostationary. When the early fault occurs, the background noise is very heavy, it is difficult to disclose the latent periodic components successfully using cyclostationary analysis alone. In this paper the degree of cyclostationarity is combined with wavelet filtering for detection of rolling element bearing early faults. Using the proposed entropy minimization rule. The parameters of the wavelet filter are optimized. This method is shown to be effective in detecting rolling element bearing early fault when cyclostationary analysis by itself fails.

  3. A new method for measuring the rotational accuracy of rolling element bearings

    Science.gov (United States)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  4. Direct coupling: a possible strategy to control fruit production in alternate bearing

    Science.gov (United States)

    Prasad, Awadhesh; Sakai, Kenshi; Hoshino, Yoshinobu

    2017-01-01

    We investigated the theoretical possibility of applying phenomenon of synchronization of coupled nonlinear oscillators to control alternate bearing in citrus. The alternate bearing of fruit crops is a phenomenon in which a year of heavy yield is followed by an extremely light one. This phenomenon has been modeled previously by the resource budget model, which describes a typical nonlinear oscillator of the tent map type. We have demonstrated how direct coupling, which could be practically realized through grafting, contributes to the nonlinear dynamics of alternate bearing, especially phase synchronization. Our results show enhancement of out-of-phase synchronization in production, which depends on initial conditions obtained under the given system parameters. Based on these numerical experiments, we propose a new method to control alternate bearing, say in citrus, thereby enabling stable fruit production. The feasibility of validating the current results through field experimentation is also discussed.

  5. Direct coupling: a possible strategy to control fruit production in alternate bearing

    Science.gov (United States)

    Prasad, Awadhesh; Sakai, Kenshi; Hoshino, Yoshinobu

    2017-01-01

    We investigated the theoretical possibility of applying phenomenon of synchronization of coupled nonlinear oscillators to control alternate bearing in citrus. The alternate bearing of fruit crops is a phenomenon in which a year of heavy yield is followed by an extremely light one. This phenomenon has been modeled previously by the resource budget model, which describes a typical nonlinear oscillator of the tent map type. We have demonstrated how direct coupling, which could be practically realized through grafting, contributes to the nonlinear dynamics of alternate bearing, especially phase synchronization. Our results show enhancement of out-of-phase synchronization in production, which depends on initial conditions obtained under the given system parameters. Based on these numerical experiments, we propose a new method to control alternate bearing, say in citrus, thereby enabling stable fruit production. The feasibility of validating the current results through field experimentation is also discussed. PMID:28051141

  6. NONLINEAR NUMERICAL ANALYSIS OF A FLEXIBLE ROTOR EQUIPPED WITH SQUEEZE COUPLE STRESS FLUID FILM JOURNAL BEARINGS

    Institute of Scientific and Technical Information of China (English)

    Cai-Wan Chang-Jian; Her-Terng Yau

    2007-01-01

    This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension. The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*. It is found that the system is more stable with higher dimensionless parameter l*.Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid. The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided.

  7. A study of the influence of bearing clearance on lateral coupled shaft/disk rotordynamics

    Science.gov (United States)

    Flowers, George T.; Wu, Fang S.

    1992-06-01

    This study examines the influence of bearing clearance on the dynamical behavior of a rotating, flexible disk/shaft system. Most previous work in nonlinear rotordynamics has tended to concentrate separately on shaft vibration or on bladed disk vibration, neglecting the coupling dynamics between them. The current work examines the important rotordynamical behavior of coupled disk/shaft dynamics. A simplified nonlinear model is developed for lateral vibration of a rotor system with a bearing clearance nonlinearity. The steady-state dynamical behavior of this system is explored using numerical simulation and limit cycle analysis. It is demonstrated that bearing clearance effects can produce superharmonic vibration that may serve to excite high amplitude disk vibration. Such vibration could lead to significantly increased bearing loads and catastrophic failure of blades and disks. In addition, multi-valued responses and aperiodic behavior was observed.

  8. A Signal Based Triangular Structuring Element for Mathematical Morphological Analysis and Its Application in Rolling Element Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhaowen Chen

    2014-01-01

    Full Text Available Mathematical morphology (MM is an efficient nonlinear signal processing tool. It can be adopted to extract fault information from bearing signal according to a structuring element (SE. Since the bearing signal features differ for every unique cause of failure, the SEs should be well tailored to extract the fault feature from a particular signal. In the following, a signal based triangular SE according to the statistics of the magnitude of a vibration signal is proposed, together with associated methodology, which processes the bearing signal by MM analysis based on proposed SE to get the morphology spectrum of a signal. A correlation analysis on morphology spectrum is then employed to obtain the final classification of bearing faults. The classification performance of the proposed method is evaluated by a set of bearing vibration signals with inner race, ball, and outer race faults, respectively. Results show that all faults can be detected clearly and correctly. Compared with a commonly used flat SE, the correlation analysis on morphology spectrum with proposed SE gives better performance at fault diagnosis of bearing, especially the identification of the location of outer race fault and the level of fault severity.

  9. Analysis of the Coupled Lateral Torsional Vibration of a Rotor-Bearing System with a Misaligned Gear Coupling

    Science.gov (United States)

    LI, M.; YU, L.

    2001-05-01

    The misalignment of a gear coupling in a multirotor system is an important problem; it can cause various faults. In the present work the non-linear coupled lateral torsional vibration model of rotor-bearing-gear coupling system is developed based on the engagement conditions of gear couplings. Theoretical analysis shows that the forces and moments acting on gear couplings due to the initial misalignment are from the inertia forces of the sleeve and the internal damping between the meshing teeth, and depend on the misalignment, internal damping, the rotating speed, and the structural parameters of the gear coupling. Numerical analysis of the signature of vibration reveals that the even-integer multiples of the rotating speed of lateral vibration and the odd-integer multiples of the torsional vibration occur in the misaligned system, and the integer multiples of vibration are apparent around the gear coupling.

  10. Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes

    Institute of Scientific and Technical Information of China (English)

    Lei-chao LIU; Xiang-huai DONG; Cong-xin LI

    2009-01-01

    An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.

  11. Performance Degradation Assessment of Rolling Element Bearings Based on an Index Combining SVD and Information Exergy

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2014-10-01

    Full Text Available Performance degradation assessment of rolling element bearings is vital for the reliable and cost-efficient operation and maintenance of rotating machines, especially for the implementation of condition-based maintenance (CBM. For robust degradation assessment of rolling element bearings, uncertainties such as those induced from usage variations or sensor errors must be taken into account. This paper presents an information exergy index for bearing performance degradation assessment that combines singular value decomposition (SVD and the information exergy method. Information exergy integrates condition monitoring information of multiple instants and multiple sensors, and thus performance degradation assessment uncertainties are reduced and robust degradation assessment results can be obtained using the proposed index. The effectiveness and robustness of the proposed information exergy index are validated through experimental case studies.

  12. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    Science.gov (United States)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  13. Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis

    Science.gov (United States)

    Gu, Xiaohui; Yang, Shaopu; Liu, Yongqiang; Hao, Rujiang

    2016-12-01

    Envelope analysis is one of the most useful methods in localized fault diagnosis of rolling element bearings. However, there is a challenge in selecting the optimal resonance band. In this paper, a novel method based on kurtogram and frequency domain correlated kurtosis is proposed. To obtain the correct relationship between the node and frequency band in wavelet packet transform, a vital process named frequency ordering is conducted to solve the frequency folding problem due to down sampling. Correlated kurtosis of envelope spectrum instead of correlated kurtosis of envelope signal or kurtosis of envelope spectrum is utilized to generate the kurtogram, in which the maximum value can indicate the optimal band for envelope analysis. Several cases of experimental bearing fault signals are used to evaluate the immunity of the proposed method to strong noise interference. The improved performance has also been compared with two previous developed methods. The results demonstrate the effectiveness and robustness of the method in fault diagnosis of rolling element bearings.

  14. A fully coupled air foil bearing model considering friction – Theory & experiment

    DEFF Research Database (Denmark)

    von Osmanski, Alexander Sebastian; Larsen, Jon Steffen; Santos, Ilmar

    2017-01-01

    The dynamics of air foil bearings (AFBs) are not yet fully captured by any model. The recent years have, however, seen promising results from nonlinear time domain models, and simultaneously coupled formulations are now available, avoiding the previous requirements for undesirably small time step...

  15. Scattering by coupled resonating elements in air

    CERN Document Server

    Krynkin, Anton; Chong, Alvin Y B; Taherzadeh, Shahram; Attenborough, Keith

    2011-01-01

    Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the o...

  16. Finite Element Approach for Coupled Striplines Embedded in Dielectric Material

    Directory of Open Access Journals (Sweden)

    Matthew N.O. Sadiku

    2013-03-01

    Full Text Available In this paper, we present finite element method (FEM to investigate the quasi-static analysis of two dimensional (2D shielded two coupled stripline structures for microelectronic devices.  In the proposed method, we specifically determine the values of capacitance per unit length and inductance per unit length of shielded two vertically coupled striplines and shielded two coupled striplines embedded in dielectric material.  Extensive simulation results are presented, and some comparative results are given by other methods and found them to be in excellent agreement. Furthermore, we determine the quasi-TEM spectral for the potential distribution of these shielded two coupled striplines.

  17. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.

    2015-08-01

    Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

  18. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls

    Institute of Scientific and Technical Information of China (English)

    曹强; 华林; 钱东升

    2015-01-01

    Due to the complexity of investigating deformation mechanisms in helical rolling (HR) process with traditional analytical method, it is significant to develop a 3D finite element (FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure (positive mean stress) caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.

  19. Temperature control of transfer roller's bearing based on finite element analysis

    Institute of Scientific and Technical Information of China (English)

    Peng ZHANG; Yourong LI; Han XIAO

    2009-01-01

    After a heat preservation cover is installed on the main rolling line, the heat dissipation environment of the transfer roller working on the heat preservation cover is changed. To ensure the normal production, a reasonable working jet capacity of the roller neck is derived. First, a globe model of the transfer roller is built for finite element analysis. Second, the sub-model of the fixed end bearing is built and the boundary condition of the sub-model is supplied by the results of the globe model. The analysis result of the sub-model shows that the temperature of the transfer roller bearing exceeds 85℃ a rolling periodicity later. With finite element analysis, the heat flux is obtained and the minimum working jet capacity is derived.

  20. Finite element analysis of misaligned rotors on oil-film bearings

    Indian Academy of Sciences (India)

    S Sarkar; A Nandi; S Neogy; J K Dutt; T K Kundra

    2010-02-01

    The present work deals with a two-step nonlinear finite element analysis for misaligned multi-disk rotors on short oil-film bearings of various types (cylindrical, pocket, symmetrical three-lobed, unsymmetrical three-lobed). As a first step, the conventional parallel, angular and combined parallel and angular misalignments are modelled using Lagrange multipliers. The static equilibrium position of the journal within the bearing is determined using an iterative nonlinear static finite element analysis. The present work proposes a method for computing the displacement-dependent stiffness terms from the experimental static loaddisplacement data. Finally, the orbit of the rotor around the static equilibrium is determined using a time-integration scheme.

  1. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  2. ELEMENT DESIGN FOR AN INKJET SYSTEM OF HYDROSTATIC GAS BEARING CONTROL

    Directory of Open Access Journals (Sweden)

    T. E. Il'ina

    2015-09-01

    Full Text Available Subject of Study. The paper discusses the concept of inkjet systems application, also known as pneumonics, for automatic hydrostatic gas bearing control. Inkjet systems have the advantages over traditional control systems in those problems where the speed of traditional mechanical, electrical or hydraulic servomotors is not enough. Control of the shaft position in gas bearing with forced gas supply into the gap between the shaft and the bearing is typical for this class of problems. In this case, control means the pressure changing or flow rate of gas supplied to the gap by at least one of three axes at a frequency higher than the nominal speed of the shaft. Thus, high speed of response is required from the system. The objective of this work is to design a discrete jet element, testing of its geometry and switching characteristics. Main Results. The discrete inkjet element for oil-free non-contact transmission working on the refrigerant was designed. Relay transition process was modeled in the inkjet element with the use of numerical methods. The switching time has reached 0.2-0.3 ms; this is one order less than the requirements of aircraft control systems, which typically operate at a frequency of about 200 Hz. It is shown that periodic oscillations with high frequency occur when the control signal is injected with insufficient level of pressure. Therefore, a separate design task is to determine the minimum pressure allowable in the control channel.

  3. Trace Element Geochemistry of Hannuoba Ultramafic Inclusion—bearing Alkali Basalts

    Institute of Scientific and Technical Information of China (English)

    支霞臣

    1990-01-01

    Presented in this paper are the trace element abundances of 16 samples of Hannuoba ultramafic inclusion-bearing aldali basalts,which were determined by instrumental neutron activation analysis and X-ray fluorescence spectrometry.The Petrogenesis of the alkali basalt suite has been modeled by batch partial melting and and Rayleigh fractional crystallization processes,The geochemical characteristics of the mantle source from where alkali basalts were derived are described in terms of variations in trace element abundances of the alkali basalt suite.

  4. Trace Ratio Criterion-Based Kernel Discriminant Analysis for Fault Diagnosis of Rolling Element Bearings Using Binary Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available The rolling element bearing is a core component of many systems such as aircraft, train, steamboat, and machine tool, and their failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Due to misoperation, manufacturing deficiencies, or the lack of monitoring and maintenance, it is often found to be the most unreliable component within these systems. Therefore, effective and efficient fault diagnosis of rolling element bearings has an important role in ensuring the continued safe and reliable operation of their host systems. This study presents a trace ratio criterion-based kernel discriminant analysis (TR-KDA for fault diagnosis of rolling element bearings. The binary immune genetic algorithm (BIGA is employed to solve the trace ratio problem in TR-KDA. The numerical results obtained using extensive simulation indicate that the proposed TR-KDA using BIGA (called TR-KDA-BIGA can effectively and efficiently classify different classes of rolling element bearing data, while also providing the capability of real-time visualization that is very useful for the practitioners to monitor the health status of rolling element bearings. Empirical comparisons show that the proposed TR-KDA-BIGA performs better than existing methods in classifying different classes of rolling element bearing data. The proposed TR-KDA-BIGA may be a promising tool for fault diagnosis of rolling element bearings.

  5. Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    程远方; 李令东; 崔青

    2013-01-01

    As the oil or gas exploration and development activities in deep and ultra-deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re-duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.

  6. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo

    2017-08-01

    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  7. Multiple attractors in the response of a flexible rotor in active magnetic bearings with geometric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Inayat-Hussain, J I [School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)], E-mail: jawaid.inayat-hussain@eng.monash.edu.my

    2008-02-15

    Numerical results on the response of a flexible rotor supported by nonlinear active magnetic bearings are presented. Nonlinearity arising from the magnetic actuator forces that are nonlinear functions of the coil current and the air gap between the rotor and the stator, and from the geometric coupling of the magnetic actuators is incorporated into the mathematical model of the flexible rotor - active magnetic bearing system. For relatively large values of the geometric coupling parameter, the response of the rotor with the variation of the speed parameter within the range 0.05 {<=}{omega} {<=} 5.0 displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods -2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results also reveal the occurrence of bi-stable operation within certain ranges of the speed parameter where multiple attractors may co-exist at the same speed parameter value depending on the operating speed of the rotor.

  8. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  9. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  10. NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-ming; SONG Shun-cheng

    2005-01-01

    Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.

  11. A New Method for Rolling Element Bearing Fault Diagnosis Based on Cyclostationary Theory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory of cyclostationary and its application are very important for the analysis and processing of a non-stationary signal. The paper introduces second-order cyclostationary statistics, with emphass on discussion of cyclic periodogram arithmetic. Com-paring the time smoothed cyclic periodogram with the frequency smoothed cyclic perio- dogram, we found that the former is more useful to extract the feature of cyclostationary signals. The method has been applied to analyze the vibration signal of a rolling element bearing measured on a test bench, and proved to be effective. Meanwhile, we have com pared it with traditional power spectral density analysis, and the results prove that the time smoothed cyclic periodogram is more available to diagnose the fault of a rolling ele ment bearing.

  12. COUPLING OF FINITE ELEMENT AND BOUNDARY ELEMENT METHODS FOR THE SCATTERING BY PERIODIC CHIRAL STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Habib Ammari; Gang Bao

    2008-01-01

    Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.

  13. Couple-Stress Fluid Improves Dynamic Response of Gear-Pair System Supported by Journal Bearings

    Directory of Open Access Journals (Sweden)

    Cai-Wan Chang-Jian

    2012-01-01

    Full Text Available A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, couple-stress fluid flow effect, nonlinear oil-film force, and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotational speed ratio as a control parameter. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gear-bearing system. The numerical results reveal that the system exhibits a diverse range of periodic, subharmonic, quasiperiodic, and chaotic behaviors. The couple-stress fluid would be a useful lubricating fluid to suppress nonlinear dynamic responses and improve the steady of the systems. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.

  14. Estimation of stiffening effect of shaft and housing material outside projected area of a rolling element bearing

    Science.gov (United States)

    Taylor, C. M.

    1977-01-01

    In the analysis of distortions occurring in rolling-element bearings, it is common to neglect the stiffening effect of shafting outside the bearing region. The magnitude of such an effect will be dependent primarily on the bearing width-to-bore ratio, the shaft geometry, and the location of the bearing on the shaft. An estimate is given of the stiffening effect for a wide range of these variables. In addition, brief consideration is given to the parallel situation existing at the outer ring housing.

  15. Flow field distribution of liquid film of water lubricated bearing-rotor coupling systems

    Science.gov (United States)

    Hu, Q. L.; Hu, J. N.; Ye, X. Y.; Zhang, D. S.; Zheng, J. B.

    2016-05-01

    According to the desalination high-pressure pump water lubricated bearing-rotor coupling systems flow field distribution of liquid film in the starting transient process and its power transmission mechanism can lay the foundation of further exploring and judging lubrication state at the boot process. By using the computational fluid dynamics Fluent secondary development platform and calling the relevant DEFINE macro function to achieve the translation and rotation movement of the journal, we will use the dynamic grid technique to realize the automatic calculation and grid update of water lubricated bearings 3d unsteady liquid film flow field, and finally we will dispose the results of numerical simulation and get the pressure. When the eccentricity is large, film thickness was negatively correlated with the pressure, and positive with the velocity. Differential pressure was negatively correlated with velocity. When the eccentricity is small, film thickness is no significant relationship with differential pressure and velocity. Differential pressure has little difference with velocity.

  16. Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model

    Science.gov (United States)

    Wang, Guofeng; Liu, Chang; Cui, Yinhu

    2012-09-01

    Feature extraction plays an important role in the clustering analysis. In this paper an integrated Autoregressive (AR)/Autoregressive Conditional Heteroscedasticity (ARCH) model is proposed to characterize the vibration signal and the model coefficients are adopted as feature vectors to realize clustering diagnosis of rolling element bearings. The main characteristic is that the AR item and ARCH item are interrelated with each other so that it can depict the excess kurtosis and volatility clustering information in the vibration signal more accurately in comparison with two-stage AR/ARCH model. To testify the correctness, four kinds of bearing signals are adopted for parametric modeling by using the integrated and two-stage AR/ARCH model. The variance analysis of the model coefficients shows that the integrated AR/ARCH model can get more concentrated distribution. Taking these coefficients as feature vectors, K means based clustering is utilized to realize the automatic classification of bearing fault status. The results show that the proposed method can get more accurate results in comparison with two-stage model and discrete wavelet decomposition.

  17. Trace-Element Constraints on Origin of SiO2-bearing Clasts in Ordinary Chondrites

    Science.gov (United States)

    Misawa, K.; Kanazawa, M.; Bridges, J. C.; Nakamura, N.; Hutchison, R.

    1995-09-01

    Silica-rich igneous-textured clasts are found in OC [1-6]. The SiO2-bearing clasts found in the Parnallee (LL3.6) and Farmington (L5) chondrites are isotopically unique [4-6]. They plot on a mixing line defined between UOC chondrules and an 16(sub)O-depleted end member in the oxygen three isotope diagram. We analyzed trace elements including REE by MSID technique for SiO2-bearing clasts (CB1, CB4, CB7, and CB8) from Parnallee. Some major and minor elements of CB8 were determined by AA or ICP-AES. The CI-chondrite normalized REE patterns of the clasts are shown in Fig. 1. CB8 has a high Si/Mg ratio (2.5), although its bulk Mg/(Mg + Fe) and Fe/Mn ratios (0.79 and 51, respectively) are within the range of chondritic values. Refractory elements Ca and Al are highly fractionated in CB8; the clast is enriched in Ca (3 x CI) but depleted in Al (0.7 x CI). CB1, CB4, and CB7 also show Ca enrichment (3-7 x CI). CB8 is depleted in moderately volatile lithophiles Mn, Na, K, and Rb (0.18-0.71 x CI), siderophile elements Fe, Co, and Ni (0.0041-0.39 x CI), and chalcophile element Zn (0.076 x CI). The SiO2-bearing clasts analyzed exhibit a gradual depletion from LREE to HREE (CI-normalized La/Lu ratios vary from 1.6 to 18) and a large positive Eu anomaly (Eu/Eu*=2.4-14) along with a depletion of La. This LREE/HREE fractionation is inversely correlated with SiO2 contents of the clasts. Abundance of Sr is parallel to that of Eu in CB8. However, Sr is depleted compared with Eu in the other clasts. These abundance patterns are quite different from those of typical ferromagnesian chondrules in UOCs, SiO2-bearing pyroxene-rich clast in Hedjaz (L3.7) [3], and silica-rich orthopyroxenite Bo-1 in Bovedy (L3) [7]. Absence of metal and sulfide, low abundances of siderophile and chalcophile elements in the clasts imply that metal and sulfide were removed from precursor material before or during clast formation. General REE patterns of SiO2-bearing clasts from Parnallee suggest that they were

  18. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    Science.gov (United States)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-05-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  19. Coupling nonlinear Stokes and Darcy flow using mortar finite elements

    KAUST Repository

    Ervin, Vincent J.

    2011-11-01

    We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.

  20. Nickel-catalyzed enantioselective cross-couplings of racemic secondary electrophiles that bear an oxygen leaving group.

    Science.gov (United States)

    Oelke, Alexander J; Sun, Jianwei; Fu, Gregory C

    2012-02-15

    To date, effective nickel-catalyzed enantioselective cross-couplings of alkyl electrophiles that bear oxygen leaving groups have been limited to reactions of allylic alcohol derivatives with Grignard reagents. In this Communication, we establish that, in the presence of a nickel/pybox catalyst, a variety of racemic propargylic carbonates are suitable partners for asymmetric couplings with organozinc reagents. The method is compatible with an array of functional groups and utilizes commercially available catalyst components. The development of a versatile nickel-catalyzed enantioselective cross-coupling process for electrophiles that bear a leaving group other than a halide adds a significant new dimension to the scope of these reactions.

  1. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    OpenAIRE

    Meng Xian Hong; Liu Wei

    2016-01-01

    In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the eff...

  2. Rolling Element Bearing Fault Diagnosis Using Integrated Nonlocal Means Denoising with Modified Morphology Filter Operators

    Directory of Open Access Journals (Sweden)

    Mien Van

    2016-01-01

    Full Text Available The impulses in vibration signals are used to identify faults in the bearings of rotating machinery. However, vibration signals are usually contaminated by noise that makes the process of extracting impulse characteristic of localized defect very challenging. In order to effectively diagnose bearing with noise masking vibration signal, a new methodology is proposed using integrated (i nonlocal means- (NLM- based denoising and (ii improved morphological filter operators. NLM based denoising is first employed to eliminate or reduce the background noise with minimal signal distortion. This denoised signal is then analysed by a proposed modified morphological analysis (MMA. The MMA analysis introduces a new morphological operator which is based on Modified-Different (DIF filter to include only fault relevant impulsive characteristics of the vibration signal. To improve further performance of the methodology the length of the structure element (SE used in MMA is optimized using a particle swarm optimization- (PSO- based kurtosis criterion. The results of simulated and real vibration signal show that the integrated NLM with MMA method as well as the MMA method alone yields superior performance in extracting impulsive characteristics of vibrations signals, especially for signal with high level of noise or presence of other sources masking the fault.

  3. Fault Detection Enhancement in Rolling Element Bearings via Peak-Based Multiscale Decomposition and Envelope Demodulation

    Directory of Open Access Journals (Sweden)

    Hua-Qing Wang

    2014-01-01

    Full Text Available Vibration signals of rolling element bearings faults are usually immersed in background noise, which makes it difficult to detect the faults. Wavelet-based methods being used commonly can reduce some types of noise, but there is still plenty of room for improvement due to the insufficient sparseness of vibration signals in wavelet domain. In this work, in order to eliminate noise and enhance the weak fault detection, a new kind of peak-based approach combined with multiscale decomposition and envelope demodulation is developed. First, to preserve effective middle-low frequency signals while making high frequency noise more significant, a peak-based piecewise recombination is utilized to convert middle frequency components into low frequency ones. The newly generated signal becomes so smoother that it will have a sparser representation in wavelet domain. Then a noise threshold is applied after wavelet multiscale decomposition, followed by inverse wavelet transform and backward peak-based piecewise transform. Finally, the amplitude of fault characteristic frequency is enhanced by means of envelope demodulation. The effectiveness of the proposed method is validated by rolling bearings faults experiments. Compared with traditional wavelet-based analysis, experimental results show that fault features can be enhanced significantly and detected easily by the proposed method.

  4. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  5. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    Science.gov (United States)

    Al-Bugharbee, Hussein; Trendafilova, Irina

    2016-05-01

    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.

  6. Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models

    Science.gov (United States)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; Li, Bing; He, Zhengjia

    2015-10-01

    A novel reduced-order modeling method is presented in this paper for dynamics analysis of rotating impeller-shaft-bearing assembly with cracked impellers. Based on three-dimensional finite element model, the complex component mode synthesis (CMS) method is employed to generate an efficient reduced-order model (ROM) for studying the effects of crack on the global vibration of the rotating assembly. First, a modeling framework for impeller-shaft-bearing systems in rotating frame is presented. Rotational effects, including Coriolis matrix and centrifugal softening, have been taken into account. Then, the governing equation of motion of the damped gyroscopic system is reduced by the complex CMS method. Finally, the obtained ROM is employed to study the effects of crack on assembly's vibration. During the steady-state response analysis, external excitations on the impeller due to rotor-stator interactions have been taken into account, which was however neglected in previous investigations on rotordynamics. Numerical results show that the lower-order eigenvalues and the unbalance response of the assembly are not sensitive to the local crack on impeller. Nevertheless, the flexible coupling between impeller and shaft becomes more complex when the air flow-induced excitations are considered. Under EO1 traveling wave excitations, a crack leads to slight changes in the assembly's response. In contrast, the effect of crack becomes significant when the assembly is excited by EO2 and higher EO excitations. Moreover, the nonlinear crack breathing effects affect the assembly's response obviously. Finally, a potential technique for detecting the crack on impeller during operation is discussed.

  7. Squeeze film problems of long partial journal bearings for non-Newtonian couple stress fluids with pressure-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jaw-Ren; Hung, Chi-Ren; Lu, Rong-Fang [Nanya Institute of Technology, Jhongli, Taiwan (China). Dept. of Mechanical Engineering; Chu, Li-Ming [I-Shou Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering

    2011-08-15

    According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893), the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation. (orig.)

  8. Squeeze Film Problems of Long Partial Journal Bearings for Non-Newtonian Couple Stress Fluids with Pressure-Dependent Viscosity

    Science.gov (United States)

    Lin, Jaw-Ren; Chu, Li-Ming; Hung, Chi-Ren; Lu, Rong-Fang

    2011-09-01

    According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893) [1], the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation.

  9. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    Science.gov (United States)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  10. Finite Element Analysis for the Structure Optimization Design of the CPUE Load-Bearing Wheel of Tracked Vehicle

    Institute of Scientific and Technical Information of China (English)

    于立彪; 郑慕侨; 张英

    2003-01-01

    A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load-bearing wheel for the first time. Based on load-bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero-order finite element method. A detailed three-dimensional finite element model of flange of load-bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load-bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load-bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.

  11. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase...... the direct damping coefficients by means of the active lubrication, what leads to rotor-bearing systems with larger threshold of stability....

  12. Pump Coupling & Motor bearing damage detection using Condition Monitoring at DTPS

    Science.gov (United States)

    Bari, H. M.; Deshpande, A. A.; Jalkote, P. S.; Patil, S. S.

    2012-05-01

    This paper shares a success story out of the implementation of Co-ordinated Condition Monitoring techniques at DTPS, wherein imminent Mis-alignment of HT auxiliary BFP - 1B and Motor bearing failure of ID FAN - 1B was diagnosed. On 30/12/2010, Booster Pump DE horizontal reading increased from 4.8 to 5.1 and then upto 5.9 mm/sec. It was suspected that Booster pump was mis-aligned with Motor. To confirm misalignment, Phase Analysis was also done which showed that Coupling phase difference was 180 Degrees. Vibration & Phase Analysis helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 104,071. On 06/01/2011, ID fan 1B Motor NDE & DE horizontal vibration readings deviated from 0.5 to 0.8 and 0.6 to 0.8 mm/sec (RMS) respectively. Noise level increased from 99.1 to 101.9 db. It was suspected that Motor bearings had loosened over the shaft. Meanwhile, after opening of Motor, Inner race of NDE side was found cracked and loosened over the shaft. Vibration Analysis & Noise Monitoring helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 308,857.

  13. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    Science.gov (United States)

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  14. SYNTHESIS AND CHARACTERIZATION OF POLYMERS BEARING AZOBENZENE AND CARBAZOLE GROUPS VIA POST-AZO-COUPLING REACTION

    Institute of Scientific and Technical Information of China (English)

    Jun Shi; Zhi-wei Jiang; Li Zhang; Shao-kui Cao

    2005-01-01

    A series of polymers bearing azobenzene and carbazole groups for photorefractive purpose were prepared via post-azo-coupling reaction. The successful reaction was identified by spectroscopic analysis and gel permeation chromatography. This approach is more facile compared with the direct polymerization of corresponding functional monomer. The polymers prepared have weight average molecular weight of higher than 1.5 × 104 and are easily soluble in common organic solvents like chloroform and tetrahydrofuran, polymer films with high optical quality could be easily fabricated through solution casting. Glass transition temperature (Tg) of the polymers ranges from 60℃ to 182℃, depending on the alkylene spacer length between the functional side group and the polymer backbone, and the polymers are relatively stable under 300℃.

  15. Cavitation Estimates by Orbit Prediction of a Journal Bearing - Finite Element Modelling and Experimental Studies Cavitation Estimates by Orbit Prediction of a Journal Bearing - Finite Element Modelling and Experimental Studies

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim; Klit, Peder; Walther, Jens Honore;

    2015-01-01

    influencing the load carrying capacity and ultimately the chances of fatal shaft-sleeve contact. By solving Reynolds equation numerically using finite elements and incorporating a cavitation algorithm, the dynamic coefficients can be used to establish the journal orbit for a given bearing and load pattern...

  16. Finite element analysis on the electromagnetic fields of active magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, S; Liu, J [School of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110168 (China); Bian, C [Institute of Information Science and Engineering, Northeastern University, Shenyang, 110004 (China)], E-mail: renshy@sina.com

    2008-02-15

    To increase the carrying capacity and reduce the weight and size of AMBs, it is necessary to use a ferromagnetic material with high magnetic flux density, which can make AMBs run in the nonlinear region. The simple linear model before is not gratifying, so some more precise analysis methods are demanded, the finite element method(shorted as FEM) is one of such methods. In this paper, the mathematic model and the simplified calculation of AMB rotor are introduced, and the finite elemental model and its boundary condition are produced. Then, the coupling phenomena of the magnetic fields and the effects of different parameters on the magnetic fields of AMB with a non-homocentric rotor are simulated using the FEM analysis software of ANSYS. The distributions of 2D magnetic lines of force and the flux density in rotor and stator are given. The conclusions are of instructed meaning for the design of AMBs.

  17. Approximate Solution of Oil Film Load-carrying Capacity of Turbulent Journal Bearing with Couple Stress Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongfang; WU Peng; GUO Bo; L Yanjun; LIU Fuxi; YU Yingtian

    2015-01-01

    The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.

  18. Tacholess Envelope Order Analysis and Its Application to Fault Detection of Rolling Element Bearings with Varying Speeds

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2013-08-01

    Full Text Available Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of rolling element bearings. Conventional diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speed. This constraint limits the bearing diagnosis to the industrial application significantly. In order to extend the conventional diagnostic methods to speed variation cases, a tacholess envelope order analysis technique is proposed in this paper. In the proposed technique, a tacholess order tracking (TLOT method is first introduced to extract the tachometer information from the vibration signal itself. On this basis, an envelope order spectrum (EOS is utilized to recover the bearing characteristic frequencies in the order domain. By combining the advantages of TLOT and EOS, the proposed technique is capable of detecting bearing faults under varying speeds, even without the use of a tachometer. The effectiveness of the proposed method is demonstrated by both simulated signals and real vibration signals collected from locomotive roller bearings with faults on inner race, outer race and rollers, respectively. Analyzed results show that the proposed method could identify different bearing faults effectively and accurately under speed varying conditions.

  19. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  20. Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore

    Directory of Open Access Journals (Sweden)

    Doyun Shin

    2015-04-01

    Full Text Available In the present study, the feasibility to use phosphate solubilizing bacteria (PSB to develop a biological leaching process of rare earth elements (REE from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the widest. In the phosphate solubilization test in liquid media, Azospirillum lipoferum, P. rhizosphaerae, B. megaterium, and A. aceti caused the leaching of 6.4%, 6.9%, 7.5%, and 32.5% of calcium, respectively. When PSB were used to leach REE from monazite-bearing ore, ~5.7 mg/L of cerium (0.13% of leaching efficiency and ~2.8 mg/L of lanthanum (0.11% were leached by A. aceti, and Azospirillum brasilense, A. lipoferum, P. rhizosphaerae and M. ciceri leached 0.5–1 mg/L of both cerium and lanthanum (0.005%–0.01%, as measured by concentrations in the leaching liquor. These results indicate that determination of halo zone formation was found as a useful method to select high-capacity bacteria in REE leaching. However, as the leaching efficiency determined in our experiments was low, even in the presence of A. aceti, further studies are now underway to enhance leaching efficiency by selecting other microorganisms based on halo zone formation.

  1. On diversity performance of two-element coupling element based antenna structure for mobile terminal

    DEFF Research Database (Denmark)

    Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi

    2010-01-01

    fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible......In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading is caused by the coherent summation of one or more echoes from many reflection points reaching the receive antenna. Antenna diversity can be used to mitigate multipath...... for low frequency diversity application with stable and low envelope correlation across wide frequency range. The studied structure has been tuned to be operating at 1600 MHz for measurement evaluation purpose. This paper presents an analysis of diversity performance of the structure in terms...

  2. Coupled Finite Element/Boundary Element Analysis of a Vehicle Moving Along a Railway Track

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2004-01-01

    Trains running in build-up areas are a source to ground-borne noise. A careful design of the track structure may be one way of minimizing the vibrations in the surroundings. For example, open or in-filled trenches may be constructed along the track, or the soil underneath the track may be improved....... In this work, analyses are carried out with the aim of investigating the influence of the track design and properties on the level of ground vibration due to a vehicle moving with subsonic speed. A coupled finite element and boundary element model of the track and subsoil is employed, adopting a formulation...... in the moving frame of reference following the vehicle. The computations are carried out in the frequency domain, and various combinations of the vehicle speed and the excitation frequency are analysed. The analyses indicate that open trenches are generally more efficient than in-filled trenches or soil...

  3. Coupled Finite Element/Boundary Element Analysis of a Vehicle Moving Along a Railway Track

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2004-01-01

    Trains running in build-up areas are a source to ground-borne noise. A careful design of the track structure may be one way of minimizing the vibrations in the surroundings. For example, open or in-filled trenches may be constructed along the track, or the soil underneath the track may be improved....... In this work, analyses are carried out with the aim of investigating the influence of the track design and properties on the level of ground vibration due to a vehicle moving with subsonic speed. A coupled finite element and boundary element model of the track and subsoil is employed, adopting a formulation...... stiffening?even at low frequencies. However, for high-speed vehicles rubber chip barriers may be a promising means of vibration screening...

  4. Rare earth elements in germanium-bearing coal seams of the Spetsugli deposit (Primor'e Region, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, V.V. [Russian Academy of Science, Moscow (Russian Federation)

    2005-06-01

    The paper presents first data on contents of lanthanoids and yttrium in germanium-bearing beds of the Spetsugli deposit, which vary along sampled cross sections from 86 to 316 ppm. It is shown that germanium-bearing coals are strongly enriched in yttrium and heavy lanthanoids as compared with coals located beyond the zone of germanium mineralization and with germanium-bearing coals of the Lincang deposit (South China). Vertical and lateral variations in REE concentrations and in REE patterns in germanium-bearing beds located at different hypsometric levels and different distances from supposed feeding channels of germanium-bearing solutions are considered. The REE distributions through beds show no correlation between REE and Ge contents. This is explained by diverse REE sources (granites of the basement and hydrothermal solutions of two generations) and by the different age of their accumulations in beds of the Spetsugli deposit. Reconstruction of the initial REE composition in germanium-bearing solutions circulating through coal-bearing formations during the Miocene at the stage of organic matter diagenesis shows that they were characterized by low concentrations of these elements and were relatively enriched in Eu and HREE. Anomalously high REE contents established in germanium-bearing coals are of epigenetic origin and accumulated after the formation of Ge mineralization. They were deposited by metalliferous REE-enriched and Ge-free or Ge-poor solutions of volcanic origin that circulated during the Pliocene-Early Quaternary time. In this regard, the Spetsugli deposit differs notably from the Lincang Ge-bearing coal deposit (South China), where the late epigenetic ore-formation stage probably did not take place.

  5. 3D Two-way coupled TEHD analysis on the lubricating characteristics of thrust bearings in pump-turbine units by combining CFD and FEA

    Science.gov (United States)

    Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin

    2016-01-01

    The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.

  6. Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors

    CERN Document Server

    AUTHOR|(SzGeCERN)755510

    2017-01-01

    Capacitively coupled hybrid silicon pixel-detector assemblies are under study for the vertex detector at the proposed future CLIC linear electron-positron collider. The assemblies consist of active CCPDv3 sensors, with 25 μm pixel pitch implemented in a 180 nm High- Voltage CMOS process, which are glued to the CLICpix readout ASIC, with the same pixel pitch and processed in a commercial 65 nm CMOS technology. The signal created in the silicon bulk of the active sensors passes a two-stage amplifier, in each pixel, and gets transferred as a voltage pulse to metal pads facing the readout chip (ROC). The coupling of the signal to the metal pads on the ROC side proceeds through the capacitors formed between the two chips by a thin layer of epoxy glue. The coupling strength and the amount of unwanted cross coupling to neighbouring pixels depends critically on the uniformity of the glue layer, its thickness and on the alignment precision during the flip-chip assembly process. Finite-element calculations of the coup...

  7. Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Berkemer, Rainer; Gorria, C.;

    2011-01-01

    The dynamics of asymmetrically coupled nonlinear elements is considered. It is shown that there are two distinctive regimes of oscillatory behavior of one-way nonlinearly coupled elements depending on the relaxation time and the strength of the coupling. In the subcritical regime when...... nonlinear model....

  8. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis

    Science.gov (United States)

    Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao

    2017-02-01

    Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.

  9. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase...

  10. Multifault Diagnosis of Rolling Element Bearings Using a Wavelet Kurtogram and Vector Median-Based Feature Analysis

    Directory of Open Access Journals (Sweden)

    Phuong H. Nguyen

    2015-01-01

    Full Text Available This paper presents a comprehensive multifault diagnosis methodology for incipient rolling element bearing failures. This is done by combining a wavelet packet transform- (WPT- based kurtogram and a new vector median-based feature analysis technique. The proposed approach first extracts useful features that are characteristic of the bearing health condition from the time domain, frequency domain, and envelope power spectrum of incoming acoustic emission (AE signals by using a WPT-based kurtogram. Then, an enhanced feature analysis approach based on the linear discriminant analysis (LDA technique is used to select the most discriminant bearing fault features from the original feature set. These selected fault features are used by a Naïve Bayes (NB classifier to classify the bearing fault conditions. The performance of the proposed methodology is tested and validated under various bearing fault conditions on an experimental test rig and compared with conventional state-of-the-art approaches. The proposed bearing fault diagnosis methodology yields average classification accuracies of 91.11%, 96.67%, 98.89%, 99.44%, and 98.61% at rotational speeds of 300, 350, 400, 450, and 500 rpm, respectively.

  11. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    Science.gov (United States)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  12. Numerical Simulation and Experimental Study on the Gas-Solid Coupling of the Aerostatic Thrust Bearing with Elastic Equalizing Pressure Groove

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-long

    2017-01-01

    Full Text Available Aiming at the problem of low stiffness of aerostatic bearing, according to the principle of gas-solid coupling, this paper designs a kind of aerostatic thrust bearing with elastic equalizing pressure groove (EEPG and investigates the effect of elastic equalizing pressure groove (EEPG on the stiffness of aerostatic bearing. According to the physical model of the bearing, one deduces the deformation control equation of the elastic equalizing pressure groove and the control equation of gas lubrication, using finite difference method to derive the control equations and coupling calculation. The bearing capacity and stiffness of aerostatic bearing with EEPG in different gas film clearance are obtained. The calculation results show that the stiffness increased by 59%. The results of numerical calculation and experimental results have good consistency, proving the gas-solid coupling method can improve the bearing stiffness.

  13. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    Science.gov (United States)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  14. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  15. Extracting Feature Information and its Visualization Based on the Characteristic Defect Octave Frequencies in a Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Jianyu Lei

    2007-10-01

    Full Text Available Monitoring the condition of rolling element bearings and defect diagnosis has received considerable attention for many years because the majority of problems in rotating machines are caused by defective bearings. In order to monitor conditions and diagnose defects in a rolling element bearing, a new approach is developed, based on the characteristic defect octave frequencies. The characteristic defect frequencies make it possible to detect the presence of a defect and diagnose in what part of the bearing the defect appears. However, because the characteristic defect frequencies vary with rotational speed, it is difficult to extract feature information from data at variable rotational speeds. In this paper, the characteristic defect octave frequencies, which do not vary with rotation speed, are introduced to replace the characteristic defect frequencies. Therefore feature information can be easily extracted. Moreover, based on characteristic defect octave frequencies, an envelope spectrum array, which associates 3-D visualization technology with extremum envelope spectrum technology, is established. This method has great advantages in acquiring the characteristics and trends of the data and achieves a straightforward and creditable result.

  16. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.

    Science.gov (United States)

    Zhao, Ming; Lin, Jing; Xu, Xiaoqiang; Li, Xuejun

    2014-10-28

    When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach is established through combining the ensemble empirical mode decomposition (EEMD), envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an effective way to adaptively decompose the raw vibration signal into IMFs with different frequency bands. The envelope order tracking is further employed to transform the envelope of each IMF to angular domain to eliminate the spectral smearing induced by speed variation, which makes the bearing characteristic frequencies more clear and discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to select the optimal IMF containing the richest diagnostic information for final decision making. The effectiveness of IMF-AEOA is validated by simulated signal and experimental data from locomotive bearings. The result shows that IMF-AEOA could accurately identify both single and multiple faults of bearing even under time-varying rotating speed and large extraneous shocks.

  17. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  18. An evaluation of bearings operating in a cryogenic environment with silicon nitride rolling elements

    Science.gov (United States)

    Gibson, H. G.

    1991-01-01

    The bearings used in the space shuttle main engine (SSME) high pressure oxidizer turbopump (HPOTP) do not meet the expected life goals that were set for them. In an effort to improve their performance, many solutions are being studied. New bearing materials are being developed, better manufacturing techniques are being investigated, and improved cage materials for better lubrication are being tested. The focus is on the replacement of steel balls with ones made of silicon nitride in 57-mm HPOTP bearings. The bearings were then installed in a test rig and run at near turbopump operating conditions. The results from this test series are encouraging, with silicon nitride showing good wear resistance and thermal stability.

  19. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    Science.gov (United States)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  20. Modeling and Analysis of Coupling Performance of Dynamic Stiffness Models for a Novel Combined Radial-Axial Hybrid Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available The combined radial-axial magnetic bearing (CRAMB with permanent magnet creating bias flux can reduce the size, cost, and mass and save energy of the magnetic bearing. The CRAMB have three-degree-of-freedom control ability, so its structure and magnetic circuits are more complicated compared to those of the axial magnetic bearing (AMB or radial magnetic bearing (RMB. And the eddy currents have a fundamental impact on the dynamic performance of the CRAMB. The dynamic stiffness model and its cross coupling problems between different degrees of freedom affected for the CRAMB are proposed in this paper. The dynamic current stiffness and the dynamic displacement stiffness models of the CRAMB are deduced by using the method of equivalent magnetic circuit including eddy current effect, but the dynamic current stiffness of the RMB unit is approximately equal to its static current stiffness. The analytical results of an example show that the bandwidth of the dynamic current stiffness of the AMB unit and the dynamic displacement stiffness of the CRAMB is affected by the time-varying control currents or air gap, respectively. And the dynamic current stiffness and the dynamic displacement stiffness between the AMB unit and the RMB unit are decoupled due to few coupling coefficients.

  1. Study on the Components and Performance of GCr15 Bearing Steel Surface by Gas Multi-elements Penetrating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai; CHEN Fei; YAO Bin; ZHANG Jian-jun; CHEN Li

    2004-01-01

    Gas multi-elements Penetration is a new surface hardening technology to improve the performance of the surface.In this paper, we focus on the study on the influence of multi-elements penetration on hardness of GCr15 bearing steel surface by C-N-O multi-elements penetrating treatment, and analyze the three elements, C, N and O in the surface with an EDX. Analysis of SEM images shows that there forms a penetrated layer 75 μ m or so in thickness over the surface, in which,0-30 μ m is the passivation layer, 30-60 μ m, the bright layer, and 60-75, the transition layer.

  2. Study on the Components and Performance of GCr15 Bearing Steel Surface by Gas Multi-elements Penetrating

    Institute of Scientific and Technical Information of China (English)

    ZHOUHai; CHENFei; YAOBin; ZHANGJian-jun; CHENLi

    2004-01-01

    Gas multi-elements Penetration is a new surface hardening technology to improve the performance of the surface.In this paper, we focus on the study on the influence of multi-elements penetration on hardness of GCrI5 bearing steel surface by C-N-O multi-elements penetrating treatment, and analyze the three elements, C, N and O in the surface with an EDX. Analysis of SEM images shows that there forms a penetrated layer 75μm or so in thickness over the surface, in which,0-30μm is the passivation layer, 30-60μm, the bright layer, and 60-75, the transition layer.

  3. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    Science.gov (United States)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  4. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    Directory of Open Access Journals (Sweden)

    Jerzy Zakrzewski

    2015-07-01

    Full Text Available Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II acetate coordinated with a tri(o-tolylphosphine ligand immobilized in a polyurea matrix.

  5. Determination of the coupling architecture and parameters of elements in ensembles of time-delay systems

    Science.gov (United States)

    Sysoev, I. V.; Ponomarenko, V. I.; Prokhorov, M. D.

    2016-01-01

    A method for the reconstruction of the architecture, strength of couplings, and parameters of elements in ensembles of coupled time-delay systems from their time series is proposed. The effectiveness of the method is demonstrated on chaotic time series of the ensemble of diffusively coupled nonidentical Ikeda equations in the presence of noise.

  6. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  7. DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Tamrazyan Ashot Georgievich

    2012-10-01

    Full Text Available Accurate and adequate description of external influences and of the bearing capacity of the structural material requires the employment of the probability theory methods. In this regard, the characteristic that describes the probability of failure-free operation is required. The characteristic of reliability means that the maximum stress caused by the action of the load will not exceed the bearing capacity. In this paper, the author presents a solution to the problem of calculation of structures, namely, the identification of reliability of pre-set design parameters, in particular, cross-sectional dimensions. If the load distribution pattern is available, employment of the regularities of distributed functions make it possible to find the pattern of distribution of maximum stresses over the structure. Similarly, we can proceed to the design of structures of pre-set rigidity, reliability and stability in the case of regular load distribution. We consider the element of design (a monolithic concrete slab, maximum stress S which depends linearly on load q. Within a pre-set period of time, the probability will not exceed the values according to the Poisson law. The analysis demonstrates that the variability of the bearing capacity produces a stronger effect on relative sizes of cross sections of a slab than the variability of loads. It is therefore particularly important to reduce the coefficient of variation of the load capacity. One of the methods contemplates the truncation of the bearing capacity distribution by pre-culling the construction material.

  8. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  9. Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum

    Directory of Open Access Journals (Sweden)

    D. K. Harrison

    2007-01-01

    Full Text Available The bearing characteristic frequencies (BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT. Therefore, Envelope Detection (ED has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.

  10. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y. [State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an (China); Zhu, Y. [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi' an Jiaotong University, Xi' an (China)

    2013-12-15

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  11. Statistical Mechanics of finite arrays of coupled bistable elements

    OpenAIRE

    Gómez-Ordóñez, José; Casado, José M.; Morillo, Manuel; Honisch, Christoph; Friedrich, Rudolf

    2009-01-01

    We discuss the equilibrium of a single collective variable characterizing a finite set of coupled, noisy, bistable systems as the noise strength, the size and the coupling parameter are varied. We identify distinct regions in parameter space. The results obtained in prior works in the asymptotic infinite size limit are significantly different from the finite size results. A procedure to construct approximate 1-dimensional Langevin equation is adopted. This equation provides a useful tool to u...

  12. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  13. A finite element analysis of a large thrust elastic metal-plastics bearing bush for a hydraulic turbine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal-plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1 ) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x = 84 and Y = 1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.

  14. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...... by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance...

  15. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  16. The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear

    Science.gov (United States)

    Jacobs, William; Van Hooreweder, Brecht; Boonen, Rene; Sas, Paul; Moens, David

    2016-06-01

    Precise prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. For bearings subjected to highly varying loads, recent research emphasises a strong reduction of the actual bearing lifetime w.r.t. the classically calculated bearing lifetime. This paper experimentally analyses the influence of external dynamic loads on the lifetime of rolling element bearings. A novel bearing test rig is introduced. The test rig is able to apply a fully controlled multi-axial static and dynamic load on a single test bearing. Also, different types and sizes of bearings can be tested. Two separate investigations are conducted. First, the behaviour of the lubricant film between the rolling elements and raceways is analysed. Increased metallic contact or breakdown of the film during dynamic excitation is investigated based on the measured electrical resistance through the bearing. The study shows that the lubricant film thickness follows the imposed variations of the load. Variations of the lubricant film thickness are similar to the variations when the magnitude of the static bearing load is changed. Second, wear of the raceway surfaces is analysed. Surface wear is investigated after a series of accelerated lifetime tests under high dynamic load. Due to sliding motion between asperities of the contacting surfaces in the bearing, polishing of the raceway honing structure occurs. This polishing is clearly observed on SEM images of the inner raceway after a test duration of only 0.5% of the calculated L10 life. Polishing wear of the surfaces, such as surface induced cracks and material delamination, is expected when the bearing is further exposed to the high dynamic load.

  17. Effect of Stochastics of Dimensional Parameters of Hauling Laminated Bushless Chain Elements of Improved Structure on Their Bearing Strength

    Directory of Open Access Journals (Sweden)

    Kryvyi Petro

    2014-10-01

    Full Text Available The distribution densities of dimensional parameters of a hauling laminated bushless chain of improved structure were investigated in this paper. The authors suggest calculating the non-uniform load of internal and external links plates by probability coefcient Km, for which the minimum, the most probable and the maximum values were determined. The formula for Km determination depending on plate size variety due to a gap random value Δ and plate elastic deformation value under permitted payload was obtained. The efect of stochastics of dimensional parameters of hauling laminated bushless chain elements on their bearing strength is proved.

  18. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  19. A study on nonlinear finite element analysis of laminated rubber bearings. Pt.1. Development of evaluation method for mechanical properties of laminated rubber bearings for horizontal base isolation system considering volumetric deformation of rubber material

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Akihiro; Ohtori, Yasuki; Yabana, Shuichi; Hirata, Kazuta [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    1999-04-01

    The purpose of this research is to develop the evaluation method for mechanical properties of laminated rubber bearings by nonlinear finite element method (FEM) considering the volumetric deformation of natural rubber material. Relationship between pressure and volumetric strain of the natural rubber is obtained from the volumetric tests and is introduced into user-subroutine of the FEM code (ABAQUS). Finite element analyses of natural rubber bearings (NRB) and the natural rubber bearing with lead plug (LRB) are carried out. The results may be summarized as follows; 1) Horizontal, vertical stiffness and effect of shear deformation on vertical stiffness of natural rubber bearings that have various shape are simulated with enough accuracy. 2) Horizontal and vertical stiffness of LRB are also simulated well. (author)

  20. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  1. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    Directory of Open Access Journals (Sweden)

    Zhenyu Yang

    2015-01-01

    Full Text Available An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis also showed a moderate capability in diagnosis of point defect faults depending on the type of fault, severity of the fault, and the operational condition. The temporal feature indicated a feasibility to detect generalized roughness fault. The practical issues, such as deviations of predicted characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.

  2. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    Science.gov (United States)

    2012-10-16

    comparison of stresses and strains by finite element analysis (FEA) and peridynamic solutions is performed for a ductile material. A multiscale...problems. One common benchmark problem characterized by the mixed mode fracture is the test of a double-edge-notched concrete specimen conducted by Nooru...Mohamed et al. [19]. The test of Nooru-Mohamed was adopted by De Borst [20] in the discussion of computational modeling of concrete fracture. For

  3. Round Top Mountain rhyolite (Texas, USA), a massive, unique Y-bearing-fluorite-hosted heavy rare earth element (HREE) deposit

    Institute of Scientific and Technical Information of China (English)

    PINGITORE Nicholas; CLAGUE Juan; GORSKI Daniel

    2014-01-01

    Round Top Mountain in Hudspeth County, west Texas, USA is a surface-exposed rhyolite intrusion enriched in Y and heavy rare earth elements (HREEs), as well as Nb, Ta, Be, Li, F, Sn, Rb, Th, and U. The massive tonnage, estimated at well over 1 billion tons, of the deposit makes it a target for recovery of valuable yttrium and HREEs (YHREEs), and possibly other scarce ele-ments. Because of the extremely fine grain size of the mineralized rhyolite matrix, it has not been clear which minerals host the YHREEs and in what proportions. REE-bearing minerals reported in the deposit included bastnäsite-Ce, Y-bearing fluorite, xeno-time-Y, zircon, aeschynite-Ce, a Ca-Th-Pb fluoride, and possibly ancylite-La and cerianite-Ce. Extended X-ray absorption fine struc-ture (EXAFS) indicated that virtually all of the yttrium, a proxy for the HREEs, resided in a coordination in the fluorite-type crystal structure, rather than those in the structures of bastnäsite-Ce and xenotime-Y. The YREE grade of the Round Top deposit was just over 0.05%, with 72%of this consisting of YHREEs. This grade was in the range of the South China ionic clay deposits that supply essentially all of the world’s YHREEs. Because the host Y-bearing fluorite is soluble in dilute sulfuric acid at room temperature, a heap leaching of the deposit appeared feasible, aided by the fact that 90%-95%of the rock consists of unreactive and insoluble feld-spars and quartz. The absence of overburden, remarkable consistency of mineralization grade throughout the massive rhyolite, prox-imity (a few km) to a US interstate highway, major rail systems and gas and electricity, temperate climate, and stable political location in the world’s largest economy all enhanced the potential economic appeal of Round Top.

  4. The effect of phosphate additives on the lubrication of rolling element bearings in a refrigerant environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuomas, Roger; Isaksson, Ove [Luleaa University of Technology, Division of Machine Elements, SE-971 87 Luleaa (Sweden)

    2007-01-15

    Chlorine free replacement refrigerants, HFC (hydrofluorocarbons) and HC (hydrocarbons), have shown less lubricating properties. Phosphate based additives were used to improve the lubricity with refrigerant R-134a, demonstrating positive effects. In the present paper, the ability to form lubricating film and wear of two additives, phosphate ester and acid phosphate, was investigated in a bearing test apparatus. The results show that phosphate additive in polyolester oil, in an R-134a environment, increases the lubricating film and reduce wear. Surface topography during the initial run-in changes to a more favorable profile with lower RMS angle and longer wavelengths that promote load-carrying capacity and film build-up. (author)

  5. Thermal mechanically coupled finite element analysis in metal-forming processes

    NARCIS (Netherlands)

    Lugt, van der J.; Huetink, J.

    1986-01-01

    A combined Eulerian-Lagrangian finite element formulation is presented for the analysis of metal-forming, coupled with thermal effects. The procedure developed involves incrementally solving a coupled set of equations for both the displacement and the temperature. The material properties may be temp

  6. Coupling reduction between dipole antenna elements by using a planar meta-surface

    DEFF Research Database (Denmark)

    Saenz, Elena; Ederra, Inigo; Gonzalo, Ramon

    2009-01-01

    The mutual coupling between dipole antenna array elements using a planar meta-surface as superstrate is experimentally investigated. The meta-surface is based on grids of short metal strips and continuous wires. A comparison between the mutual coupling when the dipoles are radiating in free space...

  7. Thermal mechanically coupled finite element analysis in metal-forming processes

    NARCIS (Netherlands)

    van der Lugt, J.; Huetink, Han

    1986-01-01

    A combined Eulerian-Lagrangian finite element formulation is presented for the analysis of metal-forming, coupled with thermal effects. The procedure developed involves incrementally solving a coupled set of equations for both the displacement and the temperature. The material properties may be

  8. Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim;

    2014-01-01

    A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density...

  9. Finite element modeling of coupled optical microdisk resonators for displacement sensing

    CERN Document Server

    Grudinin, Ivan

    2012-01-01

    We analyze normal mode splitting in a pair of vertically coupled microdisk resonators. A full vectorial finite element model is used to find the eigen frequencies of the symmetric and antisymmetric composite modes as a function of coupling distance. We find that the coupled microdisks can compete with the best Fabry-Perot resonators in displacement sensing. We also show how we configured FreeFem++ for the sphere eigenvalue problem.

  10. Computing Analysis of Bearing Elements of Launch Complex Aggregates for Space Rocket "Soyuz-2.1v"

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2014-01-01

    Full Text Available The research is devoted to the computational analysis of bearing structures of launch system aggregates, which are designed for the prelaunch preparation and launch security of space rocket (SR "SOYUZ-2" of 1B stage. The bearing structures taken under consideration are the following: supporting trusses (ST, bearing arms (BA, the upper cable girder (UCG, the umbilical mast (UM. The SR “SOYUZ-2" of 1B stage has the characteristics of the propulsion unit (PU thrust, different from those of the "Soyuz" family space rockets exploited before.The paper presents basic modeling principles to calculate units and their operating loadings. The body self-weight and the influence of a gas-dynamic jet of "SOYUZ-2.1B" propulsion unit have been considered as a load of units. Parameters of this influence are determined on the basis of impulse stream fields and of deceleration temperatures calculated for various SR positions according to the specified path of its ascent and demolition.Physical models of the aggregates and calculations are based on the finite elements method and super-elements method using “SADAS” software package developed at the chair SM8 of Bauman Moscow State Technical University.Fields of nodal temperatures distribution in the ST, BA, UCG, UM models, and fields of tension in finite elements as well represent the calculation results.Obtained results revealed the most vulnerable of considered starting system aggregates, namely UM, which was taken for local durability calculation. As an example, this research considers calculation of local durability in the truss branches junction of UM rotary part, for which the constructive strengthening has been offered. For this node a detailed finite-element model built in the model of UM rotary part has been created. Calculation results of local durability testify that the strengthened node meets durability conditions.SR developers used calculation results of launch system aggregates for the space

  11. The simulation of electrostatic coupling intra-body communication based on the finite-element method

    Institute of Scientific and Technical Information of China (English)

    Song Yong; Zhang Kai; Yang Guang; Zhu Kang; Hao Qun

    2011-01-01

    In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a. the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave; b. the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software; c. the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequencies, electrodes directions, electrodes sizes and transmission distances. Finally, some important conclusions are deduced on the basis of simulation results.

  12. Determination of plasma trace elements in tumor-bearing animals by proton-induced X-ray emission spectroscopy.

    Science.gov (United States)

    Fogle, M; Daly, B; Evans, M; Justiniano, E L; Kovacs, C J; Shinpaugh, J L; Toburen, L H

    2001-11-01

    Although altered levels of circulating essential trace elements are known to accompany malignant disease, the lack of sensitivity of conventional detection methods has generally limited their study to clinical conditions involving extensive disease (i.e., significant tumor burden). As such, the application of altered trace element levels as potential prognostic guides or as response indicators subsequent to treatment has been of limited use. During this study, proton-induced X-ray emission spectroscopy was evaluated as a tool to determine trace element imbalances in a murine tumor model. Using plasma from C57B1/6 mice bearing the syngeneic Lewis lung carcinoma (LLCa), levels of Fe, Cu, and Zn, as well as changes in the Cu /Zn ratio, were measured in animals carrying an increasing primary tumor burden. The plasma levels of Fe, Cu, and Zn were found to decrease significantly 7 d following implants of LLCa cells with no significant change observed in the Cu/Zn ratio. By d 21, however, an increase in the Cu/Zn ratio was found to accompany increased growth of the LLCa tumor; the plasma levels of Cu had returned to normal levels, whereas both the Fe and Zn plasma levels remained lowered. Collectively, the results suggest that although a net change in individual plasma trace element concentrations might not be accurately associated with tumor growth, a clear relationship was established between the Cu/Zn ratio and tumor size.

  13. THE COUPLING ELEMENT CALCULATION OF COMBINED WOODEN BAR FOR TURNOUTS

    Directory of Open Access Journals (Sweden)

    O. M. Patlasov

    2015-11-01

    Full Text Available Purpose. The deficit of permanent way (PW material elements leads to a revision of the re-use of old serviceable object after their replacement or repair. As an example is the following fact, that after the wear in the under-rail area of wooden sleepers and beams, or other defects that prevent their further exploitation, there is an acute issue of their planned replacement. Usually, the required minimum margin of sleepers is always in the track service brigades. As for the wooden beams the length of which in the turnouts is up to 5 m, there is not always possible quickly replace them due to the lack of size in the short term. Therefore, the geometric dimensions of the connect elements of the two halves of the beams or sleepers in a single rigid structure were proposed and justified and its characteristics do not differ from solid beam. Methodology. The authors considered the calculation algorithm of wooden elements connection and mathematical models that describe the elastic properties of base. The most adequate technique that fully characterizes the interactions beam in the form of a beam of finite length on the ballast was determined. Findings. The qualitative and quantitative verification of the results showed a very good agreement between the values of bending moments, shear forces and deflections that were obtained by the finite difference method (FDM and the analytical method. It gives the reason to believe that the received geometric dimensions of nag connection can be recommended to employees of track facilities to connect the wooden sleepers on the switches and crossovers. Originality. The nag connection geometrical sizes of two wooden sleepers in the beam for using on switches were substantiated. Practical value. The proposed joint design allows re-using of renovated old wooden sleepers and bars. This design can be applied not only for the connection of conventional wooden sleepers in the beam of desired length, but also to create the

  14. Finite Elements, Design Optimization, and Nondestructive Evaluation: A Review in Magnetics, and Future Directions in GPU-based, Element-by-Element Coupled Optimization and NDE

    Science.gov (United States)

    2013-07-18

    Element Coupled Optimization and NDE S. Ratnajeevan H. Hoole1, Victor U. Karthik1, Sivamayam Sivasuthan1, Arunasalam Rahunanthan2, Ravi S...Department of Mathematics and Statistics, University of Toledo , Toledo , OH 43606-3390, USA. 3. The US Army Tank Automotive Research, Development and...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsothy Jayakumar; Ravi Thyagarajan; Arunasalam Rahunanthan; Sivamayam Sivasuthan; Victor Karthik 5d

  15. Investigation of the behavior of protection elements against field radiated line coupled UWB-pulses

    Directory of Open Access Journals (Sweden)

    R. Krzikalla

    2006-01-01

    Full Text Available To protect electronic systems against electromagnetic interferences in general nonlinear protection circuits are used. These protection circuits are optimized mostly against special transient interferences such as lightning electromagnetic pulses (LEMP or electromagnetic pulses caused by nuclear explosions (NEMP. Previous investigations have shown that these protection elements could be undermined by so-called ultra wideband (UWB pulses. Thereby a direct charge of the UWB-pulse to the elements has been assumed. This assumption was a worst case approximation because in practice UWB-pulses only get into systems by coupling effects. In this investigation the behavior of typical nonlinear protection elements has been tested with field radiated line coupled UWB-pulses. For that line coupled UWB-pulses have been defined depending on the coupling behavior of typical electronic systems and a possibility of generation of this kind of pulses is presented. After it typical nonlinear protection elements such as spark gaps, varistors and protection diodes have been tested with the previously defined test pulses. Finally the measured behavior of the elements has been compared with the behavior by direct charged UWB-pulses and the protection effect of the elements against field radiated line coupled UWB-pulses is re-evaluated.

  16. Nonlinear Dynamic Analysis of Coupled Gear-Rotor-Bearing System with the Effect of Internal and External Excitations

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shihua; SONG Guiqiu; REN Zhaohui; WEN Bangchun

    2016-01-01

    Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.

  17. Nonlinear dynamic analysis of coupled gear-rotor-bearing system with the effect of internal and external excitations

    Science.gov (United States)

    Zhou, Shihua; Song, Guiqiu; Ren, Zhaohui; Wen, Bangchun

    2016-03-01

    Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS.

  18. Magnetically coupled gear based drive mechanism for contactless continuous rotation using superconducting magnetic bearing below 10 K

    Science.gov (United States)

    Matsumura, T.; Sakurai, Y.; Kataza, H.; Utsunomiya, S.; Yamamoto, R.

    2016-11-01

    We present the design and mechanical performances of a magnetically coupled gear mechanism to drive a levitating rotor magnet of a superconducting magnetic bearing (SMB). The SMB consists of a ring-shaped high-temperature superconducting array (YBCO) and a ring-shaped permanent magnet. This rotational system is designed to operate below 10 K, and thus the design philosophy is to minimize any potential source of heat dissipation. While an SMB provides only a functionality of namely a bearing, it requires a mechanism to drive a rotational motion. We introduce a simple implementation of a magnetically coupled gears between a stator and a rotor. This enables to achieve enough torque to drive a levitating rotor without slip at the rotation frequency of about 1 Hz below 10 K. The rotational variation between the rotor and the drive gear is synchronised within σ = 0.019 Hz. The development of this mechanism is a part of the program to develop a testbed in order to evaluate a prototype half-wave plate based polarization modulator for future space missions. The successful development allows this modulator to be a candidate for an instrument to probe the cosmic inflation by measuring the cosmic microwave background polarization.

  19. Methods of calculating the bearing capacity of eccentrically compressed concrete elements and suggestions for its improvement

    Directory of Open Access Journals (Sweden)

    Starishko Ivan Nikolaevich

    2014-03-01

    Full Text Available The proposed calculation method is specific in terms of determining the carrying capacity of eccentrically compressed concrete elements, in contrast to the calculation by error method, as in the existing regulations, where in the result of the calculation is not known what is the limit load the eccentric compression element can withstand. The proposed calculation method, the publication of which is expected in the next issue of the "Vestnik MGSU" the above mentioned shortcomings of the existing calculation methods, as well as the shortcomings listed in this article are eliminated, which results in the higher convergence of theoretical and experimental results of eccentrically compressed concrete elements strength and hence a high reliability of their operation.

  20. Calculation of Dipole Transition Matrix Elements and Expectation Values by Vibrational Coupled Cluster Method.

    Science.gov (United States)

    Banik, Subrata; Pal, Sourav; Prasad, M Durga

    2010-10-12

    An effective operator approach based on the coupled cluster method is described and applied to calculate vibrational expectation values and absolute transition matrix elements. Coupled cluster linear response theory (CCLRT) is used to calculate excited states. The convergence pattern of these properties with the rank of the excitation operator is studied. The method is applied to a water molecule. Arponen-type double similarity transformation in extended coupled cluster (ECCM) framework is also used to generate an effective operator, and the convergence pattern of these properties is compared to the normal coupled cluster (NCCM) approach. It is found that the coupled cluster method provides an accurate description of these quantities for low lying vibrational excited states. The ECCM provides a significant improvement for the calculation of the transition matrix elements.

  1. 热力耦合作用下的滚动轴承寿命分析%Life Analysis for Rolling Bearing under the Effect of Thermo-mechanical Coupling

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 张军平; 石慧荣

    2013-01-01

    针对承受热应力和结构应力共同作用的滚动轴承,推演了其热源产生机理和热应力计算过程,并且利用有限元软件Ansys建立了轴承单元分析模型.通过对热力耦合作用下轴承温度分布、应力分布和疲劳寿命特性进行分析,结果表明轴承内圈受温度变化影响最大,滚道导棱处容易发生应力集中,温度变化比轴承载荷对寿命影响更加显著.%For rolling bearing under the interaction of the thermal stress and structural stress, the theory about generation of heat source and the function of thermal stress are achieved. A simplified rolling bearing model is established by use of the finite element software Ansys. After analyzing temperature distribution, stress distribution and fatigue life characteristics of the bearing under the effect of thermo-mechanical coupling, the results show that temperature change of the bearing inner ring is the biggest and stress concentration on the raceway edge is prone to take place. And the influence of temperature change is more significant than the load bearing on life.

  2. Development and validation of a weight-bearing finite element model for total knee replacement.

    Science.gov (United States)

    Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch

    2016-01-01

    Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.

  3. Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite

    Science.gov (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2015-01-01

    present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus-solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt-melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source-metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi-Koolau basalts in the Hawaiian hot spot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling.

  4. Fault feature extraction and enhancement of rolling element bearing in varying speed condition

    Science.gov (United States)

    Ming, A. B.; Zhang, W.; Qin, Z. Y.; Chu, F. L.

    2016-08-01

    In engineering applications, the variability of load usually varies the shaft speed, which further degrades the efficacy of the diagnostic method based on the hypothesis of constant speed analysis. Therefore, the investigation of the diagnostic method suitable for the varying speed condition is significant for the bearing fault diagnosis. In this instance, a novel fault feature extraction and enhancement procedure was proposed by the combination of the iterative envelope analysis and a low pass filtering operation in this paper. At first, based on the analytical model of the collected vibration signal, the envelope signal was theoretically calculated and the iterative envelope analysis was improved for the varying speed condition. Then, a feature enhancement procedure was performed by applying a low pass filter on the temporal envelope obtained by the iterative envelope analysis. Finally, the temporal envelope signal was transformed to the angular domain by the computed order tracking and the fault feature was extracted on the squared envelope spectrum. Simulations and experiments were used to validate the efficacy of the theoretical analysis and proposed procedure. It is shown that the computed order tracking method is recommended to be applied on the envelope of the signal in order to avoid the energy spreading and amplitude distortion. Compared with the feature enhancement method performed by the fast kurtogram and corresponding optimal band pass filtering, the proposed method can efficiently extract the fault character in the varying speed condition with less amplitude attenuation. Furthermore, do not involve the center frequency estimation, the proposed method is more concise for engineering applications.

  5. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  6. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...

  7. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes, E-mail: johannes.majer@tuwien.ac.at [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Sumiya, Hitoshi [Sumitomo Electric Industries Ltd., Itami 664-001 (Japan); Onoda, Shinobu [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Isoya, Junichi [Research Centre for Knowledge Communities, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan); Putz, Stefan [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-07-18

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  8. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    Science.gov (United States)

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  9. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  10. A mixed element based on Lagrange multiplier method for modified couple stress theory

    Science.gov (United States)

    Kwon, Young-Rok; Lee, Byung-Chai

    2017-01-01

    A 2D mixed element is proposed for the modified couple stress theory. The C1 continuity for the displacement field is required because of the second derivatives of displacement in the energy form of the theory. The C1 continuity is satisfied in a weak sense with the Lagrange multiplier method. A supplementary rotation is introduced as an independent variable and the kinematic relation between the physical rotation and the supplementary rotation is constrained with Lagrange multipliers. Convergence criteria and a stability condition are derived, and the number and the positions of nodes for each independent variable are determined. Internal degrees of freedom are condensed out, so the element has only 21 degrees of freedom. The proposed element passes the C^{0-1} patch test. Numerical results show that the principle of limitation is applied to the element and the element is robust to mesh distortion. Furthermore, the size effects are captured well with the element.

  11. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  12. Computer Implementation of a Coupled Boundary and Finite Element Methods for the Steady Exterior Oseen Problem

    Directory of Open Access Journals (Sweden)

    Minfu Feng

    2010-01-01

    Full Text Available We present a numerical technique based on the coupling of boundary and finite element methods for the steady Oseen equations in an unbounded plane domain. The present paper deals with the implementation of the coupled program in the two-dimensional case. Computational results are given for a particular problem which can be seen as a good test case for the accuracy of the method.

  13. Coupled Analytical-Finite Element Methods for Linear Electromagnetic Actuator Analysis

    Directory of Open Access Journals (Sweden)

    K. Srairi

    2005-09-01

    Full Text Available In this paper, a linear electromagnetic actuator with moving parts is analyzed. The movement is considered through the modification of boundary conditions only using coupled analytical and finite element analysis. In order to evaluate the dynamic performance of the device, the coupling between electric, magnetic and mechanical phenomena is established. The displacement of the moving parts and the inductor current are determined when the device is supplied by capacitor discharge voltage.

  14. Design of Finite Element Tools for Coupled Surface and Volume Meshes

    Institute of Scientific and Technical Information of China (English)

    Daniel K(o)ster; Oliver Kriessl; Kunibert G. Siebert

    2008-01-01

    Many problems with underlying variational structure involve a coupling of volume with surface effects. A straight-forward approach in a finite element discretization is to make use of the surface triangulation that is naturally induced by the volume triangulation. In an adaptive method one wants to facilitate "matching" local mesh modifications, i.e., local refinement and/or coarsening, of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA. We also present several important applications of the mesh coupling.

  15. A coupled thermo-poro-mechanical finite element analysis of fractured porous rocks using a cohesive interface element

    Science.gov (United States)

    Wang, W.; Regueiro, R. A.

    2014-12-01

    The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short

  16. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    Energy Technology Data Exchange (ETDEWEB)

    Naqui, J.; Su, L., E-mail: lijuan.suri.su@gmail.com; Mata, J.; Martín, F., E-mail: Ferran.Martin@uab.es

    2015-06-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc.

  17. Patch test function for axisymmetric element of conventional and couple stress theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The enhanced patch test proposed by Chen W J(2006) can be used to assess the convergence of the problem with non-homogeneous differential equations.Based on this theory,we establish the patch test function for axisymmetric elements of conventional and couple stress theories,and reach an important conclusion that the patch test function for axisymmetric elements cannot contain non-zero constant shear.

  18. Patch test function for axisymmetric element of conventional and couple stress theory

    Institute of Scientific and Technical Information of China (English)

    CHEN WanJi; ZHAO Jie; WANG JinZhi; JI Bian

    2009-01-01

    The enhanced patch test proposed by Chen W J (2006) can be used to assess the convergence of the problem with non-homogeneous differential equations. Based on this theory, we establish the patch test function for axisyrnrnetric elements of conventional and couple stress theories, and reach an im-portant conclusion that the patch test function for axisymrnetric elements cannot contain non-zero constant shear.

  19. Coupling problem study of solid element and shell element in finite element%有限元中体壳单元的耦合问题研究

    Institute of Scientific and Technical Information of China (English)

    谢最伟; 吴新跃; 万强

    2011-01-01

    The coupling between the solid elements and the shell elements has become a difficult problem in finite element due to he discontinuousness of rotational freedom.This problem is often solved hy MPC(Multipoint Constranint)method in engineering practice.The method that constrains a certain rotational freedom of the nodes which are shared by solid element and shell element is advanced.By comparing it with the MPC method,it is proved that the method utilized in this paper is easy to realize and has a similarly high accuracy.A good reference method to solve the coupling of solid element and shell element in finite element analysis can be obtained from the method mentioned in this paper.%由于转动自由度的不连续,使得体单元与壳单元之间的耦合成为有限元计算中比较难以解决的问题.通常在工程实践中采用MPC(Multipoint Constraint)法.文中提出了约束体壳单元连接处共用节点的某一旋转自由度的方法.通过与MPC法的计算对比,证明了该方法在便于实现的同时,同样有着很高的精确度.这为有限元分析中体壳单元的耦合处理提供了一种很好的借鉴方法.

  20. Solution of Nonlinear Coupled Heat and Moisture Transport Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    T. Krejčí

    2004-01-01

    Full Text Available This paper deals with a numerical solution of coupled of heat and moisture transfer using the finite element method. The mathematical model consists of balance equations of mass, energy and linear momentum and of the appropriate constitutive equations. The chosen macroscopic field variables are temperature, capillary pressures, gas pressure and displacement. In contrast with pure mechanical problems, there are several difficulties which require special attention. Systems of algebraic equations arising from coupled problems are generally nonlinear, and the matrices of such systems are nonsymmetric and indefinite. The first experiences of solving complicated coupled problems are mentioned in this paper. 

  1. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    OpenAIRE

    Song Haiyan; Wang Fang; Zhang Jianguo; Zhang Yinong; Yang Shugang

    2017-01-01

    It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element ca...

  2. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar

    Directory of Open Access Journals (Sweden)

    Arzu AKPINAR-BAYIZIT

    2010-12-01

    Full Text Available This study characterizes the mineral content of vinegar samples. The concentrations of Na, K, Ca, Mg and P (major elements as well as Fe, Mn, Sn, Cu, Ni, Zn, Pb and Cd (minor elements were determined in 35 commercial vinegar samples using inductively coupled plasma optical-emission spectrometry (ICP-OES. The elements with the highest concentrations were K, Na, Ca, Mg and P. The concentrations of heavy metals in the vinegar samples, including Cd, Ni, Sn and Pb, were not considered a health risk.

  3. A Spectral Element/Laguerre Coupled Method to the Elliptic Helmholtz Problem on the Half Line

    Institute of Scientific and Technical Information of China (English)

    Qingqu Zhuang; Chuanju Xu

    2006-01-01

    A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Several numerical examples are provided to confirm the theoretical results. The advantage of this method is demonstrated by a numerical comparison with the pure Laguerre method.

  4. Finite element based electrostatic-structural coupled analysis with automated mesh morphing

    Energy Technology Data Exchange (ETDEWEB)

    OWEN,STEVEN J.; ZHULIN,V.I.; OSTERGAARD,D.F.

    2000-02-29

    A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.

  5. Miniature wideband filter based on coupled-line sections and quasi-lumped element resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter

    2007-01-01

    A new design of a wideband bandpass filter is proposed, based on coupled-line sections and quasi-lumped element resonator, taking advantage of the last one to introduce two transmission zeros and suppress a spurious response. The proposed filter demonstrates significantly improved characteristics...

  6. Stochastic finite element analysis of coupled heat and mass transfer problems with random field parameters

    NARCIS (Netherlands)

    Scheerlinck, N.; Verboven, P.; Stigter, J.D.; Baerdenmaeker, de J.; Impe, van J.F.; Nicolai, B.A.

    2000-01-01

    A first-order perturbation algorithm for the computation of mean values and variances of transient temperature and moisture fields during coupled heat and mass transfer problems with random field parameters has been developed and implemented. The algorithm is based on the Galerkin finite-element dis

  7. A Coupling Model of the Discontinuous Deformation Analysis Method and the Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; YANG Heqing; LI Zhongkui

    2005-01-01

    Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both of them should have wider applicability. Such a model coupling the discontinuous deformation analysis method and the finite element method is proposed in this paper. In the model, so-called line blocks are introduced to deal with the interaction via the common interfacial boundary of the discontinuous deformation analysis domain with the finite element domain. The interfacial conditions during the incremental iteration process are satisfied by means of the line blocks. The requirement of gradual small displacements in each incremental step of this coupling method is met through a displacement control procedure. The model is simple in concept and is easy in numerical implementation. A numerical example is given. The displacement obtained by the coupling method agrees well with those obtained by the finite element method, which shows the rationality of this model and the validity of the implementation scheme.

  8. Improving torque per kilogram magnet of permanent magnet couplings using finite element analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    This paper presents the methodology and subsequent findings of a performance-improvement routine that employs automated finite element (FE) analysis to increase the torque-per-kilogram-magnet (TPKM) of a permanent magnet coupling (PMC). The routine is applied to a commercially available cylindrical...

  9. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  10. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  11. Finite element analysis of sucker rod couplings with guidelines for improving fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.L. [Sandia National Labs., Albuquerque, NM (United States). Engineering and Structural Mechanics Div.

    1997-09-01

    The response of a variety of sucker rod couplings to an applied axial load was simulated using axisymmetric finite element models. The calculations investigated three sucker rod sizes and various combinations of the slimhole, Spiralock, and Flexbar modifications to the coupling. In addition, the effect of various make-ups (assembly tightness) on the performance of coupling was investigated. An axial load was applied to the sucker rod ranging from {minus}5 ksi to 40 ksi, encompassing three load cycles identified on a modified Goodman diagram as acceptable for indefinite service life of the sucker rods. The simulations of the various coupling geometries and make-ups were evaluated with respect to how well they accomplish the two primary objectives of preloading threaded couplings: (1) to lock the threaded coupling together so that it will not loosen and eventually uncouple, and (2) to improve the fatigue resistance of the threaded connection by reducing the stress amplitude in the coupling when subjected to cyclic loading. Perhaps the most significant finding in this study was the characterization of the coupling parameters which affect two stress measures. The mean hydrostatic stress, which determines the permissible effective alternating stress, is a function of the coupling make-up. Whereas, the alternating effective stress is a function of the relative stiffnesses of the pin and box sections of the coupling and, as long as the coupling does not separate, is unaffected by the amount of circumferential displacement applied during make-up. The results of this study suggest approaches for improving the fatigue resistance of sucker rod couplings.

  12. Cavitation Estimates by Orbit Prediction of a Journal Bearing - Finite Element Modelling and Experimental Studies Cavitation Estimates by Orbit Prediction of a Journal Bearing - Finite Element Modelling and Experimental Studies

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim; Klit, Peder; Walther, Jens Honore;

    2015-01-01

    The paper presents a two-sided approach to establish understanding of the cavitation phenomenon in dynamically loaded journal bearings, more specifically the engine bearings of large two-stroke marine diesel engines. One disadvantage of the journal bearing is the converging-diverging geometry...... making it prone to cavitation which again affects the load carrying capacity of the bearing. In combustion engines the journal bearing plays a vital role especiallyas main and crosshead bearings transmitting the combustion forces. Those forces vary highly during one combustion cycle which is further....... Validation of the results is done against the Ruston and Hornsby 6VEB-X Mk III engine. Besides the numerical investigations a cavitation test rig has been developed. With this rig it is possible to generate cavitation under controlled conditions in terms ofload/eccentricity and rotational speed...

  13. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    Science.gov (United States)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  14. An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    Science.gov (United States)

    Saether, E.; Glaessgen, E.H.; Yamakov, V.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  15. Rare earth element geochemistry of groundwaters from coal bearing aquifer in Renlou coal mine, northern Anhui Province, China

    Institute of Scientific and Technical Information of China (English)

    SUN Linhua; GUI Herong; CHEN Song

    2011-01-01

    Rare earth element (REE) concentrations of two different types of groundwaters (high SO42- water-SW and high alkaline waterCW) from coal bearing aquifer (-400~-280 m) in Renlou coal mine, northern Anhui Province, China were measured. The results indicated that they had different REE characteristics: the total concentrations of REEs (∑REE) of SW were lower than those of CW in general although they all had heavy REEs enriched relative to light REEs. The dissolved REE inorganic species of SW included Ln3+, LnCO3+, LnSO4+,Ln(CO3)2- and Ln(SO4)2-, whereas the CW are Ln(CO3)2- and LnCO3+ dominant, and the proportions of Ln(CO3)2- increased while other species decreased with pH increasing. Combined with correlation analysis, the enrichment and fractionation of SW (low alkaline water) were considered to be affected by alkaline concentrations via affecting the types and proportons of REE inorganic species. However, the effect of alkaline concentrations to the enrichment and fractionation of REEs of CW (high alkaline water) was less important than total dissolved solids and pH, which reflected the contribution from different rocks they flowed over, different degrees of water-rock interactions and/or REE solid-liquid partition coefficients.

  16. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Science.gov (United States)

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  17. Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas

    2013-06-01

    A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.

  18. Discontinuous Deformation Analysis Coupling with Discontinuous Galerkin Finite Element Methods for Contact Simulations

    Directory of Open Access Journals (Sweden)

    Yue Sun

    2016-01-01

    Full Text Available A novel coupling scheme is presented to combine the discontinuous deformation analysis (DDA and the interior penalty Galerkin (IPG method for the modeling of contacts. The simultaneous equilibrium equations are assembled in a mixed strategy, where the entries are derived from both discontinuous Galerkin variational formulations and the strain energies of DDA contact springs. The contact algorithms of the DDA are generalized for element contacts, including contact detection criteria, open-close iteration, and contact submatrices. Three representative numerical examples on contact problems are conducted. Comparative investigations on the results obtained by our coupling scheme, ANSYS, and analytical theories demonstrate the accuracy and effectiveness of the proposed method.

  19. Ensemble modeling coupled with six element concentrations in human blood for cancer diagnosis.

    Science.gov (United States)

    Chen, Hui; Tan, Chao; Wu, Tong

    2011-10-01

    Six important metal contents (i.e., zinc, barium, magnesium, calcium, copper, and selenium) in blood samples coupled with an ensemble classification algorithm have been used for the classification of normal people and cancer patients. A dataset containing 42 healthy samples and 32 cancer samples was used for experiment. The prediction results from this method outperformed those from the newly developed support vector machine, i.e., a sensitivity of 100%, a specificity of 95.2%, and an overall accuracy of 98.6%. It seems that ELDA coupled with blood element analysis can serve as a valuable tool for diagnosing cancer in clinical practice.

  20. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  1. Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment

    Institute of Scientific and Technical Information of China (English)

    Guang-Duo Zhu; Wan-Shou Guo; Qi-Dong Zhang; Zhao-Hui Liu; Li-Ming Cheng

    2015-01-01

    Background:Controversies about the rational positioning of the tibial component in unicompartmental knee arthroplasty (UKA) still exist.Previous finite element (FE) studies were rare,and the results varied.This FE study aimed to analyze the influence of the tibial component coronal alignment on knee biomechanics in mobile-bearing UKA and find a ration range of inclination angles.Methods:A three-dimensional FE model of the intact knee was constructed from image data of one normal subject.A 1000 N compressive load was applied to the intact knee model for validating.Then a set of eleven UKA FE models was developed with the coronal inclination angles of the tibial tray ranging from l0° valgus to 10° varus.Tibial bone stresses and strains,contact pressures and load distribution in all UKA models were calculated and analyzed under the unified loading and boundary conditions.Results:Load distribution,contact pressures,and contact areas in intact knee model were validated.In UKA models,von Mises stress and compressive strain at proximal medial cortical bone increased significantly as the tibial tray was in valgus inclination >4°,which may increase the risk of residual pain.Compressive strains at tibial keel slot were above the high threshold with varus inclination >4°,which may result in greater risk of component migration.Tibial bone resection comer acted as a strain-raiser regardless of the inclination angles.Compressive strains at the resected surface slightly changed with the varying inclinations and were not supposed to induce bone resorption and component loosening.Contact pressures and load percentage in lateral compartment increased with the more varus inclination,which may lead to osteoarthritis progression.Conclusions:Static knee biomechanics after UKA can be greatly affected by tibial component coronal alignment.A range from 4° valgus to 4° varus inclination of tibial component can be recommended in mobile-bearing UKA.

  2. Evaluation of coupled finite element/meshfree method for a robust full-scale crashworthiness simulation of railway vehicles

    Directory of Open Access Journals (Sweden)

    Zhao Tang

    2016-04-01

    Full Text Available The crashworthiness of a railway vehicle relates to its passive safety performance. Due to mesh distortion and difficulty in controlling the hourglass energy, conventional finite element methods face great challenges in crashworthiness simulation of large-scale complex railway vehicle models. Meshfree methods such as element-free Galerkin method offer an alternative approach to overcome those limitations but have proved time-consuming. In this article, a coupled finite element/meshfree method is proposed to study the crashworthiness of railway vehicles. A representative scenario, in which the leading vehicle of a high-speed train impacts to a rigid wall, is simulated with the coupled finite element/element-free Galerkin method in LS-DYNA. We have compared the conventional finite element method and the coupled finite element/element-free Galerkin method with the simulation results of different levels of discretization. Our work showed that coupled finite element/element-free Galerkin method is a suitable alternative of finite element method to handle the nonlinear deformation in full-size railway vehicle crashworthiness simulation. The coupled method can reduce the hourglass energy in finite element simulation, to produce robust simulation.

  3. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    Science.gov (United States)

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  4. An Element Free Galerkin method for an elastoplastic coupled to damage analysis

    Directory of Open Access Journals (Sweden)

    Sendi Zohra

    2016-01-01

    Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.

  5. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method

    Directory of Open Access Journals (Sweden)

    Konkol Jakub

    2017-03-01

    Full Text Available In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL and Updated Lagrangian (UL. Numerical study consists of installation process, consolidation phase and following pile static load test (SLT. The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12. The results of numerical analysis are compared with corresponding field tests and with so-called “wish-in-place” numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  6. A MULTI-COUPLED FINITE ELEMENT ANALYSIS OF RESISTANCE SPOT WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Hou Zhigang; Wang Yuanxun; Li Chunzhi; Chen Chuanyao

    2006-01-01

    A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis(FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis.The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.

  7. A staggered coupling strategy for the finite element analysis of warm deep drawing process

    Science.gov (United States)

    Martins, J. M. P.; Cunha, P. M.; Neto, D. M.; Alves, J. L.; Oliveira, M. C.; Laurent, H.; Menezes, L. F.

    2016-08-01

    The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.

  8. ELECTRO-MECHANICAL COUPLING ANALYSIS OF MEMS STRUCTURES BY BOUNDARY ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    Zhang Kai; Cui Yunjun; Xiong Chunyang; Wang Congshun; Fang Jing

    2004-01-01

    In this paper, we present the applications of Boundary Element Method (BEM)to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems (MEMS).The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics. Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.

  9. KPCA 和耦合隐马尔科夫模型在轴承故障诊断中的应用%Application of KPCA and coupled hidden Markov model in bearing fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    刘韬; 陈进; 董广明

    2014-01-01

    The fusion of multi-channel bearing monitoring information can obtain more accurate results in bearing fault diagnosis.Here,a rolling element bearing fault diagnosis scheme based on KPCA and coupled hidden Markov model (CHMM) was presented.At first,the features were extracted from bearing vibration signals of multi-channel, respectively.Then,the KPCA was utilized to reduce the feature dimensions.At last,the new KPCA features were input into a CHMMto be fused and to diagnose bearing faults.The data acquired from bearings’states under normal conditions, and states with inner race faults,outer race faults and rolling body faults were analyzed.The results demonstrated the effectiveness and validity of the proposed method.%针对多通道数据的有效融合能够更加准确地诊断轴承的故障,提出了一种基于KPCA和耦合隐马尔可夫模型(CHMM)的轴承故障诊断方法。首先,分别对轴承各通道的振动信号进行特征提取,获得特征向量。然后采用 KP-CA 对各通道的特征向量分别进行特征约减,获取主要的信息成分。最后,利用 CHMM对多通道信息进行融合和故障诊断。通过对滚动轴承在正常、内圈故障、外圈故障和滚动体故障状态下实验数据的分析表明,该方法能够更加有效地诊断轴承的故障。

  10. Non-conforming curved finite element schemes for time-dependent elastic-acoustic coupled problems

    Science.gov (United States)

    Rodríguez-Rozas, Ángel; Diaz, Julien

    2016-01-01

    High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Since characteristic waves travel at different speeds through different media, specific levels of granularity for the mesh discretization are required on each domain, making impractical a possible conforming coupling in between. Advantageously, physical domains may be independently discretized in our framework due to the non-conforming feature. Consequently, an important increase in computational efficiency may be achieved compared to other implementations based on conforming techniques, namely by reducing the total number of degrees of freedom. Differently from other non-conforming approaches proposed so far, our technique is relatively simpler and requires only a geometrical adjustment at the coupling interface at a preprocessing stage, so that no extra computations are necessary during the time evolution of the simulation. On the other hand, as an advantage of using curvilinear elements, the geometry of the coupling interface between the two media of interest is faithfully represented up to the order of the scheme used. In other words, higher order schemes are in consonance with higher order approximations of the geometry. Concerning the time discretization, we analyze both explicit and implicit schemes. These schemes are energy conserving and, for the explicit case, the stability is guaranteed by a CFL condition. In order to illustrate the accuracy and convergence of these methods, a set of representative numerical tests are presented.

  11. Element Specific Observation of Ferromagnetic Interlayer Exchange Coupled Dual Vortex Core Nano Systems

    Science.gov (United States)

    Pulecio, Javier; Arena, Dario; Warnicke, Peter; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei

    2013-03-01

    We report on the magnetic evolution of magnetic vortices in nanoscale and multilayer disk structures. The tri-layer structure consists of Co and Permalloy (Py) layers, coupled across a thin (1nm) Cu spacer that provides strong coupling between the Co and Py layers. Element-resolved full-field XMCD microscopy is combined with ultra-high resolution Lorentz transmission electron microscopy, permitting measurement of both layer-resolved domain patterns and the vortex structure averaged across the tri-layer. We examine the evolution of the vortex structure while the nanostructure is cycled through the M-H hysteresis loop. In particular we will discuss the effects of strong interlayer exchanged coupling on a dual vortex core system, including analysis of the layer-resolved coercivity, and the evolution, deformation, annihilation, and nucleation of the vortices.

  12. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  13. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    Science.gov (United States)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  14. Determination of impurity elements in MnZn ferrites by inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    张萍; 符靓; 马俊才; 唐有根

    2015-01-01

    An inductively coupled plasma mass spectrometry (ICP-MS) method was developed for the determination of Na, Mg, Al, K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system (ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching, and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of 0.9−37.5 ng/L, the relative standard deviation of each element is within 1.1%−4.8%, and the recovery of each element is 90%−108%.

  15. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Richaud, R.; Lazaro, M.J.; Lachas, H.; Miller, B.B.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2000-07-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials ({gt} 1000 {mu}) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, pH, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass samples were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash.

  16. Mathematical Description and Finite Element Equation of 3D Coupled Thermo-elastic Contact Problem

    Institute of Scientific and Technical Information of China (English)

    Shi Yu; Xiao Yougang; Chen Guoxin

    2006-01-01

    Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-contact coupled problem have been listed. On this foundation, the finite element equation and definite solution condition of contact heat transfer have been given out. Based on virtual work principle and contact element technology, the finite element equation of 3D elastic contact system has been deduced under the effect of thermal stress. The pseudo load brought by contact gap have been introduced into this equation in order to reflect the contact state change. During iteration, once contact rigidity matrix is formed, it won't change,which will make calculation reduce greatly.

  17. Determination of Trace Elements in High Purity Gold by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; FU Liang

    2009-01-01

    Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry(HR-ICP-MS).Sample were decomposed by aqua regia.To overcome some potentially problematic spectral interference,measurements were acquired in both medium and high resolution modes.The matrix effects due to the presence of excessive HCl and Au were evaluated.The optimum conditions for the determination was tested and discussed.The standard addition method was employed for quantitative analysis.The detection limits range from 0.01 μg/g to 0.28 μg/g depending on the elements.The method is accurate,quick and convenient.It has been applied to the determination of trace elements in high purity gold with satisfactory results.

  18. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  19. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    Directory of Open Access Journals (Sweden)

    Eric T. Chung

    2015-12-01

    Full Text Available In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1 the development of a mass conservative GMsFEM for the coupled flow and transport; (2 the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  20. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  1. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  2. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  3. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  4. Coupled anthropogenic anomalies of radionuclides and major elements in estuarine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Machado, W. [Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi, RJ 24020-150 (Brazil)], E-mail: wmachado@geoq.uff.br; Luiz-Silva, W. [Instituto de Geociencias, Universidade Estadual de Campinas, Campinas, SP 13083-970 (Brazil); Sanders, C.J.; Patchineelam, S.R. [Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi, RJ 24020-150 (Brazil)

    2008-08-15

    Concentrations of fertilizer industry-derived P (up to 3.4%), Ca (up to 6.1%), {sup 226}Ra (up to 744 Bq kg{sup -1}) and {sup 210}Pb (up to 1317 Bq kg{sup -1}) at least one order of magnitude above natural levels were recorded in a sediment core from Morrao River estuary (SE Brazil). Unsupported {sup 210}Pb (=total {sup 210}Pb - {sup 226}Ra) activities unexplained by atmospheric fallout and deviations from the radionuclides secular equilibrium also indicated strong anomalies. Anomalous constituents were positively correlated with each other and negatively correlated with clay mineral-bearing elements. These negative correlations were explained by a depletion of natural sediment constituents due to a dilution caused by elevated inputs of steel industry-derived elements (mainly by Fe levels up to 24%). Absolute data and normalizations by a proxy for clays (Al) and anthropogenic Fe evidenced variabilities in the quality of coastal and land-derived sediment inputs, mainly due to changes in the relative contributions from industrial sources.

  5. Finite Element Analysis of Biot’s Consolidation with a Coupled Nonlinear Flow Model

    Directory of Open Access Journals (Sweden)

    Yue-bao Deng

    2016-01-01

    Full Text Available A nonlinear flow relationship, which assumes that the fluid flow in the soil skeleton obeys the Hansbo non-Darcian flow and that the coefficient of permeability changes with void ratio, was incorporated into Biot’s general consolidation theory for a consolidation simulation of normally consolidated soft ground with or without vertical drains. The governing equations with the coupled nonlinear flow model were presented first for the force equilibrium condition and then for the continuity condition. Based on the weighted residual method, the finite element (FE formulations were then derived, and an existing FE program was modified accordingly to take the nonlinear flow model into consideration. Comparative analyses using established theoretical solutions and numerical solutions were completed, and the results were satisfactory. On this basis, we investigated the effect of the coupled nonlinear flow on consolidation development.

  6. A minimal coupled fluid-discrete element model for bedload transport

    CERN Document Server

    Maurin, Raphael; Chareyre, Bruno; Frey, Philippe

    2016-01-01

    A minimal Lagragian two-phase model to study turbulent bedload transport focusing on the granular phase is presented, and validated with experiments. The model intends to describe bedload transport of massive particles in fully rough flows at relatively low Shields numbers, for which no suspension occurs. A discrete element method for the granular phase is coupled with a one dimensional volume-averaged two-phase momentum equation for the fluid phase. The coupling between the discrete granular phase and the continuous fluid phase is discussed, and a consistent averaging formulation adapted to bedload transport is introduced. An original simple discrete random walk model is proposed to account for the fluid velocity fluctuations. The model is compared with experiments considering both classical sediment transport rate as a function of the Shields number, and depth profiles of solid velocity, volume fraction, and transport rate density, from existing bedload transport experiments in inclined flume. The results s...

  7. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths.

    Science.gov (United States)

    McCarrick, H; Flanigan, D; Jones, G; Johnson, B R; Ade, P; Araujo, D; Bradford, K; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Luu, V; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2014-12-01

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√s.

  8. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    McCarrick, H., E-mail: hlm2124@columbia.edu; Flanigan, D.; Jones, G.; Johnson, B. R.; Araujo, D.; Limon, M.; Luu, V.; Miller, A. [Department of Physics, Columbia University, New York, New York 10025 (United States); Ade, P.; Doyle, S.; Tucker, C. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Bradford, K.; Che, G. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Cantor, R. [STAR Cryoelectronics, Santa Fe, New Mexico 87508 (United States); Day, P.; Leduc, H. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Mauskopf, P. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States); Mroczkowski, T. [Naval Research Laboratory, Washington DC 20375 (United States); Zmuidzinas, J. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Department of Physics, Caltech, Pasadena, California 91125 (United States)

    2014-12-15

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√(s)

  9. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    Science.gov (United States)

    Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  10. A strongly conservative finite element method for the coupling of Stokes and Darcy flow

    KAUST Repository

    Kanschat, G.

    2010-08-01

    We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.

  11. Coupling element antenna with slot tuning for handheld devices at LTE frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2012-01-01

    Tunable antennas are a promising way to overcome bandwidth limitations for the new communication standards. Since it is the chassis that resonates in the low frequencies, its tuning is pertinent and allows for more compact size designs. This paper proposes a coupling element based antenna....... A reconfigurable slot is inserted in the ground plane in order to lower its resonance frequency. The tuning is done by a capacitor across the slot. It is shown that covering all frequencies between the 900-GSM band and the 700-LTE band can be achieved. The radiating structure also presents a resonance in the high...

  12. Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation

    Science.gov (United States)

    Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo

    2015-10-01

    The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.

  13. Transient and stability analysis of large scale rotor-bearing system with strong nonlinear elements by the mode summation-transfer matrix method

    Science.gov (United States)

    Gu, Zhiping

    This paper extends Riccati transfer matrix method to the transient and stability analysis of large scale rotor-bearing systems with strong nonlinear elements, and proposes a mode summation-transfer matrix method, in which the field transfer matrix of a distributed mass uniform shaft segment is obtained with the aid of the idea of mode summation and Newmark beta formulation, and the Riccati transfer matrix method is adopted to stablize the boundary value problem of the nonlinear systems. In this investigation, the real nonlinearity of the strong nonlinear elements is considered, not linearized, and the advantages of the Riccati transfer matrix are retained. So, this method is especially applicable to analyze the transient response and stability of large-scale rotor-bear systems with strong nonlinear elements. One example, a single-spool rotating system with strong nonlinear elements, is given. The obtained results show that this method is superior to that of Gu and Chen (1990) in accuracy, stability, and economy.

  14. Vertical variation of trace elements and its relation to the water-bearing capacity of Ordovician strata,in Datun coal field

    Institute of Scientific and Technical Information of China (English)

    LIU Huai-zhong; HAN Bao-ping

    2009-01-01

    We tested for fourteen trace elements in samples collected from the Ordovician strata in Datun coal field. The vertical concentration variation of these trace elements is reported. The relationship of the variation to the water-beating capacity of the Ordovician strata is discussed. The minimum concentration of eleven (of 14 total) trace elements appears in the lower Majiagou formation. The maximum concentrations mainly appear in the Badou and Jiawang formations: eight maxima are located in Badou and four more are in Jiawang. The study of karst development and the water-bearing capacity of Ordovician strata shows that karst is well developed in the Majiagou formation and there is a consequent high water-beating capacity in this formation: Badou and Jiawang formations are contrary to this situation. The results illustrate that the minimum concentrations of most trace elements within certain Ordovician formations can be taken as strong evidence for the existence of a well developed karst and a high wa-ter-bearing capacity.

  15. Study of gap conductance model for thermo mechanical fully coupled finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    A light water reactor (LWR) fuel rod consists of zirconium alloy cladding and uranium dioxide pellets, with a slight gap between them. Therefore, the mechanical integrity of zirconium alloy cladding is the most critical issue, as it is an important barrier for fission products released into the environment. To evaluate the stress and strain of the cladding during operation, fuel performance codes with a one-dimensional (1D) approach have been reported since the 1970s. However, it is difficult for a 1D model to simulate the stress and strain of the cladding accurately owing to a lack of degree of freedom. A LWR fuel performance code should include thermo-mechanical coupled model owing to the existence of the fuel-cladding gap. Generally, the gap that is filled with helium gas results in temperature drop along radius direction. The gap conductance that determines temperature gradient within the gap is very sensitive to gap thickness. For instance, once the gap size increases up to several microns in certain region, difference of surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Consequently, the Finite Element (FE) module, which can simulate a higher degree of freedom numerically, is an indispensable requirement to understand the thermomechanical behavior of cladding. FRAPCON-3, which is reliable performance code, has iterative loop for thermo-mechanical coupled calculation to solve 1D gap conductance model. In FEMAXI-III, 1D thermal analysis module and FE module for stress-strain analysis were separated. 1D thermal module includes iterative analysis between them. DIONISIO code focused on thermal contact model as function of surface roughness and contact pressure when the gap is closed. In previous works, gap conductance model has been developed only for 1D model or hybrid model (1D and FE). To simulate temperature, stress and strain

  16. Recovery of couplings and parameters of elements in networks of time-delay systems from time series

    Science.gov (United States)

    Sysoev, I. V.; Ponomarenko, V. I.; Kulminskiy, D. D.; Prokhorov, M. D.

    2016-11-01

    We propose a method for the recovery of coupling architecture and the parameters of elements in networks consisting of coupled oscillators described by delay-differential equations. For each oscillator in the network, we introduce an objective function characterizing the distance between the points of the reconstructed nonlinear function. The proposed method is based on the minimization of this objective function and the separation of the recovered coupling coefficients into significant and insignificant coefficients. The efficiency of the method is shown for chaotic time series generated by model equations of diffusively coupled time-delay systems and for experimental chaotic time series gained from coupled electronic oscillators with time-delayed feedback.

  17. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were

  18. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.

    Science.gov (United States)

    Srivastava, S; Yazdchi, K; Luding, S

    2014-08-06

    A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles.

  19. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    CERN Document Server

    Jacquet, Emmanuel; Gounelle, Matthieu

    2016-01-01

    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance ...

  20. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.

    Science.gov (United States)

    Rouillard, Andrew D; Holmes, Jeffrey W

    2014-08-01

    Following myocardial infarction, damaged muscle is gradually replaced by collagenous scar tissue. The structural and mechanical properties of the scar are critical determinants of heart function, as well as the risk of serious post-infarction complications such as infarct rupture, infarct expansion, and progression to dilated heart failure. A number of therapeutic approaches currently under development aim to alter infarct mechanics in order to reduce complications, such as implantation of mechanical restraint devices, polymer injection, and peri-infarct pacing. Because mechanical stimuli regulate scar remodeling, the long-term consequences of therapies that alter infarct mechanics must be carefully considered. Computational models have the potential to greatly improve our ability to understand and predict how such therapies alter heart structure, mechanics, and function over time. Toward this end, we developed a straightforward method for coupling an agent-based model of scar formation to a finite-element model of tissue mechanics, creating a multi-scale model that captures the dynamic interplay between mechanical loading, scar deformation, and scar material properties. The agent-based component of the coupled model predicts how fibroblasts integrate local chemical, structural, and mechanical cues as they deposit and remodel collagen, while the finite-element component predicts local mechanics at any time point given the current collagen fiber structure and applied loads. We used the coupled model to explore the balance between increasing stiffness due to collagen deposition and increasing wall stress due to infarct thinning and left ventricular dilation during the normal time course of healing in myocardial infarcts, as well as the negative feedback between strain anisotropy and the structural anisotropy it promotes in healing scar. The coupled model reproduced the observed evolution of both collagen fiber structure and regional deformation following coronary

  1. Finite element modeling of a 3D coupled foot-boot model.

    Science.gov (United States)

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military.

  2. Functional elements in the minimal promoter of the human proton-coupled folate transporter

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Michal; Gonen, Nitzan [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il [The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-10-09

    The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 and AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.

  3. Trace Elements Analysis of Geological Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes recent work applying a taser ablation system (LSX-200) hyphenated with POEMS Ⅲ inductively coupled plasma mass spectrometry (LA-ICP-MS) for the in situ analysis of 22 trace elements of solid geological materials. It demonstrates the potential of LA-ICP-MS for the determination of geochemically important trace and ultra-trace elements following XRF routine sample preparation. Signal drift, difference in transport efficiency and sampling yield are well corrected with NIST SRM 612 as external calibration standard and Ca as internal standard. The obtained results agree to the recommended values with relative error better than 15 % and RSD less than 15 % for most determined trace elemems. LOD ranges from 0.021 × 10-6 to 0. 23 × 10-6 and less than 0.10 × 10-6 for majority trace elements determined. In addition, home-made macro functions including filter and calculator compiled by VBA language under Excel software greatly enhanced off-line data reduction efficiency.``

  4. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil.

  5. Dynamic Finite Element Analysis of Extensional-Torsional Coupled Vibration in Nonuniform Composite Beams

    Science.gov (United States)

    Hashemi, Seyed M.; Roach, Andrew

    2011-12-01

    The application of a Dynamic Finite Element (DFE) technique to the extensional-torsional free vibration analysis of nonuniform composite beams, in the absence of flexural coupling, is presented. The proposed method is a fusion of the Galerkin weighted residual formulation and the Dynamic Stiffness Matrix (DSM) method, where the basis functions of approximation space are assumed to be the closed form solutions of the differential equations governing uncoupled extensional and torsional vibrations of the beam. The use of resulting dynamic trigonometric interpolation (shape) functions leads to a frequency dependent stiffness matrix, representing both mass and stiffness properties of the beam element. Assembly of the element matrices and the application of the boundary conditions then leads to a frequency dependent nonlinear eigenproblem, which is solved to evaluate the system natural frequencies and modes. Two illustrative examples of uniform and tapered cantilevered, Circumferentially Uniform Stiffness ( CUS), hollow, composite beams are presented. The influence of ply fibre-angle on the natural frequencies is also studied. The correctness of the theory and the superiority of the proposed DFE over the contrasting DSM and conventional FEM methods are confirmed by the published results and numerical checks. The discussion of results is followed by some concluding remarks.

  6. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C. A.

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 ..mu..g/g with the majority falling in the 0.01 to 0.1 ..mu..g/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 ..mu..m suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  7. Coupled discrete element modeling of fluid injection into dense granular media

    Science.gov (United States)

    Zhang, Fengshou; Damjanac, Branko; Huang, Haiying

    2013-06-01

    The coupled displacement process of fluid injection into a dense granular medium is investigated numerically using a discrete element method (DEM) code PFC2D® coupled with a pore network fluid flow scheme. How a dense granular medium behaves in response to fluid injection is a subject of fundamental and applied research interests to better understand subsurface processes such as fluid or gas migration and formation of intrusive features as well as engineering applications such as hydraulic fracturing and geological storage in unconsolidated formations. The numerical analysis is performed with DEM executing the mechanical calculation and the network model solving the Hagen-Poiseuille equation between the pore spaces enclosed by chains of particles and contacts. Hydromechanical coupling is realized by data exchanging at predetermined time steps. The numerical results show that increase in the injection rate and the invading fluid viscosity and decrease in the modulus and permeability of the medium result in fluid flow behaviors displaying a transition from infiltration-governed to infiltration-limited and the granular medium responses evolving from that of a rigid porous medium to localized failure leading to the development of preferential paths. The transition in the fluid flow and granular medium behaviors is governed by the ratio between the characteristic times associated with fluid injection and hydromechanical coupling. The peak pressures at large injection rates when fluid leakoff is limited compare well with those from the injection experiments in triaxial cells in the literature. The numerical analysis also reveals intriguing tip kinematics field for the growth of a fluid channel, which may shed light on the occurrence of the apical inverted-conical features in sandstone and magma intrusion in unconsolidated formations.

  8. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  9. Influence of processing medium on frictional wear properties of ball bearing steel prepared by laser surface melting coupled with bionic principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hong, E-mail: wangct08@mails.jlu.edu.c [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Chengtao [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Faw-Volkswagen Automotive Company Ltd., Changchun 130011 (China); Guo Qingchun [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Brilliance Automobile Engineering Research Institute, Shenyang 110141 (China); Yu Jiaxiang [Key Lab of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025 (China); Wang Mingxing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100190 (China); Liao Xunlong [Technical Management Department, CNNC China Zhongyuan Engineering Corp. Ltd., No 487 Tianlin Road, Shanghai 200233 (China); Zhao Yu [School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China); Ren Luquan [Key Lab of Terrain Machinery Bionics Engineering, Ministry of Education, Jilin University, Changchun 130025 (China)

    2010-09-03

    Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel.

  10. Trace element-bearing phases during the solid transport: in-situ characterization and temporal variability in the Loire bed-sediments (France)

    Science.gov (United States)

    Grosbois, Cécile; Courtin-Nomade, Alexandra; Dhivert, Elie; Desmet, Marc; Kunz, Martin

    2013-04-01

    As a result of increased of agriculture, land use, urban areas, industry, traffic and population density, trace element inputs have altered considerably fluvial system (sediment, water quality and biota). The Loire River Basin (117,800 km2, total population of 8.4 Mp in 2010), even if it is considered one of the least human-impacted hydrosystem among the 5 large French basins, has been exposed to multiple sources of metals during the last 150 years, originating from major mining districts (coal and non-ferrous metals) and their associated industrial activities (Grosbois et al, 2012; Dhivert et al, 2013). Two major contamination periods were recorded in several core sediments throughout the basin: urban development of the basin. The limited dilution by detrital material (Loire sediment load between1.5 and 3.5 Mt/y) was an additional cause of such severe contamination. After 1950, river eutrophication was well-marked by the general increase of endogenic calcite in the mid and downstream part of the basin, slightly diluting all major and trace element bulk concentrations by 20% (Grosbois et al, 2012). Since 1980, a generalized and gradual decontamination of bed sediments started while mines were gradually closing, urban waste waters collected and treated in addition to new environmental regulations. They aim to limit metallic pollutant dispersion like industrial recycling of metal wastes and to reduce atmospheric emissions and consequently atmospheric fall out wet and dry deposition In-situ chemical and mineralogical techniques (EPMA, SEM-EDS/ACC system and synchrotron based µXRD) were used (i) to highlight anthropogenic activities by a specific mineralogical signature and (ii) to determine potential effects of post-depositional remobilization and access trace element mobility during the solid transport. Trace element-bearing phases were identified at a micron scale during both <1900-1950 and 1950-1980 contamination periods with respect to maximum contamination peaks

  11. Fatigue Life Analysis of Rolling Bearings Based on Quasistatic Modeling

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-01-01

    Full Text Available Rolling bearings are widely used in aeroengine, machine tool spindles, locomotive wheelset, and so forth. Rolling bearings are usually the weakest components that influence the remaining life of the whole machine. In this paper, a fatigue life prediction method is proposed based on quasistatic modeling of rolling bearings. With consideration of radial centrifugal expansion and thermal deformations on the geometric displacement in the bearings, the Jones’ bearing model is updated, which can predict the contact angle, deformation, and load between rolling elements and bearing raceways more accurately. Based on Hertz contact theory and contact mechanics, the contact stress field between rolling elements and raceways is calculated. A coupling model of fatigue life and damage for rolling bearings is given and verified through accelerated life test. Afterwards, the variation of bearing life is investigated under different working conditions, that is, axial load, radial load, and rotational speed. The results suggested that the working condition had a great influence on fatigue life of bearing parts and the order in which the damage appears on bearing parts.

  12. A Finite Element Analysis of EMP Journal Bearing%EMP径向滑动轴承弹性变形的有限元求解

    Institute of Scientific and Technical Information of China (English)

    张国贤; 金楗; 吴白羽

    2000-01-01

    Since special properties of synthetic material uses in pad of the EMP journal bearing, the elastic deformation and thenno-deformation will be larger than that of traditional bearing with metal pad. This paper puts the emphasis on the elastic deformation. Compares the result obtained by using the finite element method with that obtained by using Winkler assumption. At last, an example is given to prove the lubrication per formance of EMP journal bearing.%轴瓦材料的特殊性使弹性金属塑料瓦(EMP)径向滑动轴承的热弹变形远大于普通金属瓦轴承,本文着重分析其弹性变形对轴承润滑特性的影响。并对采用三维有限元法和Winkler假设方法计算得出的轴瓦弹性变形进行了比较。给出了EMP径向滑动轴承弹性变形分析研究的一个实例,对其润滑特性进行了初步分析。

  13. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Directory of Open Access Journals (Sweden)

    P. Raval

    2014-02-01

    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  14. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    Science.gov (United States)

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  15. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    Science.gov (United States)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  16. Scalable algorithms for three-field mixed finite element coupled poromechanics

    Science.gov (United States)

    Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano

    2016-12-01

    We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

  17. Flat light guides with prismatic elements coupled with a mini aperture fluorescent lamp

    Science.gov (United States)

    Zaremba, Krzysztof

    2005-09-01

    Flat light guides are modern solution enabling production of luminaries characterised by large area and low height. The amount of the luminous flux, which might penetrate the side-lit flat light waveguide with a predefined thickness depends on the light source's luminance. Special fluorescent lamps equipped with an internal reflector layer were designed for this kind of illumination systems. Such lamps are typically characterised by small aperture along the spine of the lamp. The aperture technology boosts the luminance value within the lamp's aperture to levels even 4 to 5 times higher than the average luminance of a standard fluorescent lamp. The presented article contains a detailed analysis of the impact of the aperture angle size on the coupling efficiency. It was also shown that application of a mini aperture fluorescent lamp influences changes in the luminous intensity curves of prismatic elements, which are most commonly used to direct the luminous flux.

  18. Street-level classification of illicit heroin using inorganic elements coupled with pattern monitoring

    Directory of Open Access Journals (Sweden)

    Kar-Weng Chan

    2016-09-01

    Full Text Available A total of 96 illicit heroin samples seized in 2013–2014 were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS to determine 16 inorganic elements at parts-per-billion (ppb level. Of eleven submissions, two or three samples with similar appearance were taken from the same seizure to form related samples. These samples were used to monitor the clustering outcome suggested by principal component analysis (PCA. They provided hints regarding the acceptance of within-seizure variability in-situ. The previously established data pretreatment method (N+4R did not function well with the present data probably due to the higher concentrations reported for the current samples. With the aid of the above-cited related samples for pattern monitoring, a better outcome was achieved when the pretreatment method was modified to employ solely standardization (S to optimize the necessary variability for sample classification.

  19. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the...

  20. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling; Modelisation numerique du comportement dynamique de structures sous impact severe avec un couplage elements discrets / elements finis

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J.

    2009-07-15

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  1. Coupled Large Eddy Simulation and Discrete Element Model for Particle Saltation

    Science.gov (United States)

    Liu, X.; Liu, D.; Fu, X.

    2016-12-01

    Particle saltation is the major mode of motion for sediment transport. The quantification of the characteristics of saltation, either as an individual particle or as a group, is of great importance to our understanding of the transport process. In the past, experiments and numerical models have been performed to study the saltation length, height, and velocity under different turbulent flow and rough bed conditions. Most previous numerical models have very restrictive assumptions. For example, many models assumed Log-law flow velocity profiles to drive the motion of particles. Others assumed some "splash-function" which assigns the reflection angle for the rebounding of the saltating particle after each collision with bed. This research aims to relax these restrictions by a coupled eddy-resolving flow solver and a discrete element model. The model simulates the fully four-way coupling among fluid, particles, and wall. The model is extensively validated on both the turbulent flow field and saltation statistics. The results show that the two controlling factors for particle saltation are turbulent fluctuations and bed collision. Detailed quantification of these two factors will be presented. Through the statistics of incidence reflection angles, a more physical "splash-function" is obtained in which the reflection angle follows an asymmetric bimodal distribution for a given incidence angle. The higher mode is always located on the upstream side of the bed particle, while the lower one is always on the downstream surface.

  2. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media

    Science.gov (United States)

    Wang, Wenqing; Kosakowski, Georg; Kolditz, Olaf

    2009-08-01

    Many applied problems in geoscience require knowledge about complex interactions between multiple physical and chemical processes in the sub-surface. As a direct experimental investigation is often not possible, numerical simulation is a common approach. The numerical analysis of coupled thermo-hydro-mechanical (THM) problems is computationally very expensive, and therefore the applicability of existing codes is still limited to simplified problems. In this paper we present a novel implementation of a parallel finite element method (FEM) for the numerical analysis of coupled THM problems in porous media. The computational task of the FEM is partitioned into sub-tasks by a priori domain decomposition. The sub-tasks are assigned to the CPU nodes concurrently. Parallelization is achieved by simultaneously establishing the sub-domain mesh topology, synchronously assembling linear equation systems in sub-domains and obtaining the overall solution with a sub-domain linear solver (parallel BiCGStab method with Jacobi pre-conditioner). The present parallelization method is implemented in an object-oriented way using MPI for inter-processor communication. The parallel code was successfully tested with a 2-D example from the international DECOVALEX benchmarking project. The achieved speed-up for a 3-D extension of the test example on different computers demonstrates the advantage of the present parallel scheme.

  3. Particle Swarm Optimization Algorithm Coupled with Finite Element Limit Equilibrium Method for Geotechnical Practices

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    2012-01-01

    Full Text Available This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM and the shear strength reduction method (SSRM through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.

  4. A minimal coupled fluid-discrete element model for bedload transport

    Science.gov (United States)

    Maurin, R.; Chauchat, J.; Chareyre, B.; Frey, P.

    2015-11-01

    A minimal Lagrangian two-phase model to study turbulent bedload transport focusing on the granular phase is presented and validated with experiments. The model intends to describe bedload transport of massive particles in fully rough flows at relatively low Shields numbers, for which no suspension occurs. A discrete element method for the granular phase is coupled with a one dimensional volume-averaged two-phase momentum equation for the fluid phase. The coupling between the discrete granular phase and the continuous fluid phase is discussed, and a consistent averaging formulation adapted to bedload transport is introduced. An original simple discrete random walk model is proposed to account for the fluid velocity fluctuations. The model is compared with experiments considering both classical sediment transport rate as a function of the Shields number, and depth profiles of solid velocity, volume fraction, and transport rate density, from existing bedload transport experiments in inclined flume. The results successfully reproduce the classical 3/2 power law, and more importantly describe well the depth profiles of the granular phase, showing that the model is able to reproduce the particle scale mechanisms. From a sensitivity analysis, it is shown that the fluctuation model allows to reproduce a realistic critical Shields number, and that the influence of the granular parameters on the macroscopic results is weak. Nevertheless, the analysis of the corresponding depth profiles reveals an evolution of the depth structure of the granular phase with varying restitution and friction coefficients, which denotes the non-trivial underlying physical mechanisms.

  5. [Determination of relative elements of hard metal in workplace air and urine by inductive coupled plama].

    Science.gov (United States)

    Li, X X; Jiao, Y N; Luo, Y N; Chen, Y X; Tian, D; Lou, F; Li, H D; Li, W; Chen, J D; Yan, Y J

    2016-11-20

    Objective: To establish a rapid detection method regarding the air conditions of workplace and the workers' urine included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds based on inductively coupled plasma mass spectrometry (ICP-MS) . Methods: The experiment adopts ICP-MS to deter-mine those metals in workshop air and workers urine, evaluate the detection's limitation, the precision and accuracy of the method. Using the membrane filter and urine freeze - dried metal standard material to verify this method. Results: Each element of correlation coefficient was greater than 0.999. The recovery rate of air samples was 91.6%~104.6%, within-batch RSD precision was 1.41%~3.50%, between-run precision was 1.28%~4.31%, urine samples recovery rate was 93.0%~102.6%, within - batch RSD precision was 1.25%~3.56%, between - run precision was 1.58%~4.67%, According to the method every element was within the scope of the standard reference, it was also showed that the established method is accurate and reliable. Conclusion: ICP-MS is an effective and feasible method to detect the workshop air and the workers' urine which included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds.

  6. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.

  7. Element fingerprinting of marine organisms by dynamic reaction cell inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cubadda, Francesco; Raggi, Andrea; Coni, Ettore

    2006-02-01

    A method for the determination of sixteen elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, Zn) in seafood by dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS) is presented. A preliminary study of polyatomic interferences was carried out in relation to the chemical composition of marine organisms belonging to different taxa. Acid effects and other matrix effects in marine organisms submitted to closed-vessel microwave digestion were investigated as well. Ammonia was the reactive gas used in the DRC to remove polyatomic ions interfering with 27Al, 52Cr, 56Fe and 51V. Optimal conditions for the simultaneous determination of analytes were identified in order to develop a fast multielement method. A suite of real samples (mussels and various fish species) were used during method development along with three certified reference materials: BCR CRM 278R (mussel tissue), BCR CRM 422 (cod muscle) and DORM-2 (dogfish muscle). The proposed analytical approach can be used in conjunction with suitable chemometric procedures to address quality and safety issues in aquaculture and fisheries. As an example, a case study is described in which mussels from three farming sites in the Venice Lagoon were distinguished by multivariate analysis of element fingerprints.

  8. Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    CERN Document Server

    McCarrick, H; Jones, G; Johnson, B R; Ade, P; Araujo, D; Bradford, K; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Luu, V; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2014-01-01

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26$\\thinspace\\pm6 \\thinspace \\mu \\mbox{K} \\s...

  9. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.

  10. Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

    Science.gov (United States)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-09-01

    Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.

  11. Research on Thermal Characteristics of Double-decker Rolling-element Bearing%双层滚动轴承热学特性研究

    Institute of Scientific and Technical Information of China (English)

    郑衍通; 徐龙祥

    2011-01-01

    磁悬浮轴承系统通常采用滚动轴承作为保护轴承.基于传热学、滚动轴承摩擦学以及转子动力学等理论,建立一种用两个滚动轴承组成的双层保护轴承(Double-decker auxiliary bearing,DDAB)的热学模型,通过建立热传递方程,计算轴承的摩擦热和温度分布,研究DDAB的热学特性.研究内容如下:建立双层滚动轴承(Double-decker rolling bearing,DDRB)的热传递模型,推导热传递阻抗和热传递方程,计算DDRB在普通运转条件下达到热平衡时的温度分布;研究不同结构、载荷、转速、润滑剂粘度、材料属性等参数对轴承温升的影响,并对比其与普通轴承在相同工况下的热学特性;建立试验台,实际测量轴承的温升,研究不同结构形式和润滑参数条件对于轴承热学特性的影响,探讨可以降低发热的主要措施.研究结果表明:DDRB的径向载荷和内圈转速直接影响轴承摩擦力矩的大小进而影响轴承的发热,在相同工况下DDRB比普通滚动轴承的内圈温升要小5%~20%,外圈温升要小10%~30%;结构、润滑剂粘度、材料的热学性能对轴承内外圈温度分布影响较大,润滑剂的填装量在轴承空间的1/3,采用Z形结构、铝制中圈、陶瓷滚动体等可以使轴承在高速运转下获得较好的热学特性和较低的温升.%Rolling-element bearings are commonly used to protect the magnetic bearing system as auxiliary bearings. On the basis of the thermal transfer theory, tribology of rolling-element bearing and rotor dynamics, a new thermal structure of double-decker auxiliary bearing (DDAB) is established, and then the thermal characteristics are analyzed through building the heat transfer equations and computing the friction heat and temperature. Details of studies are as follows: after the establishment of the heat transfer model of double-decker rolling bearing (DDRB) and the derivation of heat transfer resistance and equations

  12. Concentrations of selected essential and non-essential elements in adult male polar bears (Ursus maritimus) from Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Concentrations of selected essential and non-essential elements, including mercury, cadmium, lead, arsenic, selenium, copper, zinc, and vanadium were measured in...

  13. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis

    Science.gov (United States)

    Wang, Yi; Xu, Guanghua; Liang, Lin; Jiang, Kuosheng

    2015-03-01

    The kurtogram-based methods have been proved powerful and practical to detect and characterize transient components in a signal. The basic idea of the kurtogram-based methods is to use the kurtosis as a measure to discover the presence of transient impulse components and to indicate the frequency band where these occur. However, the performance of the kurtogram-based methods is poor due to the low signal-to-noise ratio. As the weak transient signal with a wide spread frequency band can be easily masked by noise. Besides, selecting signal just in one frequency band will leave out some transient features. Aiming at these shortcomings, different frequency bands signal fusion is adopted in this paper. Considering that manifold learning aims at discovering the nonlinear intrinsic structure which embedded in high dimensional data, this paper proposes a waveform feature manifold (WFM) method to extract the weak signature from waveform feature space which obtained by binary wavelet packet transform. Minimum permutation entropy is used to select the optimal parameter in a manifold learning algorithm. A simulated bearing fault signal and two real bearing fault signals are used to validate the improved performance of the proposed method through the comparison with the kurtogram-based methods. The results show that the proposed method outperforms the kurtogram-based methods and is effective in weak signature extraction.

  14. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    Science.gov (United States)

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  15. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    Science.gov (United States)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  16. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    Science.gov (United States)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  17. Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere

    Energy Technology Data Exchange (ETDEWEB)

    Stosch, H.G.; Lugmair, G.W.

    1986-11-01

    Peridotite xenoliths from the Eifel can be divided into incompatible element-depleted and -enriched members. The depleted group is restricted to dry lherzolites whereas the enriched group encompasses dry harzburgites, dry websterite and amphibole and/or phlogopite-bearing peridotites. Isotopically the depleted group is very diverse with /sup 143/Nd//sup 144/Nd ranging from proportional to 0.51302 to 0.51355 and /sup 87/Sr//sup 86/Sr from proportional to 0.7041 to 0.7019, thus occupying a field larger than expected for oceanic-type subcontinental mantle. These xenoliths are derived from a mantle which appears to have diverged from a bulk-earth Nd and Sr isotopic evolution path proportional to 2 Ga ago as a consequence of partial melting. The combination of high /sup 143/Nd//sup 144/Nd with high /sup 87/Sr//sup 86/Sr in some members of depleted-xenoliths suite is likely to be the result of incipient reaction with incompatible element-enriched fluids in the mantle. In the enriched group such reactions have proceeded further and erased any pre-enriched isotope memory resulting in a smaller isotopic diversity (/sup 143/Nd//sup 144/Nd proportional to 0.51256-0.51273, /sup 87/Sr//sup 86/Sr proportional to 0.7044-0.7032). An evaluation of Sm-Hf and Yb-Hf relationships suggests that the amphibole-bearing lherzolites and harzburgites acquired their high enrichment of light rare earth elements by fluid infiltration into previously depleted peridotite rather than by silicate melt-induced metasomatism. Upper mantle composed of such metasomatized peridotites does not represent a potential source for the basanites and nephelinites from the Eifel. The isotopic and chemcial diversity of the subcontinental lithospheric part of the mantle may result from it having remained isolated from the convecting mantle for times >1 Ga.

  18. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    Energy Technology Data Exchange (ETDEWEB)

    Andreoli, M.A.G., E-mail: marco.andreoli@wits.ac.za [School of Geosciences, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Przybylowicz, W.J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kramers, J.; Belyanin, G. [Department of Geology, University of Johannesburg, Auckland Park 2006 (South Africa); Westraadt, J. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Bamford, M. [Evolutionary Studies Institute, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Mesjasz-Przybylowicz, J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Venter, A. [South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001 (South Africa)

    2015-11-15

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr–Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  19. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  20. Shearing fluid-filled granular media: A coupled discrete element - continuous approach

    Science.gov (United States)

    Goren, L.; Aharonov, E.; Sparks, D.; Toussaint, R.; Marder, E.

    2012-04-01

    Fluid-filled granular layers are abundant in the Earth's shallow crust as saturated soils and poorly consolidated hillslope material, and as fluid-filled fault gouge layers. When such grains-fluid systems are subjected to excitation by the passage of seismic waves, tectonic loading, or gravitational loading they exhibit a highly non-trivial dynamical behavior that may lead to instabilities in the form of soil liquefaction, debris flow mobilization, and earthquakes. In order to study the basic coupled mechanics of fluid-filled granular media and the dynamical processes that are responsible for the emergence of instabilities we develop a model that couples granular dynamics (DEM) algorithm with a continuous Eulerian grid-based solver. The two components of the model represent the two phases (grains and fluid) in two different scales. Each grain is represented by a single element in the granular dynamics component, where grains interact by elastic collisions and frictional sliding. The compressible pore fluid is represented on a coarser Darcy scale grid that is super-imposed over the grains layer. The pore space geometry set by the evolving granular packing is used to define smooth porosity and permeability fields, and the individual grain velocities are interpolated to define a smooth field of a solid-fraction velocity. The porosity, permeability, and solid velocity fields are used in the continuous fluid grid-based solver to find pore fluid velocity and pressure. Pore fluid pressure gradients are interpolated back from the fluid grid to individual grains, where they enter the grains force balance equation as seepage forces. Boundary conditions are specified separately for the two phases. For the pore fluid we test two end-member drainage conditions: completely drained system (with infinite boundary permeability) and completely undrained system (with zero boundary permeability). For the grains, two-dimensional time dependent stress and velocity conditions are

  1. Fluid composition and evolution in coesite-bearing rocks (Dora-Maira massif, Western Alps): implications for element recycling during subduction

    Science.gov (United States)

    Philippot, Pascal; Chevallier, Pierre; Chopin, Christian; Dubessy, Jean

    1995-08-01

    of the fluids, in agreement with isotopic data. These results, in particular the absence of CO2 in the jadeite quartzite, are best interpreted in terms of a fluid-melt system evolution. With increasing metamorphism, partitioning of H2O, Na, Ca, Fe and heavy metals into melt (jadeite quartzite) and Mg, Na/K, F, CO2 and P(?) into a residual aqueous fluid can account for depletion in Na, Ca and Fe of the pyrope quartzite. During the retrograde path, a H 2 O rose as melt crystallized, generating the two populations of hypersaline and water-rich fluids that were highly reactive to pyrope. The process of fluid-melt interaction envisioned here coupled with models of melt extraction in subduction zones provides an attractive opportunity for the instantaneous ( < 1 Ma) and selective transport of elements between a downgoing slab and the overlying mantle wedge.

  2. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  3. 双半内圈角接触球轴承有限元分析%Finite element analysis of angular contact ball bearing with double half inner ring

    Institute of Scientific and Technical Information of China (English)

    赵燕; 公平; 徐雷

    2015-01-01

    在对双半内圈角接触球轴承进行合理的建模和网格划分后,通过PERMAS有限元软件对轴承接触应力进行有限元分析,了解该轴承应力分布状况,为轴承的性能分析提供了依据。%After carrying on reasonable modeling and grid division meshing for angular contact ball bearing with double half inner ring, ifnite element analysis of contact stress of bearing was carried on by PERMAS ifnite element software in order to understand the status of the bearing stress distribution and provide the basis for the bearing performance analysis.

  4. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  5. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Christopher Hysjulien [Ames Lab., Ames, IA (United States)

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  6. Target element dependent spin–orbit coupling in polarized {sup 4}He{sup +} ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.T., E-mail: suzuki.taku@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakai, O. [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ichinokura, S. [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirahara, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hasegawa, S. [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-07-01

    We studied low-energy (1.57 keV) electron-spin polarized {sup 4}He{sup +} ion scattering on various 5d transition metal targets. The scattered ion intensity generally differed between the incident He{sup +} ions with up and down spins. This spin dependent ion scattering is attributed to the spin–orbit coupling (SOC) that acts transiently on the He{sup +} 1s electron spin in the He{sup +}-target binary collision. We observed that the amplitude of the spin dependence in ion scattering, i.e., the spin asymmetry, differs between 5d transition metal targets. This target element dependence of the spin asymmetry is discussed in terms of re-ionization of He{sup 0}, which originates from the neutralization of the He{sup +} ion during the He{sup +}-target collision. Since the re-ionization is spin independent process, it degrades the effective spin polarization of the He{sup +} ion beam. This explains smaller spin asymmetry with the target on which He{sup 0} is re-ionized with higher rate.

  7. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  8. 桩基承载能力的有限元分析%Finite Element Analysis of Bearing Capacity of Pile Foundation

    Institute of Scientific and Technical Information of China (English)

    彭银辉; 吕世斌; 耿立伟

    2012-01-01

    针对工程实例,利用ABAQUS有限元软件建立单桩承载力的有限元计算模型,研究桩基承载特性,并与桩基静载试验所得实测数据比较。结果表明,模拟计算结果与工程实际基本吻合,说明采用的计算方法和模型是合理可行的。同时研究了在不同桩土界面摩擦系数条件下桩的沉降和轴向力变化情况,为不同工程地质条件的桩基设计提供参考。%On account of practical case,finite element calculation model of single pile bearing capacity is established with ABAQUS to study the bearing characteristics of pile foundation and compare with actual measurement data of static loading test of pile foundation.The result shows that simulated calculation result is basically consistent with actual engineering,which indicates that the adopted calculation method and model are reasonable and feasible.Meanwhile,the change of settlement and axial force of pile under different frictional coefficient of pile soil is studied,providing references for pile foundation design in different engineering geological conditions.

  9. The determination of low level trace elements in coals by laser ablation-inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.A.; Spears, D.A.; Krause, P.; Cox, A.G. [University of Sheffield, Sheffield (United Kingdom). Dept. of Earth Sciences

    1999-11-01

    The rapid determination of elements present in low level concentrations in bituminous coals is possible using laser abalation-inductively coupled plasma-mass spectrometry (l.a.-i.c.p.-m.s.). A wide range of trace elements can routinely be determined using this technique but it is for environmentally sensitive elements, such as As, Cd, Mo, Sb, Se and Hg, that it is of most use due to the low levels of detection. Calibration of the i.c.p.-m.s. was achieved using a series of uncertified coals and the method evaluated using the South African certified coals, Sarm 18, 19 and 20. A critical evaluation of the data obtained shows that for many of the elements studied the results obtained are both accurate and precise, even at very low concentrations, with the limits of detection for all of the elements being in the {mu}g/kg (parts per billion) range. 6 refs., 3 figs., 9 tabs.

  10. Unbalanced Magnetic Pull Effect on Stiffness Models of Active Magnetic Bearing due to Rotor Eccentricity in Brushless DC Motor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available We firstly report on an investigation into the unbalanced magnetic pull (UMP effect on the static stiffness models of radial active magnetic bearing (RAMB in brushless DC motor (BDCM in no-loaded and loaded conditions using the finite element method (FEM. The influences of the UMP on the force-control current, force-position, current stiffness, and position stiffness of RAMB are clarified in BDCM with 100 kW rated power. We found the position stiffness to be more susceptible to UMP. The primary source of UMP is the permanent magnets of BDCM. In addition, the performance of RAMB is affected by the UMP ripples during motor commutation and also periodically affected by the angular position of rotor. The characteristic curves of RAMB force versus control current (or rotor position and angular position of rotor affected by the UMP are given. The method is useful in design and optimization of RAMB in magnetically suspended BDCMs.

  11. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    Science.gov (United States)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  12. ANALYSES ON NONLINEAR COUPLING OF MAGNETO-THERMO-ELASTICITY OF FERROMAGNETIC THIN SHELL-Ⅱ: FINITE ELEMENT MODELING AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Xingzhe Wang; Xiaojing Zheng

    2009-01-01

    Based on the generalized variational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo-elasticity of ferromagnetic thin shell-Ⅰ), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.

  13. Elements of M-I Coupling in Repetitive Substorm Activity Driven by Interplanetary CMEs

    Science.gov (United States)

    Farrugia, C. J.; Sandholt, P. E.

    2014-12-01

    By means of case studies we explore key elements of the magnetosphere-ionosphere current system associated with repetitive substorm activity during persistent strong forcing by ICMEs. Our approach consists of a combination of the magnetospheric and ionospheric perspectives on the substorm activity. The first aspect is the near-Earth plasma sheet with its repetitive excitations of the substorm current wedge, as monitored by spacecraft GOES-10 when it traversed the 2100-0300 MLT sector, and its coupling to the westward auroral electrojet (WEJ) centered near midnight during the stable interplanetary (IP) conditions. The second aspect is the excitation of Bostrom type II currents maximizing at dusk and dawn and their associated ionospheric Pedersen current closure giving rise to EEJ (WEJ) events at dusk (dawn). As documented in our study, this aspect is related to the braking phase of Earthward-moving dipolarization fronts-bursty bulk flows. We follow the magnetospheric flow/field events from spacecraft Geotail in the midtail (X = - 11 Re) lobe to geostationary altitude at pre-dawn MLTs (GOES 10). The associated M-I coupling is obtained from ground-satellite conjunctions across the double auroral oval configuration along the meridian at dusk. By this technique we distinguish between ionospheric manifestations in three latitude regimes: (i) auroral oval south, (ii) auroral oval north, and (iii) polar cap. Regime (iii) is characterized by events of enhanced antisunward convection near the polar cap boundary (flow channel events) and in the central polar cap (PCN-index events). The repetitive substorm activity is discussed in the context of the level of IP driving as given by the geoeffective IP electric field (E_KL), magnetotail reconnection (inferred from the PCN-index and spacecraft Wind at X = - 77 Re) and the storm SYM-H index. We distinguish between different variants of the repetitive substorm activity, giving rise to electrojet (AL)-plasma convection (PCN) events

  14. Bedload Transport on Steep Slopes with Coupled Modeling Based on the Discrete Element Method

    Science.gov (United States)

    Chauchat, J.; Maurin, R.; Chareyre, B.; Frey, P.

    2014-12-01

    After more than a century of research, a clear understanding of the physical processes involved in sediment transport problems is still lacking. In particular, modeling of intergranular interactions and fluid-particle interactions in bedload transport need to be improved. In this contribution, we propose a simple numerical model coupling a Discrete Element Method (DEM) for the grain dynamics with a simple 1D vertical fluid phase model inspired from the two-phase approach [1] in order to contribute to this open question. The Reynolds stress is parameterized by a mixing length model which depends on the integral of the grain volume fraction. The coupling between the grains and the fluid phase is essentially achieved through buoyancy and drag forces. The open source DEM code Yade [2] is used with a linear spring-dashpot contact law that allows the description of the behavior of the particles from the quasi-static to the dynamical state. The model is compared with classical results [3] and with particle-scale experimental results obtained in the quasi-2D flume at IRSTEA, Grenoble [4]. We discuss the closures of the model and the sensitivity to the different physical and numerical parameters. [1] Revil-Baudard, T. and J. Chauchat. A two-phase model for sheet flow regime based on dense granular flow rheology. Journal of Geophysical Research: Oceans, 118(2):619-634, 2013. [2] Šmilauer V. , E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C . Modenese, L. Scholtès, L. Sibille, J. Str.nský, and K. Thoeni. Yade Documentation (V. Šmilauer, ed.), The Yade Project, 1st ed., http://yade-dem.org/doc/., 2010. [3] Meyer-Peter, E. and R. Müller. Formulas for bed-load transport. In Proc. 2nd Meeting, pages 39-64. IAHR, 1948. [4] Frey, P. Particle velocity and concentration profiles in bedload experiments on a steep slope. Earth Surface Processes and Landforms, 39(5):646-655, 2014.

  15. A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical Systems

    Science.gov (United States)

    Brandstetter, Gerd

    The main focus of this work is on the development of a high-order Eulerian-Lagrangian finite element method for the simulation of electro-mechanical systems. The coupled problem is solved by a staggered scheme, where the mechanical motion is discretized by standard Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with embedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distortion due to large deformations, or topology changes due to contacting bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural way. Within this context we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method, which is shown to be necessary for (i) the accurate representation of the electrical gradient along nonlinear boundary features such as singular corners, and (ii) to achieve full convergence during the iterative global solution. We develop an implicit scheme based on the mid-point rule, as well as an explicit scheme based on the centered-difference method, with the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance of the proposed method is assessed for several benchmark tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order method as compared to low-order methods, and linear convergence in the iterative solution of the staggered scheme. Additionally, we investigate a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-mechanical devices excited at resonance-- as opposed to a naive time-stepping from zero initial

  16. Switching dynamics of single and coupled VO2-based oscillators as elements of neural networks

    Science.gov (United States)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Pergament, Alexander; Perminov, Valentin

    2017-01-01

    In the present paper, we report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in oscillatory neural networks. Based on these results, we further select an adequate SPICE model to describe the modes of operation of coupled oscillator circuits. Physical mechanisms influencing the time of forward and reverse electrical switching, that determine the applicability limits of the proposed model, are identified. For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically. For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations. A decrease in the width of the spectrum harmonics in the weak-coupling mode, and its increase in the strong-coupling one, is detected. The dependences of frequencies and phase differences of the coupled oscillatory circuits on the coupling capacitance are found. Examples of operation of coupled VO2 oscillators as a central pattern generator are demonstrated.

  17. Coupling of Sph and Finite Element Codes for Multi-Layer Orbital Debris Shield Design

    Science.gov (United States)

    Fahrenthold, Eric P.

    1997-01-01

    Particle-based hydrodynamics models offer distinct advantages over Eulerian and Lagrangian hydrocodes in particular shock physics applications. Particle models are designed to avoid the mesh distortion and state variable diffusion problems which can hinder the effective use of Lagrangian and Eulerian codes respectively. However conventional particle-in-cell and smooth particle hydrodynamics methods employ particles which are actually moving interpolation points. A new particle-based modeling methodology, termed Hamiltonian particle hydrodynamics, was developed by Fahrenthold and Koo (1997) to provide an alternative, fully Lagrangian, energy-based approach to shock physics simulations. This alternative formulation avoids the tensile and boundary instabilities associated with standard smooth particle hydrodynamics formulations and the diffusive grid- to-particle mapping schemes characteristic of particle-in-cell methods. In the work described herein, the method of Fahrenthold and Koo has been extended, by coupling the aforementioned hydrodynamic particle model to a hexahedral finite element based description of the continuum dynamics. The resulting continuum model retains all of the features (including general contact-impact effects) of Hamiltonian particle hydrodynamics, while in addition accounting for tensile strength, plasticity, and damage effects important in the simulation of hypervelocity impact on orbital debris shielding. A three dimensional, vectorized, and autotasked implementation of the extended particle method described here has been coded for application to orbital debris shielding design. Source code for the pre-processor (PREP), analysis code (EXOS), post-processor (POST), and rezoner (ZONE), have been delivered separately, along with a User's Guide describing installation and application of the software.

  18. Multi-elemental analysis of brain tissue from healthy Wistar rats using sector field inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Mitchell C. [Molecular Structure and Detection Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Parsons, Carl H. [School of Biomedical Science, University of Newcastle, Callaghan NSW 2308 (Australia); Calford, Mike B. [School of Biomedical Science, University of Newcastle, Callaghan NSW 2308 (Australia); Nagy-Felsobuki, Ellak I. von [Molecular Structure and Detection Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)]. E-mail: ellak@newcastle.edu.au

    2004-09-20

    The normal distribution of a range of elements in the brain tissue of healthy Wistar rats was established using sector field inductively coupled plasma mass spectrometry. A protocol was developed to determine concentrations of Ag, Cd, Hg, Pb, Bi, U, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and Se in specific brain regions. The concentrations of these elements were determined in the range of 2{+-}1 (e.g. Cr in diencephalon) to 7558{+-}450 ng ml{sup -1} (e.g. Fe in olfactory bulb). The detection limits of the sixteen elements ranged between 5 and 300 pg ml{sup -1}, with U yielding the lowest and Fe the highest value. The validity of the protocol was assessed by the analysis of SRM 1577B Bovine Liver and brain tissue spike recoveries. A principal component analysis was used to reveal elemental patterns of the brain regions.

  19. Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model

    Institute of Scientific and Technical Information of China (English)

    Sailas BENJAMIN; Silke FLOTHO; Torsten B(O)RCHERS; Friedrich SPENER

    2013-01-01

    The purpose of this study was to examine the induction profiles(as judged by quantitative reverse transcription polymerase chain reaction(qRT-PCR))of peroxisome proliferator-activated receptor(PPAR)α,β,Y subtypes and major PPAR-target genes bearing a functional peroxisome proliferator responsive element(PPRE)in HepG2 cell model upon feeding with cis-9,trans-11-octadecadienoic acid(9-CLA)or trans-10,cis-12-octadecadienoic acid (10-CLA)or their precursor fatty acids(FAs).HepG2 cells were treated with 100 μmol/L 9-CLA or 10-CLA or their precursor FAs,viz.,oleic,linoleic,and trans-11-vaccenic acids against bezafibrate control to evaluate the induction/expression profiles of PPAR α,β,Y subtypes and major PPAR-target genes bearing a functional PPRE,i.e.,fatty acid transporter(FAT),glucose transporter-2(GLUT-2),liver-type FA binding protein(L-FABP),acyl CoA oxidase-1 (ACOX-1),and peroxisomal bifunctional enzyme(PBE)with reference to β-actin as house keeping gene.Of the three housekeeping genes(glyceraldehyde 3-phosphate dehydrogenase(GAPDH),β-actin,and ubiquitin),β-actin was found to be stable.Dimethyl sulfoxide(DMSO),the common solubilizer of agonists,showed a significantly higher induction of genes analyzed.qRT-PCR profiles of CLAs and their precursor FAs clearly showed upregulation of FAT,GLUT-2,and L-FABP(~0.5-2.0-fold).Compared to 10-CLA,9-CLA decreased the induction of the FA metabolizing gene ACOX-1 less than did PBE,while 10-CLA decreased the induction of PBE less than did ACOX-1.Both CLAs and precursor FAs upregulated PPRE-bearing genes,but with comparatively less or marginal activation of PPAR subtypes.This indicates that the binding of CLAs and their precursor FAs to PPAR subtypes results in PPAR activation,thereby induction of the target transporter genes coupled with downstream lipid metabolising genes such as ACOX-1 and PBE.To sum up,the expression profiles of these candidate genes showed that CLAs and their precursor FAs are involved in lipid

  20. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    Science.gov (United States)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  1. Micropolar Lubricant Effects on the Performance of a Two- Lobe Bearing with Pressure Dam

    Directory of Open Access Journals (Sweden)

    SANYAM SHARMA

    2010-10-01

    Full Text Available Two lobe bearings are commonly used in the high speed rotating machineries industries. The use of two lobe bearings, considered to be more stable than ordinary plain cylindrical bearings. In the upper half the dam is provided and relief track in the lower half. Performance of two lobe pressure dam bearings under micropolarfluid is evaluated. Finite element method is used to solve the modified Reynolds equation. . Fluid film pressures are obtained by solving modified Reynolds equation, thus pressure obtained is used to find performance characteristics of this bearing. Results are obtained for various micropolar parameter like coupling number andnon-dimensional characteristics length. The results show that Two-lobe Pressure dam bearing is superior to twolobe bearing,

  2. Timing and thermochemical constraints on multi-element mineralisation at the Nori/RA Cu-Mo-U prospect, Great Bear magmatic zone, Northwest Territories, Canada

    Science.gov (United States)

    Ootes, Luke; Goff, Steve; Jackson, Valerie A.; Gleeson, Sarah A.; Creaser, Robert A.; Samson, Iain M.; Evensen, Norman; Corriveau, Louise; Mumin, A. Hamid

    2010-08-01

    The timing of Cu-Mo-U mineralisation at the Nori/RA prospect in the Paleoproterozoic Great Bear magmatic zone has been investigated using Re-Os molybdenite and 40Ar-39Ar biotite geochronology. The Re-Os molybdenite ages presented are the first robust sulphide mineralisation ages derived from the Great Bear magmatic zone. Cu-Mo-U mineralisation is hosted in early to syn-deformational hydrothermal veins consisting of quartz and K-feldspar or more commonly tourmaline-biotite-quartz-K-feldspar, with associated wall-rock alteration assemblages being predominantly biotite. Sulphide and oxide minerals consist of chalcopyrite, molybdenite and uraninite with lesser pyrite and magnetite. Elevated light rare earth elements and tungsten concentrations associated with the Cu-Mo-U mineralisation have also been reported at the prospect by previous workers. Molybdenite and uraninite occur intimately in dravitic tourmaline growth zones and at grain margins, attesting to their syngenetic nature (with respect to hydrothermal veining). Two molybdenite separates yield Re-Os model ages of 1,874.4 ± 8.7 (2 σ) and 1,872.4 ± 8.8 Ma (2 σ) with a weighted average model age of 1,873.4 ± 6.1 Ma (2 σ). Laser step heating of biotite from the marginal alteration of the wall-rock adjacent to the veins yields a 40Ar-39Ar maximum cooling age of 1,875 ± 8 Ma (MSWD = 3.8; 2 σ), indistinguishable from the Re-Os molybdenite model age and a previously dated ‘syn-tectonic’ aplitic dyke in the region. Dravitic tourmaline hosts abundant primary liquid-vapour-solid-bearing fluid inclusions. Analytical results indicate liquid-vapour homogenisation at >260°C constraining the minimum temperature of mineralisation. The solids, which are possibly trapped, did not homogenise with the liquid-vapour by 400°C. Salinities in the inclusions are variable. Raman spectra identify that at least some of the solids are calcite and anhydrite. Raman spectra also confirm the vapour phases contain some CO2; whereas

  3. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  4. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    Science.gov (United States)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  5. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores.

    Science.gov (United States)

    Reinhardt, H; Kriews, M; Miller, H; Schrems, O; Lüdke, C; Hoffmann, E; Skole, J

    2001-07-01

    A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

  6. Condition Monitoring of Rolling Element Bearings Using Optimal Gabor Filters%采用Gabor滤波器的轴承状态监控方法

    Institute of Scientific and Technical Information of China (English)

    张丹; 隋文涛; 郭前建

    2016-01-01

    针对滚动轴承状态监控中最优共振频带难确定的问题,提出一种新的寻优方法和目标函数,可快速准确地定位共振频带,提取状态信息。通过两步网格搜索法,以包络稀疏性为目标函数,对Gabor滤波器参数寻优;然后对振动信号进行滤波并得到信号包络;最后运用包络自相关谱抑制噪声,突出运行状态信息。用仿真信号和实际信号对该方法进行了验证,结果表明,该方法能准确判明轴承运行状态。%Aiming to the difficulty in finding the resonant frequency band in condition monitoring of roll-ing element bearings, a new optimization method and objective function was proposed. The resonant fre-quency band can be located through this proposed method. Firstly, the parameters of Gabor filter are op-timized through the two-step grid search method, in which the envelope sparseness is as objective func-tion. The vibration signal was filtered through the optimal filter and the envelop signal was calculated. The envelop autocorrelation spectrum was adopted to restrain noise and highlight operation condition infor-mation. The effectiveness and advantages of the proposed method were proved through the simulation sig-nal and experimental signals. It is shown that the bearing operation condition can be recognized accurate-ly by the proposed method.

  7. Geology and rare-earth element geochemistry of highly evolved, molybdenite-bearing granitic plutons, Southeastern Desert, Egypt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The field relations, mineralogy, and major and trace elements (including REE analyses of whole-rock samples and minerals) of granites and their associated molybdenite + uranium mineralized aplites in Southeastern Desert, Egypt, have been studied. The granites are leucocratic and mostly peraluminous in nature with muscovite increasing at the expense of biotite. The chemical and mineralogical characteristics of the granitic rocks indicate that their melts originated from the LILE-enriched mantle wedge by partial melting and are contaminated by crustal melts, followed by thermogravitational processes. Leucogranites with higher Na2O/K2O ratios from Um Dargag and Um Maiat crystallized under H2O-saturated equilibrium conditions in which the exsolved vapor continuously migrated away. The REE patterns of the granites studied are characterized by LREE enrichments and negative Eu anomalies. In comparison, the potassic aplites and the more sodic leucogranites are depleted in LREE, enriched in HREE and show more remarkable negative Eu anomalies. Allanite and monazite are the most important REE carriers in the granites. These minerals are strongly enriched in LREE, whereas fluorite and xenotime, which are more abundant in the aplites, are enriched in HREE. The average Lu/Ce ratio represents the fractionation trend with respect to HREE. It is 0.71 for radioactive fluorite, and it increases to 1.22 for non-radioactive fluorite. The high REE contents of molybdenite represent re-deposition of the mobilized Mo and REE. Due to the strong control of accessory minerals, the REEs are of limited use in petrogenetic modelling of highly evolved granitic systems.

  8. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium

    Science.gov (United States)

    Toplis, Michael; Corgne, Alexandre

    2002-08-01

    Mineral-melt partition coefficients of vanadium and a series of divalent trace elements (Ni, Co, Mn, Sr) have been determined for ferrobasaltic bulk compositions at one atmosphere. Experiments were performed at constant temperature (1,068 °C) and oxygen fugacity from 0.7 log units below to 2.6 log units above the NNO buffer (NNO-0.7 to NNO+2.6). All experiments were saturated in clinopyroxene and titanomagnetite. Partition coefficients for divalent cations between the liquid and these two minerals are found to be controlled by the ionic radius of the cation and the composition of the coexisting liquid, coefficients being significantly higher in more polymerised melts. Vanadium partitioning is strongly dependent on oxygen fugacity, decreasing by approximately one order of magnitude with increasing $ f{O_2 } from NNO-0.7 to NNO+2.6 for both clinopyroxene and magnetite. Based upon thermodynamic modelling of the relative proportions of V3+, V4+ and V5+ in our liquids, this behaviour is inferred to be dominated by partitioning of V3+, despite the fact that this valence state is predicted to occur in low relative abundance. Derived values of D{ V{ 3 + } } show no systematic dependence on melt polymerisation, but do show a systematic dependence on mineral composition. In particular, our data and those of the literature are combined to show that D{ V{ 3 + } }{ Cpx/Liq} increases significantly as clinopyroxenes become more iron-rich. The partition coefficients for vanadium determined in this study have been used to model the V concentration of liquid and magnetite as a function of differentiation in a ferrobasaltic system at different oxygen fugacities. These results show that extreme enrichments of V2O5 in magnetite will only occur for a relatively small range of f{O_2 } $ , between NNO and NNO-1.5. The results of our modelling are shown to be consistent with observations made on the V-rich magnetite layers of the Bushveld intrusion.

  9. Theory and Application of Characteristic Finite Element Domain Decomposition Procedures for Coupled System of Dynamics of Fluids in Porous Media

    Institute of Scientific and Technical Information of China (English)

    Yi-rang Yuan

    2007-01-01

    For a coupled system of multiplayer dynamics of fluids in porous media,the characteristic finite element domain decomposition procedures applicable to parallel arithmetic are put forward.Techniques such as calculus of variations,domain decomposition,characteristic method,negative norm estimate,energy method and the theory of prior estimates are adopted.Optimal order estimates in L2 norm are derived for the error in the approximate solution.

  10. A Smoothing Method of Discrete Breakup S-matrix Elements in the Theory of Continuum-Discretized Coupled Channels

    CERN Document Server

    Matsumoto, Takuma; Ogata, Kazuyuki; Yahiro, Masanobu

    2009-01-01

    We present a practical way of smoothing discrete breakup S-matrix elements calculated by the continuum-discretized coupled-channel method (CDCC). This method makes the smoothing procedure much easier. The reliability of the smoothing method is confirmed for the three-body breakup reactions, 58Ni(d,pn) at 80 MeV and 12C(6He,4He2n) at 229.8 MeV.

  11. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  12. Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    Science.gov (United States)

    2014-11-01

    2006; White and Borja, 2008; Sun, Ostien, and Salinger , 2013) Q8P8 hexahedral element is also implemented within the coupled dynamics framework, and...but based on our implementation, it was ineffective for our particular applications of soft tissues at finite strain. Sun, Ostien, and Salinger ...large deformation. Int. J. Numer. Methods Engrg., vol. 32, pp. 1411–1439. Sun, W.-C.; Ostien, J.; Salinger , A. (2013): A stabilized assumed

  13. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...

  14. An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations

    Science.gov (United States)

    Liu, Yong-Qing; Cheng, Rong-Jun; Ge, Hong-Xia

    2013-10-01

    The present paper deals with the numerical solution of the coupled Schrödinger-KdV equations using the element-free Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme.

  15. Controlling gradient phase distributions in a model of active antenna array with locally coupled elements

    Science.gov (United States)

    Mishagin, K. G.; Shalfeev, V. D.

    2006-12-01

    The regime of synchronization with a certain gradient phase distribution and the possibility of controlling such distribution in a linear array of oscillators coupled by phase-locked loops (PLLs) have been theoretically studied. It is shown that a constant phase progression can be controlled by manipulating collective dynamics, with oscillator eigenfrequencies and coupling coefficients being the control parameters. The proposed principle of control, based on the nonlinear dynamics of PLL-coupled oscillators, can be used in solving the problems of phasing and controlled beam scanning in antenna arrays operating in different frequency bands.

  16. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  17. Isotope and trace element systematics in a spinel-lherzolite-bearing suite of basanitic volcanic rocks from San Luis Potosi, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Pier, J.E.G.

    1989-01-01

    Lherzolite-bearing basanitic magmas of Quaternary age have erupted to form maars, lava/cinder cones and lava flows in two volcanic fields (Ventura and Santo Domingo) in the central Mexican state of San Luis Potosi. The systematics of the radiogenic isotopes of Sr, Nd, and Pb and the relationship between these parameters and elemental compositions are used to investigate the petrogenesis of the volcanic rocks and the nature of their mantle sources. Sr and Nd isotopic data are presented for 19 basanitic rocks, 5 kaersutites, and 6 lherzolitic xenoliths; Pb data presented for the same 19 volcanic rocks and 4 of the 5 kaersutites. The isotopic compositions for all of these samples fall within the mantle range defined by MORBs and OIBs. The basanites generally plot within the OIB field on isotopic diagrams; most of the kaersutites are displaced to slightly more-depleted (i.e. MORB-like) values than the volcanic samples and the xenoliths, with one exception, are significantly more-depleted than either of these sample-types. As crustal contamination is considered unlikely for most of the volcanic samples, these trends are thought to arise from mixing multiple mantle components. The absence of similar isotopic elemental relationships for Epsilon Nd and the lack of correlation between {sup 206}Pb/{sup 204}Pb and the other Pb isotopes require a mixture of at least three mantle reservoirs: a depleted reservoir analogous to that of the MORBs, a St. Helena-type component, and a third component, which primarily affects Sr and {sup 208}Pb/{sup 204}Pb composition. This third component carries relatively radiogenic Sr and {sup 208}Pb/{sup 204}Pb and appears to be correlated with the degree of melting.

  18. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  19. Fault Tolerant Homopolar Magnetic Bearings

    Science.gov (United States)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  20. Stiffness matrix formulation for double row angular contact ball bearings: Analytical development and validation

    Science.gov (United States)

    Gunduz, Aydin; Singh, Rajendra

    2013-10-01

    Though double row angular contact ball bearings are widely used in industrial, automotive, and aircraft applications, the scientific literature on double row bearings is sparse. It is also shown that the stiffness matrices of two single row bearings may not be simply superposed to obtain the stiffness matrix of a double row bearing. To overcome the deficiency in the literature, a new, comprehensive, analytical approach is proposed based on the Hertzian theory for back-to-back, face-to-face, and tandem arrangements. The elements of the five-dimensional stiffness matrix for double row angular contact ball bearings are computed given either the mean bearing displacement or the mean load vector. The diagonal elements of the proposed stiffness matrix are verified with a commercial code for all arrangements under three loading scenarios. Some changes in stiffness coefficients are investigated by varying critical kinematic and geometric parameters to provide more insight. Finally, the calculated natural frequencies of a shaft-bearing experiment are successfully compared with measurements, thus validating the proposed stiffness formulation. For double row angular contact ball bearings, the moment stiffness and cross-coupling stiffness terms are significant, and the contact angle changes under loads. The proposed formulation is also valid for paired (duplex) bearings which behave as an integrated double row unit when the surrounding structural elements are sufficiently rigid.

  1. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duodu, Godfred Odame [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Goonetilleke, Ashantha [School of Civil Engineering and Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Allen, Charlotte [Institute for Future Environments, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia)

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (−52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. - Highlights: • Wet milling was used to produce pressed tablet sediment for LA-ICP-MS analysis. • Milling was effective for refractive elements with narrow range of particle size. • This is the first use of LA-ICP-MS for Hg analysis in sediment samples. • Acceptable accuracy and precision were obtained for most of the elements studied. • Detection limits down to parts per trillion were observed for some elements.

  2. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  3. Simulation of fluid-structure interaction in micropumps by coupling of two commercial finite element programs

    Science.gov (United States)

    Klein, Andreas; Gerlach, Gerald

    1998-09-01

    This paper deals with the simulation of the fluid-structure interaction phenomena in micropumps. The proposed solution approach is based on external coupling of two different solvers, which are considered here as `black boxes'. Therefore, no specific intervention is necessary into the program code, and solvers can be exchanged arbitrarily. For the realization of the external iteration loop, two algorithms are considered: the relaxation-based Gauss-Seidel method and the computationally more extensive Newton method. It is demonstrated in terms of a simplified test case, that for rather weak coupling, the Gauss-Seidel method is sufficient. However, by simply changing the considered fluid from air to water, the two physical domains become strongly coupled, and the Gauss-Seidel method fails to converge in this case. The Newton iteration scheme must be used instead.

  4. Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Qingdong Zeng

    2015-10-01

    Full Text Available Fluid-solid coupling is ubiquitous in the process of fluid flow underground and has a significant influence on the development of oil and gas reservoirs. To investigate these phenomena, the coupled mathematical model of solid deformation and fluid flow in fractured porous media is established. In this study, the discrete fracture model (DFM is applied to capture fluid flow in the fractured porous media, which represents fractures explicitly and avoids calculating shape factor for cross flow. In addition, the extended finite element method (XFEM is applied to capture solid deformation due to the discontinuity caused by fractures. More importantly, this model captures the change of fractures aperture during the simulation, and then adjusts fluid flow in the fractures. The final linear equation set is derived and solved for a 2D plane strain problem. Results show that the combination of discrete fracture model and extended finite element method is suited for simulating coupled deformation and fluid flow in fractured porous media.

  5. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1980-02-15

    Metal, X is the chalco -en atom and x is the relative amount of the intercalated species. In the alkali intercalated species, 0< x <l and the alkali...stabilize them at the stoichiometric 1.X2 coi.inositlon. Also, intercalation of alkali metal atoms into chalco . enides already oossessin:; the

  6. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    Science.gov (United States)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  7. An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system

    Science.gov (United States)

    Hintermüller, M.; Hinze, M.; Kahle, C.

    2013-02-01

    An adaptive a posteriori error estimator based finite element method for the numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a double-obstacle homogenous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to a variational inequality for the concentration and the chemical potential according to the Cahn-Hilliard model [16]. A Moreau-Yosida regularization is employed which relaxes the constraints contained in the variational inequality and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in function space. Moreover, upon discretization this yields a mesh independent method for a fixed relaxation parameter. For the finite dimensional approximation of the concentration and the chemical potential piecewise linear and globally continuous finite elements are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite elements are employed. The paper ends by a report on numerical examples showing the efficiency of the new method.

  8. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  9. Trace elemental imaging of coralline hydroxyapatite by laser-ablation inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Chou, J; Austin, C; Doble, P; Ben-Nissan, B; Milthorpe, B

    2014-07-01

    The determination of trace element concentrations, as well as their distribution in different biomaterials aimed for clinical applications, is a challenging task in both the areas of biological and materials research. In this research, LA-ICP-MS was employed for image mapping of the trace element distribution in a hydrothermally converted coralline hydroxyapatite material aimed for tissue-scaffolding applications. Quantification using synthetic matrix-matched standards was successfully applied for the determination and distribution of elements of interest, Sr and Mg, that influences the mechanical and biological properties of hydroxyapatite-based bone graft materials. The results showed that the instrument can successfully analyse trace elements and a relatively good image can be produced that identifies their distribution. The LA-ICP-MS method can provide an easy and effective tool, in the field of biomaterials with respect to distribution of trace elements, to better understand tissue-implant interactions, and will open up a new window for in vitro and in vivo analysis and imaging of different tissues and structures.

  10. Tilting-Pad Journal Bearings with Active Lubrication Applied as Calibrated Shakers: Theory and Experiment

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    In recent years, a continuous research effort has transformed the conventional tilting-pad journal bearing into a mechatronic machine element. The addition of electromechanical elements provides the possibility of generating controllable forces over the rotor as a function of a suitable control...... dependent calibration function, i.e. the transfer function between control signal and force over the rotor. This work presents a theoretical model of the calibration function for a tilting-pad journal bearing with active lubrication. The bearing generates controllable forces by injecting pressurized oil...... directly into the bearing clearance. The injected flow is controlled by means of a servovalve. The theoretical model includes the dynamics of servovalves and pipelines using a lumped parameter approach, whereas the coupling between the hydraulic system and the bearing oil film is modeled using a modified...

  11. Reconfigurable Optical Elements Based on Single and Coupled Microdisk Resonators with Quantum DOT Active Media

    Science.gov (United States)

    2012-06-29

    thinned using a thinner to obtain one micron thick films. The dye doped films were later patterned using either EBL or photolithography. Scanning...established for the microdisk resonators. Scanning electron microscope images of single and coupled microring resonators fabricated using EBL are shown

  12. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    KAUST Repository

    Wheeler, Mary

    2013-11-16

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.

  13. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching

    DEFF Research Database (Denmark)

    Martens, Helle; Roberts, Alison G.; Oparka, Karl J.;

    2006-01-01

    Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein...... retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome...... and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues...

  14. 磁悬浮飞轮储能系统机电耦合动力学特性研究%Investigation on the Dynamics Character of Electromechanical Coupling for Flywheel Energy Storage System Based on Active Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    陈峻峰; 刘昆; 肖凯; 王昊泽

    2012-01-01

    根据永磁电机结构,采用解析法分析了转子偏心时气隙磁感强度分布,推导出了储能飞轮系统充放电时受到的不平衡磁吸力和洛伦兹力表达式。构建了电机-磁轴承机电耦合动力学仿真模型,分析了电机产生的不平衡力与磁悬浮飞轮动力学性能的耦合影响。在不平衡力分析基础上,设计了磁轴承系统,抑制了机电耦合的影响。研究结果表明:当系统的电机尺寸较大且应用于高能放电领域时,转子偏心引起电机产生不平衡力较大,飞轮动力学性能变化显著,合理设计磁轴承可以抑制机电耦合。%The coupling between the generator and active magnetic bearing affects the stable operation of flywheel system in flywheel energy storage system based on active magnetic bearing,and restricts the control system design of active magnetic bearing.According to the structure of the generator,an analytical method is adopted to analyse the magnetic flux density distribution in the airgap region considering the rotor eccentricity,and the expressions of the unbalanced magnetic force and the unbalanced Lorentz force are educed when the flywheel energy storage system is charged or discharged.The dynamics simulation model of electromechanical coupling between the generator and active magnetic bearing is established,and the coupling effects between the unbalanced force brought by generator and the flywheel dynamics performance based on active magnetic bearing are analysed.Based on the analysis,an active magnetic bearing system is designed to restrain the electromechanical coupling.The results indicate that when the generator has a big size and the system is used in high electric-power field,the unbalanced force brought by rotor eccentricity in the generator is large,and have obvious impact on the performance of flywheel dynamics.The active magnetic bearing system can be reasonably designed to restrain the electromechanical coupling.

  15. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.

  16. From Hybrid to Actively-Controlled Gas Lubricated Bearings – Theory and Experiment

    DEFF Research Database (Denmark)

    Morosi, Stefano

    bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic properties of the bearings, however issues related to the manufacturing and accuracy of predictions has so far limited their applications. Another drawback is that passive bearings...... offer a low degree of robustness, meaning that an accurate optimization is necessary for each application. Another way of improving gas bearings operation performance is by using active control systems, transforming conventional gas bearings in an electro-mechanical machine component. In this framework......-rig are backed by a comprehensive mathematical model that couples a finite element model of a flexible rotor, a thermohydrodynamic model based on a modified form of the Reynold’s equation for hybrid aerostatic-aerodynamic lubrication of compressible fluid, a piezoelectric injection system and a proportional...

  17. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    Science.gov (United States)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  18. Variational Multiscale Element Free Galerkin Method Coupled with Low-Pass Filter for Burgers’ Equation with Small Diffusion

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2016-01-01

    Full Text Available Variational multiscale element free Galerkin (VMEFG method is applied to Burgers’ equation. It can be found that, for the very small diffusivity coefficients, VMEFG method still suffers from instability in the presence of boundary or interior layers. In order to overcome this problem, the high order low-pass filter is used to smooth the solution. Three test examples with very small diffusion are presented and the solutions obtained are compared with exact solutions and some other numerical methods. The numerical results are found in which the VMEFG coupled with low-pass filter works very well for Burgers’ equation with very small diffusivity coefficients.

  19. 型钢边缘构件-钢连梁焊接型混合连肢墙节点滞回性能有限元分析%FEM Analyses on Hysteretic Behavior of Steel Coupling Beam-column Connections with Steel Boundary Elements Welded in Hybrid Coupled Shear Wall Systems

    Institute of Scientific and Technical Information of China (English)

    徐明; 苏明周; 王丽; 李旭东

    2012-01-01

    The finite element analyses on hysteretic behavior of steel coupling beam-column connections with steel boundary elements welded in hybrid coupled shear wall system were performed by using the FEM software ABAQUS for numerical simulation,so as to obtain the seismic performance of hybrid coupled shear wall system under low cyclic loading.The results of the finite element analyses agree quite well with experimental results.Meanwhile,the finite element analysis results and experimental results all indicate that the hysteretic curve of connections in hybrid coupled wall is full,and the ductility factor and ultimate bearing capacity are high,which shows that this kind of connection has high seismic performance,and is suitable for using in the high-rise buildings in high-intensity earthquake areas.%通过利用ABAQUS有限元软件对型钢边缘构件-钢连梁焊接型混合连肢墙(HCW)节点滞回性能进行有限元分析,研究混合连肢墙在低周循环荷载作用下的抗震性能,并将有限元计算结果与试验结果进行了对比,吻合情况较好。同时,试验研究与有限元分析结果均表明:节点滞回曲线饱满,且延性系数及极限承载力较高,表明节点具有良好的抗震性能。

  20. An efficient formulation of the coupled finite element-integral equation technique for solving large 3D scattering problems

    Science.gov (United States)

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1993-01-01

    It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.

  1. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  2. Power flow transmission in a coupled flexible system with active executive elements

    Institute of Scientific and Technical Information of China (English)

    HUO Rui; SHI Yin; SONG Kongjie

    2002-01-01

    Based on its prototype of machine-isolator-foundation systems, a theoretical model for dynamic coupled linear system is established, in which both the passive and active control factors are considered. Power flow is used as the cost function to evaluate the isolation effectiveness. And the transmission of vibratory power flow from a vibrating rigid body into a simply supported thin panel through passive isolators and actuators is investigated numerically. The active control strategy is summarized in the conclusion.

  3. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Raquel [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Todolí, José Luis, E-mail: jose.todoli@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Lienemann, Charles-Philippe [IFP Energies Nouvelles, Rond-point de l' échangeur de Solaize, BP 3, F-69360 Solaize (France); Mermet, Jean-Michel [Spectroscopy Forever, 01390 Tramoyes (France)

    2013-10-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described.

  4. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution

    Institute of Scientific and Technical Information of China (English)

    WANG Min-ting; ZANG Xin-liang; LI Xue-tong; DU Feng-shan

    2007-01-01

    Using the nonlinear rigid-viscoplastic finite element method (FEM), a finite element simulation of the hot strip continuous rolling process was done, which completely integrates different phenomena such as the metallurgical behavior of the strip and the thermo-mechanics in the strip based on the physical metallurgical microstructural evolution law. By combining with the process parameters of certain 2 050 mm hot strip rolling, an actual rolling process of low carbon steel SS400 was simulated using the FEM model. Based on the simulation results, the distributions of the strain field, the temperature field, and the microstructure were presented. Meanwhile, the simulated rolling force, temperature, and microstructure are in good agreement with the measured results.

  5. The use of Element-Specific Detectors Coupled with High-Performance Liquid Chromatographs.

    Science.gov (United States)

    1981-11-04

    approach to determining the amount of various chelating agents in solution, Jones and Manahan reacted the indicator metal, A 20 copper(II) with a...latter two cases, GFAA was employed as the element specific detector. Jones and Manahan employing a high performance absorption column directly...Chromatogr. Sci., 17: 395 (1979). 35. D. R. Jones, IV and S. E. Manahan , Anal. Chem., 48: 1897 (1976). 36. D. R. Jones, IV and S. E. Manahan , Anal. Chem

  6. Confined chaotic behavior in collective motion for populations of globally coupled chaotic elements

    CERN Document Server

    Nakagawa, N; Nakagawa, Naoko; Komatsu, Teruhisa S.

    1999-01-01

    The Lyapunov exponent for collective motion is defined in order to characterize chaotic properties of collective motion for large populations of chaotic elements. Numerical computations for this quantity suggest that such collective motion is always chaotic, whenever it appears. Chaotic behavior of collective motion is found to be confined within a small scale, whose size is estimated using the value of the Lyapunov exponent. Finally, we conjecture why the collective motion appears low dimensional despite the actual high dimensionality of the dynamics.

  7. Determination of 11 major and minor elements in chondritic meteorites by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wolf, Stephen F; Compton, Joseph R; Gagnon, Christopher J L

    2012-10-15

    We have developed a new method for the quantification of 11 major and minor elements (Na, Mg, Al, P, S, K, Ca, Cr, Mn, Fe, and Ni) in chondritic meteorites by ICPMS using external calibration with a matrix-matched standard prepared from the Allende Standard Reference Meteorite. We have demonstrated the method's accuracy and assessed three different measures of precision by performing replicate dissolutions and analyses of 0.10-g samples of a homogenized samples of the CM2 meteorite Murchison and compared our results to literature values. We subsequently applied this method to the analysis of a set of four chondritic meteorites possessing a relatively wide range of chondritic compositions with results in accord with previously published values. Because our method is designed to use the same instrumentation and can use samples and standards prepared according to methods previously validated for the determination of a comprehensive suite of minor, trace, moderately and highly volatile trace elements (i.e., Li, Sc, Ti, V, Mn, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, all 14 naturally occurring lanthanoids, Hf, W, Re, Ir, Pt, Tl, Bi, Th, and U) it complements these methods and allows a single laboratory to determine the concentrations of 60 elements in semimicroscopic amounts of chondritic material. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  9. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria

    Science.gov (United States)

    Slobodkina, Galina B.; Mardanov, Andrey V.; Ravin, Nikolai V.; Frolova, Anastasia A.; Chernyh, Nikolay A.; Bonch-Osmolovskaya, Elizaveta A.; Slobodkin, Alexander I.

    2017-01-01

    Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle. PMID:28194142

  10. Thermo-hydro-mechanical-air coupling finite element method and its application to multi-phase problems

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yonglin Xiong; Sheng Zhang; Bin Ye

    2014-01-01

    In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for soilewatereair three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soilewatereair three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature but constant air pressure. © 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

  11. MIMO channel capacity versus mutual coupling in multi antenna element system

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    capacity, configurations with the lowest envelope correlations are not necessarily the most suitable for a MIMO system. A certain bandwidth is required as well. Three planar inverted F-antennas (PIFA) located on the same 40 mm x 100 mm ground plane. The antennas that haves a resonant frequency of 1.8 GHz......In this paper the influence of mutual coupling on the capacity of a multiple-input multiple-output (MIMO) antenna system is demonstrated. No direct relation between the envelope correlation and the actual location and orientation of the antennas is found. Even though being essential for high MIMO...

  12. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  13. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  14. Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: Fluid processes and elemental mobility during exhumation in a cold subduction zone

    Science.gov (United States)

    Lü, Zeng; Zhang, Lifei; Du, Jinxue; Yang, Xin; Tian, Zuolin; Xia, Bin

    2012-04-01

    A petrological study was carried out for high pressure (HP) veins which cut through the host coesite-bearing eclogites at Habutengsu-Kebuerte in western Tianshan, China. The results place constraints on the origin and property of metamorphic fluids during subduction-zone metamorphism. Omphacite-, clinozoisite- and quartz-dominated veins occur on centimeter to meter scales within lens-shaped and layered eclogites, or cutting into the country rocks of garnet phengite schists. Coesite-bearing eclogites mainly consist of fibrous fine-grained omphacite and porphyroblastic garnet, with minor amounts of amphibole (mainly barroisite), clinozoisite, white mica (mainly paragonite) and rutile. The veins are pronouncedly coarse-grained compared to the host eclogites and commonly consist of quartz, clinozosite, rutile, white mica (phengite and paragonite) and garnet, with or without omphacite, titanite, apatite, carbonate (mainly dolomite) and glaucophane. Fluid inclusions are abundant in vein omphacite, titanite and apatite, but are rare in the equivalent minerals of host eclogites. Rounded vein garnets usually occur close to the sharp interface of vein and host eclogite. Omphacite in the veins is characterized by its euhedral form surrounded by quartz, or coarse bladed aggregates in contrast to the fibrous or patchy one, suggesting dynamic recrystallization in the host rocks. Omphacite in both veins and host eclogites has similar jadeite contents (Jd40-50), indicating formation at eclogite-facies metamorphic conditions. Vein phengite uniformly contains certain amounts of Ba with maximum BaO content of 3.16-4.25 wt.%, suggesting that Ba was mobilized during the exhumation of UHP rocks. Specific textures of vein minerals, such as the enclosure of magnesite (or calcite) in dolomite, rutile in titanite, and the occurrence of zoned Ba-rich phengite, indicate the chemical variability of channelized fluids over time. Based on Zr content in rutile and the presence of paragonite

  15. Improved Measurement Performance of Inorganic Elements in Coal by Laser-Induced Breakdown Spectroscopy Coupled with Internal Standardization

    Science.gov (United States)

    Yao, Shunchun; Xu, Jialong; Bai, Kaijie; Lu, Jidong

    2015-11-01

    Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement's accuracy and precision, a new internal standardization scheme, which we named changed internal standardization, was compared with the traditional internal standardization and no internal standardization for the analysis of inorganic elements. The new internal standardization scheme used the atomic line of carbon at 247.86 nm and the molecular band of CN at 388.34 nm and C2 at 516.32 nm to normalize the lines of inorganic elements that were distributed in the same spectral channel. The performance of the utilization of the new internal standardization scheme was evaluated using a set of coal samples, including twenty calibration samples and five validation samples. The results show that the coefficients of determination R2 and the slope of calibration models coupled with changed internal standardization are better than that of the calibration models coupled with fixed internal standardization and no internal standardization. Moreover, the measurement accuracy and reproducibility of changed internal standardization for the analysis of five validation samples also yielded further improvement. The results that we obtained suggest that changed internal standardization could compensate for the matrix effects, as well as the influence of the difference in the spectral response of the light collection system. supported by Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology of China (No. SKL2013KF03), National Natural Science Foundation of China (Nos. 51206055, 51476061), the Fundamental Research Funds for the Central Universities of China (No. 2014ZZ0014), the New Star of Pearl River on Science and Technology of Guangzhou, China (No. 2014J2200054), the Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes of China (No. KLB10004) and Guangdong Province Key Laboratory of Efficient and

  16. Trace element biomonitoring in hair of school children from a polluted area by sector field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Drobyshev, Evgenii J; Solovyev, Nikolay D; Ivanenko, Natalya B; Kombarova, Maria Yu; Ganeev, Alexander A

    2017-01-01

    In the current study, a biomonitoring of 18 hair trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, V, Zn, Ca, Na and P) in school children from Leningradskaya Oblast' is reported. A case group, residing in a proximity to the toxic waste disposal grounds (Krasniy Bor), has been assessed vs. controls from a non-urban settlement Seltso. In total, 166 hair samples were analysed using double focusing sector field inductively coupled plasma mass spectrometry after microwave-assisted sample digestion with nitric acid. For the determination of Ca, Na and P inductively coupled plasma optical emission spectrometry was employed. For the validation, a reference material and spiked hair samples were analysed. The data obtained was processed using parametric statistics and factor analysis. Determined concentrations of trace elements were in agreement with the previously published results on chemically polluted areas. In the case group, linear correlations between Al, Cr, Cu, Fe, Ni and V were observed. Also, these metals correlated to selenium hair content in the case group. Additionally, a correlation between hair Se and P was observed in the case subjects. Several gender differences in trace content were observed within each group. However, no age- or body index-related difference was found. The obtained results show that closely located waste disposal grounds intensifies trace element exposure in school children of Krasniy Bor. However, judging from rather high values for the controls, total environmental status of the region seems to be unstable, so additional monitoring and chemical safety measures are required. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  18. FLOW INJECTION ANALYSIS SYSTEM COUPLED WITH ICP-EOS FOR DETERMINATION OF SOME METALLIC ELEMENTS IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Cristina Dinu

    2009-06-01

    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  19. Elemental Content in Brown Rice by Inductively Coupled Plasma Atomic Emission Spectroscopy Reveals the Evolution of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    Yawen Zeng; Luxiang Wang; Juan Du; Jiafu Liu; Shuming Yang; Xiaoying Pu; Fenghui Xiao

    2009-01-01

    The phylogenetic relationship for classification traits and eight mineral elements in brown rice (Oryza sativa L.) from Yunnan Province in China was carried out using microwave assisted digestion followed by inductively coupled plasma atomic emission spectroscopy, and the analytical procedures were carefully controlled and validated. In general, the results show that the mean levels of K, Ca, Mg, Fe and Cu in brown rice for 789 accessions of rice landraces was distinctly lower than that of improved cultivars. They further demonstrate that Ca plays an important role in the differentiation of subspecies indica-japonica, especially to enhance adaptation of cold stress, and that five mineral elements in brown rice enhance the eurytopicity from landrace to improved cultivar. Hierarchical cluster analysis, using average linkage from SPSS software based on eight mineral elements in brown rice, showed that Yunnan rice could be grouped into rice landrace and improved cultivar, with the rice landrace being further clustered into five subgroups, and that, interestingly, purple rice does not cluster with either of the groups. Our present data confirm that indica is the closest relative of late rice and white rice, and that they constitute rice landraces together, whereas japonica is the closest relatives of non-nuda, early-mid and glutinous rice. It is further shown that japonica, non-nuda, early-mid, glutinous, white and red rice might be more primitive than indica, nuda, late, non-glutinous and purple rice, respectively.

  20. Thermoelastic and Pyroelectric Couplings Effects on Dynamics and Active Control of Smart Piezolaminated Beam Modeled by Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2014-01-01

    Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.

  1. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Desaulty, Anne-Marie [Laboratoire Pierre Suee CEA - CNRS/UMR 9956 Centre de Saclay, Bat. 637 91191 Gif sur Yvette, Cedex (France); Laboratoire Metallurgies et culture CNRS/UMR 5060 UTBM 90010 Belfort, Cedex (France); Mariet, Clarisse [Laboratoire Pierre Suee CEA - CNRS/UMR 9956 Centre de Saclay, Bat. 637 91191 Gif sur Yvette, Cedex (France)], E-mail: clarisse.mariet@cea.fr; Dillmann, Philippe [Laboratoire Pierre Suee CEA - CNRS/UMR 9956 Centre de Saclay, Bat. 637 91191 Gif sur Yvette, Cedex (France); Laboratoire Metallurgies et culture CNRS/UMR 5060 UTBM 90010 Belfort, Cedex (France); Joron, Jean Louis [Laboratoire Pierre Suee CEA - CNRS/UMR 9956 Centre de Saclay, Bat. 637 91191 Gif sur Yvette, Cedex (France); Institut de Physique du Globe de Paris, Paris VI et Paris VII, 4, place Jussieu 75252 Paris, Cedex 05 (France); Fluzin, Philippe [Laboratoire Metallurgies et culture CNRS/UMR 5060 UTBM 90010 Belfort, Cedex (France)

    2008-11-15

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects.

  2. Multi-element analysis of water decoction of medicine food homology plants using inductively coupled plasma-tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Shi, Shu-Yun; Chen, Xiao-Qing

    2017-07-01

    The concentration of twelve trace elements in the water decoction of medicine food homology plants (MFHP) was determined by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Water decoctions of MFHP were analyzed directly using the MS/MS mode after acidification by 1% (v/v) nitric acid. The polyatomic interferences were eliminated by oxygen mass shift, oxygen on-mass, and ammonia mass shift. The accuracy of the method was verified by analysis of standard reference materials. This method was utilized to investigate the water decoction composition of 16 common Chinese MFHPs. The trace elements in the water decoctions of different MFHPs presented significantly different dissolution ratios. The dissolution ratio of V was the lowest (4.21%-14.86%), whereas Zn showed the highest dissolution ratio (24.87%-86.80%). In addition, the dissolution ratio of heavy metallic elements in most MFHP was equal to or was lower than 30%. Therefore, consumption of MHFP decoction could decrease the heavy metal intake associated with MFHP use and reduce the risk of heavy metal poisoning.

  3. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2016-11-01

    A spectral element method (SEM) is presented to simulate two-phase fluid flow (oil and water phase) in petroleum reservoirs. Petroleum reservoirs are porous media with heterogeneous geologic features, and the flow of two immiscible phases involves sharp, moving interfaces. The governing equations of motion are time-dependent, non-linear PDEs with strong hyperbolic nature. A fully-coupled numerical scheme using discontinuous Galerkin (DG) method with nodal spectral element basis functions for spatial discretization, and an implicit Runge-Kutta type time-stepping is developed to solve the PDEs in a robust, stable manner. Isoparameteric mapping is used to generate grids for reservoir and well geometry. We present the performance capabilities of the DG scheme with high-order basis functions to accurately resolve sharp fluid interfaces and a variety of heterogeneous geologic features. High-order convergence of SEM is demonstrated. Numerical results are presented for reservoir flows with various injection-production patterns. Typical reservoir heterogeneities like low-permeable regions, impermeable shale barriers, etc. are included in the numerical tests. Comparisons with commonly used finite volume methods and linear and quadratic finite element methods are presented. ExxonMobil Upstream Research Co.

  4. Determination of trace multi-elements in coal fly ash by inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hua-lin; TANG You-gen; LI Yu-jie; LI Li-bo

    2007-01-01

    The contents of Cr,Cu, Ni, As, Cd and Pb in coal fly ash were determined by a high resolution inductively coupled plasma mass spectrometry method.The sample digestions were performed in closed microwave vessels with HN03, HClO4 and HF.The optimum conditions for the determination were obtained.The applicability of the proposed method was validated by the analysis of coal fly ash reference material (NIST SRM 1633a). The results show that most of the spectral interferences can be avoided by measuring in the high resolution mode(maximum mass resolution R=9 000).The detection limit is from 0.05 to 0.21μg/g,and the precision is fine with relative standard deviation less than 4.3%.

  5. Coupled Pb isotopic and trace element systematics of the Tissint meteorite: Geochemical signatures of the depleted shergottite source mantle

    Science.gov (United States)

    Moriwaki, Ryota; Usui, Tomohiro; Simon, Justin I.; Jones, John H.; Yokoyama, Tetsuya; Tobita, Minato

    2017-09-01

    The application of Martian meteorite U-Th-Pb isotope systematics to track the geochemical evolution of the Martian mantle has had limited success because of the difficulty in discriminating an indigenous magmatic Pb component from secondary near-surface components that have additionally been overprinted by terrestrial contamination. To mitigate this challenge, a successive acid-leaching experiment was conducted on the Tissint meteorite, the freshest, witnessed fall of a primitive, olivine-bearing Martian basalt. Trace element concentration analyses of acid leachates and residues indicate that secondary terrestrial contaminants were effectively removed by the early steps in the leaching experiments and that the acid residues contain pristine Pb from Tissint. The acid residue, which shows the most depleted REE signature, also has the least radiogenic Pb isotopic composition (206Pb/204Pb = 10.948, 207Pb/204Pb = 11.187, 208Pb/204Pb = 30.228). A two-stage mantle evolution model based on this composition indicates that the Tissint mantle has the lowest μ-value (238U/204Pb = 1.62 ± 0.09) among the shergottite sources.

  6. Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component

    Institute of Scientific and Technical Information of China (English)

    Zhang-rong ZHAO; Yi-jie WU; Xin-jian GU; Lei ZHANG; Ji-feng YANG

    2009-01-01

    This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material(GMM)in the component.We propose the finite element model of GMM smart component in electric,magnetic,and mechanical fields by step computation to optimize the design of GMM smart component.The proposed model is implemented by using COMSOL multi-physics V3.2a.The effects of the smart component on the deformation and the system resonance frequencies are studied.The results calculated by the model are in excellent agreement (relative errors are below 10%)with the experimental values.

  7. Towards an integrated numerical simulator for crack-seal vein microstructure: Coupling phase-field with the Discrete Element Method

    Science.gov (United States)

    Virgo, Simon; Ankit, Kumar; Nestler, Britta; Urai, Janos L.

    2016-04-01

    Crack-seal veins form in a complex interplay of coupled thermal, hydraulic, mechanical and chemical processes. Their formation and cyclic growth involves brittle fracturing and dilatancy, phases of increased fluid flow and the growth of crystals that fill the voids and reestablish the mechanical strength. Existing numerical models of vein formation focus on selected aspects of the coupled process. Until today, no model exists that is able to use a realistic representation of the fracturing AND sealing processes, simultaneously. To address this challenge, we propose the bidirectional coupling of two numerical methods that have proven themselves as very powerful to model the fundamental processes acting in crack-seal systems: Phase-field and the Discrete Element Method (DEM). The phase-field Method was recently successfully extended to model the precipitation of quartz crystals from an aqueous solution and applied to model the sealing of a vein over multiple opening events (Ankit et al., 2013; Ankit et al., 2015a; Ankit et al., 2015b). The advantage over former, purely kinematic approaches is that in phase-field, the crystal growth is modeled based on thermodynamic and kinetic principles. Different driving forces for microstructure evolution, such as chemical bulk free energy, interfacial energy, elastic strain energy and different transport processes, such as mass diffusion and advection, can be coupled and the effect on the evolution process can be studied in 3D. The Discrete Element Method was already used in several studies to model the fracturing of rocks and the incremental growth of veins by repeated fracturing (Virgo et al., 2013; Virgo et al., 2014). Materials in DEM are represented by volumes of packed spherical particles and the response to the material to stress is modeled by interaction of the particles with their nearest neighbours. For rocks, in 3D, the method provides a realistic brittle failure behaviour. Exchange Routines are being developed that

  8. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  9. Solid State Adaptive Rotor Using Postbuckled Precompressed, Bending-Twist Coupled Piezoelectric Actuator Elements

    Directory of Open Access Journals (Sweden)

    Ronald M. Barrett

    2012-01-01

    Full Text Available This paper is centered on a new actuation mechanism which is integrated on a solid state rotor. This paper outlines the application of such a system via a Post-Buckled Precompression (PBP technique at the end of a twist-active piezoelectric rotor blade actuator. The basic performance of the system is handily modeled by using laminated plate theory techniques. A dual cantilevered spring system was used to increasingly null the passive stiffness of the root actuator along the feathering axis of the rotor blade. As the precompression levels were increased, it was shown that corresponding blade pitch levels also increased. The PBP cantilever spring system was designed so as to provide a high level of stabilizing pitch-flap coupling and inherent resistance to rotor propeller moments. Experimental testing showed pitch deflections increasing from just 8° peak-to-peak deflections at 650 V/mm field strength to more than 26° at the same field strength with design precompression levels. Dynamic testing showed the corner frequency of the linear system coming down from 63 Hz (3.8/rev to 53 Hz (3.2/rev. Thrust coefficients manipulation levels were shown to increase from 0.01 to 0.028 with increasing precompression levels. The paper concludes with an overall assessment of the actuator design.

  10. 3D Finite Element Analysis of TBM Water Diversion Tunnel Segment Coupled with Seepage Field

    Institute of Scientific and Technical Information of China (English)

    钟登华; 胡能明; 程正飞; 吕鹏; 佟大威

    2016-01-01

    In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not consid-ered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly oc-curs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BReP hybrid data structure in this paper. Then the seepage field of the surrounding rock con-sidering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is stud-ied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.

  11. Modelling a Coupled Thermoelectromechanical Behaviour of Contact Elements via Fractal Surfaces

    Directory of Open Access Journals (Sweden)

    G. Mazzucco

    2016-01-01

    Full Text Available A three-dimensional coupled thermoelectromechanical model for electrical connectors is here proposed to evaluate local stress and temperature distributions around the contact area of electric connectors under different applied loads. A micromechanical numerical model has been developed by merging together the contact theory approach, which makes use of the so-called roughness parameters obtained from experimental measurements on real contact surfaces, with the topology description of the rough surface via the theory of fractal geometry. Particularly, the variation of asperities has been evaluated via the Weierstrass-Mandelbrot function. In this way the micromechanical model allowed for an upgraded contact algorithm in terms of effective contact area and thermal and electrical contact conductivities. Such an algorithm is subsequently implemented to construct a global model for performing transient thermoelectromechanical analyses without the need of simulating roughness asperities of contact surfaces, so reducing the computational cost. A comparison between numerical and analytical results shows that the adopted procedure is suitable to simulate the transient thermoelectromechanical response of electric connectors.

  12. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  13. Determination of trace elements in heroin by inductively coupled plasma atomic emission spectrometry using ultrasonic nebulization

    Science.gov (United States)

    Budič, Bojan; Klemenc, Sonja

    2000-06-01

    A method for the determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Sr and Zn in heroin samples by ICP-AES using ultrasonic nebulization is described. The samples were microwave digested with HNO 3. To improve the detection limits and minimise the matrix interferences the experimental parameters were optimised by variation of the operating power, carrier gas flow rate and observation height above the load coil. Optimum operating conditions for most of the analytes were at operating power 1550 W, carrier gas flow rate between 0.8 and 1.0 l min -1 and observation height between 10 and 12 mm above load coil. The limits of detection were below 0.5 μg g -1 (dry mass) for most of the elements investigated. The analytical recoveries of spiked samples were in the range between 94 and 103% and precision was on average better than 6%. The analysis of heroin samples shows that the method is simple, rapid and capable of providing accurate results for all the analytes investigated with the exception of nickel which was below the limit of detection in the analyzed samples.

  14. Influential Factors on the Performance of Journal Bearings Lubricated with Couple Stress Fluids%应力偶流体润滑滑动轴承性能影响因素研究

    Institute of Scientific and Technical Information of China (English)

    马艳艳

    2011-01-01

    We investigate the influential factors on the performance of journal bearings lubricated with couple stress fluids.We analyzed pressure distribution along the circumferential direction for various dynamic parameters,elastic coefficient and couple stress parameters,load-carrying capacity for various elastic coefficient and dynamic parameter,attitude angle and friction coefficient for various eccentricity ratio.The numerical results show that the value of the maximum pressure for a bearing increases with dynamic parameters,and the couple stress effect is more obvious.The bearing load-carrying capacity decreases with the increase of elastic coefficient and increases with the couple stress parameters or dynamic parameters.The couple stress makes the attitude angle increase and the friction coefficient decrease.%研究了应力偶流体润滑滑动轴承性能的影响因素。分析了不同的动力参数、弹性系数与应力偶参数对轴承中截面周向油膜压力分布的影响,不同的弹性系数与动力参数对轴瓦承载力的影响以及承载力的作用角和摩擦系数随偏心率的变化。结果表明:动力参数越大,最大油膜压力越大,应力偶效应越显著;弹性系数越大轴承的承载力越小而应力偶参数与动力参数越大轴承的承载力越大;应力偶参数越大,承载力的作用角增大,摩擦系数减小。

  15. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    As a result of the increasing interest of constructing environmentally friendly lightweight buildings, analyses of vibrational and acoustical transmission in these buildings have become increasingly important. Structures where vibrational transmission may result in undesirable vibrations....... With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible...... of a similar construction without a skeleton. These parameters are selected in a way where decoupled pseudo-modes of the skeleton are avoided, alongside the insignificant influence of the overall structure achieved with a low mass, small profile, and a relatively low Young's modulus, approximately 1...

  16. Efficient fluid transport by a bionically inspired micro-flapper: fluidic investigations using fully coupled finite element simulation

    Science.gov (United States)

    Behlert, R.; Schrag, G.; Wachutka, G.

    2017-06-01

    We studied the fluid transport by a bionically inspired micro-flapper fabricated in piezoelectric thin-film technology. The undulatory, wave-like motion of the proposed design is supposed to generate vortex chains in the surrounding fluid resulting in a directed jet stream and, hence, enhanced mass convection and heat transport inside the fluid. Fully-coupled finite element (FE) simulations have been carried out to investigate the fluid transport induced by such an excitation in order to assess the efficiency of the concept. The results show that there is a significant higher net flow for undulation compared to the simple, resonant-like up-and-down motion of the flap, which corroborates the feasibility of the concept.

  17. Use of dried blood spots and inductively coupled plasma mass spectrometry for multi-element determination in blood.

    Science.gov (United States)

    Vacchina, Véronique; Huin, Vincent; Hulo, Sébastien; Cuny, Damien; Broly, Franck; Renom, Gilles; Perini, Jean-Marc

    2014-07-01

    The paper describes the development of an inductively coupled plasma mass spectrometry (ICP MS) method for multitrace element determination in dried blood spots (DBSs). The analytical conditions were optimized using Seronorm™ L-3 and L-1 Certified Reference Materials. The best results were obtained by sampling blood drops on a decontaminated PVDF filter membrane. After drying under metal-free conditions, the DBSs underwent acidic digestion and were analyzed with ICP MS. The method was then validated for As, Cd, Cu, Pb, Mo, Se and Zn. Using a matrix-matched calibration curve, the recovery levels ranged from 96% to 117%. The repeatability and reproducibility were generally below 15%. Limits of quantification ranging from 0.5 to 50 μg/L. In order to investigate the analytical procedure under real sampling conditions, the results obtained from DBSs and liquid blood aliquots (less subject to contamination) from two adult subjects were compared.

  18. Modeling the Relationship between Vibration Features and Condition Parameters Using Relevance Vector Machines for Health Monitoring of Rolling Element Bearings under Varying Operation Conditions

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2015-01-01

    Full Text Available Rotational speed and load usually change when rotating machinery works. Both this kind of changing operational conditions and machine fault could make the mechanical vibration characteristics change. Therefore, effective health monitoring method for rotating machinery must be able to adjust during the change of operational conditions. This paper presents an adaptive threshold model for the health monitoring of bearings under changing operational conditions. Relevance vector machines (RVMs are used for regression of the relationships between the adaptive parameters of the threshold model and the statistical characteristics of vibration features. The adaptive threshold model is constructed based on these relationships. The health status of bearings can be indicated via detecting whether vibration features exceed the adaptive threshold. This method is validated on bearings running at changing speeds. The monitoring results show that this method is effective as long as the rotational speed is higher than a relative small value.

  19. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  20. Elemental analysis of forensic glasses by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Almirall, Jose R.; Duckworth, Douglas C.; Bayne, Charles K.; Morton, Sherman A.; Smith, David H.; Koons, Robert D.; Furton, Kenneth G.

    1999-02-01

    Flat glass is a common type of evidence collected from the scenes of crimes such as burglaries, vandalism, and hit-and- run accidents. The usefulness of such evidence lies in the ability to associate the glass from the scene (or a suspect) to the original source. Physical and chemical analysis of the glass can be used for discrimination between the possible sources of glass. If the sample is large enough, physical attributes such as fracture matches, density, color, and thickness can be employed for comparison between a recovered fragment(s) to the suspect source. More commonly, refractive index (RI) comparisons are employed. Due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses where approximately 6 - 9% of casework samples are not expected to be distinguished by RI alone even if they originated from different sources. Employing methods such as NAA, XRF, ICP-AES, and ICP-MS for the comparison of trace elemental compositions has been shown to be more discriminating than RI comparisons. The multielement capability and the sensitivity of ICP-AES and ICP-MS provide for excellent discrimination power. In this work, the sources of variability in ICP-MS of glass analysis are investigated to determine possible sources of variation. The sources of variation examined include errors due to sample preparation, instrument accuracy and precision, and interlaboratory reproducibility. Other sources of variation include inhomogeneity across a sheet of glass from the same source. Analysis of variance has been applied to our ICP-MS analysis of NIST standards and to the interlaboratory comparisons of float glass samples collected across a sheet in a production facility. The results of these experiments allows for a more accurate interpretation of forensic glass data and a better understanding of the discriminating power (absolute and practical) of ICP-MS.

  1. COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    J. Li; W. Liu; Y.Q. Lai; Q.Y. Li; Y.X. Liu

    2006-01-01

    Two full 3D steady mathematical models are developed by finite element method (FEM) to calculate coupled physics fields: the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.

  2. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Institute of Scientific and Technical Information of China (English)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  3. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  4. Coupled large eddy simulation and discrete element model of bedload motion

    Science.gov (United States)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including

  5. A Spatial Euler-Bernoulli Beam Element for Rigid-Flexible Coupling Dynamic Analysis of Flexible Structures

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2015-01-01

    Full Text Available A two-node spatial beam element with the Euler-Bernoulli assumption is developed for the nonlinear dynamic analysis of slender beams undergoing arbitrary rigid motions and large deformations. During the analysis, the global displacement and rotation vectors with six degrees of freedom are selected as the nodal coordinates. In addition, the “shear locking” problem is avoided successfully since the beam cross-sections are always perpendicular to the current neutral axes by employing a special coupled interpolation of the centroid position and the cross-section orientation. Then a scheme is presented where the original transient strains representing the nodal forces are replaced by proposed average strains over a small time interval. Thus all the high frequencies can be filtered out and a corresponding equivalent internal damping will be produced in this new formulation, which can improve the computation performance of the proposed element for solving the stiff problem and evaluate the governing equations even by using the nonstiff ordinary differential equation solver. Finally, several numerical examples are carried out to verify the validation and efficiency of this proposed formulation by comparison with the analytical solutions and other research works.

  6. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials

    Directory of Open Access Journals (Sweden)

    Nikolaya Velitchkova

    2013-01-01

    Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.

  7. Sequential cloud point extraction of trace elements from biological samples and determination by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gine, Maria Fernanda; Patreze, Aparecida F.; Silva, Edson L. [Centro de Energia Nuclear na Agricultura (CENA-USP), Piracicaba, SP (Brazil)]. E-mail: mfgine@cena.usp.br; Sarkis, Jorge E.S.; Kakazu, Mauricio H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2008-07-01

    A two-step sequential cloud point extraction (CPE) of trace elements from small sample volumes of human serum, animal blood, and food diet is proposed to gain analytical information in the analysis by inductively coupled plasma mass spectrometry. The first CPE was attained by adding O,O-diethyldithiophosphate, the non ionic surfactant Triton{sup R} X-114 followed by heating at 40 deg C, centrifugation and cooling at 0 deg C. The resulting surfactant-rich phase was separated to determine Cd, Pb and Cu by isotope dilution. Isotope ratio measurements presented RSD < 0.7%. The residual surfactant-poor phase solution had the pH adjusted in the range 4 to 5 before the chelating reagent, 4-(2-pyridylazo) resorcinol plus surfactant Triton{sup R} X-114 were added followed by the sequence to attain the CPE. Co and Ni were quantified in the second extracted surfactant-rich phases by standard additions method with RSD < 2%. Recoveries from 85 to 96% were obtained for all elements. Analyzing reference materials with certified and recommended values assessed accuracy. (author)

  8. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  9. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Science.gov (United States)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  10. Magnetic Bearing

    Science.gov (United States)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  11. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study

  12. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Souza, Sidnei de [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); Silvério Lopes da Costa, Silvânio [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); Coordenação de Química, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, 57309-005, Arapiraca, AL (Brazil); Santos, Dayane Melo; Santos Pinto, Jéssica dos; Garcia, Carlos Alexandre Borges [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); and others

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg{sup −1} for Mn to 77.3 mg kg{sup −1} for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento — MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES). - Highlights: • Determination of inorganic constituents in mineral fertilizers was proposed. • Experimental design methodology was used to optimize analytical method. • The sample preparation procedure using diluted reagents (HNO{sub 3} and H{sub 2}O{sub 2}) was employed. • The analytical method was satisfactorily to the determination of thirteen elements. • The

  13. 复合桩基地基极限承载力的下限有限元解%Finite element lower bound limit solutions for ultimate bearing capacity of subsoil under raft of composite piled foundations

    Institute of Scientific and Technical Information of China (English)

    蒋刚; 孙君; 王旭东

    2011-01-01

    When the composite piled foundation reaches the general ultimate bearing capacity status, an increment of the ultimate bearing capacity for natural foundation is induced by "barrier effect" of piles.The analysis of the problem can be simplified for both the sum of the vertical ultimate bearing capacity of foundation and the increment of the ultimate bearing capacity of foundation soil horizontally sliding around piles.Based on the finite element plastic lower bound limit method, the numerical solutions for the vertical ultimate bearing capacity of foundation and the horizontal resistance sliding around piles varying with soil depth are obtained, and the sliding resistance formula is also established.The sliding resistance coefficient &s reduces with the increase of pile spacing.The increment of the ultimate bearing capacity △fu decreases with the increase of pile spacing.The results indicate that the resistance sliding around piles in the composite piled foundation is being and can not be ignored, and that the ultimate bearing capacity of the composite piled foundation has certain increment, which can be regarded as the security reserve of foundation.%复合桩基在达到整体极限承载状态时,因桩的"遮拦作用"使得地基极限承载力较天然地基有一定提高.其分析可简化为地基竖向极限承载力和地基土水平向绕桩作用产生的极限承载力提高值的叠加.利用下限有限元方法,求解得到地基的极限承载力和不同深度处土体绕桩阻力的数值解,并建立了绕桩阻力计算公式.绕桩阻力系数ks随桩间距的增加而逐渐减小.地基极限承载力提高值△fu随桩间距的增加而逐渐降低.计算表明:复合桩基下绕桩阻力存在并不可忽视,承台下地基极限承载力有明确的提高,可以作为地基的安全储备.

  14. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  15. Feasibility of Applying Controllable Lubrication to Dynamically Loaded Journal Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    A multibody dynamic model of the main mechanical components of a hermetic reciprocating compressor is presented in this work. Considering that some of the mechanical elements are interconnected via thin fluid films, the multibody dynamic model is coupled to the equations from the dynamics...... levels, wear and power losses of the system components. From the point of view of actively controlled lubrication and specifically for the case of dynamically loaded journal bearings, the injection pressure should be controlled in time domain. However, taking into account that the gas pressure...... and reaction forces in a reciprocating compressor have a cyclic behavior, periodic oil pressure injection rules based on the instantaneous crank angle and load bearing condition can be established. In this paper, several bearing configurations working under different oil pressure injection rules conditions...

  16. A numerical approach for the analysis of deformable journal bearings

    Directory of Open Access Journals (Sweden)

    D. Benasciutti

    2012-07-01

    Full Text Available This paper presents a numerical approach for the analysis of hydrodynamic radial journal bearings. The effect of shaft and housing elastic deformation on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements structural model is solved. Temperature and pressure effects on viscosity are also included with the Vogel-Barus model. The deformed lubrication gap and the overall stress state were calculated. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of elastic deformation of bearing components on oil pressure distribution, compared with results for ideally rigid components obtained by Raimondi and Boyd solution.

  17. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  18. [The determination of the natural content of chemical elements in human biological objects (liver, kidney, stomach) by mass spectrometry with inductively coupled plasma].

    Science.gov (United States)

    Luzanova, I S; Svetlolobov, D Iu; Zorin, Iu V

    2014-01-01

    The objective of the present work was to continue the studies of the sites of concentration of the chemical elements corresponding to normal homeostasis in human biological objects by mass spectrometry with inductively coupled plasma. The study yielded the data on the natural content of 27 elements in the cadaveric liver, kidney, and stomach. It is recommended to use these findings as the reference parameters corresponding to normal homeostasis.

  19. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.; Kanojia, A. D.; Koert, P.; Lin, Y.; Murray, R.; Shiraiwa, S.; Terry, D. R.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Hillairet, J. [CEA-IRFM, Saint-Paul-lez-Durance (France)

    2014-02-12

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” The relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.

  20. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    Science.gov (United States)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high

  1. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Science.gov (United States)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  2. Determination of the mineral compositions of some selected oil-bearing seeds and kernels using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2006-06-01

    Full Text Available The aim of this paper was to establish the mineral contents of oil-bearing seeds and kernels such as peanut, turpentine, walnut, hazelnut, sesame, corn, poppy, almond, sunflower etc., using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. Significant differences in mineral composition were observed among crops. All seeds and kernels contained high amounts of Al, Ca, Fe, K, Mg, Na, P and Zn. B, Cr, Cu, Li, Ni, Sr, Ti while V contents of the crops were found to be very low. The levels of K and P of all crops in this study were found to be higher than those of other seeds and kernels. The results obtained from analyses of the crops showed that the mean levels of potassiumcontent ranged from 1701.08 mg/kg (corn to 20895.8 mg/kg (soybean, the average content of phosphorus ranged from 3076.9 mg/kg (turpentine to 12006,5 mg/kg to 2617.4 mg/kg (cotton seed, and Ca from 68.4 mg/kg (corn to 13195.7 mg/kg (poppy seed. The results show that these values may  be useful for the evaluation of dietary information. Particularly the obtained results provide evidence that soybean, pinestone and poppy seed are a good source of K, P and Ca, respectively. Whereas pinestone is a good source of zinc.La finalidad del trabajo es establecer el contenido en elementos minerales de semillas oleaginosas tales como cacahuetes, trementina, avellana, sesamo, maiz, almendras, girasol, utilizando ICP-AES. Se han observado diferencias significativas en la composición de minerales entre cosechas. Todas las semillas contienen cantidades elevadas de Al, Ca, Fe, K, Mg, Na, P y Zn. Los contenidos de B, Cr, Cu, Li, Ni, Sr, Ti y V, sin embargo, fueron bajos. Los contenidos de K y P en todas las semillas estudiadas fueron superiores a las de otras semillas. El contenido medio de K osciló entre 1.701,1 mg/kg (maiz a 20.895,8 mg/kg (soja, el P entre 3.076.9 mg/kg (trementina a 12.006.5 mg/kg o 2.617,4 mg/kg (semilla de algodón, y Ca de 68,4 mg/kg (maiz a 13.195,7 mg

  3. 变桨轴承空载摩擦力矩的有限元分析计算%Calculation on Friction Torque of Blade Bearings Without Load Based on Finite Element Analysis

    Institute of Scientific and Technical Information of China (English)

    汪洪; 胡宝成; 陈原

    2011-01-01

    以有限元分析方法为基础,介绍了风力发电机变桨轴承在空载和钢球预过盈的情况下摩擦力矩的计算方法,进而研究了安装单排钢球和双排钢球空载变桨轴承摩擦力矩比值的理想值,结果表明,变桨轴承空载时理想的摩擦力矩比小于2,大致为1.3~1.4.%Based on finite element analysis, the calculation of friction torque is introduced for wind turbine blade bearings with balls preloaded under no - load, and the ideal value for friction torque ratio of bearings filled with single row and two rows of balls is studied. The results show that the ideal friction torque ratio of blade bearings without load is smaller than 2, approximate 1.3 ~ 1.4.

  4. Cross-shear implementation in sliding-distance-coupled finite element analysis of wear in metal-on-polyethylene total joint arthroplasty: intervertebral total disc replacement as an illustrative application.

    Science.gov (United States)

    Goreham-Voss, Curtis M; Hyde, Philip J; Hall, Richard M; Fisher, John; Brown, Thomas D

    2010-06-18

    Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses.

  5. Interface and permittivity simultaneous reconstruction in electrical capacitance tomography based on boundary and finite-elements coupling method.

    Science.gov (United States)

    Ren, Shangjie; Dong, Feng

    2016-06-28

    Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  6. Coupled finite difference and boundary element methods for fluid flow through a vessel with multibranches in tumours.

    Science.gov (United States)

    Sun, Qiang; Wu, Guo Xiong

    2013-03-01

    A mathematical model and a numerical solution procedure are developed to simulate flow field through a 3D permeable vessel with multibranches embedded in a solid tumour. The model is based on Poisseuille's law for the description of the flow through the vessels, Darcy's law for the fluid field inside the tumour interstitium, and Starling's law for the flux transmitted across the vascular walls. The solution procedure is based on a coupled method, in which the finite difference method is used for the flow in the vessels and the boundary element method is used for the flow in the tumour. When vessels meet each other at a junction, the pressure continuity and mass conservation are imposed at the junction. Three typical representative structures within the tumour vasculature, symmetrical dichotomous branching, asymmetrical bifurcation with uneven radius of daughter vessels and trifurcation, are investigated in detail as case studies. These results have demonstrated the features of tumour flow environment by the pressure distributions and flow velocity field.

  7. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  8. Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Shaltout, Abdallah A; Khoder, M I; El-Abssawy, A A; Hassan, S K; Borges, Daniel L G

    2013-07-01

    This work aims at monitoring the rare earth elements (REEs) and Th in dust deposited on tree leaves collected inside and outside Greater Cairo (GC), Egypt. Inductively coupled plasma mass spectrometry (ICP-MS) was employed. The concentration of REEs in the collected dust samples was found to be in the range from 1 to 60 μg g(-1). The highest concentration of REEs was found in dust samples collected outside GC, in the middle of the Nile Delta. This would refer to the availability of black sands, due to desert wind occurrence during the sample collection, and anthropogenic activities. The limits of detection of the REEs ranged from 0.02 ng g(-1) for Tm to 3 ng g(-1) for Yb. There was an obvious variation in the concentration of REEs inside and outside GC due to variations of natural and anthropogenic sources. Strong correlations among all the REEs were found.

  9. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  10. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    Science.gov (United States)

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  11. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    Science.gov (United States)

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  12. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    Science.gov (United States)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  13. Structural-Electrical-Coupled Formulation for the Free Vibration of a Piezoelectric-Laminated Plate Using the Analytical Arbitrary Quadrilateral p Element

    Directory of Open Access Journals (Sweden)

    Y. Y. Lee

    2012-01-01

    Full Text Available An analytical quadrilateral p element is developed for solving the free vibrations of piezoelectric-laminated plates. The formulations of the displacement and strain fields are based on first-order shear deformation plate theory. The coupling effect between the electrical and stress fields is also considered. The Legendre orthogonal polynomials are used as the element interpolation functions, and the analytical integration technique is adopted. It is found that the present p element method gives high numerical precision results, fast and monotonic convergence rate. In the numerical cases, the effects of the number of hierarchical terms and mesh size on the convergence rate are investigated. Examples of square plates with different displacement and potential boundary conditions are studied. In the comparisons, the solutions of the present element are in good agreement with those obtained from other classical and finite element methods.

  14. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M., E-mail: jcostafe@uniovi.es; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo, E-mail: asm@uniovi.es

    2014-08-11

    Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches.

  15. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    Science.gov (United States)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  16. 考虑结合面接触热阻的角接触球轴承温度场分析%Analysis on Thermal Field for Angular Contact Ball Bearings Considering Thermal Contact Resistance of Coupling Surfaces

    Institute of Scientific and Technical Information of China (English)

    薛志嵩; 胡小秋; 赵雁

    2013-01-01

    在对滚动轴承摩擦学及传热学进行分析的基础上,计算了角接触球轴承的摩擦热,建立了考虑结合面接触热阻的角接触球轴承热传递模型.利用ANSYS获得了轴承的温度场,对比了在考虑接触热阻和不考虑接触热阻两种情况下角接触球轴承温度场的分布情况.结果表明:考虑接触面之间的接触热阻时,轴承的温度要略高于不考虑接触热阻时,且结合面的两表面之间存在温差.%Based on analysis of the tribology and heat transfer theory of rolling bearings,the friction heat of angular contact ball bearings is calculated,and the heat transfer model is developed considering thermal contact resistance of coupling surfaces.Owing to the ANSYS,the distribution of temperature field is compared with and without considering the thermal contact resistance.The results show that when the thermal contact resistance is considered,the temperature of bearings is slightly higher than that without thermal contact resistance.There is temperature difference between the two surfaces of contact surface.

  17. Coupling analysis of dynamic and tribological behavior of angle-contact ball bearings for electric spindle%电主轴角接触球轴承摩擦学和动力学耦合分析

    Institute of Scientific and Technical Information of China (English)

    胡赤兵; 黄丛领; 王保民

    2013-01-01

    Based on elastic hydrodynamic lubrication theory and dynamic theory,the coupling investigation of tribological and dynamics characteristics of angle-contact ball bearing (spindle bearings) was conducted.The dynamic simulation model was established with software Ansys and taking into consideration the tribological characteristics of the spindle bearings.The Reynolds equation and elastic equation of elastohydrodynamic lubrication were solved by using finite difference method to get the solution of the oil film reaction force.The dynamic simulation was carried out with Ansys and the characteristic curves of all motional parameters of the bearing parts were output.It was shown by the research that the speed was the important factor influencing the elastic hydrodynamic lubrication oil film within the spindle bearings.Under the same load,contact angle and other working conditions,the inner ball track oil film thickness of ceramic angle-contact ball bearing would increase first and then gradually reduce as speed increased,and the outer ball track oil film thickness would not change significantly with rotation speed at first and then decrease noticeably.%基于弹性流体动力润滑理论和动力学理论,对角接触球轴承(主轴轴承)进行摩擦学特性和动力学特性耦合研究.在Ansys软件中建立考虑主轴轴承摩擦学特性的动力学仿真模型,利用有限差分法求解弹流润滑的Reynolds方程和弹性方程,求解轴承油膜反力,在Ansys中进行动力学仿真,输出轴承零件各种运动参数特性曲线.研究表明,速度是影响主轴轴承内部弹流油膜的重要因素,在相同的预载荷、接触角等工况条件下,陶瓷角接触球轴承的内圈油膜厚度随转速增大先增大后逐渐减小,外圈油膜厚度随转速增大开始变化不明显,随后明显减小.

  18. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K., E-mail: saxenamk@barc.gov.in

    2014-04-01

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO{sub 3}) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H{sub 2}SO{sub 4}), phosphoric acid (H{sub 3}PO{sub 4}) and water (H{sub 2}O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L{sup −1}. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1–5 ng L{sup −1} and 7–64 μg kg{sup −1} respectively. - Highlights: • A

  19. Finite-element analysis on dynamic contact characteristics of cylindrical roller bearing considering misalignment with journal%轴颈倾斜时滚柱轴承动态接触特性的有限元分析

    Institute of Scientific and Technical Information of China (English)

    童宝宏; 刘颖; 程新明; 孙孝谦

    2012-01-01

    针对滚柱轴承工作时存在轴颈倾斜的情况,利用ANSYS/LS-DYNA有限元分析软件开展不同轴颈倾斜角下滚动轴承动态接触特性的数值模拟研究,通过对比分析接触部位应力值和变形的差别,考察倾斜角大小对轴承动态接触特性影响情况.结果表明,考虑轴颈倾斜时滚子组最大等效应力、最大剪切应力仿真结果明显大于非倾斜状态下得到的结果,在倾斜角为0°、0.1°和0.5°等3种情况下,滚子组等效应力分别为700MPa、2.73GPa和4.0 GPa;同时,滚子端面单元应力值和接触部位应力分布等仿真结果均随倾角增大而差异更加明显;但轴心在径向载荷方向的位移受倾斜角的影响不明显,均分布在-0.2~0.3 mm范围内.研究结论可以为实际工作过程中考虑轴颈倾斜时滚柱轴承动态特性的研究和轴承结构优化设计提供参考.%Misalignment of shaft journal usually takes place in shaft-bearing system and can not be neglected in the design of bearing. With different slant angles of shaft journal, numerical simulation on dynamic contacting behavior of roller bearings were carried out by using dynamic finite element models based on ANSYS/LS-DYNA. The effect on contact elements from the changing of slant angles was obtained by comparing and analyzing the value of distortion and stress. And dynamic contacting characteristics of a cylindrical roller bearing considering misalignment were investigated here carefully. It found that the maximum value of von mises stress and shear stress on rollers would be much bigger when considering misalignment of shaft journal. In the three cases of that slant angle were 0°, 0.1° and 0.5°, the maximum value of von mises stress on rollers were 700 MPa, 2.73 GPa and 4.0 GPa separately. The value of the stress on end face element and the distribution of the stress on contact position were all changed with the slant angles. While impact on the displacement of the axes along

  20. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  1. Macro- and micro-element analysis in milk samples by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Petrović Sanja M.

    2016-01-01

    Full Text Available The paper describes the determination of Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl and Zn, as well as total fat content of milk samples, originated from different sources. The analyzed milk samples were: human milk, fresh cow milk, pasteurized cow milk from a local market, and reconstituted powder milk. The milk samples were obtained from Jablanica District (Serbia territory. Preparation of samples for macro- and micro-analyses was done by wet digestion. Concentrations of the elements after digestion were determined by inductively coupled plasma optical emission spectrometry (ICP-OES. Total fat content of milk samples was determinate by the Weibull and Stoldt method. The results showed that potassium and calcium concentrations were the highest in all samples: 1840.64 - 2993.26 mg/L and 456.05 - 1318.08 mg/L, respectively. Of all heavy metals from the examined milk samples (copper, zinc, manganese, nickel, cadmium, and lead, the most common were zinc and copper, with approximately similar content in the range of 5 - 12 mg/l, while cadmium nickel and manganese were not detected at all. Samples of fresh cow milk and human milk showed the highest fat content of 3.6 and 4.2 %, respectively. Results for total fat and macro- and micro-analyses showed that fresh cow milk has the highest contents of fat and calcium, making it the most nutritious. [Projekat Ministarstva nauke Republike Srbije, br. TR 34012

  2. Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry.

    Science.gov (United States)

    Shen, Chuan-Chou; Wu, Chung-Che; Liu, Yi; Yu, Jimin; Chang, Ching-Chih; Lam, Doan Dinh; Chou, Chien-Ju; Lo, Li; Wei, Kuo-Yen

    2011-09-01

    A rapid and precise standard-bracketing method has been developed for measuring femtogram quantity rare earth element (REE) levels in natural carbonate samples by inductively coupled plasma sector field mass spectrometry that does not require chemical separation steps. A desolvation nebulization system was used to effectively reduce polyatomic interference and enhance sensitivity. REE/Ca ratios are calculated directly from the intensities of the ion beams of (46)Ca, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (160)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb, and (175)Lu using external matrix-matched synthetic standards to correct for instrumental ratio drifting and mass discrimination. A routine measurement time of 3 min is typical for one sample containing 20-40 ppm Ca. Replicate measurements made on natural coral and foraminiferal samples with REE/Ca ratios of 2-242 nmol/mol show that external precisions of 1.9-6.5% (2 RSD) can be achieved with only 10-1000 fg of REEs in 10-20 μg of carbonate. We show that different sources for monthly resolved coral ultratrace REE variability can be distinguished using this method. For natural slow growth-rate carbonate materials, such as sclerosponges, tufa, and speleothems, the high sample throughput, high precision, and high temporal resolution REE records that can be produced with this procedure have the potential to provide valuable time-series records to advance our understanding of paleoclimatic and paleoenvironmental dynamics on different time scales.

  3. Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction

    Science.gov (United States)

    Mesquita da Silva, Márcia Andreia; Azzolin Frescura, Vera Lúcia; Curtius, Adilson José

    2000-07-01

    A preconcentration method for low concentrations of Ag, As, Au, Cd, Cu, Pb and Se in water, using cloud point extraction is proposed. The analytes in the initial aqueous solution, acidified with hydrochloric acid, are complexed with ammonium O, O-diethyl-dithiophosphate, and 0.05% m/v Triton X-114 is added as surfactant. The complexation allows the separation of the analytes from alkali, alkaline earth and other elements, which are not complexed. After phase separation, by increasing the temperature above 20°C, depending on the cloud point of the mixture, and dilution of the surfactant-rich phase with a mixture of 60% v/v methanol and 40% v/v of 1% v/v aqueous nitric acid solution, the enriched analytes are determined by inductively coupled plasma mass spectrometry, using ultrasonic nebulization, injecting 100 μl of the enriched phase with a flow injection (FI) system. Since the initial volume is 40 ml and the final volume is 1 ml, good enrichment factors are obtained. After optimization of the complexation (pH and DDTP concentration), of extraction conditions, sample introduction (FI and ultrasonic nebulizer parameters) and spectrometer conditions, the method was applied to the analysis of riverine water, sea water and enriched water reference materials, and good agreement with the certified values was obtained. By introducing the organic extract with the FI system and using ultrasonic nebulization, no carbon deposits on the interface cones and lens were observed, allowing extensive use of the spectrometer without cleaning and re-optimization.

  4. Speed Distribution Ratio of Double-Decker Rolling-Element Bearings%双层滚动轴承转速分配比

    Institute of Scientific and Technical Information of China (English)

    俞成涛; 徐龙祥; 蒋鹏; 金超武; 朱益利

    2012-01-01

    针时双层滚动轴承,分别采用纯滚动理论和摩擦力矩理论推导出转速分配比的理论计算公式,并对不同结构和不同润滑方式下的转速分配比进行了试验研究.研究结果表明:根据摩擦力矩理论计算得到的转速分配比比根据纯滚动理论计算得到的转速分配比更接近于试验测得的结果.双层滚动轴承的转速分配比与内、外层轴承的节径比有关,节径比越大,转速分配比越好.当工作转速为10 000 r/min时:节径比为0.59时,转速分配比为0.038;节径比为0.75时,转速分配比可达0.17.转速分配比还与内、外层轴承的润滑方式和润滑粘度有关,内、外层轴承都采用油润滑比都采用脂润滑得到的转速分配比更加稳定.%The speed distribution ratio formulas of double-decker ball bearings (DDBB) are respectively derived based on pure rolling theory and friction torque theory. And then the speed distribution ratio for different structures and lubricating methods are experimentally studied. The results show that the ratio calculated using friction torque theory is closer to the experimental results. The speed distribution ratio is mainly determined by the pitch diameter ratio of the inner and outer bearings. Better speed distribution ratio performance can be obtained from bigger pitch diameter ratio. When the rotor rotates at the speed of 10 000 r/min, the speed distribution ratio equals 0. 038 for relatively smaller pitch diameter ratio 0. 59. while the distribution ratio becomes 0. 17 for larger pitch diameter ratio 0. 75. The speed distribution is also influenced by lubricating methods and lubricant viscosity. Adopting oil to lubricate both inner and outer bearings is more stably than grease lubrication.

  5. Analysis on the exposure of risk factors before pregnancy for couples at child bearing age in Chongqing%重庆地区育龄夫妇孕前危险因素暴露情况分析

    Institute of Scientific and Technical Information of China (English)

    杨柳; 李红; 黄静; 姚何; 杨继高; 张益; 计垣; 孙大光

    2012-01-01

    Objective:To comprehend the physical health and the environmental exposure of couples at child bearing age in Chongqing,to investigate the risk factors before pregnancy and to propose measures of eugenics. Methods:Totally 1 510 couples at child bearing age in Chongqing were participated in a questionnaire survey about their general situation, personal and family history of disease. Analysis was made to comprehend the exposure of risk factors before pregnancy. Results: According to the questionnaire results,32.91% of the female at child bearing age were more than 35 years old; the percentages of the family genetic history in male and female were 76.31% and 34.30% respectively;the highest risk factor for couples at child bearing age was work,41.13% in male and 19.87% in female. Conclusions:The female more than 35 years old should pay more attention to prenatal care to prevent the adverse pregnancy outcomes. The couples who had family genetic history need to focus on health and eugenic counseling. Government need to strengthen the publicity of prenatal and postnatal care to arouse the awareness of the prenatal and postnatal care for couples at child bearing age and to urge them to participate in counseling and pre-pregnancy examination to reduce the birth defects and other adverse pregnancy outcomes.%目的:了解重庆地区育龄夫妇的身体健康状况和暴露环境,分析暴露因素对育龄夫妇生育的影响,提出优生策略.方法:对重庆地区1 510对育龄夫妇进行一般情况、家族史、疾病史等情况的问卷调查,分析其孕前风险因素暴露情况.结果:育龄妇女高危年龄段(≥35岁)占32.91%;男女双方家族遗传病史比例偏高分别为76.31%和34.30%;育龄夫妇工作危险因素暴露率高,男方为41.13%,女方为19.87%.结论:高危年龄段育龄妇女应当重视产前检查,预防不良妊娠结局;有家族遗传病史的育龄妇女需注重健康和优生咨询;政府部门需加强优

  6. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  7. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  8. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien;

    2012-01-01

    Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas....... The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than...

  9. 考虑转子系统耦合影响的球轴承动态性能多目标优化设计%Multi-objective optimization design for dynamic performances of ball bearings considering coupling effect of a rotor system

    Institute of Scientific and Technical Information of China (English)

    崔立; 郑建荣; 周炜

    2012-01-01

    Considering coupling effects of dynamic performances of rolling bearings and a rotor system, dynamic equations were constructed by using the finite element method, the rolor system contained a shaft, bearings, and discs. The dynamic performances of rolling bearings were calculated with a quasi-dynamic model after the rotor system response reached a stable state. Taking dynamic load, stiffness, and spin-to-roll ratio as objectives, a multi-objective optimization design was developed based on the genetic algorithm NSGA Ⅱ, the effect of structural parameters on bearing dynamic performances was analyzed. Taking a rotor system supported with ball bearings as an example, the results showed that the dynamic load decreases, radial stiffness increases and spin-to-roll ratio increases when the outer groove curvature radius increases; the dynamic load decreases, radial stiffness decreases and spin-to-roll ratio decreases as the inner groove curvature radius increases; the dynamic load increases, radial stiffness increases and spin-to-roll ratio increases when the diameter of balls increases; the largest effect on the dynamic performance optimization results is inner groove curvature radius; in a high-speed rotor system, in order to obtain better support dynamic performance, the coupling effect of the rotor system should be considered in multi-objective optimization design of its bearings.%考虑滚动轴承与转子系统动态性能的耦合影响,使用有限单元法建立包含转轴、轴承、圆盘等单元的动力学方程组,转子响应达到稳定值后,再根据滚动轴承拟动力学模型计算滚动轴承的动态性能参数.以额定动负荷、支承刚度、旋滚比为目标,基于NSGA Ⅱ遗传算法进行多目标优化设计,分析结构参数对轴承动态性能的影响.以某转子系统的支承轴承为例进行计算,结果表明外圈沟曲率半径系数增大则额定动负荷减小、径向刚度增大、旋滚比增大;内圈沟曲率

  10. Inductively coupled plasma optical emission spectrometric determination of trace elements in sediments after sequential selective extraction: effects of reagents and major elements on the analytical signal.

    Science.gov (United States)

    Grotti, Marco; Ianni, Carmela; Frache, Roberto

    2002-07-19

    The interfering effects due to the reagents and matrix elements associated with a four step sequential extraction procedure on ICPOES determination of trace elements were investigated in a systematic way. The emission lines were selected in order to include the most interesting elements for environmental studies (Zn, Pb, Ni, Cr, V and Cu) and the concentrations ranged according with the values occurring in the real samples. In order to distinguish between chemical and physical interfering effects, the Mg 280.270-Mg 285.213 line intensity ratio was measured, in each condition. Both pneumatic and ultrasonic nebulization were considered for comparison. It was found that both the elements which constitute the sample and the reagents which are added during the sample preparation steps significantly influence the emission intensity of all the analytes, depending on the analytical concentration and the nebulization system. Generally, the signal variations were higher with ultrasonic nebulization. Concerning the interference mechanism, it was found that the effect of the major elements (Na, K, Mg, Ca, Al and Fe) is essentially related to a change of the aerosol generation and transport processes. Differently, acetic acid, ammonium acetate and hydroxylamine hydrochloride significantly improved the plasma excitation conditions, depending on their concentration. A change of the sample introduction efficiency due to the presence of these reagents was also evident. On the contrary, the effect of hydrochloric and nitric acid emerged to be related only to the processes occurring in the sample introduction system.

  11. 牙轮钻头轴承套装配应力有限元分析及试验%Finite Element Analysis of Assembly Stress and Application of Rock Bit Bearing Sleeve

    Institute of Scientific and Technical Information of China (English)

    何畏; 刘杰; 邓嵘; 汤海平; 徐彤

    2012-01-01

    应用弹性力学理论对新型牙轮钻头的轴承套过盈配合进行受力分析,指出该方法具有局限性.采用ANSYS有限元分析软件和接触问题的有限元法,对新型牙轮钻头轴承套的装配进行仿真研究,确定了装配过盈量的最佳值.通过试验验证了理论分析的正确性和结构改进的可行性.%Theoretically,the stress of bearing sleeve interference fit of new type rock bit by the e-lasticity mechanics theory was analyzed. Based on the ANSYS and finite element method of contact problem,make the Simulation Study of the new rock bit bearing sleeve assembly set. Thus determine assembly process parameters of the best value over interference magnitude. Through experimental verification,demonstrate the validity of the theoretical analysis and the constructa-bility of structure improvement.

  12. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2017-01-01

    In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out...

  13. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  14. Structures and stabilities of group 17 fluorides EF3 (E = I, At, and element 117) with spin-orbit coupling.

    Science.gov (United States)

    Yang, Dong-Dong; Wang, Fan

    2012-12-05

    In this work, a recently developed CCSD(T) approach with spin-orbit coupling (SOC) as well as density functional theory (DFT) using various exchange-correlation (XC) functionals are employed to investigate structures and stabilities of group 17 fluorides EF(3) (E = I, At, and element 117). These molecules are predicted to have bent T-shaped C(2v) structures according to the second-order Jahn-Teller (SOJT) effects or the valance shell electron pair repulsion (VSEPR) theory. For IF(3) and (117)F(3), our results are consistent with previous SOC-DFT calculations. However, different XC functionals provide different results for AtF(3) and our SOC-CCSD(T) calculations show that both the C(2v) and D(3h) structures are minima on the potential energy surface and the C(2v) structure is the global minimum for AtF(3). The performance of XC functionals on structures and stabilities of IF(3) and AtF(3) is found to depend on the fraction of the Hartree-Fock exchange (HFX) included in the XC functionals and the M06-2X functional with 54% of HFX providing results that agree best with CCSD(T) results. In addition, although both the C(2v) and D(3h) structures are minima for AtF(3), the energy barrier between them is only 8 kJ mol(-1) for the C(2v) structure and 0.05 kJ mol(-1) for the D(3h) structure. This indicates that the D(3h) structure could not possibly be observed experimentally and AtF(3) can convert easily between the three C(2v) structures. The SOJT term is shown to be reduced by electron correlation for IF(3) and AtF(3). On the other hand, although SOC decreases the energy difference between the C(2v) and D(3h) structures and reduces the deviation of the C(2v) structure from the D(3h) structure, it decreases the frequency of the bond bending mode, which may indicate that SOC actually increases the SOJT term. This could be related to mixing of spin-singlet E' states to low-energy spin-triplet states due to SOC.

  15. HFSE (High Field Strength Elements)-transport and U-Pb-Hf isotope homogenization mediated by Ca-bearing aqueous fluids at 2.04 Ga: Constraints from zircon, monazite, and garnet of the Venetia Klippe, Limpopo Belt, South Africa

    Science.gov (United States)

    Zeh, A.; Gerdes, A.

    2014-08-01

    Results from laser-ablation inductively-coupled-plasma mass spectrometry (LA-ICP-MS) and isotope dilution (ID) analyses of minerals and rocks from a single outcrop of the Venetia Klippe of the Limpopo Belt indicate that the U-Pb and Hf isotope system homogenized on the decimetre scale under amphibolite-facies conditions of ⩽645 ± 25 °C and ⩽7.0 ± 1.1 kbar, i.e. in the presence of an aqueous fluid phase. For a metabasite sample, homogenization is supported by isotope analyses of metamorphic zircon, garnet, and whole rock, which yield a six-point Lu-Hf isochron age of 2039.7 ± 3.4 Ma, with initial 176Hf/177Hf of 0.28126 ± 0.00001, and a U-Pb zircon age of 2042 ± 10 Ma. The occurrence of a few inherited magmatic zircon cores with ages up to 2705 Ma, and with significantly lower initial 176Hf/177Hf of 0.28112, however, indicate that homogenization was incomplete. For a chlorite-biotite-garnet schist isotope homogenization is reflected by within error identical zircon and monazite U-Pb ages of 2045 ± 10 Ma and 2041 ± 8 Ma, respectively, and by a zircon-garnet-whole rock Lu-Hf isochron age of 2083 ± 63 Ma, with an initial 176Hf/177Hf of 0.28140 ± 0.00003. Contemporaneous formation of metamorphic zircon, monazite and garnet in the chlorite schist is not only supported by the isotope data, but also by chlorite inclusions in all three minerals, and by inclusions of metamorphic zircon in garnet. The inclusion textures and the identical initial 176Hf/177Hf support the conclusion that metamorphic zircon grains precipitated from an aqueous fluid phase, after dissolution of zirconium-bearing phases elsewhere, followed by a major HFSE transport, and Hf isotope homogenization. This fluid perhaps was Ca-bearing, as is suggested by the fact that garnet in the schist sample is the only Ca-bearing phase, and that metamorphic monazite, dating the metamorphic peak, is partially replacement by apatite. The fact that the metamorphic zircon rims in the metabasite sample have

  16. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  17. Journal and Wave Bearing Impedance Calculation Software

    Science.gov (United States)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  18. The determination of trace element concentrations in fly ash samples using ultrasound-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Ilander, Aki; Väisänen, Ari

    2009-01-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element (chromium, copper, lead, nickel, vanadium and zinc) concentrations in fly ash samples was developed. All the measurements were performed in robust plasma conditions. Ultrasound-assisted digestion procedures using digestion solutions of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 80% for all the analyte...

  19. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Ilander, Aki; Väisänen, Ari

    2007-01-01

    method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a...

  20. Estimation of Fatigue Crack Growth Rate for 7% Nickel Steel under Room and Cryogenic Temperatures Using Damage-Coupled Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Seul-Kee Kim

    2015-04-01

    Full Text Available In this study, fatigue crack growth rates (FCGR of 7% nickel steel at room and cryogenic temperatures were evaluated using damage-coupled finite element analysis (FEA. In order to perform the computational fatigue analysis effectively, methods for coupling damage to FEA are introduced and adopted. A hybrid method including the damage-coupled constitutive model and jump-in-cycles procedure was implemented into the ABAQUS user-defined material subroutine. Finally, the represented method was validated by comparing its results with the FCGR test results for 7% nickel steel under room and cryogenic temperatures. In particular, da/dN versus ∆K and the crack length versus the number of cycles were compared.

  1. Sequential isolation in a patient of Raoultella planticola and Escherichia coli bearing a novel ISCR1 element carrying blaNDM-1.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available BACKGROUND: The gene for New Delhi metallo-β-lactamase 1 (NDM-1 has been reported to be transmitted via plasmids which are easily transferable and capable of wide distribution. We report the isolation of two NDM-1 producing strains and possible in vivo transfer of blaNDM-1 in a patient. METHODS: Clinical samples were collected for bacterial culture and antibiotic susceptibility testing from a patient during a 34-day hospitalization. The presence of blaNDM-1 was detected by PCR and sequencing. Plasmids of interest were sequenced. Medical records were reviewed for evidence of association between the administration of antibiotics and the acquisition of the NDM-1 resistance. RESULTS: A NDM-1 positive Raoultella planticola was isolated from blood on the ninth day of hospitalization without administration of any carbapenem antibiotics and a NDM-1 positive Escherichia coli was isolated from feces on the 29th day of hospitalization and eight days after imipenem administration. The blaNDM-1 was carried by a 280 kb plasmid pRpNDM1-1 in R. planticola and a 58 kb plasmid pEcNDM1-4 in E. coli. The two plasmids shared a 4812 bp NDM-1-ISCR1 element which was found to be excisable from the plasmid as a free form and transferrable in vitro to a NDM-1 negative plasmid from E. coli. CONCLUSION: blaNDM-1 was embedded in an ISCR1 complex class 1 integron as a novel 4812 bp NDM-1-ISCR1 element. The element was found to be able to self excise to become a free form, which may provide a new vehicle for NDM-1 dissemination. This mechanism could greatly accelerate the spread of NDM-1 mediated broad spectrum β-lactam resistance.

  2. 基于LMD和MED的滚动轴承故障特征提取方法%Fault feature extraction method for rolling element bearings based on LMD and MED

    Institute of Scientific and Technical Information of China (English)

    周士帅; 窦东阳; 薛斌

    2016-01-01

    机械系统所拾取的振动信号包含着许多复杂的信息成分,微弱故障信号的提取往往会受到这些成分的影响,故障识别非常困难,尤其是滚动体故障识别,往往比内圈和外圈故障识别更困难。提出局域均值分解(local mean decomposition, LMD)与最小熵反褶积(minimum entropy deconvolution, MED)结合的方式,提取强噪声、强确定性成分下微弱故障信号的特征。先用LMD对信号做预处理,自适应地分解为若干个乘积函数(product function, PF)分量,再对前4个PF分量做MED处理以放大故障脉冲特征,最后对MED处理后的信号进行包络分析。通过对强噪声背景下滚动轴承滚动体的故障实例分析,该方法得到的输出频谱故障特征频率处峰值与200 Hz内所有峰值均值的比值较原信号的增加了96.4%,同时信噪比提高了18.3%,成功地提取了故障特征,取得了良好的效果,该研究可为强噪声环境下轴承故障识别和诊断提供参考。%The vibration signals collected from mechanical systems consist of cyclic impulse response, deterministic component and noise. The rolling bearing’s fault features are usually so weak that they are overwhelmed by these components, leading difficulty for fault diagnosis. Compared with the inner race and outer race defects of rolling bearing, recognizing the rolling element defects are much more challenging. Therefore, the key problem of fault diagnosis of rolling bears is to exactly extract the weak fault features from a strong noisy background. In this paper, we developed a method based on the minimum entropy deconvolution (MED) and local mean decomposition (LMD) for diagnosing fault features. First, the LMD was used to decompose the original signals into a set of production functions(PFs) adaptively. Each PF was a product of an amplitude envelope signal and a frequency-modulated signal. By doing so, we aimed to obtaining different

  3. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  4. [Characterization of matrix effects in microanalysis of sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry based on an element pair method].

    Science.gov (United States)

    Yuan, Ji-hai; Zhan, Xiu-chun; Hu, Ming-yue; Zhao, Ling-hao; Sun, Dong-yang

    2015-02-01

    Matrix effect between reference materials and samples is one of the major factors affecting the accuracy of analytical results by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, there is no method or calculation formula to quantify matrix effect between standards and samples up to date. In this paper, the linear correlation coefficient r of the Ii/I(is-Ci)/Cis graphs of element pairs were used to characterize the matrix effect, which took the ratios of concentrations (ci/ c(is)) and intensities (Ii/Iis) of the analytical element and internal standard element as x-axis and gamma-axis, respectively. Matrix effects of 6 element pairs in 13 glass reference materials, 2 sulfide reference materials and 2 sulfide minerals using Fe as internal standard was studied, with the linear correlation coefficient r of Fe-Cu, Fe-Zn element pairs both less than 0. 999 and trace Fe--Mn, Fe--Co, Fe--Ga, Fe--Pb element pairs all better than 0.999. Matrix effects of 3 major element pairs in 2 sulfide ref- erence materials and 6 sulfide minerals using S as internal standard was also studied, with the linear correlation coefficient r of S--Fe, S--Cu, S--Zn all less than 0.999. The great majority of relative errors of EMPA analytical results for major elements in sulfide minerals were greater than 10%, whether analyzed using Fe as internal standard with glass reference materials as external standard, or S as internal standard with sulfide reference materials MASS-1, IMER-1 as external standard, respectively. But the most analytical results for trace elements calibrated by glass reference materials using Fe as internal standard were well agreed with sulfide standard MASS-1, with the relative errors less than 15%. The results showed that matrix effects existed in glass reference materials, sulfide reference materials and sulfide minerals, and it also proved a certain rationality and practicability for quantification of matrix effect using the linear

  5. A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems

    KAUST Repository

    Bao, Kai

    2012-10-01

    In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..

  6. Modeling columnar spatiotemporal dynamics of nitric oxide as a primary controlling element of arteriole dilation during neurovascular coupling

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Although the mechanism of neurovascular coupling remains inadequately understood,physiological research has indicated that the dilation of arterioles located within the cerebral cortex column might represent the primary mechanism of hemodynamic response during neurovascular coupling.This study examined the spatiotemporal pattern of NO diffusion induced by functional stimuli at column spatial resolution.Our modeling makes it possible to explore the responses of mediating factors to functional stimuli from a four-dimensional view,which may lead the way to decoding the mechanism of neurovascular coupling.

  7. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.

    Science.gov (United States)

    Siskey, Ryan; Ciccarelli, Lauren; Lui, Melissa K C; Kurtz, Steven M

    2016-11-01

    Most contemporary total disc replacements (TDRs) use conventional orthopaedic bearing couples such as ultrahigh-molecular-weight polyethylene (polyethylene) and cobalt-chromium (CoCr). Cervical total disc replacements incorporating polyetheretherketone (PEEK) bearings (specifically PEEK-on-PEEK bearings) have been previously investigated, but little is known about PEEK-on-ceramic bearings for TDR. (1) What is the tribologic behavior of a PEEK-on-ceramic bearing for cervical TDR under idealized, clean wear test conditions? (2) How does the PEEK-on-ceramic design perform under impingement conditions? (3) How is the PEEK-on-ceramic bearing affected by abrasive wear? (4) Is the particle morphology from PEEK-on-ceramic bearings for TDRs affected by adverse wear scenarios? PEEK-on-ceramic cervical TDR bearings were subjected to a 10 million cycle ideal wear test based on ASTM F2423 and ISO 181912-1 using a six-station spine wear simulator (MTS, Eden Prairie, MN, USA) with 5 g/L bovine serum concentration at 23° ± 2° C (ambient temperature). Validated 1 million cycle impingement and 5 million cycle abrasive tests were conducted on the PEEK-on-ceramic bearings based, in part, on retrieval analysis of a comparable bearing design as well as finite element analyses. The ceramic-on-PEEK couple was characterized for damage modes, mass and volume loss, and penetration and the lubricant was subjected to particle analysis. The resulting mass wear rate, volumetric wear rate, based on material density, and particle analysis were compared with clinically available cervical disc bearing couples. The three modes of wear (idealized, impingement, and abrasive) resulted in mean mass wear rates of 0.9 ± 0.2 mg/MC, 1.9 ± 0.5 mg/MC, and 2.8 ± 0.6 mg/MC, respectively. The mass wear rates were converted to volumetric wear rates using density and found to be 0.7 ± 0.1 mm(3)/MC, 1.5 ± 0.4 mm(3)/MC, and 2.1 ± 0.5 mm(3)/MC, respectively. During each test, the PEEK

  8. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry

    Directory of Open Access Journals (Sweden)

    Watts Michael J

    2010-12-01

    Full Text Available Abstract Background Geophagy or earth-eating is common amongst some Bangladeshi women, especially those who are pregnant, both in Bangladesh and in the United Kingdom. A large proportion of the population in Bangladesh is already exposed to high concentrations of arsenic (As and other toxic elements from drinking contaminated groundwater. Additional exposure to As and other toxic elements from non-food sources has not been adequately addressed and here we present the first study to monitor As levels in baked clay (known as sikor. Methods Sikor samples originating from Bangladesh were digested using a microwave digester and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Detailed As speciation analysis was performed using HPLC-ICP-MS. Results Of particular concern were the levels of As (3.8-13.1 mg kg-1, Cd (0.09-0.4 mg kg-1 and Pb (21-26.7 mg kg-1 present in the sikor samples and their possible impact on human health. Speciation analysis revealed that sikor samples contained mainly inorganic As. Modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. This level of sikor consumption exceeds the permitted maximum tolerable daily intake (PMTDI of inorganic As by almost 2-fold. Conclusion We conclude that sikor can be a significant source of As, Cd and Pb exposure for the Bangladeshi population consuming large quantities of this material. Of particular concern in this regard is geophagy practiced by pregnant women concurrently exposed to As contaminated drinking water. Future studies needs to evaluate the bioavailability of As and other elements from sikor and their impact on human health.

  9. A Passive Magnetic Bearing Flywheel

    Science.gov (United States)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  10. Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility.

    Science.gov (United States)

    Ho, Bosco K; Agard, David A

    2010-03-01

    Single-domain allostery has been postulated to occur through intramolecular pathways of signaling within a protein structure. We had previously investigated these pathways by introducing a local thermal perturbation and analyzed the anisotropic propagation of structural changes throughout the protein. Here, we develop an improved approach, the Rotamerically Induced Perturbation (RIP), that identifies strong couplings between residues by analyzing the pathways of heat-flow resulting from thermal excitation of rotameric rotations at individual residues. To explore the nature of these couplings, we calculate the complete coupling maps of 5 different PDZ domains. Although the PDZ domain is a well conserved structural fold that serves as a scaffold in many protein-protein complexes, different PDZ domains display unique patterns of conformational flexibility in response to ligand binding: some show a significant shift in a set of alpha-helices, while others do not. Analysis of the coupling maps suggests a simple relationship between the computed couplings and observed conformational flexibility. In domains where the alpha-helices are rigid, we find couplings of the alpha-helices to the body of the protein, whereas in domains having ligand-responsive alpha-helices, no couplings are found. This leads to a model where the alpha-helices are intrinsically dynamic but can be damped if sidechains interact at key tertiary contacts. These tertiary contacts correlate to high covariation contacts as identified by the statistical coupling analysis method. As these dynamic modules are exploited by various allosteric mechanisms, these tertiary contacts have been conserved by evolution.

  11. Electromechanical properties of radial active magnetic bearings

    OpenAIRE

    Antila, Matti

    1998-01-01

    Nonideal properties of the electromagnetic actuators in radial active magnetic bearings are studied. The two dimensional nonlinear stationary finite element method is used to determine the linearised parameters of a radial active magnetic bearing. The method is verified on two test machines. The accuracy is 10-15 % in the magnetic saturation region. The effect of magnetic saturation on the bearing dynamics is studied based on the root locus diagrams of the closed loop system. These diagrams s...

  12. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    Science.gov (United States)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  13. Pratt and Whitney cryogenic turbopump bearing experience

    Science.gov (United States)

    Poole, W. E.; Bursey, R. W., Jr.

    1988-01-01

    Successful, reusable bearings require lubrication, traditionally, a transfer film from sacrificial cage wear. Early testing included materials screening programs to identify suitable cryogenic cage materials. A specially developed element tester that simulated the function of a ball bearing cage was used. Suitable materials must provide lubrication with an acceptably low wear rate, without abrading contacting surfaces. The most promising materials were tested in full scale bearings at speeds up to 4 MDN. Teflon, filled with 40 percent bronze powder, was the best performing material. A variety of bearings were designed and successfully tested in LH2 and LOX. Bearings with bronze filled Teflon cages were successfully tested for 150 hrs. In overload tests, the same design was tested for 5 hrs at maximum Hertz stresses above 450 ksi and an additional 5 hrs with a maximum Hertz stress exceeding 500 ksi. Four bearings were tested in LOX for 25 hrs, with a maximum time per bearing of 10 hrs.

  14. 含气水合物沉积物弹塑性损伤本构模型探讨%A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    杨期君; 赵春风

    2014-01-01

    天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。%The extraction of methane hydrate in the seabed will result in a series of geotechnical engineering problems and disasters. In order to ensure the safety of the related engineering facilities during the extraction, it is necessary to build reasonable constitutive model for methane hydrate bearing sediments. Based on the thorough study of the geomechanical characteristics of hydrate bearing sediments and the contacts between soil grains, the authors suppose that the geomechanical behavior of hydrate bearing sediments resulting from the combination of the friction between soil grains and cementation due to methane hydrate. Considering the different mechanical mechanisms of the friction and cementation, the modified Cam-clay model and elasticity damage model are employed to describe their mechanical responses respectively. By assuming that soil skeleton and cementation have the same strain during the loading, a constitutive model coupling elastoplasticity and damage for methane hydrate bearing sediments is then established based on a simplified damage evolution law. The

  15. A triptycene-based microporous organic polymer bearing tridentate ligands and its application in Suzuki-Miyaura cross-coupling reaction.

    Science.gov (United States)

    Wen, Qiang; Zhou, Tian-You; Zhao, Qiao-Ling; Fu, Jie; Ma, Zhi; Zhao, Xin

    2015-02-01

    A triptycene-based microporous organic polymer (MOP) in which 2,6-bis(benzimidazol-2-yl)pyridine (bbp) is incorporated as linkage and coordination site is designed and synthesized. Pd(II) ions are further immobilized in this MOP through the coordination interactions between Pd(II) ion and nitrogen atoms of bbp. The resulting material shows high stability and exhibits excellent heterogeneously catalytic activity for the Suzuki-Miyaura cross-coupling reaction. Its high efficiency can be maintained after being reused for a number of cycles.

  16. Simultaneous analysis 26 mineral element contents from highly consumed cultured chicken overexposed to arsenic trioxide by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    He, Ying; Sun, Bonan; Li, Siwen; Sun, Xiao; Guo, Ying; Zhao, Hongjing; Wang, Yu; Jiang, Guangshun; Xing, Mingwei

    2016-11-01

    This study assessed the impacts of dietary arsenic trioxide (As2O3) on 26 mineral element contents in the liver and kidney of chicken. A total of 100 male Hy-line cocks were randomly divided into 2 groups (50 chickens in each group), including an arsenic-treated group (basic diet supplemented with As2O3 at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and water. We determined 26 mineral elements in the liver and kidney by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that nine element levels (Al, Mn, Co, Cu, Zn, Se, Cd, Ba, and Pb) were significantly decreased (P chickens exposed to As2O3 compared to the control chickens where three element levels (Ni, As, and Hg) increased significantly (P chickens exposed to As2O3 compared to the control chickens where four element levels (Mo, As, Cd, and Hg) increased significantly (P chicken, and the effects vary from organ to organ. The aim of this study is to provide references for further study of heavy metal poisoning by detecting the contents of minerals induced by arsenic in chicken.

  17. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy.

    Science.gov (United States)

    Kumakli, Hope; Duncan, A'ja V; McDaniel, Kiara; Mehari, Tsdale F; Stephenson, Jamira; Maple, Lareisha; Crawford, Zaria; Macemore, Calvin L; Babyak, Carol M; Fakayode, Sayo O

    2017-05-01

    Human scalp hair samples were collected and used to assess exposure to toxic elements and essential elements in the state of North Carolina, USA using accelerated microwave assisted acid digestion and inductively coupled plasma optical emission spectroscopy (ICP-OES). The figures-of-merit of the ICP-OES were appropriate for elemental analysis in scalp hair with detection limits as low as 0.0001 mg/L for Cd, good linearity (R(2) > 0.9978), and percent recoveries that ranged from 96 to 106% for laboratory-fortified-blanks and 88-112% for sample spike recovery study. The concentrations of essential elements in scalp hair were larger than those of toxic elements, with Ca having the highest average concentration (3080 μg/g, s = 14,500, n = 194). Some of the maximum concentrations observed for As (65 μg/g), Ni (331 μg/g), Cd (2.96 μg/g), and Cr (84.6 μg/g) in individual samples were concerning, however. Samples were statistically analyzed to determine the influence of race, gender, smoking habits, or age on the elemental concentrations in scalp hair. Higher concentrations of essential elements were observed in the scalp hair of Caucasians, females, and non-smokers, and the differences were often significant at a 90% confidence level. Several pairs of essential elements, for example Ca-K, Ca-Mg, and Ca-Zn, were strongly correlated in Caucasian hair but uncorrelated in African-American hair. Similarly, essential elements were strongly correlated in female hair but weakly correlated in male hair. Toxic element pairs (As-Cd, As-Se, Pb-As, and Se-Cd) were strongly correlated in the hair of smokers but uncorrelated in that of non-smokers, suggesting that cigarette smoke is a common source of toxic elements in humans. Published by Elsevier Ltd.

  18. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  19. Impact of Waterlogging Coupling with High Temperature during Cotton in Flowering and Boll-bearing on its Photosynthetic Physiology and Yield

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2012-12-01

    Full Text Available This experiment was made according to the rainy climatic characteristics during May to Aug in Jianghan Plain of Hubei province as well as in the southern plain of China, excessive rain and high temperature in the period often bring a severe damage for cotton growth and its final output, the purpose of this study expects to explore or indicate an effect of the coupled action of high temperature and waterlogging on cotton, the analysis focus on an influence of the coupling on cotton fluorescence kinetic parameters, SPAD and yield components. Results showed that: the F0 increased after waterlogged processing and was greater than the previous changes. Generally, at the sixth day of each treatment the F0 of the surface waterlogging and subsurface waterlogging had increased 7-20% and 9- 16%, respectively, rising rate was basically positive related to the stresses degree, but Fm, Fv/Fm and Fv/F0 decreased; Chlorophyll relative content of SAPD firstly decreased and then increased, at the sixth days got to the lowest, the decrease of SPAD amplitude was positively related to the degree of waterlogging stresses. Additionally, the influence of high temperature and waterlogging interaction on yield was affected mainly by the boll number of cotton, boll weight and lint percentage had a little influence to it. As a whole, the impact of surface waterlogging on indexes above was more than subsurface waterlogging compared with CK, the yield after treated 5 days nearly reduced 60%.

  20. Determination of thorium and light rare-earth elements in soil water and its high molecular mass organic fractions by inductively coupled plasma mass spectrometry and on-line-coupled size-exclusion chromatography.

    Science.gov (United States)

    Casartelli, Evelton A; Miekeley, Norbert

    2003-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of thorium and light rare-earth elements (LREEs) in soil and soil water samples from a mineral deposit (Morro do Ferro, Minas Gerais, Brazil). Size-exclusion chromatography (SEC) on-line coupled to ICP-MS and UV-detection was applied to verify possible association/complexation of these elements with organic matter in soil water separated by a centrifugation technique. Concentrations of DOC in soil waters are in the range of 10 to 500 mg L(-1) and correlate with the organic carbon content of the soil (r=0.950; p10,000 Da, with a retention time of about 10 min; 7000 to 8000 Da with retention times of 13 to 15 min; and 2000 to 4000 Da with retention times around 23 min. Elemental peaks associated with dissolved organic matter below 1000 Da were not observed, suggesting that complexation with simple plant organic acids or inorganic ligands is of minor importance in the environment studied in this work.

  1. Determination of sulfur and selected trace elements in metallothionein-like proteins using capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell

    Energy Technology Data Exchange (ETDEWEB)

    Proefrock, Daniel; Leonhard, Peter; Prange, Andreas [GKSS Research Centre Geesthacht, Institute for Coastal Research, Max Planck Strasse, 21502, Geesthacht (Germany)

    2003-09-01

    The determination of sulfur in biologically relevant samples such as metalloproteins is described. The analytical methodology used is based on robust on-line coupling between capillary electrophoresis (CE) and octopole reaction cell inductively-coupled plasma mass spectrometry (ORC-ICP-MS). Polyatomic ions that form in the plasma and interfere with the determination of S at mass 32 are minimised by addition of xenon to the collision cell. The method has been applied to the separation and simultaneous element-specific detection of sulfur, cadmium, copper, and zinc in commercially available metallothionein preparations (MT) and metallothionein-like proteins (MLP) extracted from liver samples of bream (Abramis brama L.) caught in the river Elbe, Germany. Instrumental detection limits have been calculated according to the German standard procedure DIN 32645 for the determination of sulfur and some simultaneously measured trace elements in aqueous solution. For sulfur detection limits down to 1.3 {mu}g L{sup -1} ({sup 34}S) and 3.2 {mu}g L{sup -1} ({sup 32}S) were derived. For the other trace elements determined simultaneously detection limits ranging from 300 ng L{sup -1} ({sup 58}Ni) to 500 ng L{sup -1} ({sup 66}Zn, {sup 55}Mn) were achieved. For quantification of sulfur and cadmium in a commercially available MT preparation under hyphenated conditions the use of external calibration is suggested. Finally, the need for proper sample-preparation technique will be discussed. (orig.)

  2. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  3. On the Origins of the Linear Free Energy Relationships: Exploring the Nature of the Off-Diagonal Coupling Elements in S(N)2 Reactions.

    Science.gov (United States)

    Rosta, Edina; Warshel, Arieh

    2012-01-01

    Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works(1,2) and uses the ab initio frozen density functional theory (FDFT) method(3) to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of S(N)2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment.

  4. Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings

    Science.gov (United States)

    Knight, Josiah D.

    1996-01-01

    The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas

  5. Application of a microwave-based desolvation system for multi-elemental analysis of wine by inductively coupled plasma based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 Alicante (Spain)], E-mail: guillermo.grindlay@ua.es; Mora, Juan; Maestre, Salvador; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 Alicante (Spain)

    2008-11-23

    Elemental wine analysis is often required from a nutritional, toxicological, origin and authenticity point of view. Inductively coupled plasma based techniques are usually employed for this analysis because of their multi-elemental capabilities and good limits of detection. However, the accurate analysis of wine samples strongly depends on their matrix composition (i.e. salts, ethanol, organic acids) since they lead to both spectral and non-spectral interferences. To mitigate ethanol (up to 10% w/w) related matrix effects in inductively coupled plasma atomic emission spectrometry (ICP-AES), a microwave-based desolvation system (MWDS) can be successfully employed. This finding suggests that the MWDS could be employed for elemental wine analysis. The goal of this work is to evaluate the applicability of the MWDS for elemental wine analysis in ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS). For the sake of comparison a conventional sample introduction system (i.e. pneumatic nebulizer attached to a spray chamber) was employed. Matrix effects, precision, accuracy and analysis throughput have been selected as comparison criteria. For ICP-AES measurements, wine samples can be directly analyzed without any sample treatment (i.e. sample dilution or digestion) using pure aqueous standards although internal standardization (IS) (i.e. Sc) is required. The behaviour of the MWDS operating with organic solutions in ICP-MS has been characterized for the first time. In this technique the MWDS has shown its efficiency to mitigate ethanol related matrix effects up to concentrations of 1% (w/w). Therefore, wine samples must be diluted to reduce the ethanol concentration up to this value. The results obtained have shown that the MWDS is a powerful device for the elemental analysis of wine samples in both ICP-AES and ICP-MS. In general, the MWDS has some attractive advantages for elemental wine analysis when compared to a conventional sample introduction system such

  6. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Science.gov (United States)

    Ali, Shawkat; Laurie, John D; Linning, Rob; Cervantes-Chávez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-07-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  7. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription

    Directory of Open Access Journals (Sweden)

    Berendzen Kenneth W

    2012-08-01

    Full Text Available Abstract Background In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs that bind Auxin Response Elements (AuxREs, also members of the bZIP- and MYB-transcription factor (TF families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs or Myb Response Elements (MREs, respectively. Results Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana and monocot (Oryza sativa model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. Conclusions Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.

  8. Finite Element/Boundary Element Simulation of 3 D Rail Gun with Coupling Method Based on Symmetry Condition%对称边界条件下轨道炮有限元/边界元仿真

    Institute of Scientific and Technical Information of China (English)

    林志朋; 刘振祥; 杨栋; 欧阳建明; 杨丽佳

    2016-01-01

    基于deal.ii编写了电磁轨道炮有限元仿真程序,建立了拉格朗日运动坐标下电磁轨道炮的有限元仿真模型;通过使用有限元边界元耦合方法可以对电磁轨道炮的边界条件进行计算,而无需对轨道炮周边的空气划分网格,是一种处理电磁场边界问题的有效方法;但是,由于边界元方法,使用的是满秩矩阵,在三维情况下计算量大,利用轨道炮的对称性,使用对称边界条件,减少了参与计算的网格数目,从而减少计算量。%This article created finite element program and model for rail launch based on deal.ii in La-grange coordinate frame.By using coupling finite element/boundary element coupling method,we can cal-culate boundary condition without air grid surround rail gun.It is a valid method to handle boundary prob-lems of electromagnetic without the perimeter of the rail gun air mesh.But for boundary element method u-sing full matrix which will cost a lot of calculation in 3D situation,we would better using symmetry condi-tions for rail gun to reduce the grid number and calculation.

  9. 变载荷下风力发电机行星齿轮传动系统齿轮-轴承耦合动力学特性%Gear-bearing coupling dynamics characteristics of wind turbine planetary gear transmission system under variable load

    Institute of Scientific and Technical Information of China (English)

    周志刚; 秦大同; 杨军; 陈会涛

    2012-01-01

    Considering that the transmission system of wind turbine works in complex and changing load environment caused by stochastic wind speed,this paper uses sparse least squares support vector machine(SL-SVM) to simulate wind speed of true wind field,and obtains time-varying wind load caused by stochastic wind speed.The lumped-parameter method is used to develop a dynamic model of planetary gear transmission system of wind turbine coupled with bearing.The model includes the varying wind load,time-vary mesh stiffness of gear pair and time-vary stiffness of rolling element bearing.The numerical method is used to simulate the dynamic performance of planetary gear system of Multibrid Technology Wind Turbine with 1.5 MW rated power.The vibration displacement responses of the transmission system are obtained as well as dynamic meshing force each pair of gear and nonlinear bearing forces.The research can provide a foundation for optimizing dynamic performance and reliable design of gear transmission system of wind generator.%根据风力发电机传动系统在随机风场中复杂变工况的工作特点,建立了最小二乘支持向量机风场随机风速模型,获得了由随机风速引起的时变风载荷。采用集中质量参数法建立了风力发电机行星齿轮传动系统中齿轮滚动轴承耦合动力学模型,考虑了风力发电机行星齿轮传动的变风载输入、齿轮时变啮合刚度和滚动轴承时变刚度等影响因素,对变风速下1.5MW半直驱风力发电机行星齿轮传动系统的动力学特性进行了仿真计算分析,求得了变风速下行星齿轮传动系统的振动位移、各齿轮副的动态啮合力和非线性动态轴承力,为风力发电机传动系统的动态性能优化和可靠性设计奠定了基础。

  10. Implementation of fully coupled heat and mass transport model to determine the behaviour of timber elements in fire

    DEFF Research Database (Denmark)

    Pečenko, Robert; Huč, Sabina; Turk, Goran

    2014-01-01

    In this paper we present results of numerical analysis of timber beam exposed to fire. The numerical procedure is divided into two physically separated but closely related phases. In the first phase coupled problem of moisture and heat transfer over the timber beam is numerically solved using the...

  11. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    2014-07-01

    Full Text Available The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE, interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity

  12. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat

    2014-07-03

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  13. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  14. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples

    DEFF Research Database (Denmark)

    Buanuam, Janya; Tiptanasup, Kasipa; Shiowatana, Juwadee

    2006-01-01

    A continuous-flow system comprising a novel, custom-built extraction module and hyphenated with inductively coupled plasma-mass spectrometric (ICP-MS) detection is proposed for assessing metal mobilities and geochemical associations in soil compartments as based on using the three step BCR (now...... to discretely introduce appropriate extract volumes to the detector at a given time and with a given dilution factor. The proposed hyphenated method demonstrates excellent performance for on-line monitoring of major and trace elements (Ca, Mn, Fe, Ni, Pb, Zn and Cd) released when applying the various extracting...... the extraction time. Thus, the intimate elemental association between Cd and Zn in contaminated soils could be assessed....

  15. Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation

    Science.gov (United States)

    Sun, Yali; Guan, Xiyun; Du, Andao

    1998-09-01

    A method was developed for the determination of trace platinum group elements (PGEs) by nickel sulfide fire assay inductively coupled plasma-mass spectrometry (ICP-MS). With isotope dilution, the improved technique gives precise Os content data. Through the purification of the reagent nickel oxide, reagent blank was greatly reduced. Results obtained for the standard reference materials (SRM) GPt-1-GPt-7(GBW 07288-07294, China), DZ Σ-2 (GBW 07102, China) and Guilin Cu-Ni Ore are in good agreement with the recommended values for platinum group elements. The detection limits ranged from 0.01 to 0.39 ng/g. The relative standard deviations for Ru, Rh, Pd and Ir were less than 5%, for Os less than 1%, and Pt less than 8% for SRM GPt-6.

  16. [Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction].

    Science.gov (United States)

    Chen, Fei; Xu, Dian-dou; Tang, Xiao-ping; Cao, Jing; Liu, Ya-ting; Deng, Jian

    2012-01-01

    Textiles are easily contaminated by heavy metals in the course of processing. In order to monitor the quality of textiles, a new method was developed for simultaneous determination of arsenic, antimony, lead, cadmium, chromium, cobalt, copper, nickel and mercury in textiles by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted dilute nitric acid extraction. After optimizing extraction conditions, we ultimately selected 5% nitric acid as extractant and 5 min as extraction time with the extraction temperature of 120 degrees C and instrument power of 400W in the microwave-assisted extraction procedure. Nine hazardous elements were detected sequentially by ICP-OES. The results showed that the detection limits were 0.3-15 microg x L(-1) and the recoveries 73.6%-105% with the RSDs (n = 3) of 0.1%-3%. The proposed method was successfully used to determine nine elements in cotton, wool, terylene and acrylic.

  17. Flow injection on-line dilution for multi-element determination in human urine with detection by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Wang, J.H.; Hansen, E.H.; Gammelgaard, Bente

    2001-01-01

    A simple flow injection on-line dilution procedure with detection by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of copper, zinc, arsenic, lead, selenium, nickel and molybdenum in human urine. Matrix effects were minimized by employing a dilution fact...... of 16.5 with on-line standard addition, and Rh-103 was used as internal standard to compensate for signal fluctuation. The procedure was validated by the analysis of two standard reference materials SRM 2670 (NIST) and Seronorm (TM) Trace Elements in Urine. Recovery experiments were pet...... human urine samples. No correlations between the concentrations of the elements were observed. (C) 2001 Elsevier Science B.V. All rights reserved...

  18. FMO3-LCMO study of electron transfer coupling matrix element and pathway: Application to hole transfer between two triptophanes through cis- and trans-polyproline-linker systems

    CERN Document Server

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    The linear-combination of fragment molecular orbitals with three-body correction (FMO3-LCMO) is examined for electron transfer (ET) coupling matrix elements and ET pathway analysis, with application to hole transfer between two triptophanes bridged by cis- and trans-polyproline linker conformations. A projection to the minimal-valence-plus-core FMO space was found to give sufficient accuracy with significant reduction of computational cost while avoiding the problem of linear dependence of FMOs stemming from involvement of bond detached atoms.

  19. FMO3-LCMO study of electron transfer coupling matrix element and pathway: Application to hole transfer between two tryptophans through cis- and trans-polyproline-linker systems

    Science.gov (United States)

    Kitoh-Nishioka, Hirotaka; Ando, Koji

    2016-09-01

    The linear-combination of fragment molecular orbitals with three-body correction (FMO3-LCMO) is examined for electron transfer (ET) coupling matrix elements and ET pathway analysis, with application to hole transfer between two tryptophans bridged by cis- and trans-polyproline linker conformations. A projection to the minimal-valence-plus-core FMO space was found to give sufficient accuracy with significant reduction of computational cost while avoiding the problem of linear dependence of FMOs stemming from involvement of bond detached atoms.

  20. The marriage of metallacycle transfer chemistry with Suzuki-Miyaura cross-coupling to give main group element-containing conjugated polymers.

    Science.gov (United States)

    He, Gang; Kang, Le; Torres Delgado, William; Shynkaruk, Olena; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2013-04-10

    A versatile and general synthetic route for the synthesis of conjugated main group element-based polymers, previously inaccessible by conventional means, is reported. These polymers contain five-membered chalcogenophene rings based on S, Se, and Te, and we demonstrate that optoelectronic properties can be readily tuned via controlled atom substitution chemistry. In addition, regioregular hybrid thiophene-selenophene-tellurophene and selenophene-fluorene copolymers were synthesized to provide a further illustration of the scope of the presented metallacycle transfer/cross-coupling polymerization method.

  1. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  2. Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bowie, Andrew R; Townsend, Ashley T; Lannuzel, Delphine; Remenyi, Tomas A; van der Merwe, Pier

    2010-08-31

    Trace elements often limit phytoplankton growth in the ocean, and the quantification of particulate forms is essential to fully understand their biogeochemical cycling. There is presently a lack of reliable measurements on the trace elemental content of marine particles, in part due to the inadequacies of the sampling and analytical methods employed. Here we report on the development of a series of state-of-the-art trace metal clean methods to collect and process oceanic particulate material in open-ocean and sea ice environments, including sampling, size-fractionated filtration, particle digestions and analysis by magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS). Particular attention was paid to the analysis of certified reference materials (CRMs) and field blanks, which are typically the limiting factor for the accurate analysis of low concentrations of trace metals in marine particulate samples. Theoretical detection limits (3 s of the blank) were low for all 17 elements considered, and varied according to filter material and porosity (sub-microg L(-1) for polycarbonate filters and 1-2 microg L(-1) for quartz and polyester filters). Analytical accuracy was verified using fresh water CRMs, with excellent recoveries noted (93-103%). Digestion efficiencies for various acid combinations were assessed using sediment and plankton CRMs. Using nitric acid only, good recoveries (79-90%) were achieved for Mo, Cd, Ba, Pb, Mn, Fe, Co, Ni, Cu, Zn and Ga. The addition of HF was necessary for the quantitative recovery of the more refractory trace elements such as U, Al, V and Cr. Bioactive elements such as P can also be analysed and used as a biomass normaliser. Our developed sampling and analytical methods proved reliable when applied during two major field programs in both the open Southern Ocean and Antarctic sea ice environments during the International Polar Year in 2007. Trace elemental data are presented for particulate samples collected in both

  3. Multi-element analysis of urine using dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS — A practical application

    Directory of Open Access Journals (Sweden)

    Renata Brodzka

    2013-04-01

    Full Text Available Objectives: The method for the determination of As, Al, Cd, Ni, Pb (toxic elements and Cr, Co, Cu, Fe, Mn, Zn (essential elements in human urine by the use of Inductively Coupled Plasma Mass Spectrometry (quadrupole ICP-MS DRCe Elan, Perkin Elmer with the dynamic reaction cell (DRC was developed. Materials and Methods: The method has been applied for multi-element analysis of the urine of 16 non-exposed healthy volunteers and 27 workers employed in a copper smelter. The analysis was conducted after initial 10-fold dilution of the urine samples with 0,1% nitric acid. Rhodium was used as an internal standard. The method validation parameters such as detection limit, sensitivity, precision were described for all elements. Accuracy of the method was checked by the regular use of certified reference materials ClinCheck®-Control Urine (Recipe as well as by participation of the laboratory in the German External Quality Assessment Scheme (G-EQUAS. Results: The detection limits (DL 3s of the applied method were 0.025, 0.007, 0.002, 0.004, 0.004, 0.086, 0.037, 0.009, 0.016, 0.008, 0.064 (μg/l for Al, As, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, Zn in urine, respectively. For each element linearity with correlation coefficient of at least 0.999 was determined. Spectral interferences from some of the ions were removed using DRC-e with addition of alternative gas: methane for cobalt, copper, cadmium, chromium, iron, manganese, nickel and rhodium, and oxygen for arsenic. Conclusions: The developed method allows to determine simultaneously eleven elements in the urine with low detection limits, high sensitivity and good accuracy. Moreover, the method is appropriate for the assessment of both environmental and occupational exposure.

  4. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers.

  5. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  6. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection

    Science.gov (United States)

    Yan, Ping; He, Man; Chen, Beibei; Hu, Bin

    2017-10-01

    In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.

  7. Permanent Magnetic Bearing for Spacecraft Applications

    Science.gov (United States)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  8. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    Energy Technology Data Exchange (ETDEWEB)

    Elteren, Johannes T. van, E-mail: elteren@ki.si [National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia); Tennent, Norman H. [Fyne Conservation Services, St. Catherine' s, Argyll PA25 8BA, Scotland (United Kingdom); Faculty of Humanities, University of Amsterdam, Oude Turfmarkt 147, 1012GC Amsterdam (Netherlands); Selih, Vid S. [National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia)

    2009-06-30

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO{sub 2}, the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO{sub 2} as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 {mu}g g{sup -1} elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base

  9. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Wu, Bei; Zoriy, Miroslav; Chen, Yingxu; Becker, J Sabine

    2009-04-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of (39)K(+), (24)Mg(+), (55)Mn(+), (63)Cu(+), (31)P(+), (34)S(+) and (11)B(+) were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon ((13)C(+)) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L(-1). The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 microg g(-1) for Cu and 14,000 microg g(-1) for K.

  10. 装配式冷弯型钢结构楼盖承载性能的有限元分析%Finite Element Analysis of Bearing Properties of Floor Structure of Precast Cold-Formed Steel Building

    Institute of Scientific and Technical Information of China (English)

    刘希月; 王元清; 石永久; 刘明

    2013-01-01

    In order to study the bearing properties of the floor structure of precast cold-formed steel building which adopted a new type beam-column joint,that is pin-connected flange joint,this paper has analyzed the bearing properties and natural frequency of the floor structure of precast cold-formed steel building, and the influence of the pin-connected flange joint and the beam-slab connection on the bearing properties of the floor structure has also been analyzed by the software ANSYS,taking a demonstration building in southern China for example,so as to provide technical support for the drawing of the related specifications. The finite element analysis results show that the flange joint with column pin-connected adopted in this paper has high stiffness,the floor structure which adopts this joint has adequate loading capacity,and the connection of column-beam and beam-slab has large effect on the bearing properties of the floor structure, which should be paid much attention to and guarantee its reliability in engineering.%目的 研究销轴法兰节点及应用此种特殊形式节点的装配式冷弯型钢结构楼盖的承载性能,为其推广应用及有关规范标准的编制提供技术支持.方法 以我国南方某工程示范楼的楼盖为算例,利用有限元软件ANSYS对装配式斜支撑冷弯型钢结构楼盖在竖向荷载作用下的承载性能及自振频率进行分析,并对结构中销轴法兰节点、组合楼板与钢梁连接方式对楼盖承载性能的影响进行研究.结果 算例中销轴法兰节点刚度较大,应用此种节点的楼盖承载力及变形性能在楼面荷载小于10 kN/m2时接近于节点刚接模型;梁柱节点刚度对楼盖整体结构承载性能的影响明显;楼板与梁铰接模型的整体承载力及竖向刚度均低于楼板与梁刚接模型.结论 算例中应用销轴法兰节点的装配式冷弯型钢结构楼盖具有足够的承载力并能满足正常使用的要求;在装配式冷

  11. Recent results from a continuous wave stepped frequency GPR system using a new ground-coupled multi-element antenna array

    Science.gov (United States)

    Linford, Neil; Linford, Paul; Payne, Andy

    2016-04-01

    The recent availability of multi-channel GPR instrumentation has allowed high-speed acquisition of densely sampled data sets over unprecedented areas of coverage. Such instrumentation has been of particular interest for the mapping of near-surface archaeological remains where the ability to collect GPR data at very close sample spacings (antenna array. Whilst this system originally utilised an air-coupled antenna array there remained some debate over the suitability of an air-coupled antenna for all site conditions, particularly where a conductive surface layer, typical of many archaeological sites in the UK, may impede the transfer of energy into the ground. Encouraging results obtained from an initial prototype ground-coupled antenna array led to the introduction of a full width 22 channel G1922 version in March 2014 for use with the MkIV GeoScope console, offering faster acquisition across a wider frequency bandwidth (60MHz to 3GHz) with a cross-line 0.075m spacing between the individual elements in the array. Field tests over the Roman remains at Silchester corroborated the results from the earlier prototype, demonstrating an increased depth of penetration at the site compared to the previous air-coupled array. Further field tests were conducted with the G1922 over a range of sites, including Roman villa sites, formal post-medieval garden remains and a medieval farmstead to assess the response of the ground-coupled antenna to more challenging site conditions, particularly through water saturated soils. A full production DXG1820 version of the antenna became available for field work in 2015 offering optimisation of the individual element design to aid the recovery of weak return signals. Again, this has proved useful over sites where the presence of water saturated soils may have compromised the use of an air-coupled antenna array, or potentially restricted the depth of signal penetration. Collecting densely samples GPR data over very large areas has, however

  12. A 3D mixed frame element with multi-axial coupling for thin-walled structures with damage

    Directory of Open Access Journals (Sweden)

    D. Addessi

    2014-07-01

    Full Text Available A 3D mixed beam finite element is presented, modeling the warping of the cross-sections as an independent kinematic field. The beam formulation is derived on the basis of the Hu-Washizu variational principle, expressed as function of four independent fields: the standard displacements, strains and stresses and the additional warping displacement. This is interpolated along the beam axis and on the cross-section, by placing on it a regular grid of interpolation points and adopting Lagrange polynomials. The warping degrees of freedom defined at the cross-section interpolation points are condensed, thus preserving the element matrix and vector sizes. A fiber discretization of the cross-sections is adopted. The constitutive relationship at the midpoint of each fiber is based on an isotropic damage model for brittle-like materials, distinguishi